WO2014026559A1 - 一种太阳能储热装置 - Google Patents

一种太阳能储热装置 Download PDF

Info

Publication number
WO2014026559A1
WO2014026559A1 PCT/CN2013/081003 CN2013081003W WO2014026559A1 WO 2014026559 A1 WO2014026559 A1 WO 2014026559A1 CN 2013081003 W CN2013081003 W CN 2013081003W WO 2014026559 A1 WO2014026559 A1 WO 2014026559A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat storage
heat
outlet
channel
inlet
Prior art date
Application number
PCT/CN2013/081003
Other languages
English (en)
French (fr)
Inventor
朱亮
Original Assignee
Zhu Liang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhu Liang filed Critical Zhu Liang
Publication of WO2014026559A1 publication Critical patent/WO2014026559A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0056Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using solid heat storage material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S60/00Arrangements for storing heat collected by solar heat collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F7/00Elements not covered by group F28F1/00, F28F3/00 or F28F5/00
    • F28F7/02Blocks traversed by passages for heat-exchange media
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the invention belongs to the field of solar heat storage systems, and in particular relates to a heat storage system for solar power generation.
  • solar energy is the most widely distributed and the easiest to obtain.
  • solar energy is subject to the influence of regular changes such as geography, day and night and seasons, as well as random factors such as cloudy and cloudy clouds, and energy exhibits instability and discontinuity.
  • it is necessary to store solar energy in the heat storage device and release it when the solar energy is insufficient to meet the needs of continuous and stable supply for production and daily use.
  • the research methods of solar energy research at home and abroad mainly focus on the selection of heat storage materials and the choice of heat storage methods.
  • solid materials have become an ideal choice for heat storage materials due to their stable performance and low cost.
  • solid heat storage materials generally have a low thermal conductivity, which is not conducive to heat storage and heat release.
  • the heat storage efficiency of the system depends on the optimal design of the heat storage system structure.
  • CN102032823A discloses a heat storage system comprising a plurality of flat type heat storage modules, wherein a plurality of heat storage modules are stacked in parallel and insulated from each other.
  • the heat storage module has a pipe for the heat exchange fluid to flow, and the space between the pipe and the heat storage module is filled with a solid heat storage medium.
  • Each of the heat storage modules has an inlet pipe and an outlet pipe of a heat exchange fluid that communicates with the pipes in the module.
  • the inlet and outlet pipes of the heat exchange fluid of all adjacent heat storage modules are connected in series to form a heat storage system arranged in series.
  • the heat storage module realizes rapid heat storage and heat release of the solid heat storage medium by arranging a multi-layer distributed and counter-flowing fluid pipeline.
  • the temperature distribution between the heat storage modules of the heat storage system is not uniform; the temperature of the first stage heat storage module closest to the inlet pipe It is much higher than the temperature of the first-stage heat storage module closest to the outlet pipe. In this way, the heat storage system reaches a standard heat storage temperature for a long time, and the heat storage system has a low heat storage efficiency.
  • the technical problem to be solved by the present invention is that the temperature imbalance between the heat storage units of the existing solar heat storage system leads to a low heat storage efficiency of the heat storage system, thereby providing a high temperature storage efficiency capable of balancing the internal heat storage modules of the heat storage system.
  • Solar heat storage system is a high temperature storage efficiency capable of balancing the internal heat storage modules of the heat storage system.
  • the present invention provides a solar thermal storage system including: at least one thermal storage reactor; the thermal storage reactor is connected to the main pipeline through an inlet and an outlet; and the thermal storage reactor includes an insulated thermal storage chamber And at least one heat storage unit disposed inside the heat storage chamber, a part of the heat storage unit is connected to the inlet, and a part of the same or another heat storage unit is connected to the outlet; a working medium channel is disposed inside, the hot working medium flows from the main pipeline into the hot working medium passage of the heat storage unit through the inlet, flows through the heat storage pile, and flows back to the main pipeline through the outlet Forming a main heat transfer channel of the thermal medium; the heat storage chamber is further provided with an auxiliary heat transfer channel for balancing heat between the heat storage units, and the high temperature heat storage unit passes the auxiliary heat transfer channel to heat The working heat is transferred to the heat storage unit at a low temperature.
  • the heat storage unit is composed of at least one heat storage module; the hot working medium channel is formed on a surface or an inner portion of the heat storage module.
  • the heat storage module is formed with at least one main channel and at least one auxiliary channel, and an angle is formed between the main channel and the auxiliary channel.
  • the heat storage chamber is provided with at least one row of the heat storage unit corresponding to the inlet and the outlet position, and an end of the heat storage unit remote from the inlet and the outlet and an inner wall of a rear end of the heat storage chamber a main passage gap is disposed between the heat storage unit and the inner wall of the left and right and/or upper and lower ends of the heat storage chamber;
  • the hot working medium flows into the main passage of a row of heat storage units that communicate with the inlet through the inlet, and after passing through the gap of the main passage, flows into a row of the heat storage unit that communicates with the outlet. Flowing the main passage to the outlet to form the main heat transfer passage;
  • the thermal medium inside the heat storage chamber flows through the auxiliary passage in the auxiliary passage gap to form the auxiliary heat transfer passage.
  • a partition separating the auxiliary heat transfer passages is disposed in the auxiliary passage gap, and the auxiliary heat transfer passages are formed on both sides of the partition.
  • the heat storage module is formed with at least one layer of the hot working fluid channel disposed in parallel with each other.
  • Two heat storage units are disposed in the heat storage chamber corresponding to the inlet and the outlet position, between an end of the heat storage unit remote from the inlet and the outlet and an inner wall of a rear end of the heat storage chamber Providing a main passage gap; an auxiliary passage gap is disposed between adjacent ones of the heat storage units of each row; the hot working medium flows into the row of heat storage units connected to the inlet through the inlet, and passes through the main After the channel gap, a row of the heat storage unit that communicates with the outlet flows to the outlet to form the main heat transfer passage; and a part of the thermal medium that flows out of the heat storage unit of the inlet row passes through the The auxiliary channel gap flows directly into the heat storage unit of the outlet row to form the auxiliary heat transfer channel.
  • the wall of the hot working fluid channel is formed with a corrugated groove or a spiral groove.
  • the heat storage module includes: a hollow brick having a longitudinal through hole; and a heat dissipation pipe disposed inside the hollow brick through hole, which is horizontally and vertically staggered and connected to each other; and a bulk heat storage medium is disposed between the hollow brick and the heat dissipation pipe .
  • the heat storage unit is composed of a plurality of heat storage pipes that are mutually angled and a bulk heat storage medium disposed between the heat storage pipes.
  • a heat dissipation hole is disposed on a pipe wall of the heat storage pipe, and an outer portion of the heat storage pipe is wrapped by a high temperature resistant gas permeable material, and a heat storage medium between the heat storage pipes is sand stone.
  • the heat storage chamber is provided with a plurality of longitudinally and vertically vertically disposed heat storage pipes corresponding to the inlet and the outlet position, and a bulk heat storage medium disposed between the heat storage pipes, in the heat storage pipe a plurality of stacked ventilation bricks are disposed between the inner wall of the heat storage chamber, and the ventilation bricks are blocks having through holes in a plurality of directions;
  • the hot working medium flows into the heat storage pipe communicating with the inlet through the inlet, and the ventilation brick between the end of the heat storage pipe and the inner wall of the rear end of the heat storage chamber is reversed, and flows into the communication.
  • a row of the heat storage pipe of the outlet flows to the outlet to form the main heat transfer passage;
  • the thermal medium inside the heat storage chamber is circulated between the heat storage duct, the bulk heat storage medium, and the ventilation bricks between the left and right sides and/or the upper and lower ends of the heat storage chamber to form the auxiliary Heat transfer channel.
  • the heat storage conduit is provided with a valve near the outlet location.
  • the heat storage unit includes at least one row of heat storage modules and a bulk heat storage medium disposed between the heat storage modules, and the surface of the heat storage module is formed with an angle and communicates with each other. Working channel.
  • the heat storage chamber is provided with at least one row of the heat storage module corresponding to the inlet and the outlet position, and a bulk heat storage medium disposed between the heat storage modules, wherein the heat storage pipe and the heat storage pipe Between the inner walls of the heat storage chamber, a plurality of stacked ventilation bricks are disposed, and the ventilation bricks are blocks having through holes in a plurality of directions;
  • the hot working medium flows into the hot working medium passage in the lateral direction of the heat storage module through the inlet, and the ventilation brick is exchanged between the end of the heat storage pipe and the inner wall of the rear end of the heat storage chamber. Going backward, flowing into the horizontal hot working medium channel in a row of the heat storage module that communicates with the outlet to form the main heat transfer channel;
  • the hot working medium inside the heat storage chamber passes through the hot working medium passage in the longitudinal direction of the heat storage module and between the left and right and/or upper and lower inner walls of the heat storage pipe and the heat storage chamber Circulation between ventilation bricks,
  • the auxiliary heat transfer passage is formed.
  • the main passage gap and/or the auxiliary passage gap are provided with ventilation bricks that are open in at least two directions.
  • An auxiliary heat transfer power device is disposed in the auxiliary passage gap, and the enhanced heat transfer power device is a fan or a fan.
  • the heat storage stacks are connected in parallel, and a front end of the inlet of the heat storage stack is provided with an on-off valve.
  • the solar heat storage system of the present invention adds an auxiliary heat transfer passage in the heat storage chamber of the heat storage stack, which can balance the heat between the heat storage units in the heat storage chamber to make the heat storage unit having the highest heat.
  • the heat is transferred to the first-stage heat storage unit with the lowest heat as soon as possible.
  • the thermal storage unit of the thermal storage reactor is composed of a plurality of thermal storage modules, which has low production cost and high heat storage efficiency; and the heat storage module has a hole wall formed by a spiral
  • the hot working medium channel of the trough or the corrugated trough increases the heat exchange area of the heat storage module, so that the heat exchange efficiency of the heat storage system is higher.
  • the heat storage chamber of the heat storage stack of the present invention is provided with a partition partitioning the auxiliary heat transfer passages, and the two sides of the partition plate respectively form independent auxiliary heat transfer passages.
  • a forced heat transfer device is arranged on each side, and the independent auxiliary heat transfer channel can better conduct heat, and the temperature between the heat storage units can reach a balanced temperature faster.
  • FIG. 1 is a schematic structural view of a solar heat storage system according to Embodiment 1 of the present invention.
  • FIG. 2 is a perspective view of the heat storage unit unit in Embodiment 1;
  • Figure 3 is a perspective view of the heat storage module of Embodiment 1; 4 is a perspective view of another heat storage module;
  • FIG. 5 is a schematic structural view of a solar energy storage system according to Embodiment 4 of the present invention.
  • FIG. 6 is a perspective view of the heat storage unit unit in Embodiment 4.
  • FIG. 7 is a perspective view of the heat storage module of Embodiment 4.
  • FIG. 8 is a schematic structural view of a solar energy storage system according to Embodiment 5 of the present invention.
  • FIG. 9 is a schematic structural view of a solar energy storage system according to Embodiment 6 of the present invention.
  • FIG 10 is a schematic structural view of a solar energy storage system according to Embodiment 7 of the present invention.
  • FIG 11 is a perspective view of another heat storage module of the present invention.
  • 1-total pipeline, 2-reservoir, 3-switch valve 21-heat storage unit, 211-heat storage module, 212-therm working channel, 213-main channel, 214-auxiliary channel, 215-heat storage pipe , 216-heat vent, 217-hollow brick, 218- heat pipe, 22-inlet, 23-outlet, 24-heat storage, 25-enhanced heat transfer power unit, 26-main channel clearance, 27-auxiliary channel clearance, 28 - partition, 29-ventilated brick, 271-closed passage, 231-flow valve.
  • a solar thermal storage system of the present invention which includes a thermal storage reactor 2; the thermal storage reactor 2 is connected to the main pipeline 1 through an inlet 22 and an outlet 23; the thermal storage reactor 2 includes an adiabatic thermal storage chamber And a heat storage unit 21 disposed in the heat storage chamber 24, in the embodiment, two heat storage units 21 are disposed in the heat storage chamber 24 corresponding to the inlet 22 and the outlet 23, a main passage gap 26 is provided between an end of the heat storage unit 21 remote from the inlet 22 and the outlet 23 and an inner wall of the rear end of the heat storage chamber 24; adjacent to each of the heat storage units 21 of each row An auxiliary passage gap 27 is provided; the hot working medium flows into the row of heat storage units 21 communicating with the inlet 22 through the inlet 22, and passes through the main After the channel gap 26, a row of the heat storage unit 21 communicating with the outlet 23 flows to the outlet 23 to form a main heat transfer passage; a portion of the heat storage unit 21 of the inlet row of the heat storage unit 21 flows out The mass flows directly into the
  • the heat storage unit 21 is a rectangular parallelepiped unit in which a plurality of heat storage modules 211 are stacked; wherein, as shown in FIG. 3, the heat storage module 211 is formed with a plurality of layers arranged in parallel with each other.
  • the hot working fluid channel 212 is formed with a semi-circular groove as the hot working fluid channel 212 on the upper and lower surfaces of the heat storage module 211. In order to increase the heat exchange area of the heat storage module, a spiral groove is formed in the hole wall of the hot working fluid channel 212.
  • An enhanced heat transfer power unit 25 is disposed in the auxiliary passage gap 27 in the direction from the inlet 22 to the outlet 23.
  • the enhanced heat transfer power unit 25 in this embodiment is a fan.
  • a through hole is formed in the heat storage unit 211 as the hot working medium passage 212.
  • the wall of the hot working fluid passage 212 is formed with a corrugated groove.
  • the embodiment is basically the same as the structure of the first embodiment, and the difference is that the heat storage unit 21 is composed of a plurality of heat storage pipes 215 which are alternately arranged and communicated with each other, and a bulk storage disposed between the heat storage pipes 215. Heat medium composition.
  • a plurality of stacked ventilation bricks 29 are disposed between the main passage gap 26 and the auxiliary passage gap 27, and the ventilation bricks 29 are blocks provided with through holes in four directions.
  • the embodiment is basically the same as the structure of the first embodiment, and the difference is that the heat storage unit 21 includes a row of heat storage modules 211 and a bulk heat storage medium disposed on two sides of the heat storage module 211.
  • the heat storage medium is sandstone.
  • the surface or the inside of the heat storage module 211 is formed with a horizontal and vertical mutual
  • the hot working fluid channel 212 is connected.
  • a plurality of stacked ventilation bricks 29 are disposed between the main passage gap 26 and the auxiliary passage gap 27, and the ventilation bricks 29 are blocks provided with through holes in four directions.
  • the thermal storage system comprising two thermal storage stacks 2 connected in parallel, wherein the thermal storage reactor 2 is connected to the main pipeline 1 through an inlet 22 and an outlet 23
  • the front end of the inlet 22 of each of the thermal storage stacks 2 is provided with an on-off valve 3;
  • the thermal storage stack 2 includes an adiabatic thermal storage chamber 24 and a heat storage unit 21 disposed inside the thermal storage chamber 24, Two rows of the heat storage unit 21 are disposed in the heat storage chamber 24 corresponding to the inlet 22 and the outlet 23, and the end of the heat storage unit 21 away from the inlet 22 and the outlet 23 is
  • a main passage gap 26 is disposed between the inner walls of the rear end of the heat storage chamber 24; an auxiliary passage gap 27 is disposed between the heat storage unit 21 and the inner walls of the left and right ends of the heat storage chamber 24.
  • the heat storage unit 21 is a rectangular parallelepiped unit in which a plurality of heat storage modules 211 are stacked; wherein, as shown in FIG. 7 , the heat storage module 2 is formed with a plurality of layers arranged perpendicular to each other. Main channel 213 and the auxiliary channel 214.
  • восем ⁇ of the heat storage units 21 are disposed in the heat storage chamber 24 of one of the heat storage stacks 2, and the auxiliary heat transfer channels are separated in the auxiliary passage gaps 27.
  • the partition plate 28, the two sides of the partition plate 28 respectively form independent auxiliary heat transfer channels.
  • the partition plate 28 is disposed between the four heat storage units 21 proximate the inlet 22 and the outlet 23 and the four heat storage units 21 remote from the inlet 22 and the outlet 23, separated by
  • the enhanced heat transfer power device 25 is disposed in each of the auxiliary heat transfer passages on both sides of the plate.
  • the enhanced heat transfer power unit 25 is a fan.
  • the hot working medium flows into the main passage 212 of a row of heat storage units 21 communicating with the inlet 22 through the inlet 22, passes through the main passage gap 26, and is connected.
  • the main passage 212 of the heat storage unit 21 of the row of the outlet 23 flows to the outlet 23, Forming the main heat transfer passage; the thermal medium inside the heat storage chamber 24 on both sides of the partition plate 28 passes through the auxiliary passage 214 in the auxiliary passage gap 27 under the enhanced heat transfer of the fan
  • the inner circulation forms the auxiliary heat transfer passage.
  • Eight other heat storage units 21 are also disposed in the heat storage chamber 24 of the other heat storage stack 2, and the auxiliary heat transfer passages are disposed in the auxiliary passage gap 27 on the side of the outlet 23 a partitioning partition 28, the partitioning plate 28 is located in the middle of the auxiliary passage gap 27, and has two heat storage units 21 on two sides thereof; the inlet 22 is on the side of the auxiliary passage gap 27 A closed passage 271 is provided which surrounds the two heat storage units 21, the closed passage 271 surrounds the two intermediate heat storage units 21, and the enhanced passage is arranged in the auxiliary passage gap 27 on the inlet side.
  • the thermodynamic device 25, the enhanced heat transfer power device 25 is a wind pump.
  • the hot working medium flows into the main passage 212 of a row of heat storage units 21 communicating with the inlet 22 through the inlet 22, passes through the main passage gap 26, and is connected.
  • the main passage 212 of the heat storage unit 21 of the outlet 23 flows to the outlet 23 to form the main heat transfer passage; the thermal medium inside the heat storage chamber 24 is in the air pump
  • the auxiliary heat transfer channel is formed by the auxiliary passage 214 flowing through the auxiliary passage gap 27 under the enhanced heat transfer.
  • the thermal storage system includes a thermal storage reactor 2 including an adiabatic thermal storage chamber 24 and a thermal storage chamber 24 disposed therein.
  • the two heat storage units 21 in the interior, the heat storage unit 21 of the present embodiment are the same as those in the second embodiment.
  • One of the heat storage units 21 communicates with the inlet 22, and the other of the heat storage units 21 communicates with the outlet 23; the interior of the heat storage unit 21 is provided with a thermal medium passage 212, and the thermal medium is provided by The total line 1 flows into the hot working medium passage 212 of the heat storage unit 21 through the inlet 22, flows through the entire heat storage pile, and flows back to the main line 1 through the outlet 23 to form the Main heat transfer channel of hot working fluid;
  • the heat storage chamber 24 is further provided with an auxiliary heat transfer channel for balancing the heat between the heat storage units 21, and the high temperature heat storage unit 21 passes the heat of the hot work medium to the low temperature through the auxiliary heat transfer channel.
  • the heat storage unit 21 is described.
  • a main channel gap 26 is provided between an end of the heat storage unit 21 remote from the inlet 22 and the outlet 23 and an inner wall of the rear end of the heat storage chamber 24; the heat storage unit 21 and the An auxiliary passage gap 27 is provided between the inner walls of the left and right ends of the heat storage chamber 24.
  • the enhanced heat transfer power unit 25 is disposed in the auxiliary passage gap 27, and the enhanced heat transfer power unit 25 is a wind pump.
  • the hot working medium flows into the main passage 212 of the heat storage unit 21 that communicates with the inlet 22 through the inlet 22, passes through the main passage gap 26, and passes through a row of the storage connected to the outlet 23
  • the main passage 212 of the heat unit 21 flows to the outlet 23 to form the main heat transfer passage; the thermal medium inside the heat storage chamber 24 on both sides of the partition plate 28 is strengthened in the air pump
  • the auxiliary passage 214 flows through the auxiliary passage 214 through the auxiliary passage 214 to form the auxiliary heat transfer passage.
  • FIG 9 is another embodiment of the solar thermal storage system of the present invention, the thermal storage system including a thermal storage reactor 2, wherein the thermal storage reactor 2 is connected to the main pipeline 1 through an inlet 22 and an outlet 23;
  • the heat storage stack 2 includes an adiabatic heat storage chamber 24 and a heat storage unit 21 disposed inside the heat storage chamber 24.
  • the heat storage unit 21 is composed of a plurality of heat storage pipes 215 which are alternately arranged and communicated with each other, and a bulk heat storage medium disposed between the heat storage pipes 215.
  • the heat storage tubes 215 are arranged in a horizontally and vertically arranged manner.
  • the heat storage duct 215 is provided with a flow valve 231 at a position close to the outlet 23.
  • the heat storage pipe 215 is provided with a plurality of heat dissipation holes 216 on the pipe wall, and the heat storage pipe 215 The outer portion is surrounded by a high temperature resistant gas permeable material, and the heat storage medium between the heat storage pipes 215 is sand.
  • the hot working medium flows into the heat storage pipe 215 communicating with the inlet 22 through the inlet 22, and passes through the ventilation brick between the end of the heat storage pipe 215 and the inner wall of the rear end of the heat storage chamber 24. After reversing, flowing into a row of the heat storage tubes 215 flowing into the outlet 23 to the outlet 23 to form the main heat transfer passage;
  • the heat medium inside the heat storage chamber 24 flows between the heat storage pipe 215 and the ventilation brick 29 between the heat storage pipe 215 and the inner wall of the left and right ends of the heat storage chamber 24 to form a Said auxiliary heat transfer channel.
  • FIG 10 is another embodiment of the solar thermal storage system of the present invention, the thermal storage system including a thermal storage reactor 2, wherein the thermal storage reactor 2 is connected to the main pipeline 1 through an inlet 22 and an outlet 23;
  • the heat storage stack 2 includes an adiabatic heat storage chamber 24 and a heat storage unit 21 disposed inside the heat storage chamber 24.
  • the heat storage unit 21 includes two rows of heat storage modules 211 and a bulk heat storage medium disposed between the heat storage modules 211.
  • the bulk heat storage medium is sandstone.
  • the surface or the inside of the heat storage module 211 is formed with the hot working medium passage 212 communicating with the longitudinal direction and the longitudinal direction.
  • the hot working fluid flows into the hot working medium passage 212 in the lateral direction of the heat storage module 211 through the inlet 22, and passes between the end of the heat storage pipe 215 and the inner wall of the rear end of the heat storage chamber 24.
  • the ventilating bricks 29 are reversed, flow into the hot working medium passages 212 in the horizontal direction of the heat storage module 211 that communicates with the outlets 23 to the outlets 23 to form the main heat transfer passages;
  • the hot working medium inside the heat storage chamber 24 passes through the hot working medium passage 212 in the longitudinal direction of the heat storage module 211 and between the heat storage duct 215 and the left and right inner walls of the heat storage chamber 24 Ventilation brick Between 29, the auxiliary heat transfer passage is formed.
  • the heat storage unit 21 may include only one large heat storage module 211 for a small solar heat storage system.
  • the heat storage module 211 is formed with a plurality of hot working fluid channels 212.
  • the heat storage unit of this structure has a high processing cost, but the construction of the heat storage reactor is convenient.
  • the heat storage module 211 may also be in the form of a structure as shown in FIG. 11, which includes a hollow brick 217 having a longitudinal through hole, and is disposed inside the through hole of the hollow brick 217, and is horizontally and vertically staggered and connected to each other.
  • a bulk heat storage medium is disposed between the hollow brick 217 and the heat dissipation duct 218.
  • the inlet 22 and the outlet 23 of the solar thermal storage system may also be disposed at the left and right ends of the thermal storage stack 2, respectively.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Central Heating Systems (AREA)

Abstract

一种太阳能储热系统,包括至少一个储热堆(2);储热堆(2)通过入口(22)和出口(23)连通至总管线(1)上;储热堆(2)包括绝热的储热室(24)以及设置于储热室(24)内部的至少两个储热单元(21),其中一个储热单元(21)连通入口(22),另一个储热单元(21)连通出口(23);储热单元(21)的内部设有热工质通道(212),热工质由总管线(1)经过入口(22)流入储热单元(21)的热工质通道(212)内,流经整个储热堆(2)后经过出口(23)流回到总管线(1)上,形成热工质的主传热通道;储热室(24)内部还设有平衡储热单元(21)之间热量的辅助传热通道,高温的储热单元(21)经过辅助传热通道将热工质热量传递到低温的储热单元(21)处。解决了现有太阳能储热系统储热模块之间温度不均衡导致储热系统储热效率低的问题。

Description

一种太阳能储热装置 技术领域
本发明属于太阳能储热系统领域, 特别涉及一种用于太阳能发电的储热系 统。
背景技术
在所有的可再生能源中, 太阳能分布最广, 获取最容易。 但是太阳能受地 理、 昼夜和季节等规律性变化的影响以及阴晴云雨等随机因素的制约, 能量呈 现不稳定性和不连续性。 为了保证太阳能利用稳定运行, 就需要储热装置把太 阳能储存起来, 在太阳能不足时, 再释放出来, 以满足生产和生活用能连续和 稳定供应的需要。 目前, 国内外研究太阳能的储存方法主要集中在储热材料的 选择和储热方式的选择。 而对于储热材料的选择上, 固体材料由于具有性能稳 定、 成本低等优点成为了储热材料的理想选择。 但是, 固体储热材料一般都具 有较低的导热系数, 不利于储热和放热, 系统的储热效率的提高依赖对储热系 统结构的优化设计。
为解决应用固体储热材料的储热系统的储热效率问题, 中国专利文件
CN102032823A公开了一种储热系统, 其包括多个平板型储热模块, 多个储热模 块平行层叠堆积, 相互之间绝热。 储热模块内有供换热流体流动的管道, 管道 和储热模块之间的空间填充有固体储热介质。 每个储热模块外有与模块内管道 连通的换热流体的进口管和出口管。 所有相邻储热模块的换热流体的进口管和 出口管串联连接, 组成串联布置的储热系统。 储热模块内通过布置多层分布、 逆流布置的流体管道, 实现了固体储热介质快速储热和放热。 但是, 这种储热 系统的储热模块之间温度分布不够均匀; 离进口管最近的一级储热模块的温度 远远高于离出口管最近的一级储热模块的温度。 这样, 导致储热系统达到标准 储热温度的时间较长, 储热系统的储热效率较低。
发明内容
本发明要解决的技术问题是现有太阳能储热系统储热单元之间温度不均衡 导致储热系统储热效率低的问题, 进而提供一种能够均衡储热系统内部储热模 块的温度储热效率高的太阳能储热系统。
为解决上述问题, 本发明提供一种太阳能储热系统, 其包括, 至少一个储 热堆; 所述储热堆通过入口和出口连通至总管线上; 所述储热堆包括保温的储 热室以及设置于所述储热室内部的至少一个储热单元, 所述储热单元的一部分 连通所述入口, 同一或另一所述储热单元的一部分连通所述出口; 所述储热单 元的内部设有热工质通道, 热工质由总管线经过所述入口流入所述储热单元的 所述热工质通道内, 流经储热堆后经过所述出口流回到所述总管线形成热工质 的主传热通道; 所述储热室内部还设有平衡所述储热单元之间热量的辅助传热 通道, 高温的所述储热单元经过所述辅助传热通道将热工质热量传递到低温的 所述储热单元处。
所述储热单元由至少一个储热模块组成; 所述储热模块的表面或内部成型 有所述热工质通道。
所述储热模块上成型有至少一层主通道和至少一层辅通道, 所述主通道和 辅通道之间有夹角。
所述储热室内对应所述入口和所述出口位置设置至少一排所述储热单元, 远离所述入口和所述出口的所述储热单元的末端与所述储热室后端的内壁之间 设有主通道间隙;所述储热单元与所述储热室的左右和 /或上下两端的内壁之间 设有辅通道间隙; 所述热工质经过所述入口流入连通所述入口的一排储热单元的所述主通道 内, 经过所述主通道间隙后, 流入连通所述出口的一排所述储热单元的所述主 通道流至所述出口, 形成所述主传热通道;
所述储热室内部的热工质经过所述辅通道在所述辅通道间隙内流通, 形成 所述辅助传热通道。
在所述辅通道间隙内设有将所述辅助传热通道隔开的隔板, 所述隔板两侧 分别形成独立的所述辅助传热通道。
所述储热模块上成型有至少一层互相平行设置的所述热工质通道。
所述储热室内对应所述入口和所述出口位置设置两排所述储热单元, 远离 所述入口和所述出口的所述储热单元的末端与所述储热室后端的内壁之间设有 主通道间隙; 每排的相邻所述储热单元之间设有辅通道间隙; 所述热工质经过 所述入口流入连通所述入口的一排储热单元内, 经过所述主通道间隙后, 经过 连通所述出口的一排所述储热单元流至所述出口, 形成所述主传热通道; 入口 一排的所述储热单元流出的一部分所述热工质经过所述辅通道间隙直接流入至 出口一排的所述储热单元内, 形成所述辅助传热通道。
所述热工质通道的孔壁成型有波纹槽或螺旋槽。
所述储热模块包括: 具有纵向通孔的空心砖以及设置于所述空心砖通孔内 部, 横纵交错并互相连通的散热管道; 在所述空心砖与所述散热管道之间设置 散状储热介质。
所述储热单元由多个互成夹角的储热管道以及设置于所述储热管道之间的 散状储热介质构成。
所述储热管道的管壁上设有若干散热孔, 所述储热管道的外部由耐高温透 气材料包裹, 所述储热管道之间的储热介质为沙石。 所述储热室内部对应所述入口和所述出口位置设置多个横纵垂直交错设置 的储热管道以及设置于所述储热管道之间的散状储热介质, 在所述储热管道与 所述储热室的内壁之间设置有若干堆砌而成的通风砖, 所述通风砖为多个方向 均设有通孔的砌块;
所述热工质经过所述入口流入连通所述入口的所述储热管道内, 经过所述 储热管道末端与所述储热室后端的内壁之间的所述通风砖换向后, 流入连通所 述出口的一排所述储热管道内流至所述出口, 形成所述主传热通道;
所述储热室内部的热工质在所述储热管道、 散状储热介质及所述储热室的 左右和 /或上下两端内壁之间的通风砖之间流通, 形成所述辅助传热通道。
所述储热管道在靠近所述出口位置处设置阀门。
所述储热单元包括至少一排储热模块以及设置于所述储热模块之间的散状 储热介质, 所述储热模块的表面或内部成型有有夹角且相互连通的所述热工质 通道。
所述储热室内部对应所述入口和所述出口位置设置至少一排所述储热模 块, 以及设置于所述储热模块之间的散状储热介质, 在所述储热管道与所述储 热室的内壁之间设置有若干堆砌而成的通风砖, 所述通风砖为多个方向均设有 通孔的砌块;
所述热工质经过所述入口流入所述储热模块上横向的所述热工质通道内, 经过所述储热管道末端与所述储热室后端的内壁之间的所述通风砖换向后, 流 入连通所述出口的一排所述储热模块上横向的所述热工质通道内流至所述出 口, 形成所述主传热通道;
所述储热室内部的热工质经过所述储热模块上纵向的所述热工质通道与在 所述储热管道与所述储热室的左右和 /或上下两端内壁之间的通风砖之间流通, 形成所述辅助传热通道。
所述主通道间隙和 /或所述辅通道间隙设置有至少两个方向开口的通风砖。 所述辅通道间隙内设置有强化传热动力装置, 所述强化传热动力装置为风 机或风扇。
所述储热堆之间并联连接, 所述储热堆的入口的前端设有开关阀。
本发明的上述技术方案相比现有技术具有以下优点:
( 1 )本发明的太阳能储热系统在储热堆的储热室内增加了一个辅助传热通 道, 其可以平衡储热室内各个储热单元之间的热量, 使热量最高的一级储热单 元的热量尽快传递到热量最低的一级储热单元处, 这样, 相比现有只有主传热 通道的储热系统来说, 储热单元之间温度均衡, 储热系统储热效率高。
(2)针对大型的太阳能储热系统, 储热堆的储热单元由多个储热模块堆叠 而成, 其生产成本较低, 储热效率较高; 并且储热模块上成型有孔壁为螺旋槽 或波纹槽的热工质通道, 其增加了储热模块的换热面积, 使储热系统的换热效 率更高。
(3)本发明的储热堆的储热室内设置将辅助传热通道隔开的隔板, 隔板两 侧分别形成独立的辅助传热通道。 两侧分别设置强制传热装置, 独立的辅助传 热通道可以更好的传导热量, 储热单元之间更快的达到均衡的温度。
附图说明
为了使本发明的内容更容易被清楚的理解, 下面根据本发明的具体实施例 并结合附图, 对本发明作进一歩详细的说明, 其中
图 1是本发明实施例 1的太阳能储热系统的结构示意图;
图 2是实施例 1中的储热单元单元的立体图;
图 3是实施例 1的储热模块的立体图; 图 4是另一种储热模块的立体图;
图 5是本发明实施例 4的太阳能储热系统的结构示意图;
图 6是实施例 4中的储热单元单元的立体图;
图 7是实施例 4的储热模块的立体图;
图 8是本发明实施例 5的太阳能储热系统的结构示意图;
图 9是本发明实施例 6的太阳能储热系统的结构示意图;
图 10是本发明实施例 7的太阳能储热系统的结构示意图;
图 11是本发明另一种储热模块的立体图。
图中附图标记表示为:
1-总管线, 2-储热堆, 3-开关阀, 21-储热单元, 211-储热模块, 212-热工质通 道, 213-主通道, 214-辅通道, 215-储热管道, 216-散热孔, 217-空心砖, 218- 散热管道, 22-入口, 23-出口, 24-储热室, 25-强化传热动力装置, 26-主通道 间隙, 27-辅通道间隙, 28-隔板, 29-通风砖, 271-封闭通道, 231-流量阀。 具体实施方式
以下将结合附图, 使用以下实施例对本发明进行进一歩阐述。
实施例 1
图 1为本发明的太阳能储热系统, 其包括一个储热堆 2 ; 所述储热堆 2通 过入口 22和出口 23连通至总管线 1上;所述储热堆 2包括绝热的储热室 24以 及设置于所述储热室 24内部的储热单元 21, 本实施例中, 所述储热室 24内对 应所述入口 22和所述出口 23位置设置两排所述储热单元 21,远离所述入口 22 和所述出口 23的所述储热单元 21的末端与所述储热室 24后端的内壁之间设有 主通道间隙 26; 每排的相邻所述储热单元 21之间设有辅通道间隙 27; 所述热 工质经过所述入口 22流入连通所述入口 22的一排储热单元 21内,经过所述主 通道间隙 26后, 经过连通所述出口 23的一排所述储热单元 21流至所述出口 23, 形成主传热通道; 入口一排的所述储热单元 21流出的一部分所述热工质经 过所述辅通道间隙 27直接流入至出口一排的所述储热单元 21内, 形成辅助传 热通道。
如图 2所示,所述储热单元 21为多个储热模块 211堆叠而成的长方体单元; 其中, 如图 3所示, 所述储热模块 211上成型有多层互相平行设置的所述热工 质通道 212, 在所述储热模块 211 的上下两个表面上成型有半圆形的凹槽作为 所述热工质通道 212。 为增大储热模块的换热面积, 所述热工质通道 212 的孔 壁成型有螺旋槽。
所述辅通道间隙 27内沿所述入口 22至所述出口 23的方向上设置强化传热 动力装置 25。 本实施例中的强化传热动力装置 25为风机。
作为本实施例中所述储热模块 211的替代方式, 如图 4所示, 所述储热单 元 211 的内部成型有通孔作为所述热工质通道 212。 为增大储热模块的换热面 积, 所述热工质通道 212的孔壁成型有波纹槽。
实施例 2
本实施方式与实施例 1的结构基本相同, 区别点在于: 所述储热单元 21由 多个交错设置并互相连通的储热管道 215以及设置于所述储热管道 215之间的 散状储热介质构成。 所述主通道间隙 26以及所述辅通道间隙 27之间设置若干 堆砌而成的通风砖 29, 所述通风砖 29为四个方向均设有通孔的砌块。
实施例 3
本实施方式与实施例 1的结构基本相同, 区别点在于: 所述储热单元 21包 括一排储热模块 211以及设置于所述储热模块 211两侧的散状储热介质, 所述 散状储热介质为沙石。 所述储热模块 211的表面或内部成型有横向与纵向互相 连通的所述热工质通道 212。 所述主通道间隙 26以及所述辅通道间隙 27之间 设置若干堆砌而成的通风砖 29, 所述通风砖 29为四个方向均设有通孔的砌块。 实施例 4
图 5为本发明的太阳能储热系统的另一种实施方式, 该储热系统包括两个 并联连接的储热堆 2,其中所述储热堆 2通过入口 22和出口 23连通至总管线 1 上; 每个所述储热堆 2的入口 22的前端设有开关阀 3 ; 所述储热堆 2包括绝热 的储热室 24以及设置于所述储热室 24内部的储热单元 21, 所述储热室 24内 对应所述入口 22和所述出口 23位置设置两排所述储热单元 21, 远离所述入口 22和所述出口 23的所述储热单元 21的末端与所述储热室 24后端的内壁之间 设有主通道间隙 26 ; 所述储热单元 21与所述储热室 24的左右两端的内壁之间 设有辅通道间隙 27。
如图 6所示,所述储热单元 21为多个储热模块 211堆叠而成的长方体单元; 其中,如图 7所示,所述储热模块 2上成型有多层互相垂直设置所述主通道 213 和所述辅通道 214。
本实施例中,其中一个所述储热堆 2的所述储热室 24内设置八个所述储热 单元 21, 在所述辅通道间隙 27内设有将所述辅助传热通道隔开的隔板 28, 所 述隔板 28两侧分别形成独立的所述辅助传热通道。 所述隔板 28设置于接近所 述入口 22和所述出口 23的四个所述储热单元 21与远离所述入口 22和所述出 口 23的四个所述储热单元 21之间, 隔板两侧的所述辅助传热通道内分别设置 所述强化传热动力装置 25。 所述强化传热动力装置 25为风扇。
对于上述储热堆 2中, 所述热工质经过所述入口 22流入连通所述入口 22 的一排储热单元 21的所述主通道 212内, 经过所述主通道间隙 26后, 经过连 通所述出口 23的一排所述储热单元 21的所述主通道 212流至所述出口 23, 形 成所述主传热通道; 所述隔板 28两侧的所述储热室 24内部的热工质在所述风 扇的强化传热作用下经过所述辅通道 214在所述辅通道间隙 27内流通,形成所 述辅助传热通道。
另一个所述储热堆 2的所述储热室 24内同样设置八个所述储热单元 21, 所述出口 23—侧的所述辅通道间隙 27内设有将所述辅助传热通道隔开的隔板 28, 所述隔板 28位于所述辅通道间隙 27的中间, 其两侧分别有两个所述储热 单元 21 ; 所述入口 22—侧的所述辅通道间隙 27内设有包围两个所述储热单元 21的封闭通道 271, 所述封闭通道 271包围中间两个所述储热单元 21, 在所述 入口侧的所述辅通道间隙 27 内设置所述强化传热动力装置 25, 所述强化传热 动力装置 25为风泵。
对于上述储热堆 2中, 所述热工质经过所述入口 22流入连通所述入口 22 的一排储热单元 21的所述主通道 212内, 经过所述主通道间隙 26后, 经过连 通所述出口 23的一排所述储热单元 21的所述主通道 212流至所述出口 23, 形 成所述主传热通道;所述储热室 24内部的热工质在所述风泵的强化传热作用下 经过所述辅通道 214在所述辅通道间隙 27内流通, 形成所述辅助传热通道。 实施例 5
图 8为本发明的太阳能储热系统的另一种实施方式, 该储热系统包括一个 储热堆 2, 所述储热堆 2包括绝热的储热室 24以及设置于所述储热室 24内部 的两个储热单元 21, 本实施例的所述储热单元 21与实施例 2中的相同。 其中 一个所述储热单元 21连通所述入口 22, 另一个所述储热单元 21连通所述出口 23; 所述储热单元 21的内部设有热工质通道 212, 所述热工质由总管线 1经过 所述入口 22流入所述储热单元 21的所述热工质通道 212内, 流经整个储热堆 后经过所述出口 23流回到所述总管线 1上, 形成所述热工质的主传热通道; 所 述储热室 24内部还设有平衡所述储热单元 21之间热量的辅助传热通道, 高温 的所述储热单元 21 经过所述辅助传热通道将热工质热量传递到低温的所述储 热单元 21处。
其中,在远离所述入口 22和所述出口 23的所述储热单元 21的末端与所述 储热室 24后端的内壁之间设有主通道间隙 26; 所述储热单元 21与所述储热室 24的左右两端的内壁之间设有辅通道间隙 27。 在所述辅通道间隙 27内设置所 述强化传热动力装置 25, 所述强化传热动力装置 25为风泵。
所述热工质经过所述入口 22流入连通所述入口 22的储热单元 21的所述主 通道 212内, 经过所述主通道间隙 26后, 经过连通所述出口 23的一排所述储 热单元 21的所述主通道 212流至所述出口 23, 形成所述主传热通道; 所述隔 板 28两侧的所述储热室 24内部的热工质在所述风泵的强化传热作用下经过所 述辅通道 214在所述辅通道间隙 27内流通, 形成所述辅助传热通道。
实施例 6
图 9为本发明的太阳能储热系统的另一种实施方式, 该储热系统包括一个 储热堆 2, 其中所述储热堆 2通过入口 22和出口 23连通至总管线 1上; 所述 储热堆 2包括绝热的储热室 24以及设置于所述储热室 24内部的储热单元 21。 所述储热单元 21由多个交错设置并互相连通的储热管道 215以及设置于所述储 热管道 215之间的散状储热介质构成。 在对应所述入口 22和所述出口 23位置 处, 所述储热管道 215横纵垂直交错设置。 在所述储热管道 215与所述储热室 24的内壁之间设置有若干堆砌而成的通风砖 29, 所述通风砖 29为四个方向均 设有通孔的长方体砌块;所述储热管道 215在靠近所述出口 23位置处设置流量 阀 231。
其中, 所述储热管道 215的管壁上设有若干散热孔 216, 所述储热管道 215 的外部由耐高温透气材料包裹, 所述储热管道 215之间的储热介质为沙石。 所述热工质经过所述入口 22流入连通所述入口 22的所述储热管道 215内, 经过所述储热管道 215末端与所述储热室 24后端的内壁之间的所述通风砖 29 换向后, 流入连通所述出口 23的一排所述储热管道 215内流至所述出口 23, 形成所述主传热通道;
所述储热室 24内部的热工质在所述储热管道 215与在所述储热管道 215与 所述储热室 24的左右两端内壁之间的通风砖 29之间流通, 形成所述辅助传热 通道。
实施例 7
图 10为本发明的太阳能储热系统的另一种实施方式,该储热系统包括一个 储热堆 2, 其中所述储热堆 2通过入口 22和出口 23连通至总管线 1上; 所述 储热堆 2包括绝热的储热室 24以及设置于所述储热室 24内部的储热单元 21。 所述储热单元 21包括两排储热模块 211以及设置于所述储热模块 211之间的散 状储热介质, 所述散状储热介质为沙石。 所述储热模块 211的表面或内部成型 有横向与纵向互相连通的所述热工质通道 212。 在所述储热管道 215与所述储 热室 24的内壁之间设置有若干堆砌而成的通风砖 29, 所述通风砖 29为四个方 向均设有通孔的长方体砌块。
所述热工质经过所述入口 22流入所述储热模块 211上横向的所述热工质通 道 212内,经过所述储热管道 215末端与所述储热室 24后端的内壁之间的所述 通风砖 29换向后, 流入连通所述出口 23的一排所述储热模块 211上横向的所 述热工质通道 212内流至所述出口 23, 形成所述主传热通道;
所述储热室 24内部的热工质经过所述储热模块 211上纵向的所述热工质通 道 212与在所述储热管道 215与所述储热室 24的左右两端内壁之间的通风砖 29之间流通, 形成所述辅助传热通道。
其他实施方式中, 针对小型的太阳能储热系统, 所述储热单元 21还可以只 包括一个大的储热模块 211。储热模块 211成型有多个热工质通道 212。这种结 构的储热单元加工成本较高, 但是储热堆的施工较方便。
其他实施方式中, 所述储热模块 211还可以为如图 11所示的结构形式, 其 包括具有纵向通孔的空心砖 217以及设置于所述空心砖 217通孔内部, 横纵交 错并互相连通的散热管道 218, 其中横向设置的所述散热管道 218形成所述主 通道 213, 纵向设置的所述散热管道 218形成所述辅通道 214。 在所述空心砖 217与所述散热管道 218之间设置散状储热介质。
在其他实施方式中, 该太阳能储热系统的所述入口 22和所述出口 23还可 以分别设置于所述储热堆 2的左右两端。
显然, 上述实施例仅仅是为清楚地说明所作的举例, 而并非对实施方式的 限定。 对于所属领域的普通技术人员来说, 在上述说明的基础上还可以做出其 它不同形式的变化或变动。 这里无需也无法对所有的实施方式予以穷举。 而由 此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims

WO 2014/026559 权 禾 |J 要 求 书 PCT/CN2013/081003
1、 一种太阳能储热系统, 其包括,
至少一个储热堆 (2) ; 所述储热堆 (2) 通过入口 (22) 和出口 (23) 连 通至总管线 (1) 上;
所述储热堆(2)包括保温的储热室(24) 以及设置于所述储热室(24) 内 部的至少一个储热单元(21), 所述储热单元(21)的一部分连通所述入口(22), 同一或另一所述储热单元 (21) 的一部分连通所述出口 (23) ; 所述储热单元 (21) 的内部设有热工质通道 (212) , 热工质由所述总管线 (1) 经过所述入 口 (22)流入所述储热单元 (21) 的所述热工质通道 (212) 内, 流经储热堆后 经过所述出口(23)流回到所述总管线(1)上, 形成所述热工质的主传热通道; 其特征在于:
所述储热室 (24) 内部还设有平衡所述储热单元 (21) 之间热量的辅助传 热通道, 高温的所述储热单元 (21) 经过所述辅助传热通道, 将热工质热量传 递到低温的所述储热单元 (21) 处。
2、 根据权利要求 1所述的太阳能储热系统, 其特征在于:
所述储热单元(21)由至少一个储热模块(211) 组成; 所述储热模块(211) 的表面或内部成型有所述热工质通道 (212) 。
3、 根据权利要求 2所述的太阳能储热系统, 其特征在于:
所述储热模块 (2) 上成型有至少一层主通道 (213) 和至少一层辅通道 (214) , 所述主通道 (213) 和辅通道 (214) 之间有夹角。
4、 根据权利要求 3所述的太阳能储热系统, 其特征在于:
所述储热室 (24) 内对应所述入口 (22) 和所述出口 (23) 位置设置至少 一排所述储热单元 (21) , 远离所述入口 (22) 和所述出口 (23) 的所述储热 单元(21)的末端与所述储热室(24)后端的内壁之间设有主通道间隙(26); 所述储热单元(21)与所述储热室(24) 的左右和 /或上下两端的内壁之间设有 辅通道间隙 (27) ;
热工质经过所述入口 (22) 流入连通所述入口 (22) 的一排所述储热单元 (21) 的所述主通道(212) 内, 经过所述主通道间隙(26) 后, 流入连通所述 出口(23)的一排所述储热单元(21)的所述主通道(212)流至所述出口(23), 形成所述主传热通道;
所述储热室(24) 内部的热工质经过所述辅通道(214)在所述辅通道间隙 (27) 内流通, 形成所述辅助传热通道。
5、 根据权利要求 4所述的太阳能储热系统, 其特征在于:
在所述辅通道间隙 (27) 内设有将所述辅助传热通道隔开的隔板 (28) , 所述隔板 (28) 两侧分别形成独立的所述辅助传热通道。
6、 根据权利要求 2所述的太阳能储热系统, 其特征在于:
所述储热模块 (211) 上成型有至少一层互相平行设置的所述热工质通道 (212) 。
7、 根据权利要求 6所述的太阳能储热系统, 其特征在于:
所述储热室 (24) 内对应所述入口 (22) 和所述出口 (23) 位置设置两排 所述储热单元 (21) , 远离所述入口 (22) 和所述出口 (23) 的所述储热单元 (21) 的末端与所述储热室 (24) 后端的内壁之间设有主通道间隙 (26) ; 每 排的相邻所述储热单元 (21) 之间设有辅通道间隙 (27) ;
热工质经过所述入口 (22) 流入连通所述入口 (22) 的一排储热单元(21) 内, 经过所述主通道间隙 (26) 后, 经过连通所述出口 (23) 的一排所述储热 单元 (21) 流至所述出口 (23) , 形成所述主传热通道;
入口一排的所述储热单元 (21) 流出的一部分所述热工质经过所述辅通道 间隙 (27) 直接流入至出口一排的所述储热单元 (21 ) 内, 形成所述辅助传热 通道。
8、 根据权利要求 1-7任一所述的太阳能储热系统, 其特征在于:
所述热工质通道 (212) 的孔壁成型有波纹槽或螺旋槽。
9、 据权利要求 2-8任一所述的太阳能储热系统, 其特征在于:
所述储热模块 (2) 包括: 具有纵向通孔的空心砖 (217) 以及设置于所述 空心砖 (217) 通孔内部, 横纵交错并互相连通的散热管道 (218) ; 在所述空 心砖 (217) 与所述散热管道 (218) 之间设置散状储热介质。
10、 根据权利要求 1所述的太阳能储热系统, 其特征在于:
所述储热单元(21 ) 由多个互成夹角的储热管道(215) 以及设置于所述储 热管道 (215) 之间的散状储热介质构成。
11、 根据权利要求 10所述的太阳能储热系统, 其特征在于:
所述储热管道(215 )的管壁上设有若干散热孔(216), 所述储热管道(215) 的外部由耐高温透气材料包裹, 所述储热管道(215)之间的储热介质为沙石。
12、 根据权利要求 10或 11所述的太阳能储热系统, 其特征在于: 所述储热室 (24) 内部对应所述入口 (22) 和所述出口 (23) 位置设置多 个横纵垂直交错设置的储热管道 (215 ) 以及设置于所述储热管道 (215 ) 之间 的散状储热介质, 在所述储热管道(215 )与所述储热室(24) 的内壁之间设置 有若干堆砌而成的通风砖 (29) , 所述通风砖 (29) 为多个方向均设有通孔的 砌块;
热工质经过所述入口(22 )流入连通所述入口(22 )的所述储热管道(215) 内, 经过所述储热管道(215)末端与所述储热室(24)后端的内壁之间的所述 通风砖(29) 换向后, 流入连通所述出口 (23 ) 的一排所述储热管道(215) 内 流至所述出口 (23) , 形成所述主传热通道;
所述储热室(24) 内部的热工质在所述储热管道(215) 、 散状储热介质及 所述储热室(24) 的左右和 /或上下两端内壁之间的通风砖(29)之间流通, 形 成所述辅助传热通道。
13、 根据权利要求 10-12任一所述的太阳能储热系统, 其特征在于: 所述储热管道 (215) 在靠近所述出口 (23) 位置处设置有阀门。
14、 根据权利要求 1所述的太阳能储热系统, 其特征在于:
所述储热单元包括至少一排储热模块(211 )以及设置于所述储热模块(211 ) 之间的散状储热介质, 所述储热模块(211 )的表面或内部成型有有夹角且相互 连通的所述热工质通道 (212) 。
15、 根据权利要求 1所述的太阳能储热系统, 其特征在于:
所述储热室 (24) 内部对应所述入口 (22) 和所述出口 (23) 位置设置至 少一排所述储热模块 (211 ) , 以及设置于所述储热模块 (211 ) 之间的散状储 热介质, 在所述储热管道(215) 与所述储热室(24) 的内壁之间设置有若干堆 砌而成的通风砖 (29) , 所述通风砖 (29) 为多个方向均设有通孔的砌块; 所述热工质经过所述入口 (22)流入所述储热模块(211 )上横向的所述热 工质通道 (212 ) 内, 经过所述储热管道 (215 ) 末端与所述储热室 (24) 后端 的内壁之间的所述通风砖 (29) 换向后, 流入连通所述出口 (23 ) 的一排所述 储热模块 (211 ) 上横向的所述热工质通道 (212 ) 内流至所述出口 (23 ) , 形 成所述主传热通道;
所述储热室(24) 内部的热工质经过所述储热模块(211 )上纵向的所述热 工质通道 (212 ) 与在所述储热管道(215) 与所述储热室(24) 的左右和 /或上 下两端内壁之间的通风砖 (29) 之间流通, 形成所述辅助传热通道。
16、 根据权利要求 1-15任一所述的太阳能储热系统, 其特征在于: 所述储热堆 (2 ) 之间并联连接, 所述储热堆 (2 ) 的入口 (22) 的前端设 有开关阀 (3) 。
17、 根据权利要求 1-15任一所述太阳能储热系统, 其特征在于: 所述主通道间隙和 /或所述辅通道间隙设置有至少两个方向开口的通风 砖。
18、 根据权利要求 1-17任一所述太阳能储热系统, 其特征在于: 所述辅通道间隙内设置有强化传热动力装置 (25 ) 。
PCT/CN2013/081003 2012-08-17 2013-08-07 一种太阳能储热装置 WO2014026559A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210295692.8 2012-08-17
CN201210295692.8A CN103591822B (zh) 2012-08-17 2012-08-17 一种太阳能储热系统

Publications (1)

Publication Number Publication Date
WO2014026559A1 true WO2014026559A1 (zh) 2014-02-20

Family

ID=50082058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/081003 WO2014026559A1 (zh) 2012-08-17 2013-08-07 一种太阳能储热装置

Country Status (2)

Country Link
CN (1) CN103591822B (zh)
WO (1) WO2014026559A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021034417A1 (en) * 2019-08-22 2021-02-25 Westinghouse Electric Company Llc Energy storage device
US11248851B2 (en) 2017-06-21 2022-02-15 Westinghouse Electric Company Llc Energy storage device
US11692778B2 (en) 2017-06-21 2023-07-04 Westinghouse Electric Company Llc Energy storage device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3040210B1 (fr) * 2015-08-20 2019-09-06 Hutchinson Ensemble modulaire pour stockeur ou batterie
CN105890193B (zh) * 2016-06-30 2018-10-16 赵小峰 一种高温蓄热装置的强化换热结构以及具有该结构的高温蓄热装置
CN106287921A (zh) * 2016-11-07 2017-01-04 艾科尔新能源科技有限公司 一种太阳能光电互补采暖器及其采暖方法
CN107246732A (zh) * 2017-06-14 2017-10-13 辽宁赛科新能源技术开发有限公司 一种固体电蓄热设备
CN107989759B (zh) * 2017-12-08 2020-04-03 北京兆阳光热技术有限公司 固体储热发电系统及光热电站
CN108225080A (zh) * 2018-01-31 2018-06-29 华南理工大学 一种蛇管蓄热换热器
IT201800021106A1 (it) 2018-12-27 2020-06-27 Eni Spa Apparato di stoccaggio di energia termica.
CN114136132B (zh) * 2021-12-29 2024-05-17 思安新能源股份有限公司 一种烟气洁净传热固体储热装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4262653A (en) * 1979-05-01 1981-04-21 Neha International Solar energy heat storage and transfer system
CN101122446A (zh) * 2007-09-12 2008-02-13 北京科技大学 一种连续蓄热式烟气余热回收装置
CN101408388A (zh) * 2008-11-24 2009-04-15 中国科学院广州能源研究所 一种蓄热换热器
CN101424470A (zh) * 2008-10-27 2009-05-06 湘潭市宇恒电器科技有限公司 利用太阳能的风冷热泵除霜补偿蓄能装置
CN101876488A (zh) * 2009-11-10 2010-11-03 武汉理工大学 太阳能热发电用混凝土储热系统的换热管道结构布置方法
CN102032823A (zh) * 2010-11-23 2011-04-27 中国科学院电工研究所 固体储热介质太阳能高温储热系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4262653A (en) * 1979-05-01 1981-04-21 Neha International Solar energy heat storage and transfer system
CN101122446A (zh) * 2007-09-12 2008-02-13 北京科技大学 一种连续蓄热式烟气余热回收装置
CN101424470A (zh) * 2008-10-27 2009-05-06 湘潭市宇恒电器科技有限公司 利用太阳能的风冷热泵除霜补偿蓄能装置
CN101408388A (zh) * 2008-11-24 2009-04-15 中国科学院广州能源研究所 一种蓄热换热器
CN101876488A (zh) * 2009-11-10 2010-11-03 武汉理工大学 太阳能热发电用混凝土储热系统的换热管道结构布置方法
CN102032823A (zh) * 2010-11-23 2011-04-27 中国科学院电工研究所 固体储热介质太阳能高温储热系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11248851B2 (en) 2017-06-21 2022-02-15 Westinghouse Electric Company Llc Energy storage device
US11692778B2 (en) 2017-06-21 2023-07-04 Westinghouse Electric Company Llc Energy storage device
WO2021034417A1 (en) * 2019-08-22 2021-02-25 Westinghouse Electric Company Llc Energy storage device

Also Published As

Publication number Publication date
CN103591822B (zh) 2015-10-28
CN103591822A (zh) 2014-02-19

Similar Documents

Publication Publication Date Title
WO2014026559A1 (zh) 一种太阳能储热装置
RU2010143270A (ru) Устройство для поглощения или отвода тепла с трубопроводом в виде двойной спирали для прохождения текучей среды с разностью температур
CN106323042B (zh) 一种低温暖气片
CN210110991U (zh) 电池换热结构、具有其的供电装置及车辆
CN103940277B (zh) 一种无管束分体式固体蓄热换热器
CN101922740A (zh) 热循环式架空炕
CN112768723B (zh) 一种用于大功率氢燃料电池堆的仿生相变冷却系统及方法
CN110579127A (zh) 一种固体蓄热系统
CN110425869B (zh) 环敷在回转窑壁面的热回收系统及选用方法
CN115325717B (zh) 换热装置及布雷顿循环系统
CN210741201U (zh) 一种固体蓄热装置
CN102434286A (zh) 一种高效低压损紧凑型一次表面回热器
CN209762711U (zh) 一种雨淋式水浴气化器
JP6078602B1 (ja) 間接気化式空調装置及び間接気化式空調方法
US20140102663A1 (en) Heat regenerator
CN202018222U (zh) 高效无气堵蜂窝孔式换热器
CN102168927B (zh) 一种高效无气堵蜂窝孔式换热器
CN214015931U (zh) 烤房火箱室
CN111174622A (zh) 一种固态储热装置上的u型通风结构
CN215951775U (zh) 双向气体换热的固体蓄热系统
WO2017088760A1 (zh) 单元组合式制冷矩阵
CN213688014U (zh) 高原型大容量相变储热用热装置
CN204902636U (zh) 一种聚丙烯化工工艺用多介质换热器
CN103925824A (zh) 一种单管束分体式固体蓄热换热器
WO2017088766A1 (zh) 吸收式制冷单元和吸收式制冷矩阵

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13829831

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/07/2015)

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/08/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13829831

Country of ref document: EP

Kind code of ref document: A1