WO2014026450A1 - 触控液晶显示装置的电连接结构 - Google Patents

触控液晶显示装置的电连接结构 Download PDF

Info

Publication number
WO2014026450A1
WO2014026450A1 PCT/CN2012/085858 CN2012085858W WO2014026450A1 WO 2014026450 A1 WO2014026450 A1 WO 2014026450A1 CN 2012085858 W CN2012085858 W CN 2012085858W WO 2014026450 A1 WO2014026450 A1 WO 2014026450A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
liquid crystal
connection structure
crystal display
display device
Prior art date
Application number
PCT/CN2012/085858
Other languages
English (en)
French (fr)
Inventor
李嘉灵
黄忠守
马骏
Original Assignee
上海天马微电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海天马微电子有限公司 filed Critical 上海天马微电子有限公司
Priority to EP20120873880 priority Critical patent/EP2722737A4/en
Priority to US14/027,148 priority patent/US20140049702A1/en
Publication of WO2014026450A1 publication Critical patent/WO2014026450A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/04Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation using electrically conductive adhesives

Definitions

  • the present invention relates to the field of liquid crystal display, and in particular to an electrical connection structure of a touch liquid crystal display device. Background technique
  • Liquid crystal display (LCD) technology is the first flat panel display technology to enter large-scale industrialization, and is currently a hot technology in the display industry. Since the discovery of the liquid crystal phenomenon by Austrian scientists for the first time in 1888, the epoch-making liquid crystal display was introduced in 1968. In the following decades, liquid crystal display technology continued to develop. After entering the 21st century, liquid crystal display technology has been further developed. The development of this stage is mainly reflected in the improvement of display shield, energy saving and environmental protection and integration of other functions.
  • the industry has proposed an in-cell capacitive touch screen, which integrates a capacitive touch screen into the interior of the display panel, thereby achieving the dual effects of high light transmittance and light weight.
  • the best integration method at present is to integrate the capacitive touch screen inside the liquid crystal display panel.
  • the capacitive touch screen in which the capacitive touch screen is integrated in the interior of the liquid crystal display panel, one of which is the touch signal line and the integrated circuit of the in-cell capacitive touch screen.
  • Connection problem After the integration, the touch signal line of the in-cell capacitive touch screen is located on the inner side of the liquid crystal panel substrate, so that the connection method of the external capacitive touch screen cannot be used to make the touch signal line of the in-cell capacitive touch screen and Integrated circuit connection.
  • the area of the conductive pad and the distance between the adjacent two conductive pads are large, which causes the outer size of the in-cell touch screen to be large, thereby affecting the overall size of the touch display device, and the distribution of the conductive pads.
  • the larger area also makes more conductive adhesives required, and the cost is also higher.
  • the conductive pad on the liquid crystal panel is electrically connected to the integrated circuit through the conductive paste, generally to prevent short circuit and mutual interference between adjacent conductive pads, the area of the conductive pad and the adjacent two conductive
  • the distance between the pads is large, which results in a large external size of the in-cell capacitive touch screen, which affects the overall size of the touch display device.
  • the larger area of the conductive pad and the distance between the adjacent two conductive pads may also result in a larger distribution area of the conductive pad, so that the required conductive adhesive is increased, and thus the cost is also high.
  • the electrical connection structure of the touch liquid crystal display device disclosed in the present invention includes:
  • first conductive pads on the first substrate, each of the first conductive pads electrically connected to a first signal line;
  • At least one spacer located between two adjacent first conductive pads.
  • the present invention has the following advantages:
  • the electrical connection structure of the touch liquid crystal display device disclosed in the present invention is such that a spacer is disposed between two adjacent first conductive pads, so that the conductive paste with the conductive ball is covered with the first conductive pad.
  • the spacer the conductive balls in the conductive paste between the adjacent two first conductive pads do not contact each other. Thereby, it is ensured that the first conductive pads can remain insulated from each other even when a conductive ball of a higher density is distributed in the conductive paste.
  • the electrical connection structure of the touch liquid crystal display device disclosed in the present invention by providing a spacer between two adjacent first conductive pads, the conductive paste can have a higher density of conductive balls inside, and The increase of the density of the conductive balls inside the glue increases the conductivity of the entire conductive paste, which allows the area of the conductive pads on the liquid crystal panel substrate to be made smaller, and the area of each conductive pad is reduced to reduce the entire conductive pad. The area of the area.
  • the electrical connection structure of the touch liquid crystal display device disclosed in the present invention is such that the spacer between the two adjacent first conductive pads is provided, so that the distance between the adjacent two conductive supports can be separated from the distance.
  • the distance between the parts is much smaller, which further reduces the area of the conductive pad area, so that the area of the peripheral area for providing the conductive pad in the first substrate can be made much smaller than the original, thereby reducing the overall touch. Control the overall size of the liquid crystal display device.
  • FIG. 1 is a schematic diagram of an electrical connection structure of a touch liquid crystal display device according to an embodiment of the present invention
  • FIG. 2 is a schematic view of a conductive paste according to an embodiment of the present invention
  • 3 is a schematic cross-sectional view showing an electrical connection structure of a touch liquid crystal display device according to an embodiment of the present invention.
  • the conductive pad on the liquid crystal panel is electrically connected to the integrated circuit through the conductive adhesive, generally to prevent short circuit and mutual interference between adjacent conductive pads, the area of the conductive pad and the adjacent two conductive pads The distance between the two is large, which results in a large external size of the in-cell capacitive touch screen, which affects the overall size of the touch display device. Moreover, the large area of the conductive pad and the distance between the adjacent two conductive pads may also result in a large distribution area of the conductive pad, so that the required conductive adhesive is increased, and thus the cost is also high. To this end, the present invention discloses an electrical connection structure of a touch liquid crystal display device to solve the above problems.
  • FIG. 1 is a partial schematic view showing an electrical connection structure of a touch liquid crystal display device according to an embodiment of the present invention.
  • the electrical connection structure of the touch liquid crystal display device includes a first substrate 1 and a plurality of first conductive pads 11 on the first substrate 1 (only shown in FIG. 1 )
  • the two adjacent first conductive pads 11 are representative, and the spacer 2 is located between the adjacent two first conductive pads 11.
  • the plane coordinates including the X-axis and the Y-axis are shown in FIG. 1.
  • the length of the spacer 2 extends in the Y-axis direction
  • the width of the spacer 2 extends in the X-axis direction.
  • each of the first conductive pads 11 is distributed along the X-axis direction.
  • the conductive paste with the conductive balls subsequently covers the first conductive pads 11 and the spacers 2, and the adjacent two first conductive materials
  • the conductive balls in the conductive paste between the pads 11 are not in contact with each other, thereby ensuring that the adjacent two first conductive pads 11 can be kept insulated from each other even when a conductive ball of a higher density is distributed in the conductive paste.
  • the conductive paste can have a higher density of conductive balls inside, and the conductivity of the entire conductive paste is improved due to the increase in the density of the conductive balls inside the conductive paste, which allows the liquid crystal panel.
  • the area of the first conductive pad 11 on the substrate is made smaller, and reducing the area of each of the first conductive pads 11 reduces the area of the entire conductive pad area.
  • the distance between the adjacent two first conductive pads 11 can be made much smaller than the distance without the spacer 2, which further reduces the area of the conductive pad area, so that The area of the peripheral region of the substrate for providing the conductive pad can be made much smaller than the original, and thus the overall size of the entire touch liquid crystal display device can be reduced.
  • each of the first conductive pads 11 includes a body 111 and a lead end 112. Although not shown in FIG. 1, the lead end 112 is electrically connected to a first signal line, and the first signal line is used as a touch signal line for connecting the first conductive pad 11 to the touch electrode pattern on the first substrate 1. .
  • an embodiment of the present invention further provides a partial schematic view of the conductive paste.
  • the X and Y axis directions in FIG. 2 are the X and Y directions in FIG. 1, and the X axis directions in FIG. 1 to FIG. 3 are the same. direction.
  • the conductive paste 3 includes a plurality of conductive balls 31 and a colloid 32 which are randomly distributed.
  • the conductive ball 31 may be made of gold, silver, copper or aluminum, or made of a sphere coated with gold, silver, copper or aluminum, and the diameter may be selected from 4.5 ⁇ m to 15 ⁇ m. .
  • the material of the colloid 32 can be selected from materials having high water repellency, low polarity, and low ion content, such as heat. Curing resin (such as epoxy resin) and UV curing resin. It can also be seen from FIG. 2 that the conductive balls 31 may be in contact with each other regardless of the X-axis direction or the Y-axis direction of FIG. 2, because the conductive paste 3 is pressed by the conductive balls 31 and the colloid 32. The certain shield ratio (the shield ratio is different according to the conductive ball shield) is mixed and prepared, so the conductive balls 31 are randomly distributed in the colloid.
  • FIG. 3 is a schematic cross-sectional view showing an electrical connection structure of a touch liquid crystal display device according to an embodiment of the present invention.
  • the electrical connection structure includes a first substrate 1, and the first substrate 1 includes a first conductive pad 11 on its surface.
  • a second substrate 4 disposed opposite to the first substrate 1 is provided, and the surface of the first substrate 1 provided with the first conductive pad 11 faces the second substrate 4.
  • the surface of the second substrate 4 facing the first substrate 1 includes a plurality of second conductive pads 41, and each of the second conductive pads 41 corresponds to a first conductive pad 11.
  • the second conductive pad 41 also includes a body and a lead end corresponding to the first conductive pad 11, and the lead end is electrically connected to a second signal line for receiving a signal.
  • the first substrate 1 and the second substrate 4 are filled with a conductive paste 3, and a plurality of conductive balls 31 are distributed in the conductive paste 3.
  • a portion of the conductive ball 31 falls between the first conductive pad 11 and the second conductive pad 41.
  • the conductive ball 31 is used to make the first conductive pad 11 and the corresponding second conductive pad 41. Electrical connection.
  • the other part of the conductive ball 31 falls between two adjacent first conductive pads 11 (that is, between two adjacent second conductive pads 41), and the conductive ball 31 can not only electrically connect.
  • a conductive pad 11 and a corresponding second conductive pad 41 may also cause a short circuit between two adjacent first conductive pads 11 (the same short circuit possibility exists between two adjacent second conductive pads 41) ).
  • the conductive paste 3 is made of a mixture of the colloid 32 and the conductive ball 31, this portion of the conductive ball 31 is inevitably present. Therefore, in this embodiment, the spacer 2 as shown in FIG. 3 is disposed between the two first conductive pads 11, and the arrangement of the spacers 2 can effectively prevent falling on the adjacent two first conductive pads 11.
  • the conductive balls 31 are in contact with each other, so that the conductive balls 31 can be effectively prevented from causing a short circuit between the adjacent two first conductive pads 11. Since each of the second conductive pads 41 is electrically connected to a first conductive pad 11, the short circuit of the adjacent two first conductive pads 11 is prevented, thereby preventing the short circuit of the adjacent two second conductive pads 41. .
  • the area of at least one of the first conductive pad 11 and the second conductive pad 41 (refer to FIG. 1) is in the range of ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ to 500 ⁇ ⁇ 500 ⁇ between. This is because, in order to ensure the electrical connection between the first conductive pad 11 and the second conductive pad 41, their body area is usually 100 ⁇ m ⁇ ⁇ ⁇ , so that they can contact enough conductive balls 31. , to meet the requirements of electrical connections.
  • the areas of the main body of the first conductive pad 11 and the second conductive pad 41 are also designed to be smaller as much as possible in order to reduce the area occupied by them, so that the area of the main body can be set to be less than or equal to 500 ⁇ m ⁇ 500 ⁇ m.
  • the area of the main body of the first conductive pad 11 and the second conductive pad 41 is generally required to be 200 ⁇ m ⁇ 200 ⁇ m or more, and the maximum is 1000 ⁇ m x 1000 ⁇ m.
  • the area of the main body of the first conductive pad 11 and the second conductive pad 41 when the area of the main body of the first conductive pad 11 and the second conductive pad 41 is designed to be ⁇ ⁇ ⁇ ⁇ ⁇ , the area of the main body of the first conductive pad 11 and the second conductive pad 41 is reduced. It is as small as a quarter, or even smaller, when the spacer 2 is not designed, thereby greatly reducing the area occupied by the first conductive pad 11 and the second conductive pad 41. While reducing the area of the main body of the first conductive pad 11 and the second conductive pad 41, the present embodiment can also reduce the distance between the adjacent two first conductive pads 11. In this embodiment, the distance between two adjacent first conductive pads may be selected to be greater than or equal to 100 ⁇ m.
  • the distance between two adjacent first conductive pads 11 is required to be 200 ⁇ m or more to prevent a short circuit between the adjacent two first conductive pads 11.
  • the arrangement of the spacers 2 can reduce the distance between the adjacent two first conductive pads 11, so that the area occupied by all the first conductive pads 11 can be reduced, which enables the first substrate 1 to be used for fabrication. The area of the first conductive pad 11 can be reduced, and finally the peripheral area of the touch liquid crystal display device can be reduced.
  • the present embodiment does not reduce the first conductive pad while reducing the area occupied by the main body of the first conductive pad 11 and the second conductive pad 41 and reducing the distance between the adjacent two first conductive pads 11.
  • the electrical conductivity between 11 and the second conductive pad 41 also makes it possible to increase the electrical conductivity between the first conductive pad 11 and the second conductive pad 41.
  • the number of the conductive balls 31 per square millimeter on the surface of the main body 111 of the first conductive pad 11 may be between 1,500 and 5,000.
  • the number of the conductive balls 3 1 per square millimeter on the surface of the main body 111 of the first conductive pad 11 is 1,500 to 3,000.
  • the density of the conductive balls contained in the conductive paste 3 can be increased, which makes even if the area of the main body 111 of the first conductive pad 11 is small, but distributed in a corresponding pair.
  • the number of conductive balls 31 between the first conductive pad 11 and the second conductive pad 41 may be increased, so that the conductivity between the first conductive pad 11 and the second conductive pad 41 may be increased.
  • the height of the spacer 2 in this embodiment (the distance that the spacer 2 extends along the Z axis (ie, the axis perpendicular to the X axis and the Y axis) in FIG. 3 can be selected between the conductive balls 31. Between radius and diameter. First, the diameter of the conductive ball 31 is generally close to or equal to the distance between the first substrate 1 and the second substrate 4. To ensure that the spacer 2 separates the conductive balls 31 on both sides thereof, the height of the spacer 2 should be greater than or equal to The radius of the conductive ball 31. This is because the conductive ball 31 is spherical.
  • the contact point must be positioned on a straight line passing through the X-axis direction of the center of the ball, so that the height of the contact point is the same as the height of the center of the ball, and the height is It is the radius of the conductive ball 31, so that as long as the height of the spacer 2 is greater than or equal to the radius of the conductive ball 31, the two conductive balls 31 can be separated so that they do not come into contact. Meanwhile, the height of the spacer 2 is required to be less than or equal to the diameter of the conductive ball 31. Since the diameter of the conductive ball 31 is generally close to or equal to the distance between the first substrate 1 and the second substrate 4, the spacer 2 is larger than the conductive ball.
  • the diameter of the spacers 2 may form a dome between the first substrate 1 and the second substrate 4, which breaks the parallel cooperation between the first substrate 1 and the second substrate 4, thereby affecting the uniform thickness of the liquid crystal panel. Sex, which may cause the entire touch liquid crystal display device to malfunction.
  • FIG. 3 is only a schematic diagram, and does not represent the size of the actual structure.
  • the conductive ball 31 falling between the first conductive pad 11 and the second conductive pad 41 still falls.
  • the conductive balls 31 between the adjacent two first conductive pads 11 may be in the liquid
  • the encapsulation process of the crystal panel is slightly compressed, and as shown in FIG. 3, the conductive balls 31 falling between the first conductive pad 11 and the second conductive pad 41 are compressed more, but, regardless of Where, these conductive balls 3 1 can be regarded as the same as the sexual shields.
  • the width of the spacer 2 in the embodiment (the distance in which the spacer 2 extends in the X-axis direction in Fig. 3) can be selected to be less than or equal to twice the diameter of the conductive ball 31. This is because if the width of the spacer 2 is too large, it is possible to directly connect to the first conductive pad 11 instead of between the two adjacent first conductive pads 11, and if the spacer is directly connected to the first conductive On the pad 11, the distribution of the conductive balls 31 on the first conductive pads 11 may be affected, which may cause poor contact between the first conductive pads 11 and the second conductive pads 41.
  • the minimum width of the spacer 2 is not limited.
  • any small width can be achieved, and the smaller the better, so that even if the conductive ball 31 falls on the spacer 2, it will slide down to the first.
  • the substrate 1 is not left on the spacer 2 to avoid affecting the thickness of the case.
  • the spacer 2 is made of an insulating material to provide insulation insulation, and may be made of a transparent insulating material. More preferably, it can be selected to be made of an organic insulating material. If the first substrate 1 has a process step of using an organic insulating material to form an insulating layer or a flat layer, the spacer 2 can be fabricated at the same time as the insulating layer or the flat layer is fabricated, so that the isolation can be directly obtained in the original process. Piece 2, without adding other processes, is a preferred solution for making spacer 2.
  • the first conductive pad 11 is connected to a first signal line by using its leading end 112 (please refer to FIG. 1 at the same time), and the first signal line is connected to a touch electrode pattern on the first substrate 1, and the second conductive pad 41 is connected to a second signal line by using its leading end, and the second signal line is subsequently connected to an external integrated circuit, so that the first conductive pad 11 is
  • the design of the second conductive pad 41 and the conductive paste 3 can achieve the purpose of connecting the integrated circuit and the touch electrode pattern.
  • the above integrated circuit is usually a touch control circuit in this solution.
  • the first substrate 1 and the second substrate 4 may be one of a color film substrate and an array substrate in the liquid crystal display panel, respectively, and the two are different, that is, when the first substrate When 1 is a color filter substrate, the second substrate 4 is an array substrate; when the first substrate 1 is an array substrate, the second substrate 4 is a color filter substrate.
  • first conductive pad 11 and the second conductive pad 41 includes a first structural layer
  • first structural layer may be made of a metal, a metal oxide, or a combination of a metal and a metal oxide. to make.
  • at least one of the first conductive pad 11 and the second conductive pad 41 may further include a second structural layer on the first structural layer.
  • the second structural layer may be made of a metal, a metal oxide, or a combination of a metal and a metal oxide.
  • the first conductive pad 11 includes a first structural layer as a metal layer
  • the second structural layer on the first structural layer includes a metal oxide layer.
  • the second structural layer and the first structural layer may be in direct contact or indirect conductive contact.
  • the spacer 2 has a triangular cross section, and the triangular design helps to prevent the conductive ball 31 from falling on the spacer 2 and affecting the thickness of the liquid crystal panel.
  • the cross section may also be trapezoidal, rectangular, semi-circular or arcuate. These shapes are also able to achieve the purpose of isolating the conductive balls 31 by the corresponding height and width design.
  • the spacer 2 is linear along its length, that is, extending in the Y-axis direction (please refer to FIG. 1), but in other embodiments, the spacer 2 may also be in a zigzag line shape and a wavy line shape. Or a line shape extending along the Y-axis direction in FIG. In this embodiment, the spacer 2 is perpendicular to the X-axis direction, and in other embodiments, the spacer 2 may not be perpendicular to the X-axis, but may be at an acute angle with the X-axis, as long as the spacer 2 is still It suffices between two adjacent first conductive pads 11.
  • the length of the spacer 2 in the Y-axis direction is greater than or equal to the length of the conductive paste 3 along the Y-axis direction, and There are three cases in which the two ends of the spacer 2 are disposed.
  • the first one is that, in the Y-axis direction, the two ends of the spacer 2 are respectively flush with the opposite edges of the conductive paste 3; the second is, on the Y-axis In the direction, the opposite ends of the spacer 2 respectively protrude from opposite edges of the conductive adhesive 3; the third is that, in the Y-axis direction, one end of the spacer 2 protrudes from one of the opposite edges of the conductive adhesive 3, the spacer The other end of 2 is flush with the other of the opposite edges of the conductive paste 3.
  • the embodiment of the present invention further provides an electrical connection structure of another touch liquid crystal display device, the electrical connection structure including a first substrate and a flexible circuit board disposed opposite to the first substrate.
  • the first inner surface of the first substrate is provided with a plurality of first conductive pads, each of the first conductive pads is electrically connected to a first signal line, and at least one isolation is disposed between two adjacent first conductive pads.
  • Pieces. A plurality of copper foils are provided on the inner side surface of the flexible circuit board.
  • the electrical connection structure further includes a conductive paste covering the first conductive pad and the spacer.
  • the conductive paste comprises an insulating colloid and a conductive ball distributed in the colloid.
  • Each of the copper foils is electrically connected to a first conductive pad by a conductive paste.
  • the first substrate or the conductive paste or the first conductive pad or the spacer has the features of the first substrate or the conductive paste or the first conductive pad or the spacer described in any one of the above embodiments, and all of the foregoing
  • the embodiment is different in that the electrical connection structure no longer includes a second substrate, but includes a flexible circuit board disposed opposite to the first substrate, and a plurality of copper foils are located inside the flexible circuit board, each copper foil The conductive balls in the conductive paste are each electrically connected to one of the first conductive pads.

Abstract

本申请公开了一种触控液晶显示装置的电连接结构,包括:第一基板;位于所述第一基板上的多个第一导电垫,每个所述第一导电垫电连接一条第一信号线;位于相邻两个所述第一导电垫之间的至少一个隔离件。本申请所公开的的触控液晶显示装置的电连接结构,通过在两个相邻第一导电垫之间设置隔离件,使得后续带有导电球的导电胶在覆盖第一导电垫与隔离件时,相邻两个第一导电垫之间的导电胶内的导电球不相互接触。从而保证即使导电胶中分布有较高密度的导电球时第一导电垫之间仍能够保持相互绝缘。

Description

触控液晶显示装置的电连接结构 本申请要求在 2012年 08月 17 日提交中国专利局、 申请号为 201210293258.6、 发明 名称为"触控液晶显示装置的电连接结构"的中国专利申请的优先权, 其全部内容通过引用 结合在本申请中。 技术领域
本发明涉及液晶显示领域, 特别是涉及一种触控液晶显示装置的电连接结构。 背景技术
液晶显示 (LCD)技术是最早进入大规模产业化的平板显示技术, 是目前显示产业中的 热点技术。 自 1888年奥地利科学家首次发现液晶现象以来, 1968年具有划时代意义的液晶 显示器问世, 在随后的几十年间, 液晶显示技术不断的发展。 进入 21世纪后, 液晶显示技 术得到进一步发展, 这一阶段的发展主要表现在提高显示盾量, 实现节能环保和集成其它 功能等方面。
自 1974出现世界上最早的电阻式触控屏以来, 触控技术经过飞速发展, 目前业界已经 产生出了诸如电容式、 电阻式、 红外式和声波式等多种类型的产品。 其中电容式触控屏由 于具有定位精确灵敏、 触摸手感好、 使用寿命长和支持多点触控等优点, 成为当前触控产 品市场上的主流。
目前电容式触控屏绝大部分釆用的是外挂式的结构, 即将触控屏面板贴合于显示面板 外部。但这种外挂式的结构不可避免地增加整个显示器的厚度和重量,造成透光率的下降, 不符合显示器轻薄化发展趋势的要求。
因此业界提出了内嵌 (in-cell) 式电容触控屏, 即将电容触控屏集成于显示面板内部, 这样就能够达到透光率高和产品轻薄化的双重效果。 而目前最佳的集成方式莫过于将电容 触控屏集成于液晶显示面板内部。
但是, 这种将电容触控屏集成于液晶显示面板内部的内嵌式电容触控屏仍然存在许多 技术问题, 其中之一便是内嵌式电容触控屏的触控信号线与集成电路的连接问题。 由于集 成后, 内嵌式电容触控屏的触控信号线位于液晶面板基板的内侧, 因而无法使用外挂式电 容触控屏的连接手段来使得内嵌式电容触控屏的触控信号线与集成电路连接。 为能够使内 嵌式电容触控屏的触控信号线与集成电路连接, 提出通过在液晶面板基板内侧上设置导电 垫 (Pad), 再用含有导电球的导电胶将液晶面板上的导电垫电连接到集成电路的解决方案。 但是该解决方案的通常设计中, 要求液晶面板基板内侧的导电垫的面积和相邻两导电垫之 间的距离都比较大, 以保证两相邻导电垫之间既不发生短路, 不会形成互相间的千扰, 又 能够保持较小的电阻, 使得上下导电垫良好导通。 但是, 导电垫的面积和相邻两导电垫之 间的距离都较大就会导致内嵌式触控屏的外围尺寸较大, 从而影响触控显示装置的整体尺 寸, 另外, 导电垫的分布区域较大也使得所需要的导电胶较多, 因而成本也较高。 发明内容
正如背景技术中提到, 通过导电胶将液晶面板上的导电垫电连接到集成电路的方案 中, 通常为防止相邻导电垫间的短路和互相千扰, 导电垫的面积和相邻两导电垫之间的距 离都较大, 因而会导致内嵌式电容触控屏的外围尺寸较大,影响触控显示装置的整体尺寸。 并且, 导电垫的面积和相邻两导电垫之间的距离都较大也会导致导电垫的分布区域较大, 使得所需要的导电胶增加, 因而成本也较高。
为此, 本发明公开了一种触控液晶显示装置的电连接结构, 以解决上述问题。 本发明 所公开的触控液晶显示装置的电连接结构包括:
第一基板;
位于所述第一基板上的多个第一导电垫, 每个所述第一导电垫电连接一条第一信号 线;
位于相邻两个所述第一导电垫之间的至少一个隔离件。
与现有技术相比, 本发明具有以下优点:
第一, 本发明所公开的触控液晶显示装置的电连接结构, 通过在两个相邻第一导电垫 之间设置隔离件, 使得后续带有导电球的导电胶在覆盖第一导电垫与隔离件时, 相邻两个 第一导电垫之间的导电胶内的导电球不相互接触。 从而保证即使导电胶中分布有较高密度 的导电球时第一导电垫之间仍能够保持相互绝缘。
第二, 本发明所公开的触控液晶显示装置的电连接结构, 通过在两个相邻第一导电垫 之间设置隔离件, 使得导电胶内部可以具有较高密度的导电球, 而由于导电胶内部导电球 密度的提高, 整个导电胶的导电率就提高了, 这就允许液晶面板基板上的导电垫的面积做 得比较小, 而减小各个导电垫的面积就减小了整个导电垫区域的面积。
第三, 本发明所公开的触控液晶显示装置的电连接结构, 通过在两个相邻第一导电垫 之间设置隔离件, 还使得相邻两个导电执之间的距离可以比没有隔离件时的距离小很多, 这就进一步减小了导电垫区域的面积, 使得第一基板中用于设置导电垫的外围区域的面积 可以作得比原先小很多, 因而也就可以减小整个触控液晶显示装置的整体尺寸。 附图说明
图 1为本发明实施例的触控液晶显示装置的电连接结构示意图;
图 2为本发明实施例的导电胶的示意图; 图 3为本发明实施例的触控液晶显示装置的电连接结构截面示意图。 具体实施方式
背景技术中提到, 通过导电胶将液晶面板上的导电垫电连接到集成电路的方案中, 通 常为防止相邻导电垫间的短路和互相千扰, 导电垫的面积和相邻两导电垫之间的距离都较 大, 因而会导致内嵌式电容触控屏的外围尺寸较大, 影响触控显示装置的整体尺寸。 并且, 导电垫的面积和相邻两导电垫之间的距离都较大也会导致导电垫的分布区域较大, 使得所 需要的导电胶增加, 因而成本也较高。 为此, 本发明公开了一种触控液晶显示装置的电连 接结构, 以解决上述问题。
请参考图 1 , 图 1为本发明实施例的触控液晶显示装置的电连接结构的局部示意图。 从图 1中可以看到, 本实施例中, 触控液晶显示装置的电连接结构包括有第一基板 1和位 于第一基板 1上的多个第一导电垫 11(图 1中仅显示出了其中相邻的两个第一导电垫 11为 代表), 以及位于相邻两个第一导电垫 11之间的隔离件 2。 为了便于说明, 在图 1 中显示 出了包括 X轴和 Y轴的平面坐标, 在图 1中可以看出, 隔离件 2的长度沿 Y轴方向延伸, 隔离件 2的宽度沿 X轴方向延伸, 而各第一导电垫 11沿 X轴方向分布。
本实施例通过在两个相邻第一导电垫 11之间设置隔离件 2,使得后续带有导电球的导 电胶在覆盖第一导电垫 11与隔离件 2时, 相邻两个第一导电垫 11之间的导电胶内的导电 球不相互接触, 从而保证即使导电胶中分布有较高密度的导电球时, 相邻两个第一导电垫 11之间仍能够保持相互绝缘。 反过来说, 由于隔离件 2的存在, 使得导电胶内部可以具有 较高密度的导电球, 而由于导电胶内部导电球密度的提高,整个导电胶的导电率就提高了, 这就允许液晶面板基板上的第一导电垫 11的面积做得比较小, 而减小各个第一导电垫 11 的面积就减小了整个导电垫区域的面积。 另外, 由于隔离件 2的存在, 还使得相邻两个第 一导电垫 11之间的距离可以比没有隔离件 2时的距离小很多,这就进一步减小了导电垫区 域的面积, 使得第一基板中用于设置导电垫的外围区域的面积可以作得比原先小很多, 因 而也就可以减小整个触控液晶显示装置的整体尺寸。
请继续参考图 1 , 每个第一导电垫 11包括主体 111和引端 112。 图 1中虽未示出, 但 是引端 112电连接一条第一信号线, 第一信号线作为触控信号线, 用于使得第一导电垫 11 与第一基板 1上的触控电极图形连接。
请参考图 2, 本发明实施例还提供了导电胶的局部示意图, 图 2中的 X和 Y轴方向即 图 1中的 X和 Y方向, 图 1至图 3中的 X轴方向是同一个方向。 从图 2中可以看出, 导 电胶 3包括有随机分布的多个导电球 31和胶体 32。本实施例中,导电球 31可以由金、银、 铜或者铝制成, 或者由镀有金、 银、 铜或者铝的球体制成, 其直径可以选择在 4.5 μ ιη 至 15 μ ιη之间。 而胶体 32的材料可以选择隔水性强、 极性小、 离子含量低的材料, 例如热 固化树脂 (例如环氧树脂胶)和紫外固化树脂等。 从图 2中还可以看出, 无论是沿图 2的 X 轴方向还是 Y轴方向, 导电球 31都可能出现相接触的情况, 这是因为, 导电胶 3是由导 电球 31与胶体 32按一定的盾量比 (盾量比根据导电球材盾不同而不同)混合调配而成的, 所以, 导电球 31在胶体中随机分布。
请参考图 3, 图 3为本发明实施例的触控液晶显示装置的电连接结构的截面示意图。 从图 3中可以看出, 该电连接结构包括第一基板 1, 第一基板 1表面上包括有第一导电垫 11。 本实施例中, 除了第一基板 1以外, 还包括与第一基板 1相对设置的第二基板 4, 第 一基板 1设有第一导电垫 11的表面面向第二基板 4。 而且第二基板 4面向第一基板 1的表 面上包括有多个第二导电垫 41, 并且每个第二导电垫 41各自与一个第一导电垫 11对应。 优选地, 第二导电垫 41也包括与第一导电垫 11相应的主体和引端, 该引端电连接一条第 二信号线, 用于接收信号。 第一基板 1与第二基板 4之间充满导电胶 3 , 导电胶 3中分布 有多个导电球 31。 从图 3中可以看出, 部分导电球 31落在了第一导电垫 11与第二导电垫 41之间, 这部分导电球 31用于使得第一导电垫 11与对应的第二导电垫 41电连接。 而另 外部分导电球 31落在了两个相邻第一导电垫 11之间(也即在两个相邻的第二导电垫 41之 间),这部分导电球 31不仅不能起到电连接第一导电垫 11和对应的第二导电垫 41的作用, 而且还可能导致相邻两个第一导电垫 11发生短路(两个相邻的第二导电垫 41之间也存在 相同的短路可能性)。 但是由于导电胶 3是由胶体 32和导电球 31混合制成的, 这部分导 电球 31不可避免地会存在。 为此, 本实施例中在两个第一导电垫 11之间设置如图 3中所 示的隔离件 2, 隔离件 2的设置可以有效地防止落在相邻两个第一导电垫 11之间的导电球 31发生接触, 因而也就可以有效防止导电球 31引起相邻两个第一导电垫 11发生短路。 由 于每个第二导电垫 41是对应与一个第一导电垫 11电连接, 因而, 防止了相邻两个第一导 电垫 11发生短路也就防止了相邻两个第二导电垫 41发生短路。
请继续参考图 3, 在本实施例中, 第一导电垫 11和第二导电垫 41二者中至少有一个 的主体 (请参考图 1)的面积在 ΙΟΟ μιηχ ΙΟΟ μιη至 500 μιη χ 500 μιη之间。 这是因为, 要 保证第一导电垫 11和第二导电垫 41之间的电连接作用, 它们的主体面积通常要做到 100 μιηχ ΙΟΟ μιη, 这样才能够使得它们能够接触到足够的导电球 31 , 以满足电连接的要求。 而第一导电垫 11和第二导电垫 41主体的面积又尽量希望设计得小一些, 以利于减小它们 所占用的面积, 因而设定它们主体的面积可以选择小于或者等于 500 μιηχ 500 μιη。 而在 原来没有设置隔离件 2时, 通常要求第一导电垫 11和第二导电垫 41主体的面积在 200 μ ιη χ 200 μιη以上, 最大时达到了 1000 μ m x 1000 μ m。 从中可以知道, 在本实施例中, 当 将第一导电垫 11和第二导电垫 41主体的面积设计为 ΙΟΟ μιηχ ΙΟΟ μ ιη时,第一导电垫 11 和第二导电垫 41主体的面积减小到未设计隔离件 2时的四分之一, 甚至更小, 从而大大 减小了第一导电垫 11和第二导电垫 41所占用的面积。 在减小第一导电垫 11和第二导电垫 41主体的面积的同时, 本实施例还可以减小相邻 两个第一导电垫 11之间的距离。在本实施例中,相邻两个第一导电垫之间的距离可以选择 大于或者等于 100 μ ιη。 通常为了尽量减小两相邻第一导电垫 11之间的距离, 还需要同时 限定它们之间的距离小于或者等于 1000 μ ιη。 而原来没有隔离件时, 要求相邻两个第一导 电垫 11之间的距离在 200 μ m以上, 以防止相邻两个第一导电垫 11之间发生短路。 而隔 离件 2的设置可以减小相邻两个第一导电垫 11之间的距离,也就可以减小全部第一导电垫 11所占的区域, 这就使得第一基板 1上用于制作第一导电垫 11的区域可以减小, 最终使 得触控液晶显示装置的外围区域可以减小。
在减小第一导电垫 11和第二导电垫 41的主体所占用的面积和减小相邻两个第一导电 垫 11之间的距离的同时,本实施例并不减小第一导电垫 11和第二导电垫 41之间的导电率。 相反地, 本实施例还可能提高第一导电垫 11和第二导电垫 41之间的导电率。 具体的, 本 实施例中, 第一导电垫 11的主体 111的表面上每平方毫米包含有导电球 31的个数可以达 到 1500个到 5000个之间。 而原来没有设置有隔离件 2的情况下, 第一导电垫 11的主体 111表面上每平方毫米包含有导电球 3 1的个数为 1500个到 3000个。 从中可以知道, 由于 隔离件 2的存在, 使得导电胶 3中所包含的导电球的密度可以加大, 这就使得哪怕第一导 电垫 11主体 111的面积做小,但是分布在对应的一对第一导电垫 11和第二导电垫 41之间 的导电球 31的数量可以增多,因而可以增大第一导电垫 11和第二导电垫 41之间的导电率。
需要说明的是, 本实施例中隔离件 2的高度 (如图 3中隔离件 2沿 Z轴(即垂直于 X 轴和 Y轴的方向轴)延伸的距离)可以选择介于导电球 31的半径和直径之间。 首先导电球 31的直径通常跟第一基板 1和第二基板 4之间的距离相近或者相等,要保证隔离件 2隔开 位于它两侧的导电球 31 , 隔离件 2的高度应该大于或者等于导电球 31的半径。 这是因为 导电球 31为球形, 如果两个导电球 3 1发生接触, 接触点必定位于过球心的 X轴方向的直 线上, 因而该接触点的高度与球心的高度相同, 此高度即为导电球 31 的半径, 因而只要 隔离件 2的高度大于或者等于导电球 31的半径, 就能够隔开两个导电球 31 , 使它们不发 生接触。 同时, 要求隔离件 2的高度小于或者等于导电球 31的直径, 由于导电球 31的直 径通常跟第一基板 1和第二基板 4之间的距离相近或者相等, 因而隔离件 2如果大于导电 球 31的直径, 隔离件 2就可能顶在第一基板 1与第二基板 4之间形成拱起 , 破坏了第一 基板 1与第二基板 4的平行配合, 从而影响了液晶面板的盒厚均匀性, 进而可能导致整个 触控液晶显示装置出现故障。
另外,在图 3中可以看到, 落在第一导电垫 11和第二导电垫 41之间的导电球 3 1的高 度略小于落在相邻两个第一导电垫 11之间的导电球 31。 需要说明的是, 首先图 3仅为示 意图, 并不代表实际结构的尺寸, 其次, 在实际情况中, 无论是落在第一导电垫 11和第二 导电垫 41之间的导电球 31还是落在相邻两个第一导电垫 11之间的导电球 31都可能在液 晶面板的封装过程中被略 4 压缩,并且正如图 3中所示, 落在第一导电垫 11和第二导电垫 41之间的导电球 31会被压缩的多一些, 但是, 无论落在哪里, 在这些导电球 3 1都可以看 作性盾都基本是相同的。
需要说明的是, 本实施例中隔离件 2的宽度 (如图 3中隔离件 2沿 X轴方向延伸的距 离)可以选择在小于或者等于导电球 31的直径的两倍范围内。 这是因为, 如果隔离件 2的 宽度太大, 就可能直接连到第一导电垫 11上而不是处于两个相邻的第一导电垫 11之间, 而如果隔离件直接连接到第一导电垫 11上,就可能影响导电球 31在第一导电垫 11上的分 布, 从而可能导致第一导电垫 11与第二导电垫 41接触不良。 而对于隔离件 2的最小宽度 则不限定, 只要工艺水平能够达到, 可以做到任意小的宽度, 且越小越好, 这样即使导电 球 31落在隔离件 2上, 也会滑落到第一基板 1上, 而不会残留在隔离件 2上, 避免影响 盒厚。
需要说明的是, 本实施例中, 隔离件 2由绝缘材料制成, 以起到绝缘隔绝作用, 并且 可以选用透明的绝缘材料来制作。 更加优选的, 可以选择用有机绝缘材料来制作。 如果第 一基板 1存在使用有机绝缘材料来制作绝缘层或者平坦层的工艺步骤时, 可以在该绝缘层 或者平坦层的制作的同时制作隔离件 2 , 这样就可以达到在原有工艺直接制得隔离件 2而 不增加其它工艺, 是制作隔离件 2的优选方案。
需要说明的是,图 3中虽然未示出,但是本实施例中,第一导电垫 11利用其引端 112(请 同时参考图 1)连接至一条第一信号线, 第一信号线连接至第一基板 1上的触控电极图形, 而第二导电垫 41 利用其引端连接至一条第二信号线, 第二信号线后续连接至外部的集成 电路, 这样, 通过第一导电垫 11、 第二导电垫 41和导电胶 3的设计就能够达到集成电路 与触控电极图形连接的目的。 上述的集成电路在本方案中通常为触控控制电路。
需要说明的是, 本实施例中, 第一基板 1和第二基板 4可以分别为液晶显示面板中的 彩膜基板和阵列基板的其中一种, 并且两者不相同, 即: 当第一基板 1为彩膜基板时, 第 二基板 4为阵列基板; 当第一基板 1为阵列基板时, 第二基板 4为彩膜基板。
需要说明的是, 第一导电垫 11和第二导电垫 41中的至少一种包括第一结构层, 所述 第一结构层可以由金属、 金属氧化物, 或者金属与金属氧化物的组合制成。 进一步地, 第 一导电垫 11和第二导电垫 41中至少有一个还可以包括位于所述第一结构层上的第二结构 层。 所述第二结构层可以由金属、金属氧化物, 或者金属与金属氧化物的组合制成。 例如, 第一导电垫 11包括有第一结构层为金属层,并且包括有位于第一结构层上的第二结构层为 金属氧化物层。 需要说明的是, 第二结构层和第一结构层可以直接接触, 也可以间接导电 接触。
如图 3所示, 在本实施例中, 隔离件 2的横截面呈三角形, 这种三角形的设计有助于 防止导电球 31落在隔离件 2上面而影响液晶面板的盒厚。 但是在其它实施例中, 隔离件 2 的横截面还可以是呈梯形、 矩形、 半圆形或者弓形。 这些形状再通过相应的高度和宽度的 设计也能够使得隔离件 2达到隔离导电球 31的目的。
在本实施例中, 隔离件 2沿其长度方向呈直线形, 也即沿 Y轴方向延伸 (请参考图 1), 但是在其它实施例中, 隔离件 2也可以是呈锯齿线形、 波浪线形或者折线形, 沿图 1中的 Y轴方向延伸。 并且在本实施例中, 隔离件 2垂直于 X轴方向, 而在其它实施例中, 隔离 件 2也可以不垂直于 X轴, 而是与 X轴呈一定锐角,只要保证隔离件 2仍处于相邻两个第 一导电垫 11之间即可。
需要说明的是, 无论隔离件 2是否垂直于图 1 中的 X轴 (请同时参考图 2), 隔离件 2 的沿 Y轴方向的长度大于或者等于导电胶 3沿 Y轴方向的长度,并且隔离件 2的两端位置 设置, 存在三种情况: 第一种是, 在 Y轴方向上, 隔离件 2两端分别与导电胶 3的两相对 边缘平齐; 第二种是, 在 Y轴方向上, 隔离件 2两端分别伸出导电胶 3的两相对边缘; 第 三种是, 在 Y轴方向上, 隔离件 2的一端伸出导电胶 3两相对边缘中的一个边缘, 隔离件 2的另一端与导电胶 3两相对边缘中的另一个边缘平齐。
除了上述实施例外, 本发明实施例还提供了另一种触控液晶显示装置的电连接结构, 该电连接结构包括有第一基板和与第一基板相对设置的柔性电路板。 其中第一基板的内侧 表面上设有多个第一导电垫, 每个第一导电垫电连接一条第一信号线, 且位于相邻两个所 述第一导电垫之间至少设置有一个隔离件。 柔性电路板的内侧表面上设有多个铜箔。 所述 电连接结构还包括导电胶, 所述导电胶覆盖第一导电垫和隔离件, 导电胶包括绝缘的胶体 和分布于胶体中的导电球。 每个所述铜箔通过导电胶各自对应电连接一个第一导电垫。 本 实施例中第一基板或导电胶或第一导电垫或隔离件分别具有上述任意一种实施例所述的 第一基板或导电胶或第一导电垫或隔离件具有的特征, 与前述所有实施例不同之处在于, 所述电连接结构不再包括第二基板, 而是包括与第一基板相对设置的柔性电路板, 多个铜 箔位于所述柔性电路板的内侧, 每个铜箔通过所述导电胶中的导电球各自对应与一个所述 第一导电垫电连接。
本说明书中各个部分釆用递进的方式描述, 每个部分重点说明的都是与其他部分的不 同之处, 各个部分之间相同相似部分互相参见即可。
尽管已描述了本发明的优选实施例, 但本领域内的技术人员一旦得知了基本创造性概 念, 则可对这些实施例作出另外的变更和修改。 所以, 所附权利要求意欲解释为包括优选 实施例以及落入本发明范围的所有变更和修改。
显然, 本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和 范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权 利 要 求
1. 一种触控液晶显示装置的电连接结构, 其特征在于, 包括:
第一基板;
位于所述第一基板上的多个第一导电垫, 每个所述第一导电垫电连接一条第一信号 线;
位于相邻两个所述第一导电垫之间的至少一个隔离件。
2. 如权利要求 1所述的触控液晶显示装置的电连接结构, 其特征在于, 所述电连接结 构还包括导电胶, 所述导电胶覆盖所述第一导电垫和所述隔离件, 所述导电胶包括绝缘的 胶体和分布于胶体中的导电球。
3. 如权利要求 2所述的触控液晶显示装置的电连接结构, 其特征在于, 所述电连接结 构还包括与第一基板相对的第二基板, 多个第二导电垫位于所述第二基板的内侧, 每个所 述第二导电垫通过所述导电胶中的所述导电球各自对应与一个所述第一导电垫电连接。
4. 如权利要求 3所述的触控液晶显示装置的电连接结构, 其特征在于, 所述第一基板 和所述第二基板分别为彩膜基板和阵列基板的其中一种, 并且所述第一基板和所述第二基 板不才目同。
5. 如权利要求 3所述的触控液晶显示装置的电连接结构, 其特征在于, 所述第一导电 垫和 /或所述第二导电垫包括第一结构层, 所述第一结构层由金属、 金属氧化物, 或者金属 与金属氧化物的组合制成。
6. 如权利要求 5所述的触控液晶显示装置的电连接结构, 其特征在于, 所述第一导电 垫和 /或所述第二导电垫还包括位于所述第一结构层上的第二结构层,所述第二结构层由金 属、 金属氧化物, 或者金属与金属氧化物的组合制成。
7. 如权利要求 3所述的触控液晶显示装置的电连接结构, 其特征在于, 所述第一导电 垫和 /或所述第二导电垫包括主体和引端, 所述第一导电垫的引端与所述第一信号线电连 接, 所述第二导电垫的引端与第二信号线电连接。
8. 如权利要求 7所述的触控液晶显示装置的电连接结构, 其特征在于, 所述第一信号 线用于将所述第一导电垫连接至第一基板上的触控电极图形, 所述第二信号线用于将第二 导电垫连接至外部的集成电路。
9. 如权利要求 7所述的触控液晶显示装置的电连接结构, 其特征在于, 所述第一导电 垫和 /或所述第二导电垫的主体的面积在 100 μ m X 100 μ m至 500 μ m X 500 μ m之间。
10. 如权利要求 9所述的触控液晶显示装置的电连接结构, 其特征在于, 所述第一导 电垫的主体表面上每平方毫米包含有所述导电球的个数在 1500个至 5000个之间。
11. 如权利要求 1所述的触控液晶显示装置的电连接结构, 其特征在于, 相邻两个第 一导电垫之间的距离大于或者等于 100 μ ιη。
12. 如权利要求 1所述的触控液晶显示装置的电连接结构, 其特征在于, 所述隔离件 的横截面呈三角形, 梯形, 矩形、 半圆形或者弓形; 或者,
所述隔离件沿其长度方向呈直线形、 锯齿线形、 波浪线形或者折线形。
13. 如权利要求 3所述的触控液晶显示装置的电连接结构, 其特征在于, 所述隔离件 的两端分别与所述导电胶的两相对边缘平齐, 或者所述隔离件的两端分别伸出所述导电胶 的两相对边缘, 或者所述隔离件的一端伸出所述导电胶两相对边缘中的一个边缘, 所述隔 离件的另一端与所述导电胶的两相对边缘中的另一个边缘平齐。
14. 如权利要求 3所述的触控液晶显示装置的电连接结构, 其特征在于, 所述导电球 直径在 4.5 μ m 至 15 μ m之间。
15. 如权利要求 3所述的触控液晶显示装置的电连接结构, 其特征在于, 所述隔离件 的的高度介于所述导电球的半径和直径之间。
16. 如权利要求 3所述的触控液晶显示装置的电连接结构, 其特征在于, 所述隔离件 的宽度小于或者等于所述导电球的直径的两倍。
17. 如权利要求 3所述的触控液晶显示装置的电连接结构, 其特征在于, 所述隔离件 由透明绝缘材料制成; 或者,
所述隔离件由有机绝缘材料制成。
18. 如权利要求 2所述的触控液晶显示装置的电连接结构, 其特征在于, 所述电连接 结构还包括与第一基板相对设置的柔性电路板, 多个铜箔位于所述柔性电路板的内侧, 每 个铜箔通过所述导电胶中的所述导电球各自对应与一个所述第一导电垫电连接。
PCT/CN2012/085858 2012-08-17 2012-12-04 触控液晶显示装置的电连接结构 WO2014026450A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20120873880 EP2722737A4 (en) 2012-08-17 2012-12-04 ELECTRICAL CONNECTION STRUCTURE OF TOUCH CONTROL LIQUID CRYSTAL DISPLAY DEVICE
US14/027,148 US20140049702A1 (en) 2012-08-17 2013-09-13 Electrical connection structure of touch controlled liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210293258.6 2012-08-17
CN201210293258.6A CN103294248B (zh) 2012-08-17 2012-08-17 触控液晶显示装置的电连接结构

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/027,148 Continuation US20140049702A1 (en) 2012-08-17 2013-09-13 Electrical connection structure of touch controlled liquid crystal display device

Publications (1)

Publication Number Publication Date
WO2014026450A1 true WO2014026450A1 (zh) 2014-02-20

Family

ID=49095255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/085858 WO2014026450A1 (zh) 2012-08-17 2012-12-04 触控液晶显示装置的电连接结构

Country Status (3)

Country Link
EP (1) EP2722737A4 (zh)
CN (1) CN103294248B (zh)
WO (1) WO2014026450A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103293736B (zh) * 2012-09-05 2015-12-16 上海天马微电子有限公司 内嵌式液晶触控面板
CN104635968A (zh) * 2013-11-09 2015-05-20 宝宸(厦门)光学科技有限公司 触控面板及触控模块
JP5974147B1 (ja) * 2015-07-31 2016-08-23 株式会社フジクラ 配線体アセンブリ、導体層付き構造体、及びタッチセンサ
KR102457248B1 (ko) 2016-01-12 2022-10-21 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법
KR102457246B1 (ko) * 2016-01-12 2022-10-21 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법
CN108628488B (zh) * 2017-03-24 2021-06-29 南京瀚宇彩欣科技有限责任公司 内嵌式触控显示装置以及相关测试系统与测试方法
CN107463293B (zh) * 2017-08-07 2020-06-16 业成科技(成都)有限公司 触控面板
CN107959140A (zh) * 2017-10-31 2018-04-24 广州市大弘自动化科技有限公司 一种接线装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6525799B1 (en) * 1998-11-27 2003-02-25 Nanox Corporation Liquid crystal display device having spacers with two sizes and metal films and protrusions
CN101067702A (zh) * 2007-06-18 2007-11-07 友达光电股份有限公司 显示装置感应结构及其制造方法
CN101286107A (zh) * 2008-05-27 2008-10-15 张文 多点电阻触摸屏

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06308516A (ja) * 1993-04-26 1994-11-04 Sharp Corp 液晶表示装置
TW479304B (en) * 2001-02-06 2002-03-11 Acer Display Tech Inc Semiconductor apparatus and its manufacturing method, and liquid crystal display using semiconductor apparatus
US8013454B2 (en) * 2005-10-05 2011-09-06 Sharp Kabushiki Kaisha Wiring substrate and display device including the same
CN102244042A (zh) * 2005-12-26 2011-11-16 日立化成工业株式会社 粘接剂组合物、电路连接材料以及电路构件的连接结构
KR101347291B1 (ko) * 2006-11-17 2014-01-03 삼성디스플레이 주식회사 터치 센서 내장형 평판표시패널과 이의 구동방법 및 이를포함한 평판표시장치
CN102090154B (zh) * 2008-07-11 2014-11-05 迪睿合电子材料有限公司 各向异性导电薄膜
KR101154617B1 (ko) * 2009-01-13 2012-06-08 엘지이노텍 주식회사 터치패널 및 터치패널 일체형 액정표시장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6525799B1 (en) * 1998-11-27 2003-02-25 Nanox Corporation Liquid crystal display device having spacers with two sizes and metal films and protrusions
CN101067702A (zh) * 2007-06-18 2007-11-07 友达光电股份有限公司 显示装置感应结构及其制造方法
CN101286107A (zh) * 2008-05-27 2008-10-15 张文 多点电阻触摸屏

Also Published As

Publication number Publication date
CN103294248B (zh) 2016-04-20
CN103294248A (zh) 2013-09-11
EP2722737A4 (en) 2015-04-08
EP2722737A1 (en) 2014-04-23

Similar Documents

Publication Publication Date Title
WO2014026450A1 (zh) 触控液晶显示装置的电连接结构
TWI652607B (zh) 觸控面板及應用其的觸控顯示裝置
WO2014036786A1 (zh) 内嵌式液晶触控面板
JP3192251U (ja) タッチパネル及びタッチディスプレイデバイス
CN106371669B (zh) 触控显示面板和触控显示装置
JP5868954B2 (ja) タッチパネルおよびその製造方法
TWI364579B (zh)
CN103376927A (zh) 触控屏及其制作方法
WO2017004975A1 (zh) 电容触摸屏及其制备方法、触控装置
TW201714057A (zh) 併設天線的觸控面板
TWM441157U (en) Touch panel
CN103296491B (zh) 导电垫的电连接结构及具有此结构的触控屏
US20150338972A1 (en) Touch panel and wiring structure and method for forming wiring structure
CN102314271B (zh) 一种电容式触控图形结构及其制法、触控面板及触控显示装置
TWI595389B (zh) 觸控顯示裝置及彩色濾光片基板
US20150277629A1 (en) Capacitive touch-sensitive device
WO2015010507A1 (zh) 触控电极结构及其应用之触控面板
TW201243682A (en) Capacitive touch panel and method for manufacturing the same
KR20170005254A (ko) 디스플레이 장치
TW202215709A (zh) 透明天線及顯示器模組
US20140118637A1 (en) Touch panel
US20140049702A1 (en) Electrical connection structure of touch controlled liquid crystal display device
TW202043994A (zh) 觸控面板
CN204215386U (zh) 面板结构
JP6030276B1 (ja) アンテナ併設タッチパネル

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012873880

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12873880

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE