WO2014030295A1 - 体動検出装置及びこれを備える電気刺激装置 - Google Patents

体動検出装置及びこれを備える電気刺激装置 Download PDF

Info

Publication number
WO2014030295A1
WO2014030295A1 PCT/JP2013/004504 JP2013004504W WO2014030295A1 WO 2014030295 A1 WO2014030295 A1 WO 2014030295A1 JP 2013004504 W JP2013004504 W JP 2013004504W WO 2014030295 A1 WO2014030295 A1 WO 2014030295A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
determination
sensors
human body
body movement
Prior art date
Application number
PCT/JP2013/004504
Other languages
English (en)
French (fr)
Inventor
亮 市村
三原 泉
景太 乾
Original Assignee
パナソニック 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック 株式会社 filed Critical パナソニック 株式会社
Publication of WO2014030295A1 publication Critical patent/WO2014030295A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0472Structure-related aspects
    • A61N1/0484Garment electrodes worn by the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/112Gait analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0408Use-related aspects
    • A61N1/0452Specially adapted for transcutaneous muscle stimulation [TMS]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36003Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of motor muscles, e.g. for walking assistance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/365Heart stimulators controlled by a physiological parameter, e.g. heart potential
    • A61N1/36514Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by a physiological quantity other than heart potential, e.g. blood pressure
    • A61N1/36542Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by a physiological quantity other than heart potential, e.g. blood pressure controlled by body motion, e.g. acceleration

Definitions

  • the present invention relates mainly to a body movement detection device for detecting a walking state and an electrical stimulation device using the body movement detection device.
  • Patent Document 1 describes a body movement detection device that detects a walking state based on an output signal of an acceleration sensor worn on a user's body.
  • the walking state detected by the body movement detecting device is used, for example, to evaluate the movement of the left leg and the right leg, or to apply a physical stimulus to the user.
  • the inventor of the present invention has developed a motion detection device capable of detecting the motion of the user's body in detail, based on the output signal of a sensor attached to one of the user's legs. We considered making a decision. However, it was difficult to detect human body movement such as walking state based on the output signal of a sensor attached to one of the legs, but it was difficult to detect human body movement such as walking state from such information .
  • An object of the present invention is to provide a body movement detection device capable of detecting a walking state and an electric stimulation device using the body movement detection device.
  • a body movement detection device is a plurality of detection units for detecting body movement, mounted at symmetrical positions with respect to a reference plane that is a plane that is the center of symmetrical movement of a human body, The posture of the human body is determined by combining the plurality of detection units including one or more sensors and the output signals of two or more sensors mounted at positions sandwiching the reference surface. And a determination unit.
  • the reference plane is a median plane that divides the human body as viewed from the front equally to the left and right.
  • the plurality of detection units preferably include a first sensor attached to one of the limbs of the human body and a second sensor attached to the other limb at a position symmetrical to the first sensor.
  • the determination unit determines the operation of one limb of the human body by combining output signals of the two or more sensors mounted at symmetrical positions with respect to the reference surface.
  • the determination unit is a first determination unit that performs operation determination of one limb of a human body based on output signals of one or more first sensors attached to one side of the human body with respect to the reference surface; And a second determination unit that determines the operation of the other limb of the human body based on output signals of one or more second sensors attached to the other side of the human body with respect to the surface, wherein the body movement detection device It is preferable to further include an integrated logic operation unit that determines the movement of one of the limbs of the human body, in consideration of the determination result of the second determination unit in the determination result of the first determination unit.
  • the two or more sensors include a plurality of first sensors disposed in a half body of a human body, and a plurality of second sensors disposed in symmetrical positions with the plurality of first sensors in the other body,
  • the determination unit preferably determines the posture of the human body in accordance with an arithmetic expression in which the output signals of the plurality of first sensors and the plurality of second sensors are combined.
  • the body movement detection device further includes an auxiliary detection unit including at least one sensor attached to the human body separately from the plurality of detection units.
  • the determination unit is configured to be able to set whether to combine the output signals of the two or more sensors according to the operation of the human body to be determined.
  • an electric stimulation device comprising: the body movement detection device; an electric stimulation unit for applying an electric stimulation to a human body; and the electric stimulation unit based on the movement of the human body determined by the body movement detection device. And an electrical control unit that controls the electrical stimulation to be applied to the human body by performing control.
  • FIG. 1 is a front view of the human body with which the body movement detection apparatus of 1st Embodiment was mounted
  • FIG.1 is a schematic perspective view of the body movement detection apparatus of Fig.1 (a). It is a rear view of a mounting part.
  • It is a block diagram of the body movement detecting device of a 1st embodiment.
  • (A) and (b) are figures for demonstrating walk operation
  • the body movement detection apparatus 10 of 1st Embodiment is provided with sensor SL1, SL2, SR1, SR2 which detects the displacement of a user's thigh and knee, for example.
  • the body movement detection device 10 detects the walking state of the user based on the detection results of the sensors SL1, SL2, SR1, and SR2.
  • the body movement detection device 10 includes a mounting portion 11 attached to the left and right legs of the user, and a main body 12.
  • the mounting unit 11 may be a supporter type device.
  • the mounting part 11 for left legs and the mounting part 11 for right legs are the same structures or symmetrical structures, only the mounting part 11 for left legs is illustrated and demonstrated.
  • the mounting portion 11 includes a thigh mounting portion 21 attached to the thigh and a lower leg mounting portion 22 attached to the lower leg.
  • the mounting portion 11 preferably includes a pair of connecting portions 23a and 23b that connect the thigh mounting portion 21 and the lower leg mounting portion 22 to each other.
  • the thigh attachment portion 21 includes a thigh front pad 24 covering a part of the front and side of the thigh and a pair of thigh rear pads 25 and 26 formed on both end portions of the thigh front pad 24.
  • the thigh front pad 24 is formed in accordance with the shape of the thigh and has a recess 24a in the knee side portion (lower end side in FIG. 2).
  • the thigh back pads 25, 26 have a band shape extending from both ends of the thigh front pad 24.
  • Connecting portions 25b and 26b are provided on the tip portions 25a and 26a of the thigh rear surface pads 25 and 26, respectively.
  • connection portions 25b and 26b may be, for example, surface fasteners such as Velcro (registered trademark).
  • the thigh attachment portion 21 is attached to the user's thigh by connecting the connecting portions 25b and 26b of the thigh rear surface pads 25 and 26 to each other on the back of the thigh.
  • the lower leg attachment portion 22 includes a lower leg front pad 27 covering a part of the front and side of the lower leg, and a pair of lower leg back pads 28, 29 formed on both end portions (left and right ends in FIG. 2) of the lower leg front pad 27. And.
  • the lower leg front pad 27 is formed in accordance with the shape of the lower leg and has a recess 27a in the upper end side of the knee side portion (FIG. 2).
  • the lower back pads 28, 29 have a band shape extending from both ends of the lower front pad 27.
  • Connecting portions 28 b and 29 b are respectively provided on the tip portions 28 a and 29 a of the lower thigh back pads 28 and 29.
  • connection portions 28b and 29b may be, for example, surface fasteners such as Velcro (registered trademark).
  • the lower thigh attachment portion 22 is attached to the lower thigh of the user by connecting the connecting portions 28b, 29b of the lower thigh back pads 28, 29 to each other on the back of the lower thigh.
  • connection parts 23a and 23b are, for example, members having stretchability, and are formed to connect the left ends and the right ends of the thigh attachment part 21 and the lower leg attachment part 22, respectively.
  • the attachment hole 31 is formed by the recess 24a of the thigh front pad 24, the recess 27a of the lower thigh front pad 27, and the connection portions 23a and 23b. It is divided.
  • the knee of the user is exposed from the mounting hole 31, and the bending operation of the knee joint of the walking operation becomes easy. By aligning the mounting hole 31 with the knee, the mounting portion 11 is mounted at the correct position.
  • the thigh front pad 24 and the lower thigh front pad 27 are provided with insertion portions 32 and 33 at substantially central portions.
  • Sensors SL1 and SL2 are disposed in the insertion portions 32 and 33, respectively.
  • the sensors SR1 and SR2 are disposed at positions symmetrical to the sensors SL1 and SL2, respectively.
  • the sensors SL1 and SR1 provided on the thigh front pad 24 are, for example, acceleration sensors.
  • the sensors SL2 and SR2 provided on the lower leg front pad 27 are, for example, angular velocity sensors.
  • the sensors SL1 and SR1 acceleration sensor
  • the sensors SL2 and SR2 output a signal indicating the angular velocity of the lower leg rotating about the knee joint.
  • the body movement detection device 10 detects the walking state (displacement of the knee joint) using the output signals of the sensors SL1 and SL2 (SR1 and SR2).
  • the sensors SL1, SL2, SR1, and SR2 may use the same type of sensor.
  • Each of the sensors SL1, SL2, SR1, and SR2 may use a rotary encoder, a potentiometer, a goniometer, an acceleration sensor, a gyro sensor, or the like.
  • the sensors SL 1, SL 2, SR 1, SR 2 are electrically connected to the main body 12 via the connection cable 13.
  • the main body unit 12 includes a display unit 43 on which various information is displayed, and an operation unit 44 on which various operations are performed.
  • the sensor SL1 attached to the upper portion of the lower left crotch and the sensor SR1 attached to the upper portion of the lower right crotch are disposed at symmetrical positions with respect to the reference plane O.
  • the reference plane O is a plane that is central to the symmetrical motion of the human body.
  • the reference plane O is a median plane that divides the user's body equally from left to right as viewed in the walking direction.
  • the sensor SL2 mounted to the lower portion of the lower left crotch of the user and the sensor SR2 mounted to the lower portion of the lower right crotch are disposed at symmetrical positions with respect to the reference plane.
  • the two sensors SL1 and SL2 attached to the lower left crotch constitute a first detection unit SL that detects the movement of the user's left leg.
  • the two sensors SR1 and SR2 mounted on the lower right crotch constitute a second detection unit SR that detects the movement of the user's right leg.
  • the first detection unit SL and the second detection unit SR are an example of a detection unit.
  • the main body 12 includes a control unit 41 and a power supply unit 45.
  • Control unit 41 includes an arithmetic processing unit 46 and a determination unit 47.
  • the arithmetic processing unit 46 is connected to the sensors SL1, SL2, SR1, and SR2.
  • the sensors SL1, SL2, SR1, and SR2 detect the walking motion of one walking cycle including the stance phase and the swing phase shown in FIGS. 4 (a) and 4 (b).
  • the arithmetic processing unit 46 is supplied with output signals IL1, IL2, IR1, IR2 of the sensors SL1, SL2, SR1, SR2.
  • the output signals IL1 and IL2 of the sensors SL1 and SL2 indicate the detection results of the walking motion in one of the two areas divided by the median plane O.
  • the output signals IR1 and IR2 of the sensors SR1 and SR2 indicate the detection results of the walking motion in the other region.
  • the arithmetic processing unit 46 performs signal processing on sensor output signals IL1, IL2, IR1, and IR2.
  • the signal processing of the arithmetic processing unit 46 may be, for example, removal of noise such as high frequency components, calculation of a moving average value, frequency analysis, and the like.
  • the arithmetic processing unit 46 performs processing of combining the output signals IL1 and IL2 of the sensors SL1 and SL2 and the output signals IR1 and IR2 of the sensors SR1 and SR2 arranged symmetrically with respect to the median plane O.
  • the arithmetic processing unit 46 executes, for example, subtraction processing (IL1 ⁇ IR1) and / or addition processing (IL1 + IR1) of the output signal IL1 and the output signal IR1 as the combination processing.
  • the arithmetic processing unit 46 executes, for example, subtraction processing (IL2-IR2) and / or addition processing (IL2 + IR2) of the output signal IL2 and the output signal IR2 as combined processing.
  • the arithmetic processing unit 46 can also generate the signal Z1 by combining the output signals IL1, IL2, IR1, and IR2 in accordance with the following equation.
  • the output signals IL1, IL2, IR1, and IR2 are substituted for the variables X1 to X4.
  • values in which the output signals IL1 and IL2 of the first detection unit SL and the output signals IR1 and IR2 of the second detection unit SR are combined may be substituted.
  • the values of the variables X1 to X4 are characteristic values of the output signals IL1, IL2, IR1, and IR2 in the respective determination sections H1a to H1c (see FIG. 5).
  • the characteristic value is, for example, a moving average value, a differential value, or a value (for example, X1-X4, X1 + X2) calculated by performing a predetermined operation with another characteristic value, etc. continuously obtained. It can be a value.
  • the set values (coefficients a to d) can be changed in each of the determination sections H2a to H2d.
  • the values of the coefficients a to d and the constant C are set, for example, using a discriminant analysis method which is one of multivariate analysis methods. For example, a walking test is performed on a plurality of subjects in advance to calculate variables X1 to X4 in each of the discrimination sections H1a to H1c.
  • Another sensor is used to detect the determination sections H1a to H1c in the walking test.
  • the variables X1 to X4 are substituted into the discriminant Z1 calculated based on the discriminant analysis method, and characteristic values of all the discrimination sections H1a to H1c are represented (grouped) in one graph.
  • the coefficients a to d are set such that the above-described discriminant equation Z1 indicates the boundary of characteristic values of the respective discrimination sections H1a to H1c grouped in this graph. That is, when the determination sections H1a to H1c are different, different coefficients a to d are set.
  • the constant C is a value for adjusting the value of the discriminant Z1.
  • the arithmetic processing unit 46 supplies the processing result to the determination unit 47.
  • the arithmetic processing unit 46 also outputs the output signals IL1, IL2, IR1, and IR2 before the combination processing to the determination unit 47.
  • Determination unit 47 includes a comparison unit 49 and a logic operation unit 50.
  • the comparison unit 49 determines to which section the value of the signal calculated by the calculation processing section 46 belongs, by whether the value of Z1 is larger or smaller than the threshold with different threshold values in each determination section.
  • the logic operation unit 50 performs logic operation of the determination signal supplied from the comparison unit 49.
  • the determination unit 47 uses the comparison unit 49 and the logic operation unit 50 to make a determination on the output signals IL1, IL2, IR1, IR2 and the like processed by the operation processing unit 46. For example, the determination unit 47 detects a plurality of determination sections H1a to H1c illustrated in FIG. 5 from the walking motion of one walking cycle (the standing phase and the swing phase) illustrated in FIG. Then, the determination unit 47 performs control of changing the output signal from the high level to the low level, for example, when it is determined that the determination section H1a is switched to the determination section H1b in accordance with the walking motion.
  • the display unit 43 displays, for example, the determination result of the walking state of the user in each of the determination sections H1a to H1c.
  • the evaluation result of the walking motion based on the difference in the movement of the left and right legs in the determination sections H1a to H1c and the difference in the movement of the left and right legs is displayed. Note that the operation to be the determination target displayed on the display unit 43 can be changed by the user using the operation unit 44.
  • the power supply unit 45 supplies a drive current to the sensors SL1, SL2, SR1, and SR2, the control unit 41, and the operation unit 44.
  • the power supply unit 45 is, for example, a power supply circuit that generates a required drive current based on the supply of a rechargeable battery, a dry battery, and a commercial power source.
  • One walking cycle indicates a cycle from when the user's heel is grounded to when the same heel is again grounded.
  • the period in which one of the user's feet is in contact with the floor in one walking cycle is the stance phase (also referred to as stance phase), and the period in which the foot is away from the floor is the swing phase (also referred to as swing phase).
  • the stance phase also referred to as stance phase
  • the swing phase also referred to as swing phase
  • the other leg may be in the swing phase, as shown in FIG.
  • the other leg is offset from one leg over time to become a stance phase. Basically, during one walking cycle, a period occurs in which both feet touch the ground.
  • the control unit 41 obtains output signals IL1, IL2, IR1, IR2 from the sensors SL1, SL2, SR1, SR2 associated with the walking motion of the user. Then, based on the output signals IL1, IL2, IR1 and IR2, the control unit 41 detects discrimination intervals H1a to H1c which are a stance phase and a plurality of swing phases from one walking cycle (see FIG. 5). The control unit 41 determines the walking state of the user based on the determination sections H1a to H1c.
  • the sensors SL1, SL2, SR1, SR2 detect the displacement of the user accompanying the walking motion, that is, the human body, and calculate output signals IL1, IL2, IR1, IR2 indicating the detection results
  • the data is supplied to the processing unit 46 (step 51).
  • the sensor can detect the displacement of the human body from changes in physical quantities such as acceleration and / or angular velocity.
  • the arithmetic processing unit 46 performs, for example, a process of combining the output signals IL1 and IL2 of the sensors SL1 and SL2 and SR1 and SR2 which are divided by the median plane O with the output signals IR1 and IR2.
  • the arithmetic processing unit 46 also performs signal processing on the combined signal and the previous signal to be combined (step 52).
  • the arithmetic processing unit 46 outputs the signal subjected to the signal processing to the determination unit 47.
  • the determination unit 47 detects a plurality of determination sections H1a to H1c from one walking cycle based on the supplied signal and a threshold for dividing one walking cycle for each characteristic of walking motion.
  • the determination unit 47 determines one walking cycle into a determination section H1a which is a standing phase shown in FIG. 5 and determination sections H1b and H1c which are a plurality of swing phases.
  • the determination unit 47 causes the comparison unit 49 to compare, for example, the signal shown as the transition IL1 ⁇ IR1 in FIG. 5 as a subtraction result with the output signals IL1 and IR1 and the defined threshold values TH1, TH2, TH3 and TH4.
  • the determination unit 47 determines, based on the comparison result, a period in which the transition IL1-IR1 exceeds the threshold TH1 or TH2 as a stance period.
  • the comparison unit 49 sets the transition IL1-IR1 to "1" (high level).
  • the comparison unit 49 sets the transition IL 1 -IR 1 to “0” (low level) when each output signal is equal to or higher than the threshold. Then, the comparison unit 49 outputs a signal indicating “1” or “0” to the logic operation unit 50.
  • the threshold values TH1, TH2, TH3, and TH4 are constant values in one walking cycle.
  • step 54 shown in FIG. 6 the logic operation unit 50 performs a logic operation of the determination signal supplied from the comparison unit 49.
  • the determination unit 47 detects the determination sections H1a to H1c from the output result of the logic operation unit 50 (step 55).
  • the logic operation unit 50 determines that the period T12 in which the transition IL1-IR1 exceeds the threshold value TH1 is the first stance phase. Furthermore, the logic operation unit 50 determines that the period T23, which is a period after the threshold value TH1 is reached once and exceeds the threshold value TH2, is the late stance phase. Based on the determination result of the logic operation unit 50, the determination unit 47 defines a period including the stance phase early phase T12 and the stance phase late period T23 as a determination section H1a. In addition, in the first stance phase, it is in a state (section) until one heel contacts the ground during one walking cycle, and the heel separates from the ground. In the latter half of the stance phase, the heels of one foot are separated from the ground during one walking cycle, and the toes of the feet are separated from the ground.
  • the logic operation unit 50 determines that the period T34 which is a period following the late stance phase and which is equal to or less than the threshold TH3 is the swing phase early period. Further, the logic operation unit 50 is a period following the early swing phase, and determines that the period T40 exceeding the threshold TH3 and equal to or smaller than the threshold TH4 is late swing phase. Based on the determination result of the logic operation unit 50, the determination unit 47 defines the swing phase early period as a determination section H1 b and the swing phase late period as a determination section H1 c.
  • the logic operation unit 50 separately acquires a determination signal different from the determination signal used for the determination.
  • the logical operation unit 50 specifies the determination sections H1a to H1c by performing a logical operation on the acquired determination signal.
  • the threshold values TH1, TH2, TH3, and TH4 are set based on, for example, walking tests performed in advance for a plurality of subjects.
  • the gait test is performed, for example, by providing another sensor (for example, a pressure sensor) in addition to the sensors SL1, SL2, SR1, and SR2 on the body of the subject.
  • This other sensor is provided to detect the discrimination sections H1a to H1c in the walking test.
  • a pressure sensor provided on the sole detects a period in which the foot is in contact with the ground in one walking cycle, and this period is regarded as a standing period, that is, a determination section H1a.
  • the value of the output signal of each subject is acquired according to the discrimination sections H1a to H1c detected by such another sensor. For example, the average value of the values of the output signals at the boundaries of the determination sections H1a to H1c is calculated, and the result is set as the threshold values TH1, TH2, TH3, and TH4.
  • the threshold value TH2 is set to a value for determining the output signal in the late stance phase and the sections before and after that (the stance phase period and the swing phase period). Therefore, the threshold value TH2 is set from the average value of the values of the output signals at the boundaries between the first standing phase period of the plurality of subjects in the walking test and the sections before and after the standing phase period.
  • the settings of the threshold values TH1, TH2, TH3 and TH4 are not limited to the border values, and may be set based on, for example, the average value of the values of the respective output signals in the respective determination sections H1a to H1c. Good.
  • the above-described body movement detection device 10 includes the sensors SL1 and SL2 and the sensors SR1 and SR2 disposed in a region sandwiching the reference plane O of the user.
  • the sensors SL1, SL2, SR1, and SR2 detect a symmetrical walking motion.
  • the determination unit 47 combines the plurality of output signals IL1, IL2, IR1, and IR2 detected by the sensors SL1, SL2, SR1, and SR2 to determine the walking motion of the user. Therefore, the amount of data used to determine the walking motion increases, and highly accurate determination becomes possible.
  • the evaluation including the state of the other leg can be performed.
  • this evaluation for example, when evaluating one leg, an evaluation including an interaction with the other state can be performed.
  • the sensors SL1 and SL2 and the sensors SR1 and SR2 are disposed at symmetrical positions with respect to the median plane O which is the boundary of the walking motion performed symmetrically. That is, the motion of the human body has many parallel movements with respect to the median plane O which divides the human body seen from the walking direction evenly. In addition, the motion of the human body tends to be similar in the part divided by the median plane O (for example, the left limb and the right limb). For example, in the motion of sitting on a chair, the left and right legs operate simultaneously, such as when the left and right knees extend from the standing position and the knee bends when the seat surface is approached.
  • the determination unit 47 is supplied with the output signals IL1 and IL2 of the sensors SL1 and SL2 attached to one of the legs and the output signals IR1 and IR2 of the sensors SR1 and SR2 attached to the other of the legs.
  • the data amount of the signal supplied to the determination unit 47 is doubled as compared with the configuration in which only the output signals IL1 and IL2 of the sensors SL1 and SL2 are used. Therefore, the walking motion of the user is more accurately determined.
  • the movement of each part may be similar to that of the median plane O, but the rhythm or phase of movement may differ between parts.
  • the motions of the left and right hip sides during walking are out of phase by about 180 degrees. Therefore, even if it is difficult to determine the operation based on the detection result of one of the sensors SL1 and SL2 (SR1 and SR2), the detection result of the other sensor SR1 and SR2 (SL1 and SL2) can be used for the determination. As a result, it is easy to determine an operation that was conventionally difficult to determine.
  • the body movement detection device 10 includes sensors SL1 and SL2 mounted on one limb of a user (human body) and sensors SR1 and SR2 mounted on one limb of the user. That is, when the sensor SL1 or the like is attached to a limb that commonly exists on the left and right of the human body, for example, the sensor value fluctuates more than when the sensor SL1 or the like is attached to the user's waist. This increases the amount of data that can be acquired.
  • the sensor values of the sensors SL1 and SL2 and the sensors SR1 and SR2 attached to the left and right crotch have a sufficient difference.
  • the motion determination is performed with higher accuracy by attaching the sensors SL1, SL2, SR1, and SR2 to the left and right limbs that are present commonly on the left and right of the human body.
  • the body movement detection apparatus 10 combines the output signals of the sensors SL1, SL2, SR1, and SR2 mounted at symmetrical positions with respect to the median plane O.
  • the body movement detection device 10 determines the movement of one of the limbs of the human body based on the signal obtained by the combination. For example, it is assumed that the left and right common human body parts (for example, feet and legs) are simultaneously moving, that is, in the standing position, that is, the two soles are in contact with the ground. In this assumption, even if it is possible to determine the state in which one sole is in contact, it is difficult to determine the state in which the other sole is in contact with the ground.
  • a method is also conceivable in which the state of one leg is acquired by a sensor attached to one leg, and the state of the other leg is acquired by a sensor attached to the other leg.
  • the states of the left and right legs are determined based on the sensor values of the respective sensors, and the state of the human body is determined based on the determination result.
  • the state of each of the left and right legs is individually determined, and then the operation of the entire human body is determined, so the operation of the entire human body can not be quickly determined.
  • the body motion detection apparatus 10 can perform standing position determination with high accuracy and speed by performing operation determination of one of the limbs of the human body based on the signal obtained by combining.
  • the body movement detection device 10 includes a determination unit 47 that divides one walking cycle (the stance phase and the swing phase) using the thresholds TH1, TH2, TH3, and TH4.
  • the threshold values TH1, TH2, TH3, and TH4 are set to values capable of detecting a desired section (discrimination section H1b, H1c) obtained by dividing the swing phase further. Therefore, by dividing one walking cycle into a plurality of determination sections H1a to H1c, it is possible to appropriately evaluate the balance and the like of the body based on the determination sections H1a to H1c.
  • the body motion detection device 10 is provided at a position where the sensors SL1, SL2, SR1, and SR2 sandwich the user's knee (joint), and is configured to be able to detect the rotational position (angular velocity etc.) of the knee joint. As shown in FIG. 7, for example, in the early period of the swing phase, the thigh rotates about the hip joint in the same direction as the traveling direction B1 (rotational direction B2).
  • the sensors SL1 and SR1 detect acceleration of the thigh with respect to the rotational direction B2 and output output signals IL1 and IR1.
  • the lower leg rotates in a direction B3 in which an inertial force acts on the knee joint (rotational direction B4).
  • the sensors SL2 and SR2 angular velocity sensors
  • both parts rotate in the opposite direction to the previous period (rotational directions B5 and B6). Therefore, sensors SL1, SL2, SR1, and SR2 are provided at sites sandwiching the knee joint so as to detect the characteristic motion of the leg in the swing phase described above. Thereby, the detection accuracy of the discrimination sections H1b and H1c can be improved.
  • the first embodiment has the following effects.
  • the body motion detection device 10 detects the sensors SL1, SL2, SR1, SR2 mounted at symmetrical positions with respect to the reference surface O of the human body, and the output signals IL1, IL2, of the sensors SL1, SL2, SR1, SR2. And a discrimination unit 47 that discriminates the posture (action) of the human body by combining IR1 and IR2. As a result, the amount of data used for discrimination of walking motion increases, and highly accurate discrimination of human motion such as walking state becomes possible.
  • the sensors SL1 and SL2 and the sensors SR1 and SR2 are disposed symmetrically with respect to a median plane that divides the human body equally viewed from the walking direction. As a result, the data amount of the signal supplied to the determination unit 47 is doubled as compared with the comparative example in which only the output signals IL1 and IL2 of the sensors SL1 and SL2 are used, and the walking operation of the user is more accurately determined Be done.
  • the body movement detection device 10 includes a plurality of sensors SL1 and SL2 provided in one limb part of the human body and a plurality of sensors SR1 and SR2 provided in the other limb part. For this reason, the body motion detection apparatus 10 can acquire more signals indicating displacement of the human body associated with various operations such as a walking operation, for example. Thereby, the body movement detection device 10 can perform the operation determination based on the abundant data indicating the operation of the human body, and can perform the operation determination in more detail and with high accuracy.
  • the body movement detection apparatus 10 combines the output signals of the sensors SL1, SL2, SR1, and SR2 mounted at symmetrical positions with respect to the median plane O.
  • the body movement detection device 10 determines the movement of one of the limbs of the human body based on the signal obtained by the combination. As a result, it is possible to quickly and accurately determine various operations including standing and the like.
  • control unit 41 configuring the body movement detection device 10 of the second embodiment includes a first determination unit 60, a second determination unit 70, and an integrated logic operation unit 80.
  • the first determination unit 60 operates the one limb of the user based on the detection result of the first detection unit SL including the sensors SL1 and SL2 mounted on one half of the user divided by the median plane O Make a decision.
  • the first determination unit 60 includes a comparison unit 61 and a logic operation unit 62.
  • the comparison unit 61 determines to which determination section of one walking cycle the value of the signal indicating the detection result of the first detection unit SL calculated by the calculation processing unit 46 belongs.
  • the logic operation unit 62 performs logic operation of the determination signal output from the comparison unit 61.
  • the first determination unit 60 uses the comparison unit 61 and the logic operation unit 62 to make a determination on the output signals IL1 and IL2 of the sensors SL1 and SL2 processed by the operation processing unit 46.
  • the first determination unit 60 detects a plurality of determination sections H1a to H1c shown in FIG. 5 from the walking motion of one walking cycle of one body.
  • the first determination unit 60 performs control to change the output signal from the high level to the low level, for example, when it is determined that the walking state of the user has switched from the determination section H1a to the determination section H1b along with the walking motion.
  • the first determination unit 60 outputs the determination result to the integrated logic operation unit 80.
  • the second discrimination unit 70 discriminates the operation of the other limb of the user based on the detection result of the second detection unit SR composed of the sensors SR1 and SR2 mounted on the other half of the user divided by the median plane O I do.
  • the second determination unit 70 includes a comparison unit 71 and a logic operation unit 72.
  • the comparison unit 71 determines which determination section of one walking cycle the value of the detection result signal of the second detection unit SR calculated by the calculation processing unit 46 belongs to.
  • the logic operation unit 72 performs a logic operation of the determination signal output by the comparison unit 71.
  • the second determination unit 70 uses the comparison unit 71 and the logical operation unit 72 to make a determination on the output signals IR1 and IR2 of the sensors SR1 and SR2 processed by the arithmetic processing unit 46. Thereby, the second determination unit 70 detects a plurality of determination sections H1a to H1c shown in FIG. 5 from the walking motion of one walking cycle of the other half. The second determination unit 70 performs control of changing the output signal from the high level to the low level when it is determined that the walking state of the user has switched from the determination section H1a to the determination section H1b in accordance with the walking motion. The second determination unit 70 outputs the determination result to the integrated logic operation unit 80.
  • the integrated logic operation unit 80 performs a process of determining the operation of the user based on the determination result supplied from the first determination unit 60 and the determination result supplied from the second determination unit 70. For example, the integrated logic operation unit 80 determines the operation of the left leg of the user divided by the median plane O by adding the determination result of the second determination unit 70 to the determination result of the first determination unit 60. Thereby, the integrated logic operation unit 80 verifies the determination result of the first determination unit 60, and confirms the presence or absence of the erroneous determination. In addition, the integrated logic operation unit 80 determines the operation of the user whose determination is difficult based on the determination result of the first determination unit 60 alone.
  • the integrated logic operation unit 80 determines, for example, the operation of the user's right leg divided by the median plane O by adding the determination result of the first determination unit 60 to the determination result of the second determination unit 70. . Thereby, the integrated logic operation unit 80 verifies the determination result of the second determination unit 70, and confirms the presence or absence of the erroneous determination. In addition, the integrated logic operation unit 80 determines the operation of the user whose determination is difficult based on the determination result of the second determination unit 70 alone.
  • FIG. 9 shows the progress of the walking motion by dividing the one walking cycle illustrated in FIG. 5 into four stages of the early stance phase, the late stance phase, the early swing phase, and the late swing phase.
  • FIG. 9A shows the determination result of the walking motion of the left leg of the user by the first determination unit 60.
  • FIG. 9B shows the determination result of the walking motion of the right leg of the user by the second determination unit 70.
  • FIG. 9C shows the determination result of the walking motion of the user by the integrated logic operation unit 80.
  • FIG. 9A shows the determination result of the walking motion of the left leg of the user by the first determination unit 60.
  • FIG. 9B shows the determination result of the walking motion of the right leg of the user by the second determination unit 70.
  • FIG. 9C shows the determination result of the walking motion of the user by the integrated logic operation unit 80.
  • the motion of the lower leg of one walking cycle is larger in the swing phase than in the stance phase. Therefore, in the swing phase, the fluctuation of the sensor values acquired by the first detection unit SL and the second detection unit SR is large, and the determination can be made with higher accuracy than in the other determination sections.
  • the timing at which the state of one leg transitions from the early stance phase to the late stance phase approximates the timing at which the other leg transitions from the early swing phase to the late swing phase. That is, when the state of one leg transitions from the early stance phase to the late stance phase, the other leg transitions from the early swing phase to the late swing phase.
  • the determination result of the first determination unit 60 indicates that the state of the left leg has transitioned from the early stance phase to the late stance phase at timing T18 in FIG. 9A. Further, the determination result of the second determination unit 70 indicates that the state of the right leg has transitioned from the early swing phase to the late swing phase at a timing T18 in FIG. 9B.
  • the second discrimination is performed before the discrimination result of the first discrimination unit 60 indicates the end of the first half of the stance phase of the left leg (FIG. 9A: T20).
  • the determination result of the part 70 already indicates the start of the late swing phase of the right leg. Therefore, as shown in FIG. 9C, the integrated logic operation unit 80 determines that the stance phase previous period of the left leg has ended at timing T19. That is, the integrated logic operation unit 80 corrects the determination result based on the determination result of the second determination unit 70 on the assumption that the determination result of the first determination unit 60 is an erroneous determination.
  • the above-described body movement detection device 10 includes a first determination unit 60 that determines the operation state of one leg of the user.
  • the body movement detection device 10 further includes a second determination unit 70 that determines the operation state of the other leg of the user.
  • the first determination unit 60 determines the state of one leg of the user based on the detection result of the first detection unit SL.
  • the second determination unit 70 determines the state of the other leg of the user based on the detection result of the second detection unit SR.
  • the integrated logic operation unit 80 determines the operation state of one leg by adding the second determination unit 70 to the determination result of the first determination unit 60.
  • the integrated logic operation unit 80 determines the operation state of the other leg by adding the first determination unit 60 to the determination result of the second determination unit 70. Therefore, the integrated logic operation unit 80 can verify and correct the determination result of the first determination unit 60 or the second determination unit 70 based on the determination result of the other determination unit (70.60). Thereby, the determination accuracy of the walking motion is further enhanced.
  • the first determining unit 60 described above determines the transition from the early stance phase to the late stance phase of the state of one leg.
  • the second determination unit 70 determines the transition from the early swing phase to the late swing phase of the state of the other leg.
  • the integrated logic operation unit 80 takes into consideration the determination of the transition from the early stance phase to the late stance phase of the state of one leg, and the determination result from the early swing phase of the other leg state to the late swing phase went.
  • the motion state is determined based on highly relevant movements such as the transition from the early standing phase to the late standing phase of one leg and the transition from the early swing phase to the late swing phase of the state of the other leg Be done. Therefore, the integrated logic operation unit 80 can perform the operation determination of the user based on the determination results of both the first determination unit 60 and the second determination unit 70 with high accuracy.
  • the second embodiment has the following effect in addition to the effects (1) to (4).
  • the body movement detection device 10 includes, as a determination unit, a first determination unit 60 and a second determination unit 70 that determine the operation states of the left and right legs divided by the median plane O.
  • the body movement detection device 10 includes an integrated logic operation unit 80 that performs a process of determining the operation state of the left and right legs based on the determination results of the first determination unit 60 and the second determination unit 70.
  • FIG. 13 the elements substantially the same as those of the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted.
  • electrode portions 34 and 35 for applying electrical stimulation to the user's body are provided on the thigh front pad 24 and the lower thigh front pad 27.
  • the electrode unit 34 includes a pair of anodes 34 a and cathodes 34 b.
  • the electrode unit 35 also includes a pair of anodes 35 a and cathodes 35 b.
  • the anodes 34a and 35a and the cathodes 34b and 35b are partially exposed from the backs 24b and 27b of the thigh front pad 24 and the lower thigh front pad 27, and are configured to apply an electrical stimulation in direct contact with the skin ing.
  • the sensors SL 1, SL 2, SR 1, SR 2 and the electrode units 34, 35 are electrically connected to the main unit 12 via the connection cable 13.
  • the body movement detection device 10 of the third embodiment includes an electrical stimulation unit 42 that applies an electrical stimulation to the user.
  • the control unit 41 further includes an electrical control unit 48 that controls the electrical stimulation unit 42.
  • the electrical control unit 48 controls the electrical stimulation unit 42 based on the output signal from the determination unit 47, that is, the determination sections H1a to H1c.
  • the electrical stimulation unit 42 includes the electrode units 34 and 35 described above, and a pulse generation unit 51 electrically connected to the electrode units 34 and 35.
  • the electrical stimulation unit 42 drives the pulse generation unit 51 based on the control signal supplied from the electrical control unit 48. Thereby, the electrical stimulation unit 42 generates a predetermined pulse signal between the anodes 34 a and 35 a and the cathodes 34 b and 35 b of the electrode units 34 and 35. Each of the electrode units 34 and 35 applies an electrical stimulation to the user by the generation of the pulse signal.
  • the display unit 43 displays settings such as the presence or absence of the electrical stimulation in each of the determination sections H1a to H1c. Further, this setting can be changed by the user using the operation unit 44.
  • the power supply unit 45 supplies a drive current to the sensors SL1, SL2, SR1, SR2, the electrical stimulation unit 42, the control unit 41, and the operation unit 44.
  • the determination unit 47 outputs, to the electrical control unit 48, a signal indicating that the determination sections H1a to H1c have been switched.
  • the determination unit 47 determines the determination sections H1a to H1c from the output result of the logic operation unit 50. To detect. The determination unit 47 outputs a signal indicating that each of the determination sections H1a to H1c has been switched to the electrical control unit 48.
  • the electrical control unit 48 controls the pulse generation unit 51 of the electrical stimulation unit 42 based on the determination sections H1a to H1c (step 66). As shown in FIG. 13, the electrical control unit 48 performs control so that the electrical stimulations A and B are applied from the electrode unit 34 in the determination section H1a corresponding to the stance phase. Further, the electrical control unit 48 performs control to stop the drive (electrical stimulation) of the pulse generation unit 51 in the determination section H1b corresponding to the swing leg early period. The electric control unit 48 performs control of the magnitude and frequency of the current of the pulse signal generated in each of the electrode units 34 and 35 based on a predetermined program or the like.
  • the electrical control unit 48 controls the electrical stimulation unit 42 based on the determination sections H1a to H1c to apply electrical stimulation to the user's body.
  • the electrical stimulation can be applied in a finer section according to the walking state.
  • the electrical stimulation can be stopped in a finer section according to the walking state.
  • the electrical stimulation can be provided without disturbing the walking motion.
  • the electrical stimulation can be applied efficiently.
  • the electrical stimulation is applied from both of the electrode units 34 and 35. That is, the section to which the electrical stimulation is applied can be performed by combining a plurality of determination sections H2a to H2d. Thereby, provision (feedback) of electrical stimulation can be performed according to various sections (walking state).
  • the third embodiment has the following effect in addition to the effects (1) to (4).
  • the body movement detecting device 10 includes the electrical stimulation unit 42, and applies the electrical stimulation to the user's body based on the determination sections H1a to H1c into which the electrical control unit 48 is divided. Thereby, an electrical stimulation can be provided in the fine area according to a walk state. Further, the electrical stimulation unit 42 can apply the electrical stimulation at a required timing according to the highly accurate determination result by the determination unit 47. This reduces the fatigue of the user due to the long time application of the electrical stimulation to the human body.
  • the body movement detection device 10 includes the operation unit 44, and the user can change the determination sections H1a to H1c to which the electrical stimulation is applied. In this way, it is possible to apply the electrical stimulation according to the user's preference or purpose.
  • the sensors SL1, SL2, SR1, and SR2 and the main body 12 are connected by wire by the connection cable 13.
  • a signal indicating the detection result of the sensors SL1, SL2, SR1, SR2 was transmitted to the main body 12 via the connection cable 13.
  • the sensors SL1, SL2, SR1, SR2 and the main unit 12 may be provided with a communication unit capable of wireless communication.
  • sensors SL1, SL2, SR1, and SR2 were attached to a user's knee joint.
  • the sensors SL1, SL2, SR1, and SR2 may be attached to other parts such as a hip joint, a hip, an elbow, an arm, and an ankle of the user.
  • the sensors SL1, SL2, SR1, and SR2 are mounted at symmetrical portions with the reference plane O interposed therebetween.
  • the sensors SL1, SL2, SR1, and SR2 are provided at positions sandwiching the joints of the user's body.
  • the mounting part 11 and the operation part 44 were comprised separately.
  • the operation unit 44 may be built in the mounting unit 11.
  • the integrated logic operation unit 80 determines the determination results of the first determination unit 60 and the second determination unit 70 as long as there is a correlation in the operation of the symmetrical portion across the reference plane O. It is possible to determine the operation of the user in combination.
  • the operation determination of one leg is performed based on the determination results of the first determination unit 60 and the second determination unit 70.
  • the operation determination of the other leg is also performed based on the determination results of the first determination unit 60 and the second determination unit 70.
  • the operation determination of one leg may be performed based on the determination results of the first determination unit 60 and the second determination unit 70.
  • the operation determination of the other leg may be performed based on only the determination result of either the first determination unit 60 or the second determination unit 70.
  • the sensors SL1, SL2, SR1, and SR2 of the same type are used as sensors that constitute the first detection unit SL and the second detection unit SR.
  • the first detection unit SL and the second detection unit SR may be configured by different types of sensors.
  • the first determination unit 60 and the second determination unit 70 can perform the operation determination of the user using the detection values of different sensors.
  • the electric control unit 48 may appropriately change the generation mode of the current generated in the electrode units 34 and 35.
  • the current value may be gradually increased as time passes.
  • processing based on a delay circuit or the like provided separately by the electrical control unit 48 may be executed.
  • the electric control unit 48 may delay the generation timing of the current from the boundary of the determination sections H1a to H1c for a predetermined time period by such processing.
  • the electrical control unit 48 may appropriately change the period of the current (the period of the pulse waveform).
  • the electrical control unit 48 may gradually increase the current value after starting the electrical stimulation.
  • the electrical control unit 48 may gradually lower as it approaches the end time of the electrical stimulation.
  • the electrical control unit 48 may appropriately combine such current generation modes.
  • the said detection part was comprised by 1st detection part SL and 2nd detection part SR.
  • the body movement detection apparatus 10 may include an auxiliary detection unit including at least one third sensor attached to a human body. Even if the first detection unit SL and the second detection unit SR both erroneously detect, the auxiliary detection unit substitutes the first detection unit SL and the second detection unit SR and detects the motion of the human body, thereby the human body The reliability of motion detection is improved.
  • two determination units the first determination unit 60 and the second determination unit 70, are provided.
  • one or more third determination units may be provided.
  • the integrated logic operation unit 80 determines the operation state of the user based on the determination results of the three or more determination units.
  • the body movement detection device 10 includes the determination unit 47, the electrical stimulation unit 42, and the electrical control unit 48.
  • the body movement detection device 10 may further include the electrical stimulation unit 42 and the electrical control unit 48.
  • the electrical control unit 48 can control the electrical stimulation according to the operation state of the user determined based on the determination results of both the first determination unit 60 and the second determination unit 70, and the application of the electrical stimulation is appropriate It can be done at any time.
  • the body movement detection device 10 may determine an action other than the walking action of the user.
  • the body motion detection apparatus 10 may determine the raising and lowering operation such as the stairs or the rising operation from the seat and the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Physiology (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Hematology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Electrotherapy Devices (AREA)

Abstract

体動検出装置(10)は、人体の対称な動作の中心となる面である基準面(O)に対して対称な位置に装着された、体動を検出する複数の検出部(SR,SL)であって、各検出部が1つ以上のセンサ(SR1、SR2;SL1、SL2)を含む前記複数の検出部と、前記基準面を間に挟んだ位置に装着された2つ以上のセンサの出力信号を組み合わせることによって前記人体の姿勢を判別する判別部(47)とを備える。

Description

体動検出装置及びこれを備える電気刺激装置
 本発明は、主に歩行状態を検出する体動検出装置及び該体動検出装置を用いた電気刺激装置に関する。
 使用者の身体に装着した加速度センサの出力信号に基づいて歩行状態を検出する体動検出装置が特許文献1に記載されている。体動検出装置により検出された歩行状態は、例えば、左脚及び右脚の動作の評価に利用されたり、使用者に対する物理刺激の付与に利用される。
特開2002-355236号公報
 本願発明者は、使用者の身体の動作を詳細に検出できる体動検出装置を開発すべく、使用者の一方の脚に装着されたセンサの出力信号に基づいて、一方の脚の動作状態の判別を行うことを検討した。しかし、一方の脚に装着されたセンサの出力信号に基づいて歩行状態等の人体動作を検出することは困難であったこれだけの情報から歩行状態等の人体動作を検出することは困難であった。
 本発明の目的は、歩行状態を検出可能な体動検出装置及び該体動検出装置を用いた電気刺激装置を提供することにある。
 本発明の一側面に従う体動検出装置は、人体の対称な動作の中心となる面である基準面に対して対称な位置に装着された、体動を検出する複数の検出部であって、各検出部が1つ以上のセンサを含む前記複数の検出部と、前記基準面を間に挟んだ位置に装着された2つ以上のセンサの出力信号を組み合わせることによって前記人体の姿勢を判別する判別部とを備える。
 前記基準面は、正面から見た人体を左右均等に分割する正中面であることが好ましい。
 前記複数の検出部は、人体の一方の肢部分に装着された第1センサと、他方の肢部分において前記第1センサと対称な位置に装着された第2センサとを含むことが好ましい。
 前記判別部は、前記基準面に対して対称な位置に装着された前記2つ以上のセンサの出力信号を組み合わせることによって人体の一方の肢の動作を判別することが好ましい。
 前記判別部は、前記基準面に対して人体の一側に装着される1つ以上の第1のセンサの出力信号に基づき人体の一方の肢の動作判別を行う第1判別部と、前記基準面に対して人体の他側に装着される1つ以上の第2のセンサの出力信号に基づき人体の他方の肢の動作判別を行う第2判別部とを含み、体動検出装置は、前記第1判別部の判別結果に前記第2判別部の判定結果を加味して、人体の一方の肢の動作を判別する統合論理演算部を更に備えることが好ましい。
 前記2つ以上のセンサは、人体の一半身に配置された複数の第1センサと、他半身において前記複数の第1センサと対称な位置に配置された複数の第2センサとを含み、前記判別部は、前記複数の第1センサと前記複数の第2センサの出力信号を組み合わせた演算式に従って人体の姿勢を判別することが好ましい。
 体動検出装置は、前記複数の検出部とは別に、人体に装着される少なくとも1つのセンサを含む補助検出部をさらに備えることが好ましい。
 前記判別部は、前記2つ以上のセンサの出力信号を組み合わせるかどうかを、判別対象とする人体の動作に応じて設定可能に構成されていることが好ましい。
 本発明の別の側面に従う電気刺激装置は、前記体動検出装置と、人体に電気刺激を付与する電気刺激部と、前記体動検出装置により判定された人体の動作に基づき前記電気刺激部を制御することにより人体に付与する前記電気刺激を制御する電気制御部とを備える。
(a)は第1の実施形態の体動検出装置が装着された人体の正面図、(b)は図1(a)の体動検出装置の概略斜視図。 装着部の背面図である。 第1の実施形態の体動検出装置のブロック図である。 (a)(b)は歩行動作を説明するための図である。 体動検出装置の出力信号と判別区間とを示すグラフである。 第1の実施形態の体動検出装置の制御部が実行する処理のフローチャートである。 1歩行周期における下腿部の動作を説明するための図である。 第2の実施形態の体動検出装置のブロック図である。 第2の実施形態の体動検出装置による歩行動作の判別例であり、(a)は第1判別部の判別結果を示す図、(b)は第2判別部の判別結果を示す図、(c)は統合論理演算部の判別結果を示す図である。 第3の実施形態の体動検出装置の装着部の背面図である。 第3の実施形態の体動検出装置のブロック図である。 第3の実施形態の体動検出装置の制御部が実行する処理のフローチャートである。 第3の実施形態の体動検出装置の出力信号と判別区間と電気信号とを示すグラフである。
 (第1の実施形態)
 以下、本発明の第1の実施形態にかかる体動検出装置及び電気刺激装置について図1~図7を参照して説明する。
 図1(a)に示すように、第1の実施形態の体動検出装置10は、例えば使用者の大腿部及び膝部の変位を検出するセンサSL1,SL2,SR1,SR2を備える。体動検出装置10は、センサSL1,SL2,SR1,SR2の検出結果に基づいて使用者の歩行状態を検出する。
 図1(b)に示すように、体動検出装置10は、使用者の左右の下肢に取り付けられる装着部11と、本体部12とを含む。装着部11はサポータ型の装置であり得る。なお、左脚用の装着部11と右脚用の装着部11は、同一の構造または対称構造であるため左脚用の装着部11のみを図示して説明する。
 装着部11は、大腿部に取り付けられる大腿装着部21と、下腿部に取り付けられる下腿装着部22とを含む。装着部11は、大腿装着部21及び下腿装着部22を互いに連結する一対の連結部23a,23bを含むことが好ましい。
 図2に示すように、大腿装着部21は、大腿部の正面及び側面の一部を覆う大腿正面パッド24と、大腿正面パッド24の両端部分に形成された一対の大腿背面パッド25,26とを含む。大腿正面パッド24は、大腿部の形状に合わせて形成され膝側部分(図2において下端側)に凹部24aを有する。大腿背面パッド25,26は、大腿正面パッド24の両端から延びる帯形状を有する。大腿背面パッド25,26の先端部25a,26aには接続部25b,26bがそれぞれ設けられている。接続部25b,26bは、例えばマジックテープ(登録商標)等の面ファスナーであり得る。大腿背面パッド25,26の接続部25b,26bが大腿部の背面で互いに接続されることにより、大腿装着部21は使用者の大腿部に装着される。
 下腿装着部22は、下腿部の正面及び側面の一部を覆う下腿正面パッド27と、下腿正面パッド27の両端部分(図2において左右両端)に形成された一対の下腿背面パッド28,29とを含む。下腿正面パッド27は、下腿部の形状に合わせて形成され膝側部分(図2)において上端側)に凹部27aを有する。下腿背面パッド28,29は、下腿正面パッド27の両端から延びる帯形状を有する。下腿背面パッド28,29の先端部28a,29aには接続部28b,29bがそれぞれ設けられている。接続部28b,29bは、例えばマジックテープ(登録商標)等の面ファスナーであり得る。下腿背面パッド28,29の接続部28b,29bが下腿部の背面で互いに接続されることにより、下腿装着部22は、使用者の下腿部に装着される。
 連結部23a,23bは、例えば伸縮性を有する部材であり、大腿装着部21及び下腿装着部22の左端同士及び右端同士をそれぞれ連結するように形成されている。連結部23a,23bにより大腿装着部21及び下腿装着部22が一体化された状態で、大腿正面パッド24の凹部24a、下腿正面パッド27の凹部27a及び連結部23a,23bとにより装着孔31が区画される。体動検出装置10の装着時には、使用者の膝がこの装着孔31から露出するようになっており、歩行動作の膝関節の曲げ動作が容易となる。装着孔31を膝に位置合わせすることにより、装着部11は正しい位置に装着される。
 大腿正面パッド24及び下腿正面パッド27には、略中央部分に挿入部32,33が設けられている。挿入部32,33にはセンサSL1,SL2がそれぞれ配置されている。なお、右脚においては、センサSL1,SL2と対称な位置にセンサSR1,SR2がそれぞれ配置されている。大腿正面パッド24に設けられたセンサSL1,SR1は、例えば加速度センサである。下腿正面パッド27に設けられたセンサSL2,SR2は、例えば角速度センサである。例えば、センサSL1,SR1(加速度センサ)は、歩行動作において股関節を中心に回転する大腿部の加速度を示す信号を出力する。例えば、センサSL2,SR2(角速度センサ)は、膝関節を中心に回転する下腿部の角速度を示す信号を出力する。体動検出装置10は、センサSL1,SL2(SR1,SR2)の出力信号を用いて歩行状態(膝関節の変位)を検出する。なお、センサSL1,SL2,SR1,SR2は、同じ種類のセンサを用いてもよい。各センサSL1,SL2,SR1,SR2は、ロータリーエンコーダ、ポテンショメータ、ゴニオメータ、加速度センサ、ジャイロセンサなどを用いてもよい。センサSL1,SL2,SR1,SR2は、接続ケーブル13を介して本体部12と電気的に接続されている。本体部12は、各種情報が表示される表示部43と、各種操作が行われる操作部44とを備えている。
 図1(a)に示すように、左下股の上部に装着されるセンサSL1と右下股の上部に装着されるセンサSR1とは、基準面Oに対して対称な位置に配置される。基準面Oは、人体の対称的動作の中心となる面である。図示した例では、基準面Oは、歩行方向から見た使用者の身体を左右均等に分割する正中面である。、使用者の左下股の下部に装着されるセンサSL2と右下股の下部に装着されるセンサSR2とは、基準面に対して対称な位置に配置される。
 左下股に装着された2つのセンサSL1,SL2は、使用者の左脚の動作を検出する第1検出部SLを構成する。右下股に装着された2つのセンサSR1,SR2は、使用者の右脚の動作を検出する第2検出部SRを構成する。なお、第1検出部SL,第2検出部SRは検出部の一例である。
 図3に示すように、本体部12は、制御部41と、電源部45とを含む。制御部41は、演算処理部46と、判別部47とを含む。図示した例では、演算処理部46は、センサSL1,SL2,SR1,SR2に接続されている。
 センサSL1,SL2,SR1,SR2は、図4(a),(b)に示す立脚期及び遊脚期を含む1歩行周期の歩行動作を検出する。
 図3に示すように、演算処理部46には、センサSL1、SL2、SR1、SR2の出力信号IL1,IL2、IR1,IR2が供給される。センサSL1、SL2の出力信号IL1,IL2は、正中面Oにより分割された2つの領域のうちの一方の領域の歩行動作の検出結果を示す。センサSR1、SR2の出力信号IR1,IR2は、他方の領域の歩行動作の検出結果を示す。
 演算処理部46は、センサの出力信号IL1,IL2,IR1,IR2に対して信号処理を行う。演算処理部46の信号処理は、例えば、高周波成分等のノイス゛の除去、移動平均値の算出及び周波数解析などであり得る。
 演算処理部46は、正中面Oに対して対称に配置された、センサSL1,SL2の出力信号IL1,IL2とセンサSR1,SR2の出力信号IR1,IR2とを組み合わせる処理を行う。演算処理部46は、組み合わせる処理として、例えば、出力信号IL1と出力信号IR1との減算処理(IL1-IR1)及び/または加算処理(IL1+IR1)を実行する。演算処理部46は、組み合わせる処理として、例えば、出力信号IL2と出力信号IR2との減算処理(IL2-IR2)及び/または加算処理(IL2+IR2)を実行する。
 例えば、演算処理部46は、出力信号IL1,IL2,IR1,IR2を、以下の式に従って組み合わせることにより、信号Z1を生成することもできる。
   Z1=aX1+bX2+cX3+dX4+…+C
 一例では、変数X1~X4には、出力信号IL1,IL2,IR1,IR2が代入される。変数X1~X4には、第1検出部SLの出力信号IL1,IL2と第2検出部SRの出力信号IR1,IR2とが組み合わされた値等が代入されてもよい。変数X1~X4の値は、各判別区間H1a~H1c(図5参照)における出力信号IL1,IL2,IR1,IR2の特徴的な値である。この特徴的な値とは、例えば、移動平均値、微分値、他の特徴的な値と所定の演算を施して算出される値(例えば、X1-X4,X1+X2)などの連続的に得られる値であり得る。各判別区間H2a~H2dにおいて設定値(係数a~d)は変更され得る。
 係数a~d及び定数Cの値は、例えば、多変数解析手法の1つである判別分析法を用いて設定される。例えば、複数の被験者に対して事前に歩行テストを行って、各判別区間H1a~H1cにおける変数X1~X4を算出する。
 この歩行テストにおける判別区間H1a~H1cの検出には、例えば、センサSL1,SL2,SR1,SR2の他に別のセンサ(圧力センサ)が用いられる。判別分析法に基づいて算出された判別式Z1に変数X1~X4が代入されて、一つのグラフに全判別区間H1a~H1cの特徴的な値が表される(グループ化される)。係数a~dは、上記した判別式Z1が、このグラフにおいてグループ化された各判別区間H1a~H1cの特徴的な値の境界を示すように設定される。つまり、判別区間H1a~H1cが異なる場合に、異なる値の係数a~dが設定される。なお、定数Cは、判別式Z1の値を調整する値である。このように設定された判別式Z1は、各判別区間H1a~H1cの境界において所定の値(例えば、Z1=0)となる。
 演算処理部46は、処理結果を判別部47に供給する。また、演算処理部46は、組み合わせ処理を行う前の出力信号IL1,IL2,IR1,IR2も判別部47に出力する。
 判別部47は、比較部49と、論理演算部50とを含む。比較部49は、各判別区間で異なる閾値で、Z1が閾値より大きいか又は小さいかで、演算処理部46により演算された信号の値がどの区間に属しているかを判定する。論理演算部50は、比較部49から供給された判定信号の論理演算を行う。判別部47は、比較部49及び論理演算部50を用いて、演算処理部46により処理された出力信号IL1,IL2,IR1,IR2等に対する判定を行う。例えば、判別部47は、図3に示した1歩行周期(立脚期及び遊脚期)の歩行動作から、図5に示す複数の判別区間H1a~H1cを検出する。そして、判別部47は、例えば、歩行動作に伴って判別区間H1aから判別区間H1bに切り替わったと判定した場合に、出力信号をハイレベルからローレベルに変更する制御を行う。
 表示部43には、例えば、各判別区間H1a~H1cにおける使用者の歩行状態の判定結果などが表示される。また、表示部43には、例えば、判別区間H1a~H1cの左右の脚の動作の違いや、左右の脚の動作の違いに基づく歩行動作の評価結果が表示される。なお、表示部43に表示される判定対象とする動作は、操作部44を用いて使用者が変更可能となっている。
 電源部45は、センサSL1,SL2,SR1,SR2、制御部41及び操作部44に対して駆動電流を供給する。電源部45は、例えば充電式バッテリー、乾電池及び商用電源の供給に基づいて所要の駆動電流を生成する電源回路などである。
 次に、人体の歩行動作について図4を参照して説明する。
 1歩行周期は、使用者の一方の踵が接地したときから、次に同じ踵が再度接地するまでの周期を示す。1歩行周期における使用者のいずれかの足が床に接している期間が立脚期(立脚相ともいう)、足が床から離れている期間が遊脚期(遊脚相ともいう)である。例えば図4,図5に歩行周期の各脚の状態が示されたように、一方の脚が立脚期の場合、他方の脚の状態は遊脚期であり得る。他方の脚は、一方の脚から経時的にずれて立脚期となる。基本的に1歩行周期中には、両方の足が地面に接する期間が発生する。
 次に、体動検出装置10の動作を図3,図5を参照して説明する。
 制御部41は、使用者の歩行動作に伴うセンサSL1,SL2,SR1,SR2からの出力信号IL1,IL2,IR1,IR2を取得する。すると制御部41は、出力信号IL1,IL2,IR1,IR2に基づき、1歩行周期から立脚期及び複数の遊脚期である判別区間H1a~H1cを検出する(図5参照)。制御部41は、この判別区間H1a~H1cに基づいて使用者の歩行状態を判定する。
 次に、上記した動作の詳細を、図6に示すフローチャートに従って説明する。
 センサSL1,SL2,SR1,SR2は、使用者が歩行動作を行うと、歩行動作に伴う使用者、すなわち人体の変位を検出し、検出結果を示す出力信号IL1,IL2,IR1,IR2を、演算処理部46に供給する(ステップ51)。センサは、例えば加速度及び/または角速度等の物理量の変化から人体の変位を検出することができる。
 次いで、演算処理部46は、例えば、正中面Oにより分割配置されたセンサSL1,SL2,SR1,SR2の出力信号IL1,IL2と出力信号IR1,IR2とを組み合わせる処理を行う。また、演算処理部46は、組み合わせた信号と組み合わされる以前の信号とに対する信号処理を行う(ステップ52)。演算処理部46は、信号処理を施した信号を判別部47に出力する。
 次いで、判別部47は、供給された信号と1歩行周期を歩行動作の特性毎に分割するための閾値とに基づいて、複数の判別区間H1a~H1cを1歩行周期から検出する。判別部47は、1歩行周期を、図5に示す立脚期である判別区間H1aと複数の遊脚期である判別区間H1b,H1cとに判別する。判別部47は、例えば、出力信号IL1,IR1との減算結果として図5に推移IL1-IR1として示す信号と、規定された閾値TH1,TH2,TH3,TH4とを、比較部49に比較させる。判別部47は、比較結果に基づき、推移IL1-IR1が閾値TH1もしくはTH2を超えている期間を立脚期と判別する。比較部49は、各出力信号が閾値TH1,TH2より小さかった場合には、推移IL1-IR1を「1」(ハイレベル)とする。比較部49は、各出力信号が閾値以上であった場合には推移IL1-IR1を「0」(ローレベル)とする。そして、比較部49は、「1」もしくは「0」を示す信号を論理演算部50に出力する。なお、閾値TH1,TH2,TH3,TH4は、1歩行周期において一定の値である。
 次に、図6に示すステップ54において、論理演算部50は、比較部49から供給された判定信号の論理演算を行う。判別部47は、論理演算部50の出力結果から判別区間H1a~H1cを検出する(ステップ55)。
 論理演算部50は、立脚期のうち、推移IL1-IR1が閾値TH1を超えている期間T12を立脚期前期と判別する。さらに、論理演算部50は、一旦閾値TH1以下となって以降の期間であって閾値TH2を超えている期間T23を、立脚期後期と判別する。判別部47は、論理演算部50の判別結果に基づき、立脚期前期T12及び立脚期後期T23からなる期間を、判別区間H1aと規定する。なお、立脚期前期は、1歩行周期中に一方の踵で接地して、その踵が地面から離れるまで状態(区間)である。また、立脚期後期は、1歩行周期中に一方の足の踵が地面から離れて、その足のつま先が地面から離れるまで状態(区間)である。
 論理演算部50は、立脚期後期に後続する期間であって閾値TH3以下となる期間T34を、遊脚期前期と判別する。また、論理演算部50は、遊脚期前期に後続する期間であり、閾値TH3を超えてかつ閾値TH4以下となる期間T40を、遊脚期後期と判別する。判別部47は、論理演算部50の判別結果に基づき、遊脚期前期を判別区間H1b、遊脚期後期を判別区間H1cと規定する。
 なお、閾値TH1,TH2,TH3,TH4に基づき判別された区間が、1歩行周期に立脚期前期が複数含まれるなど、1歩行周期において共通する複数の区間を示す場合も起こり得る。この場合、論理演算部50は、判別に用いた判別信号とは異なる判別信号を別途取得する。論理演算部50は、この取得した判別信号を論理演算することにより判別区間H1a~H1cを特定する。
 なお、閾値TH1,TH2,TH3,TH4は、例えば、複数の被験者に対して事前に行われた歩行テストをもとに設定される。歩行テストは、例えば、被験者の身体にセンサSL1,SL2,SR1,SR2の他に別のセンサ(例えば、圧力センサ)が設けられて行われる。この別のセンサは、歩行テストにおいて、判別区間H1a~H1cを検出するために設けられる。例えば、足裏に設けられた圧力センサにより、1歩行周期において足が地面に接地している期間を検出し、その期間が立脚期、即ち判別区間H1aとされる。このような別のセンサで検出した判別区間H1a~H1cに応じて、各被験者の出力信号の値が取得される。例えば、判別区間H1a~H1cの境界における出力信号の値の平均値が算出され、その結果が閾値TH1,TH2,TH3,TH4として設定される。例えば、閾値TH2には、図5に示すように、出力信号に対して立脚期後期と、その前後の区間(立脚期前期と遊脚期前期)とを判定する値が設定されている。従って、閾値TH2は、歩行テストにおける複数の被験者の立脚期前期と、その前後の区間との境界における出力信号の値の平均値から設定される。なお、閾値TH1,TH2,TH3,TH4の設定は、境界の値に限らず、例えば、各判別区間H1a~H1cのそれぞれの区間全体における各出力信号の値の平均値に基づいて設定されてもよい。
 次に、体動検出装置10の作用について説明する。
 上記した体動検出装置10は、使用者の基準面Oを間に挟んだ領域に配置されたセンサSL1,SL2とセンサSR1,SR2とを備える。センサSL1,SL2,SR1,SR2は、左右対称な歩行動作を検出する。判別部47は、センサSL1,SL2,SR1,SR2によって検出された複数の出力信号IL1,IL2,IR1,IR2を組み合わせて使用者の歩行動作を判別する。従って、歩行動作の判別に用いられるデータ量が増加し、高精度な判別が可能となる。
 また、正中面Oを間に挟んだ使用者の部位同士、例えば使用者の脚の左右のバランスが評価される場合にも、他方の脚の状態も含めた評価が可能となる。この評価としては例えば、一方の脚を評価する場合に他方の状態との交互作用を含めた評価が可能となる。
 また、センサSL1,SL2とセンサSR1,SR2とが、左右対称に行われる歩行動作の境界となる正中面Oに対して対称な位置に配置された。つまり、人体の動作は、歩行方向から見た人体を均等に分割する正中面Oに対して平行な動きが多い。また、人体の動作は、正中面Oにより分割された部位(例えば、左肢、右肢)において同様なものとなる傾向が強い。例えば、椅子に座る動作は、主に立位の状態から左右の膝が伸展し、座面に近くになった場合に膝が屈曲するなど、左右の脚が同時に動作する。このため、センサSL1,SL2,SR1,SR2の検出結果が組み合わされることで、同時に動作する人体の各部位の動きを示す検出結果に基づいた動作判別が行われる。例えば、判別部47には、一方の脚に装着されたセンサSL1,SL2の出力信号IL1,IL2と他方の脚に装着されたセンサSR1,SR2の出力信号IR1,IR2とが供給される。センサSL1,SL2の出力信号IL1,IL2のみが用いられる構成に対し、判別部47に供給される信号のデータ量が2倍になる。従って、使用者の歩行動作がより正確に判別される。
 人体の動作中において、正中面Oに対し、各部位の動きは類似するが部位間で動きのリズムまたは位相が異なることがある。例えば歩行時の左腰側面と右腰側面の動きは位相が約180度ずれた動きとなる。従って、一方のセンサSL1,SL2(SR1,SR2)の検出結果では動作の判別が困難な場合でも、他方のセンサSR1,SR2(SL1,SL2)の検出結果が判別に利用可能である。これにより、従来では判別が困難であった動作も判別され易くなる。
 体動検出装置10は、使用者(人体)の一方の肢部分に装着されたセンサSL1,SL2と使用者の一方の肢部分に装着されたセンサSR1,SR2とを備える。つまり、センサSL1等が人体の左右に共通して存在する肢に装着されると、例えばセンサSL1等が使用者の腰に装着された場合よりもセンサ値の変動が多くなる。このため、取得可能なデータ量が増大する。また、基本的に動作を判別する場合にセンサ値の基準となる姿勢状態を設けて判別を行う手法も存在する。しかし、この手法では、該姿勢状態のときに取得されるセンサ値と他の動作時のセンサ値の差が少ない。このため、こうした手法では、歩行動作を高精度に判別することは困難である。これに対し、左右の股に装着されるセンサSL1,SL2とセンサSR1,SR2との各センサ値は、十分な差を有する。以上より、人体の左右に共通して存在する左右の肢にセンサSL1,SL2,SR1,SR2が装着されることで、動作判別がより高精度に行われる。
 体動検出装置10は、正中面Oに対して対称な位置に装着されたセンサSL1,SL2,SR1,SR2の出力信号を組み合わせる。体動検出装置10は、組み合わせることで得られる信号に基づいて人体の一方の肢の動作判別を行う。例えば、左右共通の人体の部位(例えば足、脚)が同時の動きをしている立位の状態、つまり両足裏が地面に接している状態を想定する。この想定では、一方の足裏が接している状態を判別できたとしても、他方の足裏が地面に接している状態を判別することは困難である。そこで例えば、一方の脚に装着されたセンサにより一方の脚の状態が取得され、他方の脚に装着されたセンサにより他方の脚の状態が取得される手法も想定される。この手法では、各センサのセンサ値をもとに左右の脚の状態が判別され、この判別結果をもとに人体の状態が判別される。しかし、この手法では、左右の脚のそれぞれの状態が個別に判別され、その後に人体全体の動作が判別されるため、人体全体の動作判別が迅速に行われない。一方、体動検出装置10は、組み合わせることで得られた信号に基づいて人体の一方の肢の動作判別を行うことで、立位の判別を高精度かつ迅速に行うことが可能である。
 体動検出装置10は、閾値TH1,TH2,TH3,TH4を用いて1歩行周期(立脚期及び遊脚期)を分割する判別部47を備える。この閾値TH1,TH2,TH3,TH4は、遊脚期を更に分割した所望の区間(判別区間H1b,H1c)が検出可能な値が設定されている。従って、1歩行周期を複数の判別区間H1a~H1cに分割することで、その判別区間H1a~H1cに基づいて身体のバランス等の評価を適切に行うことができる。
 また、体動検出装置10は、センサSL1,SL2,SR1,SR2が使用者の膝(関節)を挟んだ位置に設けられ膝関節の回転位置(角速度等)を検出可能に構成されている。図7に示すように、例えば遊脚期の前期において、大腿部は、進行方向B1と同じ向きに股関節を中心に回転する(回転方向B2)。
 センサSL1,SR1(加速度センサ)は、回転方向B2に対する大腿部の加速度を検出して出力信号IL1,IR1を出力する。また、下腿部は、膝関節を中心に慣性力が働く方向B3に回転する(回転方向B4)。センサSL2,SR2(角速度センサ)は、回転方向B4に沿った下腿部の角速度を検出して出力信号IL2,IR2を出力する。遊脚期の後期では,両部位ともに前期とは逆方向に回転する(回転方向B5,B6)。そこで、上記した遊脚期における脚の特徴的な動作を検出するように膝関節を挟んだ部位にセンサSL1,SL2,SR1,SR2が設けられる。これにより、判別区間H1b,H1cの検出精度を向上させることができる。
 第1の実施形態は、以下の効果を奏する。
 (1)体動検出装置10は、人体の基準面Oに対して対称な位置に装着されたセンサSL1,SL2,SR1,SR2と、センサSL1,SL2,SR1,SR2の出力信号IL1,IL2,IR1,IR2を組み合わせることで人体の姿勢(動作)を判別する判別部47とを備える。これにより、歩行動作の判別に用いられるデータ量が増加し、歩行状態等の人体動作の高精度な判別が可能となる。
 (2)センサSL1,SL2とセンサSR1,SR2とが歩行方向から見た人体を左右均等に分割する正中面に対して対称に配置された。これにより、センサSL1,SL2の出力信号IL1,IL2のみが用いられる比較例よりも、判別部47に供給される信号のデータ量が2倍に増加し、使用者の歩行動作がより正確に判別される。
 (3)体動検出装置10は、人体の一方の肢部分に設けられた複数のセンサSL1,SL2と、他方の肢部分に設けられた複数のセンサSR1,SR2とを含む。このため、体動検出装置10は、例えば歩行動作等の各種動作に伴う人体の変位を示す信号をより多く取得することが可能となる。これにより、体動検出装置10は、人体の動作を示す豊富なデータに基づいて動作判別を行うことが可能となり、動作判別をより詳細かつ高精度に行うことが可能となる。
 (4)体動検出装置10は、正中面Oに対して対称な位置に装着されたセンサSL1,SL2,SR1,SR2の出力信号を組み合わせる。体動検出装置10は、組み合わせることで得られる信号に基づいて人体の一方の肢の動作判別を行う。これにより、立位等をはじめとする各種動作の判別を高精度かつ迅速に行うことが可能である。
 (第2の実施形態)
 以下、図8,図9を参照して本発明の第2の実施形態にかかる体動検出装置及び電気刺激装置について第1の実施形態との相違点を中心に説明する。
 図8,図9には、第1実施形態と実質的に同一の要素には同一の符号を付し、説明を割愛する。
 図8に示すように、第2の実施形態の体動検出装置10を構成する制御部41は、第1判別部60、第2判別部70、及び統合論理演算部80を含む。
 第1判別部60は、正中面Oにより分割された使用者の一方の半身に装着されたセンサSL1,SL2からなる第1検出部SLの検出結果に基づいて、使用者の一方の肢の動作判別を行う。第1判別部60は、比較部61と論理演算部62とを含む。比較部61は、演算処理部46により演算された第1検出部SLの検出結果を示す信号の値が、1歩行周期のうちのどの判別区間に属しているかを判定する。論理演算部62は、比較部61が出力する判定信号の論理演算を行う。第1判別部60は、比較部61及び論理演算部62を用いて、演算処理部46により処理されたセンサSL1,SL2の出力信号IL1,IL2等に対する判定を行う。これにより、第1判別部60は、一方の半身の1歩行周期の歩行動作から、図5に示した複数の判別区間H1a~H1cを検出する。第1判別部60は、例えば、歩行動作に伴い使用者の歩行状態が判別区間H1aから判別区間H1bに切り替わったと判定した場合に、出力信号をハイレベルからローレベルに変更する制御を行う。第1判別部60は、判別結果を統合論理演算部80に出力する。
 第2判別部70は、正中面Oにより分割された使用者の他方の半身に装着されたセンサSR1,SR2からなる第2検出部SRの検出結果に基づいて使用者の他方の肢の動作判別を行う。第2判別部70は、比較部71と論理演算部72とを含む。比較部71は、演算処理部46により演算された第2検出部SRの検出結果信号の値が、1歩行周期のうちのどの判別区間に属しているかを判定する。論理演算部72は、比較部71が出力する判定信号の論理演算を行う。第2判別部70は、比較部71及び論理演算部72を用いて、演算処理部46により処理されたセンサSR1,SR2の出力信号IR1,IR2等に対する判定を行う。これにより、第2判別部70は、他方の半身の1歩行周期の歩行動作から、図5に示した複数の判別区間H1a~H1cを検出する。第2判別部70は、歩行動作に伴い使用者の歩行状態が判別区間H1aから判別区間H1bに切り替わったと判定した場合に、出力信号をハイレベルからローレベルに変更する制御を行う。第2判別部70は、判別結果を統合論理演算部80に出力する。
 統合論理演算部80は、第1判別部60から供給された判別結果と第2判別部70から供給された判別結果とに基づいて、使用者の動作を判定する処理を行う。統合論理演算部80は、例えば、正中面Oにより分割された使用者の左脚の動作を、第1判別部60の判別結果に第2判別部70の判別結果を加味して判定する。これにより、統合論理演算部80は、第1判別部60の判別結果を検証し、誤判別の有無を確認する。また、これにより、統合論理演算部80は、第1判別部60の判別結果のみでは判別が困難な使用者の動作の判別を行う。
 また、統合論理演算部80は、例えば、正中面Oにより分割された使用者の右脚の動作を、第2判別部70の判別結果に第1判別部60の判別結果を加味して判定する。これにより、統合論理演算部80は、第2判別部70の判別結果を検証し、誤判別の有無を確認する。また、これにより、統合論理演算部80は、第2判別部70の判別結果のみでは判別が困難な使用者の動作の判別を行う。
 次に、体動検出装置10の動作の詳細を、図9に示すタイムチャートに従って説明する。
 図9は、図5に例示した1歩行周期を立脚期前期、立脚期後期、遊脚期前期、及び遊脚期後期の四段階に分割して歩行動作の経過状況を示す。なお、図9(a)は、第1判別部60による使用者の左脚の歩行動作の判別結果を示している。また、図9(b)は、第2判別部70による使用者の右脚の歩行動作の判別結果を示している。さらに、図9(c)は、統合論理演算部80による使用者の歩行動作の判別結果を示している。なお、図9において、「判別番号1」は立脚期前期、「判別番号2」は立脚期後期、「判別番号3」は遊脚期前期、及び「判別番号4」は遊脚期後期をそれぞれ示している。
 ここで、図7のように1歩行周期の下腿部の動きは、立脚期の動きに比べ遊脚期の方が大きい。このため、遊脚期では、第1検出部SL及び第2検出部SRが取得するセンサ値の変動が大きく他の判別区間よりも高精度に判別可能である。
 また、図4に示したように、一方の脚の状態が立脚期前期から立脚期後期に遷移するタイミングは、他方の脚が遊脚期前期から遊脚期後期に遷移するタイミングと近似する。つまり、一方の脚の状態が立脚期前期から立脚期後期に遷移するとき、他方の脚は遊脚期前期から遊脚期後期に遷移する。
 このため、第1判別部60の判別結果は、図9(a)のタイミングT18で、左の脚の状態が立脚期前期から立脚期後期に遷移したことを示す。また、第2判別部70の判別結果は、図9(b)のタイミングT18で、右の脚の状態が遊脚期前期から遊脚期後期に遷移したことを示す。
 一方、図9(b)に示すように、タイミングT19では、第1判別部60の判別結果が左脚の立脚期前期の終了を示す以前に(図9(a):T20)、第2判別部70の判別結果は既に右脚の遊脚期後期の開始を示している。そこで、統合論理演算部80は、図9(c)に示すように、タイミングT19にて左脚の立脚期前期が終了したと判定する。つまり、統合論理演算部80は、第1判別部60の判別結果が誤判別であるとして、その判別結果を第2判別部70の判別結果に基づいて訂正する。
 次に、体動検出装置10の作用について説明する。
 上記した体動検出装置10は、使用者の一方の脚の動作状態を判別する第1判別部60を備える。また、体動検出装置10は、使用者の他方の脚の動作状態を判別する第2判別部70を備える。第1判別部60は、第1検出部SLの検出結果に基づき使用者の一方の脚の状態を判別する。また、第2判別部70は、第2検出部SRの検出結果に基づき使用者の他方の脚の状態を判別する。統合論理演算部80は、第1判別部60の判別結果に第2判別部70を加味して一方の脚の動作状態を判定した。また、統合論理演算部80は、第2判別部70の判別結果に第1判別部60を加味して他方の脚の動作状態を判定した。よって、統合論理演算部80は、第1判別部60もしくは第2判別部70の判別結果を、他方の判別部(70.60)の判別結果に基づき検証、是正することができる。これにより、歩行動作の判定精度がさらに高められる。
 上記した第1判別部60は、一方の脚の状態の立脚期前期から立脚期後期への遷移を判別した。また、第2判別部70は、他方の脚の状態の遊脚期前期から遊脚期後期への遷移を判別した。統合論理演算部80は、一方の脚の状態の立脚期前期から立脚期後期への遷移の判別を、他方の脚の状態の遊脚期前期から遊脚期後期への判別結果を加味して行った。これにより、一方の脚の立脚期前期から立脚期後期への遷移と、他方の脚の状態の遊脚期前期から遊脚期後期への遷移といった関連性の高い動作に基づいて動作状態が判別される。よって、統合論理演算部80は、第1判別部60及び第2判別部70の双方の判別結果に基づく使用者の動作判別を高精度に行うことが可能となる。
 第2の実施形態は、前記(1)~(4)の効果に加え、さらに以下の効果を奏する。
 (5)体動検出装置10は、正中面Oにより分割された左右の脚の動作状態を判別する第1判別部60及び第2判別部70を判別部として備える。また、体動検出装置10は、第1判別部60及び第2判別部70の各判別結果に基づき左右の脚の動作状態を判別する処理を行う統合論理演算部80を備える。これにより、一方の脚の状態の検出結果では判別することが困難な動作であっても、適正に判別することが可能となる。
 (第3実施形態)
 以下、図10~図13を参照して本発明の第3実施形態にかかる体動検出装置及び電気刺激装置について第1の実施形態との相違点を中心に説明する。
 図13には、第1実施形態と実質的に同一の要素には同一の符号を付し、説明を割愛する。
 図10に示すように、第3の実施形態では、使用者の身体に電気刺激を付与するための電極部34,35が、大腿正面パッド24及び下腿正面パッド27に設けられている。電極部34は、一対の陽極34a及び陰極34bを含む。また、電極部35は、一対の陽極35a及び陰極35bを含む。陽極34a,35a及び陰極34b,35bは、その一部が大腿正面パッド24及び下腿正面パッド27の背面24b,27bから露出しており、皮膚と直接接触して電気刺激を付与するように構成されている。センサSL1,SL2,SR1,SR2及び電極部34,35は、接続ケーブル13を介して本体部12と電気的に接続されている。
 図11に示すように、第3の実施形態の体動検出装置10は、使用者に電気刺激を付与する電気刺激部42を含む。また、制御部41は、電気刺激部42を制御する電気制御部48をさらに含む。
 電気制御部48は、判別部47からの出力信号、即ち判別区間H1a~H1cに基づいて電気刺激部42を制御する。電気刺激部42は、上記した電極部34,35と、電極部34,35と電気的に接続されたパルス発生部51とを含む。
 電気刺激部42は、電気制御部48から供給される制御信号に基づいてパルス発生部51を駆動する。これにより、電気刺激部42は、所定のパルス信号を、各電極部34,35の陽極34a,35a及び陰極34b,35b間に発生させる。各電極部34,35は、パルス信号の発生により、使用者に対して電気刺激を付与する。
 表示部43には、例えば、使用者の動作状態の判別結果の他、各判別区間H1a~H1cにおける電気刺激の有無などの設定が表示される。また、この設定は、操作部44を用いて使用者が変更可能となっている。電源部45は、センサSL1,SL2,SR1,SR2、電気刺激部42、制御部41及び操作部44に対して駆動電流を供給する。判別部47は、判別区間H1a~H1cが切り替わった旨の信号を電気制御部48に出力する。
 次に、第3の実施形態の体動検出装置10の動作を、図12に示すフローチャートに従って説明する。
 図12に示すように、まず、図6に示したステップ51~55に相当するステップ61~65を実行することにより、判別部47は、論理演算部50の出力結果から判別区間H1a~H1cを検出する。判別部47は、各判別区間H1a~H1cが切り替わった旨の信号を電気制御部48に出力する。
 次いで、電気制御部48は、判別区間H1a~H1cに基づいて、電気刺激部42のパルス発生部51を制御する(ステップ66)。図13に示すように、電気制御部48は、立脚期に対応する判別区間H1aにおいて、電極部34から電気刺激A及びBが付与されるように制御する。また、電気制御部48は、遊脚期前期に対応する判別区間H1bにおいては、パルス発生部51の駆動(電気刺激)を停止させる制御を行う。なお、電気制御部48は、各電極部34,35に発生させるパルス信号の電流の大きさ・周波数などの制御を所定のプログラム等に基づいて行う。
 次に、体動検出装置10の作用について説明する。
 体動検出装置10は、判別区間H1a~H1cに基づいて、電気制御部48が電気刺激部42を制御して使用者の身体に電気刺激を付与する。これにより、例えば1歩行周期において、筋肉が集中的に活動する区間を含む範囲で電気刺激を付与することで、筋肉を収縮させ下腿部の負担を効果的に軽減することが可能となる。つまり、立脚期及び遊脚期のみを用いて電気刺激を付与する場合に比べて、歩行状態に応じたより細かい区間で電気刺激を付与することができる。また、複数の判別区間H1a~H1cを設定することで、電気刺激を付与する区間だけでなく、所定区間だけ電気刺激を停止することができる。これにより、歩行動作を妨げることなく電気刺激を付与することができる。よって、電気刺激を効率良く付与することができる。さらに、判別区間H1a~H1cにおいては、電極部34,35の両方から電気刺激が付与される。つまり、電気刺激を付与する区間を、複数の判別区間H2a~H2dを組み合わせて行うことができる。これにより、電気刺激の付与(フィードバック)を多様な区間(歩行状態)に応じて行うことができる。
 第3の実施形態は、前記(1)~(4)の効果に加え、さらに以下の効果を奏する。
 (6)体動検出装置10は、電気刺激部42を備えており、電気制御部48が分割された各判別区間H1a~H1cに基づいて使用者の身体に電気刺激を付与する。これにより、歩行状態に応じた細かい区間で電気刺激を付与することができる。また、電気刺激部42は、判別部47による高精度な判別結果に応じて、必要なタイミングで電気刺激の付与を行うことができる。これにより、電気刺激が人体に長時間付与されることによる使用者の疲労が軽減される。
 (7)体動検出装置10は、操作部44を備えており、電気刺激を付与する判別区間H1a~H1cを使用者が変更可能となっている。これにより、使用者の好みや目的等に応じて電気刺激の付与を行うことができる。
 なお、各実施形態は、以下のように変更することもできる。
 ・各実施形態では、センサSL1,SL2,SR1,SR2と本体部12とが、接続ケーブル13によって有線接続された。センサSL1,SL2,SR1,SR2の検出結果を示す信号が、接続ケーブル13を介して本体部12に伝達された。これ以外に例えば、センサSL1,SL2,SR1,SR2及び本体部12に無線通信可能な通信部が設けられる構成であってもよい。
 ・各実施形態では、センサSL1,SL2,SR1,SR2が、使用者の膝関節に装着された。これ以外に例えば、センサSL1,SL2,SR1,SR2が、使用者の例えば股関節回り、腰、肘、腕、足首などの他の部位に装着されてもよい。この場合には、センサSL1,SL2,SR1,SR2が、基準面Oを間に挟んだ対称な部位に装着される。なお、センサSL1,SL2,SR1,SR2は、使用者の身体の関節を間に挟む位置に設けられることが好ましい。
 ・各実施形態では、装着部11と操作部44とが別体として構成された。これ以外に例えば、操作部44が装着部11に内蔵される構成であってもよい。
 ・第2の実施形態では、他方の脚の状態が遊脚期前期から遊脚期後期に遷移したと判別されたとき、一方の脚の状態の立脚期前期が終了した旨判別された。これ以外に、統合論理演算部80は、基準面Oを間に挟んだ対称な部位の動作に相関関係が存在する動作であれば、第1判別部60及び第2判別部70の判別結果を組み合わせて使用者の動作判別を行うことができる。
 ・第2の実施形態では、一方の脚の動作判別が、第1判別部60及び第2判別部70の判別結果に基づき行われた。同様に、他方の脚の動作判別も、第1判別部60及び第2判別部70の判別結果に基づき行われた。これ以外に例えば、一方の脚の動作判別が、第1判別部60及び第2判別部70の判別結果に基づき行われてもよい。他方の脚の動作判別は、第1判別部60及び第2判別部70のいずれかの判別結果のみに基づき行われてもよい。
 ・第2の実施形態では、第1検出部SL及び第2検出部SRを構成するセンサとして、同種類のセンサSL1,SL2,SR1,SR2が用いられた。これ限らず、第1検出部SL及び第2検出部SRはそれぞれ異なる種類のセンサによって構成されてもよい。これによれば、第1判別部60及び第2判別部70は、異なるセンサの検出値を用いて使用者の動作判別を行うことができる。
 ・第3の実施形態において、電気制御部48は、電極部34,35に発生させる電流の発生態様を適宜変更してもよい。例えば、電流値を時間の経過とともに徐々に高くする構成としてもよい。また、例えば、電気制御部48が、別途設けられる遅延回路等に基づく処理が実行されてもよい。電気制御部48は、こうした処理により、電流の発生タイミングを判別区間H1a~H1cの境界から所定時間遅らせることとしてもよい。また、例えば、電気制御部48は、電流の周期(パルス波形の周期)を適宜変更してもよい。また、例えば、電気制御部48は、電流値を、電気刺激を開始してから徐々に高くしてもよい。同様に、電気制御部48は、電気刺激の終了時期に近づくにつれて徐々に低くしてもよい。さらに、電気制御部48は、こうした電流の発生態様を適宜組み合わせてもよい。
 ・各実施形態では、第1検出部SL及び第2検出部SRにより上記検出部が構成された。さらに、体動検出装置10が、第1検出部SL及び第2検出部SRに加え、人体に装着される少なくとも1つの第3センサを含む補助検出部を備えてもよい。第1検出部SL及び第2検出部SRが共に誤検出を行ったとしても、補助検出部が第1検出部SL及び第2検出部SRに代替して人体の動作を検出することにより、人体の動作検出の信頼性が向上する。
 ・第2の実施形態では、第1判別部60及び第2判別部70の2つの判別部が設けられた。第1判別部60及び第2判別部70に加え、1以上の第3判別部が設けられてもよい。統合論理演算部80は、3つ以上の判別部の判別結果に基づき、使用者の動作状態を判別する。
 ・第3の実施形態では、体動検出装置10が、判別部47、電気刺激部42、及び電気制御部48を含む。これ以外に、第2の実施形態において、体動検出装置10が、電気刺激部42及び電気制御部48をさらに含むこともできる。電気制御部48は、第1判別部60及び第2判別部70の双方の判別結果に基づき判別された使用者の動作状態に応じて電気刺激を制御することができ、電気刺激の付与を適正なタイミングで行うことができる。
 ・体動検出装置10は使用者の歩行動作以外の動作を判別してもよい。例えば、体動検出装置10は、階段等の昇降動作や、座椅子等からの立ち上がり動作等を判別してもよい。
 10…体動検出装置、11…装着部、12…本体部、41…制御部、42…電気刺激部、43…表示部、44…操作部、45…電源部、46…演算処理部、47…判別部、48…電気制御部、49…比較部、50…論理演算部、51…パルス発生部、60…第1判別部、60…第2判別部、61…比較部、62…論理演算部、70…第2判別部、71…比較部、72…論理演算部、80…統合論理演算部、O…正中面、SL…第1検出部、SR…第2検出部、SL1、SL2、SR1、SR2…センサ。

Claims (9)

  1.  人体の対称な動作の中心となる面である基準面に対して対称な位置に装着された、体動を検出する複数の検出部であって、各検出部が1つ以上のセンサを含む前記複数の検出部と、
     前記基準面を間に挟んだ位置に装着された2つ以上のセンサの出力信号を組み合わせることによって前記人体の姿勢を判別する判別部と
    を備える体動検出装置。
  2.  請求項1に記載の体動検出装置において、
     前記基準面は、正面から見た人体を左右均等に分割する正中面である
     ことを特徴とする体動検出装置。
  3.  請求項1または2に記載の体動検出装置において、
     前記複数の検出部は、人体の一方の肢部分に装着された第1センサと、他方の肢部分において前記第1センサと対称な位置に装着された第2センサとを含む
     ことを特徴とする体動検出装置。
  4.  請求項1~3のいずれか一項に記載の体動検出装置において、
     前記判別部は、前記基準面に対して対称な位置に装着された前記2つ以上のセンサの出力信号を組み合わせることによって人体の一方の肢の動作を判別する
     ことを特徴とする体動検出装置。
  5.  請求項1~4のいずれか一項に記載の体動検出装置において、前記判別部は、
     前記基準面に対して人体の一側に装着される1つ以上の第1のセンサの出力信号に基づき人体の一方の肢の動作判別を行う第1判別部と、
     前記基準面に対して人体の他側に装着される1つ以上の第2のセンサの出力信号に基づき人体の他方の肢の動作判別を行う第2判別部とを含み、
     前記第1判別部の判別結果に前記第2判別部の判定結果を加味して、人体の一方の肢の動作を判別する統合論理演算部を更に備える
     ことを特徴とする体動検出装置。
  6.  請求項1~3のいずれか一項に記載の体動検出装置において、
     前記2つ以上のセンサは、人体の一半身に配置された複数の第1センサと、他半身において前記複数の第1センサと対称な位置に配置された複数の第2センサとを含み、
     前記判別部は、前記複数の第1センサと前記複数の第2センサの出力信号を組み合わせた演算式に従って人体の姿勢を判別する
     ことを特徴とする体動検出装置。
  7.  請求項1~6のいずれか一項に記載の体動検出装置において、
     前記複数の検出部とは別に、人体に装着される少なくとも1つのセンサを含む補助検出部をさらに備える
     ことを特徴とする体動検出装置。
  8.  請求項1~7のいずれか一項に記載の体動検出装置において、
     前記判別部は、前記2つ以上のセンサの出力信号を組み合わせるかどうかを、判別対象とする人体の動作に応じて設定可能に構成されている
     ことを特徴とする体動検出装置。
  9.  請求項1~8のいずれか一項に記載の体動検出装置と、
     人体に電気刺激を付与する電気刺激部と、
     前記体動検出装置により判定された人体の動作に基づき前記電気刺激部を制御することにより人体に付与する前記電気刺激を制御する電気制御部と
    を備えた電気刺激装置。
PCT/JP2013/004504 2012-08-24 2013-07-24 体動検出装置及びこれを備える電気刺激装置 WO2014030295A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012185722A JP6168488B2 (ja) 2012-08-24 2012-08-24 体動検出装置及びこれを備える電気刺激装置
JP2012-185722 2012-08-24

Publications (1)

Publication Number Publication Date
WO2014030295A1 true WO2014030295A1 (ja) 2014-02-27

Family

ID=50149627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/004504 WO2014030295A1 (ja) 2012-08-24 2013-07-24 体動検出装置及びこれを備える電気刺激装置

Country Status (2)

Country Link
JP (1) JP6168488B2 (ja)
WO (1) WO2014030295A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015148184A1 (en) 2014-03-24 2015-10-01 Bioness Inc. Systems and apparatus for gait modulation and methods of use
US10016598B2 (en) 2006-05-01 2018-07-10 Bioness Neuromodulation Ltd. Functional electrical stimulation systems
US10076656B2 (en) 2005-11-16 2018-09-18 Bioness Neuromodulation Ltd. Gait modulation system and method
US10080885B2 (en) 2005-11-16 2018-09-25 Bioness Neuromodulation Ltd. Orthosis for a gait modulation system
WO2019181483A1 (ja) * 2018-03-23 2019-09-26 パナソニックIpマネジメント株式会社 認知機能評価装置、認知機能評価システム、認知機能評価方法、及び、プログラム
US11077300B2 (en) 2016-01-11 2021-08-03 Bioness Inc. Systems and apparatus for gait modulation and methods of use
CN113853158A (zh) * 2019-07-22 2021-12-28 松下知识产权经营株式会社 步行功能评价装置、步行功能评价系统、步行功能评价方法、程序及认知功能评价装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6782401B2 (ja) * 2016-01-22 2020-11-11 パナソニックIpマネジメント株式会社 電気刺激装置
KR102094294B1 (ko) * 2018-08-02 2020-03-31 주식회사 엑소시스템즈 웨어러블 장치 및 사용자 전자 장치를 이용하여 재활 프로그램을 실행하는 재활 시스템
KR102375972B1 (ko) * 2018-08-02 2022-03-17 주식회사 엑소시스템즈 웨어러블 장치 및 사용자 전자 장치를 이용하여 재활 프로그램을 실행하는 재활 시스템
EP3979953A1 (de) * 2019-06-05 2022-04-13 Otto Bock Healthcare Products GmbH Verfahren zum betreiben einer orthopädietechnischen einrichtung und entsprechende einrichtung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002355236A (ja) * 2001-06-01 2002-12-10 Kiyomi Iizuka 2軸加速度センサを用いた関節角測定方法及び電気刺激器
JP2009039466A (ja) * 2007-08-13 2009-02-26 Advanced Telecommunication Research Institute International 行動識別装置、行動識別システムおよび行動識別方法
WO2009116597A1 (ja) * 2008-03-18 2009-09-24 株式会社日立製作所 姿勢把握装置、姿勢把握プログラム、及び姿勢把握方法
JP2011250945A (ja) * 2010-06-01 2011-12-15 Sharp Corp 歩行解析方法、歩行解析システム及び歩行解析装置
JP2012000343A (ja) * 2010-06-18 2012-01-05 Tohoku Univ 歩行解析システムおよび歩行解析方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009050533A (ja) * 2007-08-28 2009-03-12 Chiba Univ 自立歩行支援装置及びそれに用いられるプログラム
JP2009125506A (ja) * 2007-11-27 2009-06-11 Panasonic Electric Works Co Ltd 歩容改善支援システム
JP2011078728A (ja) * 2009-03-10 2011-04-21 Shinsedai Kk 身体状態評価装置、状態推測装置、歩幅推測装置、及び、健康管理システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002355236A (ja) * 2001-06-01 2002-12-10 Kiyomi Iizuka 2軸加速度センサを用いた関節角測定方法及び電気刺激器
JP2009039466A (ja) * 2007-08-13 2009-02-26 Advanced Telecommunication Research Institute International 行動識別装置、行動識別システムおよび行動識別方法
WO2009116597A1 (ja) * 2008-03-18 2009-09-24 株式会社日立製作所 姿勢把握装置、姿勢把握プログラム、及び姿勢把握方法
JP2011250945A (ja) * 2010-06-01 2011-12-15 Sharp Corp 歩行解析方法、歩行解析システム及び歩行解析装置
JP2012000343A (ja) * 2010-06-18 2012-01-05 Tohoku Univ 歩行解析システムおよび歩行解析方法

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10080885B2 (en) 2005-11-16 2018-09-25 Bioness Neuromodulation Ltd. Orthosis for a gait modulation system
US11058867B2 (en) 2005-11-16 2021-07-13 Bioness Neuromodulation Ltd. Orthosis for a gait modulation system
US10076656B2 (en) 2005-11-16 2018-09-18 Bioness Neuromodulation Ltd. Gait modulation system and method
US10543365B2 (en) 2006-05-01 2020-01-28 Bioness Neuromodulation Ltd. Functional electrical stimulation systems
US11247048B2 (en) 2006-05-01 2022-02-15 Bioness Neuromodulation Ltd. Functional electrical stimulation systems
US10016598B2 (en) 2006-05-01 2018-07-10 Bioness Neuromodulation Ltd. Functional electrical stimulation systems
EP4252645A3 (en) * 2014-03-24 2023-11-29 Bioness Inc. Systems and apparatus for gait modulation and methods of use
US10086196B2 (en) 2014-03-24 2018-10-02 Bioness Inc. Systems and apparatus for gait modulation and methods of use
US9867985B2 (en) 2014-03-24 2018-01-16 Bioness Inc. Systems and apparatus for gait modulation and methods of use
EP3122419A4 (en) * 2014-03-24 2017-11-22 Bioness Inc. Systems and apparatus for gait modulation and methods of use
WO2015148184A1 (en) 2014-03-24 2015-10-01 Bioness Inc. Systems and apparatus for gait modulation and methods of use
US10850098B2 (en) 2014-03-24 2020-12-01 Bioness Inc. Systems and apparatus for gait modulation and methods of use
JP2017515515A (ja) * 2014-03-24 2017-06-15 バイオネス インコーポレイテッド 歩行調整のシステム及び装置並びに使用方法
US11691009B2 (en) 2014-03-24 2023-07-04 Bioness Inc. Systems and apparatus for gait modulation and methods of use
US11724106B2 (en) 2016-01-11 2023-08-15 Bioness Inc. Systems and apparatus for gait modulation and methods of use
US11077300B2 (en) 2016-01-11 2021-08-03 Bioness Inc. Systems and apparatus for gait modulation and methods of use
TWI699188B (zh) * 2018-03-23 2020-07-21 日商松下知識產權經營股份有限公司 認知機能評價裝置、認知機能評價系統、認知機能評價方法、及程式記錄媒體
JPWO2019181483A1 (ja) * 2018-03-23 2020-12-03 パナソニックIpマネジメント株式会社 認知機能評価装置、認知機能評価システム、認知機能評価方法、及び、プログラム
US11779259B2 (en) 2018-03-23 2023-10-10 Panasonic Intellectual Property Management Co., Ltd. Cognitive function evaluation device, cognitive function evaluation system, cognitive function evaluation method, and recording medium
WO2019181483A1 (ja) * 2018-03-23 2019-09-26 パナソニックIpマネジメント株式会社 認知機能評価装置、認知機能評価システム、認知機能評価方法、及び、プログラム
CN113853158A (zh) * 2019-07-22 2021-12-28 松下知识产权经营株式会社 步行功能评价装置、步行功能评价系统、步行功能评价方法、程序及认知功能评价装置
CN113853158B (zh) * 2019-07-22 2024-05-14 松下知识产权经营株式会社 步行功能评价装置、步行功能评价系统、步行功能评价方法、记录介质及认知功能评价装置

Also Published As

Publication number Publication date
JP2014042605A (ja) 2014-03-13
JP6168488B2 (ja) 2017-07-26

Similar Documents

Publication Publication Date Title
WO2014030295A1 (ja) 体動検出装置及びこれを備える電気刺激装置
JP4997614B2 (ja) 重心位置検出装置及び重心位置検出装置を備えた装着式動作補助装置
JP6884526B2 (ja) 起立補助方法及び装置
CA2828420C (en) Gait training device and gait training system
CN108013999B (zh) 用于控制平衡的方法和设备
US10463561B2 (en) Wearable device and control method thereof
JP5758028B1 (ja) 歩数計測器、歩行補助装置および歩数計測プログラム
CN108577854A (zh) 步态识别方法和步态辅助设备
WO2005087172A1 (ja) 装着式動作補助装置、装着式動作補助装置のキャリブレーション装置、及びキャリブレーション用プログラム
EP3097947B1 (en) Electrostimulator
JP6846535B2 (ja) 移動運動支援装置
KR20150094427A (ko) 착용형 로봇 및 그 제어 방법
KR20150069817A (ko) 착용형 로봇 및 그 제어 방법
JP5927552B2 (ja) 体動検出装置
WO2014030296A1 (ja) 体動判定装置及び電気刺激装置
JP6008318B2 (ja) 体動検知装置、およびこの装置を有する人体用刺激付与装置
JP2015136582A (ja) 体動判別装置
Huo et al. Adaptive fes assistance using a novel gait phase detection approach
Kim et al. Effects of shoe type on lower extremity muscle activity during treadmill walking
JP5477064B2 (ja) 歩行補助装置
Chung et al. Walking speed intention model using soleus electromyogram signal of nondisabled and post-stroke hemiparetic patients
KR102467246B1 (ko) 근육 제어 장치 및 그것의 동작 방법
JP6263107B2 (ja) 作業補助制御装置及びパワーアシストスーツ
JP6140619B2 (ja) 電気刺激装置
JP2015136586A (ja) 人体刺激装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13831695

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13831695

Country of ref document: EP

Kind code of ref document: A1