WO2014029048A1 - 复合纳米晶钕铁硼磁条及其制造方法 - Google Patents

复合纳米晶钕铁硼磁条及其制造方法 Download PDF

Info

Publication number
WO2014029048A1
WO2014029048A1 PCT/CN2012/001463 CN2012001463W WO2014029048A1 WO 2014029048 A1 WO2014029048 A1 WO 2014029048A1 CN 2012001463 W CN2012001463 W CN 2012001463W WO 2014029048 A1 WO2014029048 A1 WO 2014029048A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixing
manufacturing
composite nanocrystalline
ndfeb magnetic
composite
Prior art date
Application number
PCT/CN2012/001463
Other languages
English (en)
French (fr)
Inventor
周连明
Original Assignee
南通万宝实业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通万宝实业有限公司 filed Critical 南通万宝实业有限公司
Publication of WO2014029048A1 publication Critical patent/WO2014029048A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/006Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of flat products, e.g. sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0579Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B with exchange spin coupling between hard and soft nanophases, e.g. nanocomposite spring magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the invention relates to the field of magnetic materials, in particular to a composite nanocrystalline neodymium iron boron magnetic strip and a manufacturing method thereof. Background technique
  • Neodymium magnets are rapidly spreading in the voice coil motor (VCM) of the hard disk (HDD) and the motor of the inverter air conditioner, and are also regarded as the driving motor of the recent hybrid electric vehicle (HEV) and electric vehicle (EV). Indispensable materials, it is foreseeable that future demand will continue to expand.
  • VCM voice coil motor
  • HDD hard disk
  • HEV hybrid electric vehicle
  • EV electric vehicle
  • neodymium magnets The cost of neodymium magnets is mainly on magnetic powder, or mainly on metal crucibles.
  • the United States produced a neodymium-iron-boron alloy by a single-copper wheel melt-spinning method, and used the alloy fragments to make a magnet.
  • the name was Magnequench, abbreviated as MQ magnet, which made the molten-quenched rare earth iron-based permanent magnet enter the practical stage. .
  • the conventional neodymium magnet magnetic powder is also a bonded NdFeB material (such as Ndll. 76Fe82. 36B5. 88 at%), and its Nd content is 26.67 wt%, using ⁇ -Fe/Nd2FeMB (such as Nd9. 5Fe80). 5B10 at%) is also quite a lot, and its Nd content is 22.91 ⁇ 2t%. Since the beginning of 2011, the price of rare earth materials has remarkably ten times in less than six months. The most important raw materials for magnetic materials. The price of metal bismuth has risen from about 200,000 yuan per ton to about 1.8 million yuan per ton.
  • the technical problem to be solved by the present invention is to provide a composite nanocrystalline neodymium iron boron magnetic strip which is relatively inexpensive and is relatively inexpensive in view of the above-mentioned deficiencies of the prior art.
  • the composite nanocrystal refers to a particle whose particle size is very fine and reaches a nanometer size.
  • a method for manufacturing a composite nanocrystalline neodymium iron boron magnetic strip comprising the following steps:
  • a. Mixing Mixing nitrile rubber, epoxidized soybean oil and ketone amine compound, and then adding the nanocrystalline bismuth iron boron magnetic powder, silicon bismuth agent, and epoxy resin for mixing. , in the mixing machine, the hot water is lined in the mixer. Maintaining the temperature of the raw material in the mixing machine within a certain temperature range;
  • Crop The shaped disk is cut by the cutter to the size of the required disk.
  • the nanocrystalline neodymium iron boron magnetic powder in the step a is a Fe 3 B/Nd 2 Fe I4 B composite nanocrystalline magnetic powder.
  • the weight distribution ratio of the raw materials in the step a is: Fe 3 B/Nd 2 Fe 14 B nanocrystalline neodymium iron boron magnetic powder 90 to 93%, nitrile rubber 5 to 8%, epoxy 5% ⁇ The 5% of the ketone, the ketone amine compound 0. 3%, the silicon chelating agent 0. 5%, epoxy resin 0. 5%.
  • the 5%, the nitrile rubber 6.5%, epoxy, the weight ratio of the raw material in the step a is: Fe 3 B / Nd 2 Fe 14 B nanocrystalline neodymium iron boron magnetic powder 91. 5%, nitrile rubber 6. 5%, epoxy 5% ⁇
  • the method further includes the step a', batch mixing: after the kneading is finished, mixing the two or more batches of the kneaded raw materials into the mixing tub; step a', after the step a, the step b before the start.
  • the temperature of the raw material in the kneading machine in the step a is maintained at 7 (T90'C, and the kneading time is 4 ( ⁇ 60 minutes).
  • step b the separating rollers are horizontally arranged, and the hot water having a temperature of 90 ⁇ is passed through the separating roller, and the diameter of the separating roller is 450 mm, and the axial height is 800 mm.
  • the rolling roller is arranged in the upper and lower steps in step c, and the hot water having a temperature of 100 ° C is passed through the rolling roller, and the rolling roller has a diameter of 350 mm and an axial height of 800 mm.
  • the condition of high temperature hardening in step d is 180 ° C, 20 min.
  • the composite nanocrystalline neodymium iron boron magnetic strip of the present invention uses Fe 3 B/Nd 2 Fe 14 B composite nanocrystalline magnetic powder as a raw material, and the content of Nd in the magnetic powder is 12.61 wt%, only half of the MQP magnetic powder, relatively speaking Magnets are much cheaper, and the smaller the motor is, the more difficult it is for bonded magnets when magnetizing multiple poles. Because of the low internal coercivity of composite nanocrystalline magnetic powder materials, in magnetization design When the outer diameter of the magnet is small and multi-pole is required, it is easy to meet the magnetic requirements of the customer. Batch mixing after mixing can make the product quality more stable.
  • DRAWINGS 1 is a schematic flow chart of a manufacturing method of the present invention. detailed description
  • Embodiment 1 A method of manufacturing a composite nanocrystalline neodymium iron boron magnetic strip is provided, which is completely different from the prior art compression molding method for producing a composite nanocrystalline neodymium iron boron magnet.
  • the method of this embodiment includes the following steps:
  • a. Mixing Mixing nitrile rubber, epoxidized soybean oil and ketone amine compound, and then adding the nanocrystalline bismuth iron boron magnetic powder, silicon chelating agent, and epoxy resin for kneading. At the time of kneading, hot water is supplied to the lining of the kneading machine 1, and the temperature of the raw material in the kneading machine 1 is maintained at a constant temperature range;
  • the separation of the production the mixed raw materials are placed in the bucket 2, through the conveyor belt 3 sent to the separation roller 4 to be pressed into the disk 5;
  • roller rolling The separated magnetic disk 5 is calendered to a desired disk thickness by a calendering roller 6;
  • film stereotype the calendered disk 5, through the film sizing device 7 for temperature hardening treatment;
  • the composition is as follows: Fe 3 B/Nd 2 Fe nanocrystalline neodymium iron boron magnetic powder 90%, nitrile rubber 8%, epoxidized soybean oil 0. 7%, ketone amine compound 0. 3% 5% ⁇ The silane chelating agent 0. 5%, epoxy resin 0. 5%.
  • the temperature of the raw material in the kneading machine was 90 ° C, and the kneading time was 60 minutes.
  • the composite nanocrystalline NdFeB magnetic strip obtained in this embodiment has moderate softness.
  • Embodiment 2 provides a method of manufacturing a composite nanocrystalline NdFeB magnetic strip similar to that of Embodiment 1, and only the differences between Embodiment 2 and Embodiment 1 will be described below, and the undescribed contents are the same as those of Embodiment 1.
  • the material is formulated as follows: Fe 3 B/Nd 2 Fe 14 nanocrystalline neodymium iron boron magnetic powder 93%, nitrile rubber 5%, epoxidized soybean oil 0. 7%, ketoamine compound 0. 3 % 5% ⁇ 5%, epoxy resin 0. 5%.
  • the temperature of the raw material in the kneading machine was 90 ° C, and the kneading time was 60 minutes.
  • the magnetic properties of the composite nanocrystalline neodymium iron boron magnetic strip obtained in this embodiment are higher than those of the first embodiment, but the hardness is higher than that of the first embodiment, and the ductility is poor.
  • the magnetic disk is wound around the wood with a wooden rod having a diameter of 23 mm. On the stick, the disk has cracks.
  • Embodiment 3 provides a method of manufacturing a composite nanocrystalline NdFeB magnetic strip similar to that of Embodiment 1, and only the differences between Embodiment 3 and Embodiment 1 will be described below, and the undescribed contents are the same as those of Embodiment 1.
  • Example 3 the material is as follows: Fe 3 B / Nd 2 Fe M nanocrystalline NdFeB magnetic powder 91. 5%, nitrile rubber 6. 5%, epoxidized soybean oil 0. 7%, ketoamines 5% ⁇ The compound is 0. 5%, the epoxy resin is 0.5%.
  • the temperature of the raw material in the kneading machine was 90 ° C, and the kneading time was 60 minutes.
  • the magnetic properties of the composite nanocrystalline NdFeB magnetic strip obtained in this embodiment are higher than those of the first embodiment, and the magnetic properties are comparable to those of the second embodiment, but the hardness is higher than that of the first embodiment, and the ductility is higher than that of the embodiment 2.
  • the disk was wound on a wooden stick with a 23 mm diameter wooden rod, and no cracks occurred on the disk. This ratio is the best combination of components in the composite nanocrystalline NdFeB magnetic strip and its manufacturing method.
  • Embodiment 4 provides a method of manufacturing a composite nanocrystalline NdFeB magnetic strip similar to that of Embodiment 1, and only the differences between Embodiment 4 and Embodiment 1 will be described below, and the undescribed contents are the same as those of Embodiment 1.
  • Example 4 the composition was completely the same as in Example 3 except that the temperature of the raw material in the kneading machine was changed to 70 ° C in the kneading step, and the kneading time was 40 minutes.
  • the above materials are prepared by mixing, batch mixing, splitting, roll rolling, film setting and cutting, the magnetic hysteresis curve tester and the Rockwell D-Scale Rockwell/D-Scale are used.
  • the characteristics are as follows: Br: 4,810 Gs
  • the disk was wound on a wooden stick with a 23 mm diameter wooden rod, and some cracks occurred in the disk. Although the maximum magnetic energy product and remanence are much higher, the coercive force value is much lower than that of the implementation 3, which has an effect on the temperature effect of the motor.
  • Embodiment 5 provides a method of manufacturing a composite nanocrystalline NdFeB magnetic strip similar to that of Embodiment 1, and only the differences between Embodiment 5 and Embodiment 1 will be described below, and the undescribed contents are the same as those of Embodiment 1.
  • Example 5 the composition was exactly the same as in Example 3 except that the temperature of the raw material in the kneading machine was changed to 80 ° C in the kneading step, and the kneading time was 50 minutes.
  • the disk was wound on a wooden stick with a 23 mm diameter wooden rod, and no cracking occurred on the disk.
  • the maximum magnetic energy product and remanence were significantly lower than those in Example 4.
  • the coercive force value increased significantly, which is helpful for the temperature effect of the motor.
  • the ratio of the nanocrystalline NdFeB magnetic powder and the nitrile rubber determines the magnetic characteristics of the magnetic strip and the softness of the magnetic strip.
  • the role of the refining is to micronize the nitrile rubber so that the subsequently mixed nanocrystalline NdFeB magnetic powder is fully mixed with the nitrile rubber.
  • epoxy soybean oil and ketone amine compound are added.
  • the additives contribute to the combination of the magnetic powder and the nitrile rubber.
  • the role of the silane coupling agent is to help the epoxy resin and the nitrile rubber to be vulcanized. It cannot be added to the mastication to avoid the vulcanization of the early nitrile rubber. It should be added during the kneading.
  • the traditional composite nanocrystalline NdFeB magnetic strip manufacturing process mostly adopts a compression process, and also adds an appropriate amount of epoxy resin to the composite nanocrystalline NdFeB magnetic powder material, and the main purpose of the epoxy resin is as a bonding agent. use.
  • the finished material is then formed by a press, and the formed magnetic ring must be hardened to become a finished product.
  • Most of the magnets produced by this process are used in the inner rotor motor.
  • Most of the externally-rotating motors use ferrite magnetic strips. The main reason is that they are cheap. When the magnetic flux is insufficient, a method of increasing the width or thickness of the magnetic strip is often adopted, which tends to increase the volume of the motor, and the cost of other materials also increases.
  • the composite nanocrystalline neodymium iron boron magnetic strip of the present invention since the magnetic stripe magnetic product of the material is three times that of the ferrite, and the cost is only half of that of the conventional composite nanocrystalline neodymium iron boron magnetic strip,
  • the composite nanocrystalline NdFeB magnetic strip of the present invention is selected, although the price of the rubber magnetic strip relative to the ferrite is high, the motor volume can be reduced, and the motor material can be saved. In general, the cost is lower than that of a ferrite magnetic strip using ferrite, and the performance of the motor is superior.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Nanotechnology (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

提供一种复合纳米晶钕铁硼磁条及其制造方法,其步骤包括混炼、分出制片、滚轮压延、胶片定型、裁切;所述的复合纳米晶钕铁硼磁条选用Fe3B/Nd2Fe14B复合纳米晶磁粉作为原料,该磁粉中Nd的含量为12.61wt%,仅仅有MQP磁粉的一半,相对来说磁体价格便宜了许多,另由于复合纳米晶磁粉材料的内禀矫顽力低,在充磁设计上对于磁石外径小,其需多极时,容易达到客户的磁性要求。

Description

复合纳米晶钕铁硼磁条及其制造方法 技术领域
本发明涉及磁性材料领域, 尤其涉及一种复合纳米晶钕铁硼磁条及其制造方法。 背景技术
自 1970年初钐钴磁铁 (Samarium Cobalt Magnets ) 问世后, 永久磁铁的性能便大为 跃进。 装设在随身听等各种电子机械内的磁铁, 对装置的小型、 轻量化贡献许多。 之后在 1983年更出现了由日本人所发明的强力钕磁铁(Neodymium magnet ), 现在各产业所采用 的稀土类磁铁几乎都是钕磁铁 (Nd-Fe-B类烧结磁铁)。 钕磁铁在硬盘(HDD) 的音圈马达 (VCM)及变频空调的马达等方面快速普及, 另外在最近的混合动力车(HEV)及电动汽车 (EV) 的驱动用马达上, 也被视为无可或缺的材料, 可以预见日后的需求将会持续扩大。 钕磁铁的成本主要在磁粉上, 或者说主要在金属钕上。 就在 1983年美国 GM用单铜轮熔融 旋淬法制备钕铁硼合金, 并用此种合金碎片制造磁石, 取名为 Magnequench, 简写为 MQ磁 石, 使熔融旋淬稀土铁基永磁进入实用阶段。
传统的钕磁铁磁粉(M Q P )亦即粘结钕铁硼材料 (如 Ndll. 76Fe82. 36B5. 88 at%) , 其 Nd的含量为 26. 67wt%, 采用 α - Fe/Nd2FeMB (如 Nd9. 5Fe80. 5B10 at%)的也不少, 其 Nd 的含量为 22. 9½t%, 从 2011年年初开始, 稀土材料价格在不到 6个月的时间里飙升了近 十倍, 磁性材料最主要的原材料金属钕的价格从原来每吨 20万元人民币左右涨到了每吨 约 180万元以上。 原材料价格的翻倍上涨, 导致钕铁硼磁体制造成本不断提高, 使钕铁硼 磁体生产企业的利润大幅下降, 甚至已经亏损, 钕铁硼磁体生产企业面临着生存和发展的 巨大压力。 另外马达越做越小, 在充磁多极时, 对粘结磁体相对而言就显得困难许多。 发明内容
本发明所要解决的技术问题是针对上述现有技术的不足, 提供一种造价相对便宜许多 的复合纳米晶钕铁硼磁条。所述复合纳米晶是指粉体的颗粒度很细,达到纳米量级的尺寸。
为解决上述技术问题, 本发明所采取的技术方案为: 一种复合纳米晶钕铁硼磁条的制 造方法, 包括以下步骤:
a、 混炼: 将丁腈橡胶、 环氧大豆油、 酮胺类化合物混合后先行素炼; 素炼后加入纳 米晶钕铁硼磁粉、 硅垸藕联剂、 和环氧树酯进行混炼, 混炼时在混炼机的里衬通以热水, 使混烁机内的原料温度维持在一定温度范围;
b、 分出制片: 混炼好的原料置于料桶中, 通过输送带输送到分出滚轮处压成磁盘; C、 滚轮压延: 分出的磁盘通过压延滚轮压延成所需磁盘厚度;
d、 胶片定型: 压延后的磁盘, 经高温硬化处理;
e、 裁切: 定型后的磁盘, 经过裁切机裁切出所需磁盘的尺寸大小。
作为本发明进一步改进的技术方案, 步骤 a中所述纳米晶钕铁硼磁粉为 Fe3B/Nd2FeI4B 复合纳米晶磁粉。
作为本发明进一步改进的技术方案, 步骤 a 中原料的重量百分配比为: Fe3B/Nd2Fe14B 纳米晶钕铁硼磁粉 90~93%、 丁腈橡胶 5〜8%、 环氧大豆油 0. 7%、 酮胺类化合物 0. 3%、 硅垸 藕联剂 0. 5%、 环氧树酯 0. 5%。
作为本发明进一步改进的技术方案, 步骤 a 中原料的重量百分配比为: Fe3B/Nd2Fe14B 纳米晶钕铁硼磁粉 91. 5%、 丁腈橡胶 6. 5%、 环氧大豆油 0. 7%、 酮胺类化合物 0. 3%、 硅烷 藕联剂 0. 5%、 环氧树酯 0. 5%。
作为本发明进一步改进的技术方案, 还包括步骤 a' 、 批量混合: 混炼结束后, 将两 个以上批量的混炼后的原料加入混合桶中混合; 步骤 a' 在步骤 a结束后, 步骤 b开始前。
作为本发明进一步改进的技术方案, 歩骤 a中混炼机内的原料温度维持在 7(T90'C之 间, 混炼时间为 4(Γ60分钟。
作为本发明进一步改进的技术方案, 步骤 b中分出滚轮为水平排列, 在分出滚轮内通 以温度为 90Ό的热水, 分出滚轮直径为 450mm, 轴高为 800mm。
作为本发明进一步改进的技术方案, 其特征在于: 步骤 c中压延滚轮为上下排列, 在 压延滚轮内通以温度为 lOO'C的热水, 压延滚轮直径为 350mm, 轴高为 800mm。
作为本发明进一步改进的技术方案, 步骤 d中高温硬化的条件为 180°C, 20min。 以及根据上面任何一个方法得到的复合纳米晶钕铁硼磁条。
本发明的复合纳米晶钕铁硼磁条选用 Fe3B/Nd2Fe14B复合纳米晶磁粉作为原料, 该磁粉 中 Nd的含量为 12. 61wt%, 仅仅有 MQP磁粉的一半, 相对来说磁体价格便宜了许多, 另外 马达越做越小, 在充磁多极时, 对粘结磁体相对而言就显得困难许多, 由于复合纳米晶磁 粉材料的内禀矫顽力低, 在充磁设计上对于磁石外径小, 且需多极时, 容易达到客户的磁 性要求。 在混炼后批量混合可以使产品质量更稳定。 附图说明 图 1为本发明的制造方法流程示意图。 具体实施方式
实施例 1:
实施例 1提供一种制造复合纳米晶钕铁硼磁条的方法, 该方法完全不同于现有技术中 压缩成形方法制造复合纳米晶钕铁硼磁石的方法。 本实施例的方法包括以下步骤:
a、 混炼: 将丁腈橡胶、 环氧大豆油、 酮胺类化合物混合后先行素炼; 素炼后加入纳 米晶钕铁硼磁粉、硅垸藕联剂、和环氧树酯进行混炼, 混炼时在混炼机 1的里衬通以热水, 使混炼机 1内的原料温度维持在一定温度范围;
b、 分出制片: 混炼好的原料置于料桶 2中, 通过输送带输 3送到分出滚轮 4处压成 磁盘 5;
c、 滚轮压延: 分出的磁盘 5通过压延滚轮 6压延成所需磁盘厚度;
d、 胶片定型: 压延后的磁盘 5, 经胶片定型器 7进行髙温硬化处理;
e、 裁切: 定型后的磁盘, 待冷却后, 经过裁切机 8裁切出所需磁盘的尺寸大小。 在本实施例中, 材料配比如下: Fe3B/Nd2Fe 纳米晶钕铁硼磁粉 90%、 丁腈橡胶 8%、 环 氧大豆油 0. 7%、 酮胺类化合物 0. 3%、 硅烷藕联剂 0. 5%、 环氧树酯 0. 5%。
上述材料经混炼、 批量混合、 分出制片、 滚轮压延、 胶片定型和裁切等工艺制成后, 经过磁滞曲线检测仪检测以及洛式硬度 D测试 Rock Well/D-Scale, 其磁气特性如下: 剩磁 Br: 4,611-4,631 Gs
矫顽力 bHc: 2,786 Oe
内禀矫顽力 iHc: 3,433 Oe
最大磁能积 BHmax: 4.388-4.421 MGOe
其中混炼步骤中混炼机内的原料温度为 90°C, 混炼时间为 60分钟。
本实施例得到的复合纳米晶钕铁硼磁条柔软性适中。
实施例 2:
实施例 2提供一种类似于实施例 1的制造复合纳米晶钕铁硼磁条的方法, 下面仅 描述实施例 2与实施例 1的不同之处, 未描述的内容与实施例 1相同。
在实施例 2中,材料配比如下: Fe3B/Nd2Fe14纳米晶钕铁硼磁粉 93%、丁腈橡胶 5%、 环氧大豆油 0. 7%、 酮胺类化合物 0. 3%、 硅垸藕联剂 0. 5%、 环氧树酯 0. 5%。
上述材料经混炼、 批量混合、 分出制片、 滚轮压延、 胶片定型和裁切等工艺制成后, 经过磁滞曲线检测仪检测以及洛式硬度 D测试 Rock Well/D- Scale, 其磁气特性如下: Br: 4,750 Gs
bHc: 2,800 Oe
iHc: 3,500 Oe
BHmax: 5.37 MGOe
其中混炼步骤中混炼机内的原料温度为 90°C, 混炼时间为 60分钟。
本实施例得到的复合纳米晶钕铁硼磁条磁气特性相比实施例 1要高,但硬度比实 施例 1要高, 延展性较差, 用直径 23mm的木棒把磁盘卷绕在木棒上, 磁盘有龟裂发 生。
实施例 3:
实施例 3提供一种类似于实施例 1的制造复合纳米晶钕铁硼磁条的方法, 下面仅 描述实施例 3与实施例 1的不同之处, 未描述的内容与实施例 1相同。
在实施例 3中, 材料配比如下: Fe3B/Nd2FeM纳米晶钕铁硼磁粉 91. 5%、 丁腈橡胶 6. 5%、 环氧大豆油 0. 7%、 酮胺类化合物 0. 3%、 硅垸藕联剂 0. 5%、 环氧树酯 0. 5%。
上述材料经混炼、 批量混合、 分出制片、 滚轮压延、 胶片定型和裁切等工艺制成后, 经过磁滞曲线检测仪检测以及洛式硬度 D测试 Rock Well/D- Scale, 其磁气特性如下:
Br: 4,720 Gs
bHc: 2,850 Oe
iHc: 3,520 Oe
BHmax: 5.3 MGOe
其中混炼步骤中混炼机内的原料温度为 90°C, 混炼时间为 60分钟。
本实施例得到的复合纳米晶钕铁硼磁条磁气特性相比实施例 1要高, 与实施例 2 比较磁特性不相上下,但硬度比实施例 1要高,延展性较实施例 2好许多,用直径 23mm 的木棒把磁盘卷绕在木棒上, 磁盘没有龟裂发生。此配比在复合纳米晶钕铁硼磁条及 其制造方法是最佳的成分组合。
实施例 4:
实施例 4提供一种类似于实施例 1的制造复合纳米晶钕铁硼磁条的方法, 下面仅 描述实施例 4与实施例 1的不同之处, 未描述的内容与实施例 1相同。
在实施例 4中, 组合成份与实施例 3完全相同, 但改变混炼步骤中混炼机内的原 料温度为 70'C, 混炼吋间为 40分钟。 上述材料经混烁、 批量混合、 分出制片、 滚轮压延、 胶片定型和裁切等工艺制成后, 经过磁滞曲线检测仪检测以及洛式硬度 D测试 Rock Well/D- Scale, 其磁气特性如下: Br: 4,810 Gs
bHc: 2,720 Oe
iHc: 3,290 Oe
BHmax: 5.51 MGOe
用直径 23mm的木棒把磁盘卷绕在木棒上, 磁盘有些微龟裂发生。 虽然最大磁能 积及剩磁高许多, 但与实施 3比较, 矫顽力值明显偏低许多, 这对电机的温度效应会 有所影响的。
实施例 5:
实施例 5提供一种类似于实施例 1的制造复合纳米晶钕铁硼磁条的方法, 下面仅 描述实施例 5与实施例 1的不同之处, 未描述的内容与实施例 1相同。
在实施例 5中, 组合成份与实施例 3完全相同, 但改变混炼步骤中混炼机内的原 料温度为 80°C, 混炼时间为 50分钟。
上述材料经混炼、 批量混合、 分出制片、 滚轮压延、 胶片定型和裁切等工艺制成后, 经过磁滞曲线检测仪检测以及洛式硬度 D测试 Rock Well/D- Scale, 其磁气特性如下:
Br: 4,750 Gs
bHc: 2,780 Oe
iHc: 3,440 Oe
BHmax: 5.37 MGOe
用直径 23mm的木棒把磁盘卷绕在木棒上, 磁盘无龟裂发生。 最大磁能积及剩磁 与实施例 4比较明显有下降趋势, 但与实施 4比较, 矫顽力值明显上升许多, 这对电 机的温度效应式有所帮助。
本发明中纳米晶钕铁硼磁粉、丁腈橡胶两者配比决定了磁条的磁气特性以及磁条 的柔软度。 素炼的作用是让丁腈橡胶微粉化, 以便让后续混炼的纳米晶钕铁硼磁粉充 分的与丁腈橡胶混合, 在素炼过程中, 加入环氧大豆油、 酮胺类化合物这两种添加剂 有助于磁粉与丁腈橡胶两者的结合。硅烷藕联剂的作用是帮助环氧树酯与丁腈橡胶硫 化的添加剂, 不可于素炼中加入, 以免提早丁腈橡胶的硫化, 应在混炼中加入。
传统的复合纳米晶钕铁硼磁条制造工艺大都采用压缩制程工艺,亦及在复合纳米 晶钕铁硼磁粉的材料里加入适量的环氧树酯, 而环氧树酯主要目的是当结合剂用。混 合好的材料再用压机成形, 成形好的磁环必须经硬化处理方可成为成品, 此种工艺所 做出来的磁石大都使用在内转子电机。 外转电机大都使用铁氧体的橡胶磁条, 主要的 原因在于价格便宜。 当磁通量不足时, 往往就采取增加磁条的宽度或厚度的方法, 这 样往往导致马达体积增大, 从而其他材料的造价也会增加。 但采用本发明的复合纳米 晶钕铁硼磁条的话, 由于该种材料的磁条磁能积是铁氧体的 3倍, 而且造价仅为传统 的复合纳米晶钕铁硼磁条的一半, 所以在外转式电机必须制造更大的瓦特数时, 选用 本发明的复合纳米晶钕铁硼磁条, 虽然相对铁氧体的橡胶磁条价格要高, 但是可以减 小电机体积, 节约电机材料, 总体来说造价比使用铁氧体的橡胶磁条要低, 而且马达 的性能更优越。
需要说明的是, 虽然以上实施例利用具体参数描述了本发明, 但本发明的构思和 范围并不限于以上具体参数。本领域的技术人员在本发明的启发下可以根据具体应用 和技术要求对上述实施例进行改变, 但这样的改变也包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1、 一种复合纳米晶钕铁硼磁条的制造方法, 其特征在于包括以下步骤:
a、 混炼: 将丁腈橡胶、 环氧大豆油、 酮胺类化合物混合后先行素炼; 素炼后加入纳 米晶钕铁硼磁粉、 硅烷藕联剂、 和环氧树酯进行混炼, 混炼时在混炼机(1 ) 的里衬通以 热水, 使混炼机 1内的原料温度维持在一定温度范围;
b、 分出制片: 混炼好的原料置于料桶 (2) 中, 通过输送带输(3)送到分出滚轮 (4) 处压成磁盘 (5) ;
c、 滚轮压延: 分出的磁盘 (5)通过压延滚轮 (6)压延成所需磁盘厚度;
d、 胶片定型: 压延后的磁盘 (5), 经胶片定型器 (7)进行高温硬化处理;
e、 裁切: 定型后的磁盘, 待冷却后, 经过裁切机 (8)裁切出所需磁盘的尺寸大小。
2、 根据权利要求 1 所述的复合纳米晶钕铁硼磁条的制造方法, 其特征在于: 步骤 a 中所述纳米晶钕铁硼磁粉为 Fe3B/Nd2Fe14B复合纳米晶磁粉。
3、 根据权利要求 2所述的复合纳米晶钕铁硼磁条的制造方法, 其特征在于: 步骤 a 中原料的重量百分配比为: Fe3B/Nd2Fe14B纳米晶钕铁硼磁粉 90~93%、丁腈橡胶 5~8%、环氧 大豆油 0. 7%、 酮胺类化合物 0. 3%、 硅垸藕联剂 0. 5%、 环氧树酯 0. 5%。
4、 根据权利要求 3所述的复合纳米晶钕铁硼磁条的制造方法, 其特征在于: 步骤 a 中原料的重量百分配比为: Fe3B/Nd2Fe14B纳米晶钕铁硼磁粉 91. 5%、 丁腈橡胶 6. 5%、 环氧 大豆油 0. 7%、 酮胺类化合物 0. 3%、 硅烷藕联剂 0. 5%、 环氧树酯 0. 5%。
5、 根据权利要求 1、 2或 3所述的复合纳米晶钕铁硼磁条的制造方法, 其特征在于- 还包括步骤 a' 、 批量混合: 混炼结束后, 将两个以上批量的混炼后的原料加入混合桶中 混合; 步骤 a' 在步骤 a结束后, 步骤 b开始前。
6、 根据权利要求 1、 2或 3所述的复合纳米晶钕铁硼磁条的制造方法, 其特征在于: 步骤 a中混炼机内的原料温度维持在 7(Γ90Ό之间, 混炼时间为 40~60分钟。
7、 根据权利要求 6所述的复合纳米晶钕铁硼磁条的制造方法, 其特征在于: 步骤 b 中分出滚轮为水平排列, 在分出滚轮内通以温度为 90'C的热水, 分出滚轮直径为 450ram, 轴高为 800腕。
8、 根据权利要求 7所述的复合纳米晶钕铁硼磁条的制造方法, 其特征在于: 步骤 c 中压延滚轮为上下排列, 在压延滚轮内通以温度为 10CTC的热水, 压延滚轮直径为 350mm, 轴高为 800mm。
9、 根据权利要求 8所述的复合纳米晶钕铁硼磁条的制造方法, 其特征在于: 步骤 d 中高温硬化的条件为 180°C, 20min。 、 根据权利要求 1至 9中任一项得到的复合纳米晶钕铁硼磁条。
PCT/CN2012/001463 2012-08-20 2012-10-29 复合纳米晶钕铁硼磁条及其制造方法 WO2014029048A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210296214.9A CN103632829B (zh) 2012-08-20 2012-08-20 复合纳米晶钕铁硼磁条及其制造方法
CN201210296214.9 2012-08-20

Publications (1)

Publication Number Publication Date
WO2014029048A1 true WO2014029048A1 (zh) 2014-02-27

Family

ID=50149327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/001463 WO2014029048A1 (zh) 2012-08-20 2012-10-29 复合纳米晶钕铁硼磁条及其制造方法

Country Status (2)

Country Link
CN (1) CN103632829B (zh)
WO (1) WO2014029048A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1624824A (zh) * 2004-11-11 2005-06-08 广州金南磁塑有限公司 一种柔性粘结钕铁硼磁体及其制造方法
JP2005311149A (ja) * 2004-04-23 2005-11-04 Showa Highpolymer Co Ltd 希土類系ボンド磁石用組成物、希土類系ボンド磁石及びその製造方法
CN1792510A (zh) * 2005-12-23 2006-06-28 上海大学 一种纳米晶钕铁硼粘结磁体的成型方法
CN101016598A (zh) * 2007-02-12 2007-08-15 陈久昌 新型钕铁硼合金

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002030378A (ja) * 2000-07-17 2002-01-31 Sumitomo Special Metals Co Ltd 結晶化発熱温度制御による鉄基永久磁石合金の製造方法
CN101034608A (zh) * 2007-01-16 2007-09-12 大连理工大学 一种绝缘高磁性能的复合稀土永磁材料
CN100501883C (zh) * 2007-05-31 2009-06-17 钢铁研究总院 高强韧性铁基稀土永磁体及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005311149A (ja) * 2004-04-23 2005-11-04 Showa Highpolymer Co Ltd 希土類系ボンド磁石用組成物、希土類系ボンド磁石及びその製造方法
CN1624824A (zh) * 2004-11-11 2005-06-08 广州金南磁塑有限公司 一种柔性粘结钕铁硼磁体及其制造方法
CN1792510A (zh) * 2005-12-23 2006-06-28 上海大学 一种纳米晶钕铁硼粘结磁体的成型方法
CN101016598A (zh) * 2007-02-12 2007-08-15 陈久昌 新型钕铁硼合金

Also Published As

Publication number Publication date
CN103632829A (zh) 2014-03-12
CN103632829B (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
CN101157779B (zh) 一种新型橡胶磁体及其制备方法
CN102956336B (zh) 一种制备复合添加钆、钬和钇的烧结钕铁硼永磁材料的方法
EP3291249B1 (en) Manganese bismuth-based sintered magnet having improved thermal stability and preparation method therefor
US20130335179A1 (en) High-corrosion resistant sintered ndfeb magnet and preparation method therefor
CN112863848B (zh) 高矫顽力烧结钕铁硼磁体的制备方法
CN100517520C (zh) 纳米铝粉晶界改性制备高矫顽力、高耐蚀性磁体方法
WO2011134178A1 (zh) 一种高性能钕铁硼永磁材料的制造方法
CN109102976A (zh) 一种提高稀土钕铁硼磁性能的方法
CN106312077A (zh) 亚微米各向异性钐铁氮磁粉及其杂化粘结磁体的制备方法
CN101266857A (zh) 纳米钛粉改性提高烧结钕铁硼矫顽力和工作温度方法
CN102360655A (zh) 含钇的钕铁硼永磁材料
WO2019029000A1 (zh) 一种耐高温钕铁硼磁体及其制备方法
CN100463082C (zh) 纳米铜改性制备高矫顽力、高耐腐蚀性磁体方法
CN102938311A (zh) 一种提高烧结钕铁硼永磁体内禀矫顽力的生产工艺
CN105374543B (zh) 一种粘结钕铁硼‑铁氧体永磁体的制备方法
CN103065760A (zh) 整体式各向异性多极铁氧体磁环及其制备方法
CN109659108B (zh) 一种hddr制备钕铁硼材料及其制备方法
KR102454806B1 (ko) 이방성 본드 자석 및 그 제조 방법
CN104275487B (zh) 一种添加mm合金的烧结钕铁硼的制备方法
CN103080355B (zh) R-t-b系稀土类永久磁铁用合金材料、r-t-b系稀土类永久磁铁的制造方法和电动机
CN109609833B (zh) 一种hddr制备钕铁硼材料的方法及制备得到的钕铁硼材料
CN109326404B (zh) 一种钕铁硼磁性材料及制备方法
WO2014029048A1 (zh) 复合纳米晶钕铁硼磁条及其制造方法
JP2010062326A (ja) ボンド磁石
CN103280311A (zh) 一种各向异性粘结永磁体的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12883138

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12883138

Country of ref document: EP

Kind code of ref document: A1