WO2014024813A1 - 噴霧ノズル及びそれを備えたバーナ並びに燃焼装置 - Google Patents

噴霧ノズル及びそれを備えたバーナ並びに燃焼装置 Download PDF

Info

Publication number
WO2014024813A1
WO2014024813A1 PCT/JP2013/071102 JP2013071102W WO2014024813A1 WO 2014024813 A1 WO2014024813 A1 WO 2014024813A1 JP 2013071102 W JP2013071102 W JP 2013071102W WO 2014024813 A1 WO2014024813 A1 WO 2014024813A1
Authority
WO
WIPO (PCT)
Prior art keywords
spray
spray nozzle
fluid
combustion
flow path
Prior art date
Application number
PCT/JP2013/071102
Other languages
English (en)
French (fr)
Inventor
洋文 岡▲崎▼
倉増 公治
英雄 沖本
折井 明仁
健一 越智
Original Assignee
バブコック日立株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バブコック日立株式会社 filed Critical バブコック日立株式会社
Priority to KR1020157003083A priority Critical patent/KR101591634B1/ko
Priority to EP13827932.8A priority patent/EP2881662B1/en
Publication of WO2014024813A1 publication Critical patent/WO2014024813A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/02Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape
    • B05B1/04Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape in flat form, e.g. fan-like, sheet-like
    • B05B1/044Slits, i.e. narrow openings defined by two straight and parallel lips; Elongated outlets for producing very wide discharges, e.g. fluid curtains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/025Nozzles having elongated outlets, e.g. slots, for the material to be sprayed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
    • B05B7/0483Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with gas and liquid jets intersecting in the mixing chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/08Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/10Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour
    • F23D11/101Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour medium and fuel meeting before the burner outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/10Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour
    • F23D11/101Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour medium and fuel meeting before the burner outlet
    • F23D11/102Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour medium and fuel meeting before the burner outlet in an internal mixing chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/10Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour
    • F23D11/101Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour medium and fuel meeting before the burner outlet
    • F23D11/104Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour medium and fuel meeting before the burner outlet intersecting at a sharp angle, e.g. Y-jet atomiser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/10Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour
    • F23D11/12Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour characterised by the shape or arrangement of the outlets from the nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • F23D11/38Nozzles; Cleaning devices therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D17/00Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel
    • F23D17/007Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel liquid or pulverulent fuel

Definitions

  • the present invention relates to a spray nozzle, a burner including the spray nozzle, and a combustion apparatus, and more particularly to a spray nozzle suitable for atomizing a spray fluid (liquid) using a spray medium (gas) and a burner including the spray nozzle. And a combustion apparatus.
  • a floating combustion method that horizontally burns fuel is often employed.
  • the fuel is atomized by a spray nozzle and burned in a furnace in a combustion apparatus.
  • the spray nozzle as described above is used for combustion of auxiliary fuel for starting and flame stabilization in a combustion apparatus using solid fuel as a main fuel, such as pulverized coal, in addition to a combustion apparatus using liquid fuel as a main fuel. Often installed.
  • liquid fuel In the combustion of liquid fuel, if the spray particle size is large, the combustion reaction is delayed, and the combustion efficiency is lowered and soot, carbon monoxide, and nitrogen oxides are likely to be generated. Also, liquid fuel is poorly mixed with combustion air, and if the combustion air around the spray particles is insufficient, soot and carbon monoxide are likely to be generated.
  • the spray nozzle As a type of the spray nozzle, there is a two-fluid spray method in which air or steam is supplied as a spray medium for atomization in addition to the spray fluid and is atomized by mixing with the spray fluid.
  • This two-fluid spraying method has good atomization even with a large volume of spray compared to spraying with only the spray fluid, and is generally used in high-load combustion devices such as boilers for power generation. It is a problem to reduce the amount of spraying and the amount of pressurization of the spray fluid and spray medium during spraying.
  • the steam introduced into the combustion apparatus becomes moisture in the combustion exhaust gas.
  • the thermal efficiency in the combustion device decreases.
  • the mixed fluid after mixing the spray fluid and the spray medium is supplied in opposition to the vicinity of the outlet hole provided at the tip of the spray nozzle and atomized by colliding the flow of the opposed mixed fluid.
  • An example of promoting is described in Patent Document 1.
  • the spray medium is mixed with the spray fluid in the flow path upstream of the spray nozzle outlet hole, and the mixed fluid is collided in the vicinity of the outlet hole.
  • the collision force of the spray fluid becomes stronger and finer than in the case of a single fluid.
  • a method for achieving both a large capacity for increasing the spray amount of liquid fuel per spray nozzle and atomization of the liquid fuel a method of increasing the number of outlet holes provided at the tip of the spray nozzle is common. By increasing the outlet holes of the spray nozzle, the capacity can be increased without increasing the size of the individual outlet holes.
  • Patent Document 2 can be cited as an example of the spray nozzle having a plurality of outlet holes of the spray nozzle.
  • Patent Document 2 describes an example of a so-called intermediate mixing type spray nozzle that mixes a spray fluid and a spray medium in the middle of a flow path.
  • Patent Document 3 describes an example of a so-called internal mixing type spray nozzle in which a spray fluid and a spray medium are mixed in a space upstream of a spray nozzle outlet hole.
  • the above-described two-fluid spray nozzle described in Patent Document 1 is provided with a spray fluid (liquid) channel inside the spray nozzle and a spray medium (gas) channel at the outer peripheral position thereof.
  • the flow direction of the spray fluid and the spray medium is changed by the partition wall surrounding the outlet hole provided at the tip of the spray nozzle, and both the flow paths intersect to mix the spray fluid and the spray medium.
  • the flow path of the mixed fluid is configured to be opposed in the vicinity of the outlet hole of the spray nozzle.
  • the above (1) and (2) are contradictory items because the other weakens when trying to strengthen one. That is, when the momentum of the spray fluid is increased and the effect of (1) is increased, the momentum of the spray medium is relatively weaker than that of the spray fluid, and the effect of (2) is weakened due to delay in mixing. On the contrary, if the flow rate and flow velocity of the spray medium are increased and the effect (2) is increased, the spray fluid is less likely to collide with the partition walls, and the effect (1) is weakened.
  • the liquid fuel flowing as the spray fluid is heated by the radiant heat from the inside of the combustion apparatus, and the solid content in the liquid fuel may be deposited.
  • the flow path is closed, and the closed section expands to the upstream side of the flow path, making maintenance difficult.
  • Patent Document 3 has a wide space (mixing chamber) in which the spray fluid and the spray medium are mixed, if a part of the spray nozzle outlet hole is blocked, the flow state in the mixing chamber changes, and the spray fluid and the spray medium It is difficult to maintain a constant ratio.
  • the present invention has been made in view of the above-mentioned points, and an object of the present invention is to provide a spray nozzle capable of promoting atomization of a spray fluid and reducing both the amount of spray medium used and the pressure applied.
  • An object of the present invention is to provide a burner including the same and a combustion apparatus.
  • the spray nozzle of the present invention has at least two spray fluid passages through which the spray fluid flows, and a spray medium flows, and joins at each of the spray fluid passages and the first junction.
  • the mixed fluid of the spraying fluid and the spraying medium merged in at least two spraying medium flow paths and the respective first merging portions flows, and is formed to face each other, so that the mixed fluid becomes a facing flow.
  • At least two mixed fluid flow paths having a second merge section that collides and merges, and an outlet hole that ejects the mixed fluid merged at the second merge section, A bent portion that changes a flow direction of the mixed fluid is formed between the first merging portion and the second merging portion.
  • the burner of the present invention is a burner that uses liquid fuel as fuel, uses the spray nozzle having the above-described configuration, and uses the liquid fuel as the spray fluid as a tip of the spray nozzle. Supplying steam or compressed air to the tip of the spray nozzle as the spray medium, Alternatively, a burner having a fuel nozzle for ejecting solid fuel and its carrier gas, a spray nozzle for spraying liquid fuel, and a combustion gas nozzle for ejecting combustion gas for burning the solid fuel or liquid fuel, As the spray nozzle, the spray nozzle configured as described above is used, the liquid fuel is supplied as the spray fluid to the tip of the spray nozzle, and the vapor or compressed air is supplied as the spray medium to the tip of the spray nozzle. It is characterized by.
  • the combustion apparatus of the present invention is a combustion apparatus for burning a solid fuel and a liquid fuel, a combustion furnace for burning the fuel, and a solid fuel for supplying the solid fuel to the combustion furnace
  • a supply system ; a liquid fuel supply system for supplying liquid fuel to the combustion furnace; a combustion gas supply system for supplying combustion gas to the combustion furnace; and the fuel supply system and the combustion gas supply system.
  • Example 1 of the spray nozzle of the present invention is shown, and is a cross-sectional view of the tip of the spray nozzle. It is a longitudinal cross-sectional view of FIG. It is a characteristic figure which shows an example of the atomization performance in Example 1 of the spray nozzle of this invention, and shows the relationship between the bending part change angle of a mixed fluid flow path, the average particle diameter of spray, and a pressure loss ratio.
  • Example 2 of the spray nozzle of this invention is shown, and it is sectional drawing of the spray nozzle front-end
  • Example 3 of the spray nozzle of the present invention is shown and is a plan view of the tip of the spray nozzle. It is sectional drawing which follows the AA line of FIG. It is sectional drawing which follows the BB line of FIG.
  • the spray nozzle of the present invention the burner including the spray nozzle, and the combustion apparatus will be described.
  • the same reference numerals are used for the same parts.
  • FIG. 1 shows an example of a burner equipped with the spray nozzle of the present invention
  • FIG. 2 shows an example of a combustion apparatus equipped with the burner.
  • the burner 20 of this embodiment has a central axis 21 through which a spray nozzle 1 and a spray fluid (liquid fuel) and a spray medium (such as steam or compressed air) flow.
  • An obstacle 22 for stabilizing the flame is provided near the tip of 21.
  • the fuel is injected from the spray nozzle 1 to form a fan-shaped spray 23.
  • the obstacle 22 is generally a swirling flow generator or a baffle plate having a slit.
  • the combustion air is supplied from the wind box 24 in three flow paths. That is, the three flow paths are the primary flow path 25, the secondary flow path 26, and the tertiary flow path 27 from the side closer to the spray nozzle 1 at the center of the burner 20, and the primary flow path 25, the secondary flow path From the flow path 26 and the tertiary flow path 27, the primary air 28, the secondary air 29, and the tertiary air 30, respectively, are jetted into the furnace 31 as combustion air.
  • combustion air is changed in the direction of jetting of the combustion air by the swirling flow generators 32 and 33 and the guide plate 34, so that generation of soot and NOx is suppressed.
  • the flow rate of the combustion air is controlled by dampers (not shown) provided in the flow paths.
  • the burner 20 is connected to a furnace wall 35, and a heat transfer tube 36 is provided on the furnace wall 35 for heat recovery. As shown in FIG. 2, a plurality of burners 20 are installed on the furnace wall 35 (two locations in FIG. 2). Each burner 20 has a combustion air supply system 41, a liquid fuel supply system 42, and a spraying fuel. A medium supply system 43 is connected.
  • the combustion air supply system 41 is branched into a pipe 45 connected to the burner 20 and a pipe 46 connected to the air supply port 44 on the downstream side thereof.
  • a flow control valve (not shown) is connected.
  • the liquid fuel supply system 42 and the spray medium supply system 43 are connected to a supply device (not shown) for adjusting pressure and flow rate on the upstream side, and the spray nozzle 1 is installed at the downstream end thereof. ing.
  • the spray nozzle 1 is characterized in that a bent portion whose flow direction changes is provided in the mixed fluid flow path between the outlet from the mixing portion for mixing the spray fluid and the spray medium. Yes.
  • the spray fluid 2 and the spray medium 3 in this embodiment pass through the independent spray fluid channels 4 and 5 and the spray medium channels 6 and 7 constituting the spray nozzle 1 and spray. Mixing is performed in the middle of the fluid flow paths 4 and 5.
  • the mixed fluid 8 of the spray fluid 2 and the spray medium 3 passes through the mixed fluid flow paths 9 and 10 that flow opposite to each other, collides in the vicinity of the outlet hole 11 of the spray nozzle 1, and is ejected from the outlet hole 11. .
  • the mixed fluid 8 ejected from the outlet hole 11 forms a fan-shaped spray in a direction perpendicular to the flow direction of the mixed fluid channels 9 and 10 (the direction in which the mixed fluid channel extends) due to a collision near the outlet hole 11. Is done.
  • a groove portion 12 is formed in the outlet hole 11 of the spray nozzle 1 in the same direction as the fan-shaped spray formation direction, and an intersection portion of the groove portion 12 and the mixed fluid flow paths 9 and 10 becomes the outlet hole 11.
  • the atomizing fluid 2 is atomized by mixing with the atomizing medium 3 and becomes a thin liquid film by the collision of the mixed fluid 8 at the outlet hole 11, and the liquid film is split by the shearing force with the surrounding gas after being ejected from the outlet hole 11. And atomize.
  • Such a spraying method that atomizes by the impact force of the fluid is generally referred to as fan spraying.
  • the fluid spreads in a right angle direction, so the momentum of the spray decreases.
  • the spray tends to spread on the outer periphery of the spray, and a thin liquid film is formed, so that the number of fine particles (diameter less than 100 ⁇ m) increases. Due to the low momentum, the fine particles tend to stay near the spray nozzle.
  • Particles that have been atomized to a diameter of less than 100 ⁇ m, preferably 50 ⁇ m or less hereinafter referred to as “fine particles”) have a large surface area in the volume, and are likely to burn by being heated by heat radiation from the furnace.
  • the degree of atomization can be adjusted by the pressure of the mixed fluid and the amount of the spray medium (ratio of the spray medium to the spray fluid).
  • the central portion of the fan spray type spray has a larger flow rate than the outer peripheral portion and the spray is difficult to spread, a thick liquid film is formed compared to the outer peripheral portion. For this reason, there are many large particles (diameter 100 to 300 ⁇ m). Large particles have a higher momentum than fine particles and are easy to mix with combustion air flowing in a distant position, but the combustion reaction is delayed as compared with fine particles.
  • the spray fluid 2 and the spray medium 3 have different densities and viscosities, it may be difficult to mix them.
  • the mixed fluid flow paths 9 and 10 are short and linear, it can be considered that both flow to the outlet hole 11 without mixing.
  • the portion of the mixed fluid 8 where the ratio of the spraying medium 3 is high is atomized, the portion where the ratio of the spraying medium 3 is low is not atomized and large particles are likely to be generated.
  • the spray nozzle 1 of the present embodiment is a mixture that is formed to face each other from the portion (first merge portion) where the flow channels of the spray fluid 2 and the spray medium 3 merge in the above-described flow channel configuration.
  • Bending portions 13 and 14 are provided in the mixed fluid flow passages 9 and 10 between the outlet holes 11 in the portion (second confluence portion) where the mixed fluid 8 flowing through the fluid flow passages 9 and 10 joins.
  • the flow direction of the mixed fluid 8 is changed by providing the mixed fluid flow paths 9 and 10 with the bent portions 13 and 14. Therefore, the flow of the mixed fluid flow paths 9 and 10 is disturbed, and mixing of the spray fluid 2 and the spray medium 3 constituting the mixed fluid 8 proceeds.
  • the ratio of the atomizing medium 3 in the mixed fluid 8 becomes uniform, and the atomization progresses uniformly. Therefore, the amount of the atomizing medium 3 necessary for promoting atomization can be suppressed. Even if the pressure applied to the spray fluid 2 or the spray medium 3 is reduced, atomization can be maintained.
  • the change angle of the flow direction at the bent portions 13 and 14 is desirably about 30 to 120 degrees in order to cause disturbance. That is, when the change angle is 30 degrees or less, the change in the flow direction is small, so there is little turbulence and mixing is hardly promoted. When the change angle is 120 degrees or more, the pressure loss due to the change in flow increases.
  • FIG. 5 shows an example of atomization performance of the spray nozzle 1 according to the present embodiment.
  • the left vertical axis represents the average particle diameter of the spray
  • the right vertical axis represents the pressure loss ratio
  • the horizontal axis represents the change angle of the flow direction at the bent portions 13 and 14. Pressure loss was based on a change angle of 90 degrees.
  • the average particle size of the spray is determined by optical measurement of the sprayed particle size in the long side direction and the short side direction passing through the central axis of the fan type spray at a position 300 mm downstream of the spray for the fan type spray ejected from the outlet hole 11. It is measured and the average value is shown by the body area average particle diameter.
  • the average particle diameter of the spray is about 10 ⁇ m larger than the change angle is 30 degrees. This is because when the bent portions 13 and 14 are at a small angle, the change in the flow direction is small, so that there is little turbulence and it is difficult to promote mixing. On the other hand, at an angle of 120 degrees or more, the pressure loss due to the flow change becomes large.
  • the change angle for causing the disturbance of the flow direction at the bent portions 13 and 14 is desirably 30 degrees or more and 120 degrees.
  • the mixing part of the spray fluid flow paths 4 and 5 of the spray fluid 2 and the spray medium 3 and the spray medium flow paths 6 and 7 promotes the mixing of the both, so that the crossing angle is 30 to 90 degrees. It is desirable to merge. That is, when the angle is less than 30 degrees, the change in the flow direction is small, and both flow in parallel, so that mixing is difficult to be promoted. Because.
  • the surface area per unit weight of the liquid fuel increases due to atomization, so that the combustion reaction proceeds, the unburned matter, soot and carbon monoxide at the outlet of the combustion device are reduced, and the combustion efficiency is improved.
  • the amount of unburned dust, soot, and carbon monoxide can be reduced, so that excess air introduced into the combustion apparatus can be reduced.
  • excess air reduces the amount of combustion exhaust gas will also fall, the sensible heat discharge
  • liquid fuel is used as the combustion device, but it is also applicable to the case where solid fuel such as pulverized coal is used as the main fuel and liquid fuel is used as the auxiliary fuel.
  • solid fuel such as pulverized coal
  • liquid fuel is used as the auxiliary fuel.
  • the combustion air is branched into pipes 45 and 46 and injected into the furnace 31 from the burner 20 and the air supply port 44, respectively.
  • the temperature of the flame formed with the burner 20 can be reduced by supplying combustion air separately.
  • the NOx concentration at the outlet of the furnace 31 is reduced as compared with the case where all the combustion air is supplied from the burner 20. Further, by supplying the remaining combustion air from the air supply port 44 and completely burning the fuel, the amount of unburned fuel can be reduced.
  • combustion gas 47 mixed with the combustion air from the air supply port 44 passes through the flue 49 via the heat exchanger 48 at the top of the furnace 31 and is discharged from the chimney 50 to the atmosphere.
  • the spray nozzle of the present embodiment is also used when the combustion air is not branched and is supplied only from the burner 20. 1 can be applied.
  • the burner 20 is provided on one wall surface of the furnace 31 is shown in FIGS. 1 and 2, the present invention can be applied to the case where the burner 20 is provided on a plurality of wall surfaces or the corner portion of the wall surface.
  • the flow direction of the mixed fluid changes by providing a bent portion between the flow path of the mixed fluid in which the spray fluid and the spray medium are mixed.
  • the flow of the mixed fluid flowing through the flow path is disturbed, and mixing of the spray fluid and the spray medium proceeds.
  • the ratio of the spray medium in the mixed fluid becomes uniform, and the atomization progresses uniformly.
  • FIGS. 6 and 7 show a second embodiment of the spray nozzle of the present invention.
  • the present embodiment shown in the figure has a plurality of outlet holes in the spray nozzle 1 and a plurality of second merging portions where the mixed fluids flowing through the mixed fluid flow passages formed opposite to each other join each other. Between the first and second merging portions where the flow paths of the spraying medium and the merging medium merge, there are communication channels that connect the plurality of second merging portions.
  • the difference between the present embodiment and the first embodiment is that the spray nozzle 1 has a plurality of outlet holes 11A and 11B and the flow path structure on the upstream side of the outlet holes 11A and 11B.
  • the description will focus on the portion related to the channel structure.
  • FIG. 6 shows a case where there are two upper and lower outlet holes, which are distinguished by subscripts A and B, respectively, but the configuration is the same when more outlet holes are provided.
  • the spray fluid 2 and the spray medium 3 are separated from the spray fluid flow paths 4A, 4B, 5A, and 5B and the spray medium flow path 6A, respectively. It passes through 6B, 7A and 7B and is mixed at the first junction through the bent portions 13A, 13B, 14A and 14B.
  • the mixed fluid 8 of the spray fluid 2 and the spray medium 3 passes through the mixed fluid flow paths 9A, 9B, 10A, and 10B that flow in opposition to each other, in the vicinity of the outlet holes 11A and 11B that are the second merging portions. Colliding and ejecting from the respective outlet holes 11A and 11B.
  • the mixed fluid 8 ejected from the outlet holes 11A and 11B forms a fan-shaped spray in a direction perpendicular to the flow direction of the mixed fluid channels 9A, 9B, 10A, and 10B (the direction in which the mixed fluid channel extends) by collision.
  • Grooves 12A and 12B are formed in the outlet holes 11A and 11B of the spray nozzle 1 in the same direction as the fan spray formation direction, and the grooves 12A and 12B intersect the mixed fluid flow paths 9A, 9B, 10A and 10B. The parts become outlet holes 11A and 11B.
  • the mixed fluid flow paths 10A and 10B in the central part are connected to the outlet holes 11A and 11B by a connecting pipe (connecting flow path) 60 that connects the two to each other.
  • the mixed fluid flow paths 9A and 9B on the outer peripheral side are connected to the outlet holes 11A and 11B by branch pipes (communication flow paths) 61 (see FIG. 7) that connect the two to each other.
  • the atomizing fluid 2 is atomized by mixing with the atomizing medium 3 and, of course, a thin liquid film is formed by the collision of the mixed fluid 8 at the outlet holes 11A and 11B, and after being ejected from the outlet holes 11A and 11B, The liquid film is split and atomized by the shearing force.
  • the liquid film is atomized by the collision force of the fluid, and the mixed fluid flow paths 9 and 10 have the bent portions 13 and 14 as in the first embodiment, so that the spray fluid 2 and the spray medium 3 can be mixed. Promoted and atomized.
  • the amount of spray from the spray nozzle 1 can be increased without increasing the amount of spray from one outlet hole.
  • the problem of increasing the volume of the spray nozzle 1 is that the atomization performance is deteriorated when the outlet hole is partially blocked and the flow path is blocked.
  • the spray nozzle 1 of the present embodiment when a part of the outlet holes 11A and 11B is blocked by impurities or deposits in the spray fluid 2 or the spray medium 3, or when part of the outlet holes 11A and 11B is blocked, mixing that leads to the corresponding outlet hole In the flow path of the fluid 8, the fluid flows through the flow paths of the mixed fluid 8, the spray fluid 2, and the spray medium 3 through the branch pipe 61 toward the other outlet holes that are opened. Thus, the temperature is maintained.
  • the mixed fluid 8 flows to the outlet hole 11B through the branch pipe 61 in the upstream side of the mixed fluid channel 9A and the spray fluid channel 4A and the spray medium channel 6A. Further, in the mixed fluid flow path 10A, the spray fluid flow path 5A and the spray medium flow path 7A upstream thereof, the fluid flows through the connecting pipe 60 to the outlet hole 11B.
  • the branch pipe is used. Since the flow can be maintained toward the outlet hole that is opened through 61, the blockage hardly progresses.
  • the blocked portion remains from the outlet hole to the branch pipe 61 and can be easily removed.
  • the blocked portion remains in a portion near the outlet hole 11A in the mixed fluid flow paths 9A and 10A.
  • the spray fluid 2 and the spray medium 3 are individually mixed in the mixing section in the middle of the flow path, and the ratio of the spray medium 3 to the mixed fluid 8 can be maintained. For this reason, the atomization characteristic of the mixed fluid 8 ejected from each outlet hole can be maintained constant.
  • the atomization characteristics of the mixed fluid 8 ejected from the normal outlet holes can be maintained constant. Moreover, since the blockage
  • the atomization of the mixed fluid 8 can be maintained, the amount of the spray medium 3 used can be suppressed. Moreover, also when raising the pressurizing force of the spray fluid 2 or the spraying medium 3 in order to supplement the ejection amount, the increase in the pressurizing force can be suppressed.
  • the atomization of the mixed fluid 8 increases the surface area per unit weight of the liquid fuel, so that the combustion reaction proceeds, reducing unburned matter, soot and carbon monoxide at the combustion device outlet, and improving the combustion efficiency. Can be high. Moreover, by accelerating the combustion reaction, consumption of oxygen progresses and generation of nitrogen oxides can be suppressed.
  • the energy consumption used for each supply and pressurization can be reduced.
  • the thermal efficiency of the combustion apparatus due to the steam introduced into the combustion apparatus is lowered.
  • the spray nozzle 1 of this embodiment is used, the amount of steam used can be reduced.
  • the atomization of the mixed fluid 8 can be maintained at the same level as in the past, it is possible to prevent a decrease in thermal efficiency.
  • the spray nozzle 1 has a plurality of outlet holes, and the mixed fluid flow path branches into a plurality downstream of the first joining portion where the flow paths of the spray fluid and the spray medium merge.
  • the branched mixed fluid channel forms a channel connected to each of the different outlet holes.
  • the difference between the present embodiment and the second embodiment is the flow path structure on the upstream side of the outlet holes 11A and 11B.
  • the description will focus on the portion related to the channel structure. 8 to 10 show the case where the upper and lower outlet holes 11A and 11B are provided, the configuration is the same when a larger number of outlet holes are provided.
  • the spray fluid 2 and the spray medium 3 pass through the independent spray fluid channels 4A and 4B and the spray medium channels 6A and 6B, and the first Mixed at the junction.
  • the mixed fluid 8 of the spray fluid 2 and the spray medium 3 passes through the mixed fluid flow paths 9A and 9B.
  • the mixed fluid flow paths 9A and 9B are branched in the middle, and further branched into annular mixed fluid flow paths 9C, 9D, 9E, and 9F shown by dotted lines in FIG. 8, and mixed fluids toward the outlet holes 11A and 11B, respectively. 8 flows.
  • the outlet holes 11A and 11B of the spray nozzle 1 in this embodiment are provided concentrically with respect to the central axis of the spray nozzle 1, and the first through the branched mixed fluid flow paths 9C, 9D, 9E, and 9F.
  • the flow path to the 2 junctions is formed circumferentially with respect to the central axis of the spray nozzle 1.
  • the mixed fluid 8 collides in the vicinity of the outlet holes 11A and 11B, which are the second merging portions, and is ejected from the outlet holes 11A and 11B.
  • the mixed fluid 8 ejected from the outlet holes 11A and 11B forms a fan-shaped spray in a direction perpendicular to the flow direction (circumferential direction in FIG. 8) of the mixed fluid flow paths 9C, 9D, 9E, and 9F by collision. .
  • spray is formed in the radial direction with respect to the central axis of the spray nozzle 1.
  • Grooves 12A and 12B are formed in the outlet holes 11A and 11B of the spray nozzle 1 in the same direction (radial direction) as the fan-shaped spray formation direction, and the intersections between the grooves 12A and 12B and the mixed fluid flow path are outlets. It becomes hole 11A, 11B.
  • the atomizing fluid 2 is atomized by mixing with the atomizing medium 3 and becomes a thin liquid film due to the collision of the mixed fluid 8 at the outlet holes 11A and 11B, and is ejected from the outlet holes 11A and 11B by the shearing force with the surrounding gas.
  • the liquid film breaks up and atomizes.
  • the liquid film is atomized by the collision force of the fluid, and as shown in the first and second embodiments, the mixed fluid flow path has the bent portions 13 and 14, so that the spray fluid 2 and the spray medium 3 are used. Is promoted and atomization proceeds.
  • the spray nozzle 1 of the present embodiment when a part of the outlet hole is blocked by the impurities or deposits in the spray fluid 2 or the spray medium 3, or partially blocked, In the flow path of the mixed fluid 8 connected to the corresponding outlet hole, the fluid flows through the branch pipe 61 and the flow path of the mixed fluid 8, the spray fluid 2, and the spray medium 3 toward the other opened outlet holes. Each channel is maintained at a temperature by a fluid.
  • the branch pipe 61 is provided. After that, since the flow can be maintained toward the outlet hole that is open, the blockage hardly progresses.
  • the blocked portion remains from the outlet hole to the branch pipe 61 and can be easily removed.
  • the blocked portion remains in the mixed fluid flow paths 9C and 9E close to the outlet hole 11A in the mixed fluid flow path 9A.
  • the spray fluid 2 and the spray medium 3 are individually mixed in the mixing part in the middle of the flow path, and the ratio of the spray medium 3 to the mixed fluid 8 can be maintained.
  • the atomization characteristics of the mixed fluid 8 ejected from the individual outlet holes can be maintained constant.
  • the atomization of the mixed fluid 8 can be maintained, the amount of the spray medium 3 used can be suppressed. Moreover, also when raising the pressurizing force of the spray fluid 2 or the spraying medium 3 in order to supplement the ejection amount, the increase in the pressurizing force can be suppressed.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Abstract

 本発明は、噴霧流体の微粒化の促進及び噴霧用媒体の使用量の低減と加圧力の低減を両立させることのできる噴霧ノズルを提供する。 本発明による噴霧ノズルは、噴霧流体が流れる少なくとも2つの噴霧流体流路と、噴霧用媒体が流れ、それぞれの前記噴霧流体流路と第1の合流部で合流する少なくとも2つの噴霧用媒体流路と、それぞれの前記第1の合流部で合流した前記噴霧流体と噴霧用媒体の混合流体が流れると共に、互いに対向して形成され、前記混合流体が対向した流れとなり衝突し合流する第2の合流部を有する少なくとも2つの混合流体流路と、前記第2の合流部で合流した前記混合流体を噴出させる出口孔とを備え、前記混合流体流路には、前記第1の合流部から前記第2の合流部までの間に、前記混合流体の流れ方向が変わる屈曲部が形成されていることを特徴とする。

Description

噴霧ノズル及びそれを備えたバーナ並びに燃焼装置
 本発明は噴霧ノズル及びそれを備えたバーナ並びに燃焼装置に係り、特に、噴霧用媒体(気体)を利用して噴霧流体(液体)を微粒化するものに好適な噴霧ノズル及びそれを備えたバーナ並びに燃焼装置に関するものである。
 一般に、発電用のボイラのように、高出力、高負荷の燃焼装置では、燃料を水平燃焼させる浮遊燃焼方式が多く採用されている。燃料として液体燃料を用いる場合、燃料を噴霧ノズルで微粒化し、燃焼装置の火炉内を浮遊させて燃焼している。
 上記のような噴霧ノズルは、液体燃料を主燃料とする燃焼装置の他、微粉炭のように固体燃料を主燃料として使用する燃焼装置において、起動や火炎安定化用の補助燃料の燃焼用に設置されることが多い。
 液体燃料の燃焼では、噴霧粒子径が大きいと燃焼反応が遅れ、燃焼効率の低下や煤塵、一酸化炭素、窒素酸化物が発生し易くなる。また、液体燃料は、燃焼用空気との混合が悪く、噴霧粒子の周囲の燃焼用空気が不足すると、煤塵や一酸化炭素が発生し易くなる。
 このため、液体燃料の燃焼では、微粒化と燃焼用空気との混合に留意する必要がある。
また、高出力、高負荷の燃焼装置では、噴霧ノズル当たりの液体燃料の噴霧量を増加させた、いわゆる大容量化も求められる。
 噴霧ノズルの形式として、噴霧流体の他に、微粒化用の噴霧用媒体として空気や蒸気を供給し、噴霧流体と混合することで微粒化する二流体噴霧方式がある。
 この二流体噴霧方式は、噴霧流体のみの噴霧と比べて、大容量の噴霧でも微粒化が良好であり、発電用のボイラ等の高負荷の燃焼装置で一般に使用されているが、噴霧用媒体の使用量及び噴霧の際の噴霧流体や噴霧用媒体の加圧量を低減することが課題である。
 例えば、噴霧用媒体として蒸気を用いる場合、燃焼装置内に投入された蒸気は、燃焼排ガス中の水分となる。この水分により、排ガス量が増加すると燃焼装置での熱効率が低下する。
 このため、液体燃料の微粒化を妨げない範囲で、蒸気の使用量を低減することが望ましい。また、噴霧の際に噴霧流体や噴霧用媒体を加圧するが、その加圧量を減らすとエネルギー消費を低減できる。
 上記の課題を解決するため、二流体噴霧方式においては、噴霧用媒体の混合方法等が検討されてきた。
 このうち、噴霧流体と噴霧用媒体の混合後の混合流体を、噴霧ノズルの先端部に設けられた出口孔近傍で対向させて供給し、対向した混合流体の流れを衝突させることで微粒化を促進させる一例が、特許文献1に記載されている。
 上述した特許文献1では、噴霧用媒体を噴霧ノズル出口孔の上流側の流路にて噴霧流体と混合させ、混合流体を出口孔近傍で衝突させている。噴霧用媒体と噴霧流体の混合流体とすることで、噴霧流体の衝突力は、単独の場合よりも強まり微細化される。
 また、噴霧ノズル当たりの液体燃料の噴霧量を増加させる大容量化と液体燃料の微粒化を両立させる方法としては、噴霧ノズルの先端部に設けられた出口孔を増やす方法が一般的である。噴霧ノズルの出口孔を増やすことで、個々の出口孔の寸法を大きくすることなく、大容量化ができる。
 この噴霧ノズルの出口孔を複数有する噴霧ノズルの例として、特許文献2を挙げることができる。特許文献2には、噴霧流体と噴霧用媒体を流路の途中で混合させる、いわゆる中間混合型の噴霧ノズルの例が記載されている。
 また、噴霧流体と噴霧用媒体を、噴霧ノズル出口孔の上流側の空間で混合させる、いわゆる内部混合方式の噴霧ノズルの例が、特許文献3に記載されている。
特開平9-239299号公報 特開昭62-112905号公報 特開昭62-186112号公報
 上記した特許文献1に記載されている二流体噴霧ノズルは、噴霧ノズルの内部に、噴霧流体(液体)の流路と、その外周位置に噴霧用媒体(気体)の流路を設けている。噴霧流体と噴霧用媒体の流路は、噴霧ノズルの先端部に設けられた出口孔を囲む隔壁により流れ方向が変わり、両方の流路が交差して噴霧流体と噴霧用媒体が混合し、この混合流体の流路が、噴霧ノズルの出口孔近傍で対向して設けられる構成となっている。
 このとき噴霧流体は、以下の3つの効果により微粒化が進む。
 (1)噴霧流体の流路が噴霧用媒体の流路と交差し、両者が合流する合流部で、隔壁に衝突することによる微粒化。
 (2)噴霧流体と噴霧用媒体との混合による微粒化。
 (3)対向して流れる混合流体が、噴霧ノズルの出口孔近傍で衝突することによる微粒化。
 しかしながら、上記(1)及び(2)は、一方を強めようとすると他方が弱まる関係であり、相反する項目である。即ち、噴霧流体の運動量を高め(1)の効果を強めると、噴霧流体に比べ噴霧用媒体の運動量が相対的に弱まり、混合が遅れることで(2)の効果が弱まる。逆に、噴霧用媒体の流量や流速を高め(2)の効果を強めると、噴霧流体が隔壁に衝突し難くなり(1)の効果が弱まる。
 更に、噴霧流体と噴霧用媒体の混合後に、噴霧ノズルの出口孔から噴出するまでの距離が短く、両者が均一に混合し難い課題がある。両者が均一に混合しない場合、噴霧用媒体の比率が小さい部分では微粒化が悪化する。この場合、微粒化の促進には、噴霧用媒体の使用量を増加或いは加圧力を高める必要が生じる。
 次に、多孔化による噴霧ノズル当たりの液体燃料の噴霧量を増加させる大容量化の課題として、噴霧ノズル出口孔の一部が閉塞した際の微粒化性能の悪化や流路の閉塞が挙げられる。
 以下、これについて、上述した特許文献2及び3を例に説明する。
 即ち、特許文献2に記載されている中間混合型の場合は、噴霧ノズル出口孔の1つが、噴霧流体や噴霧用媒体中の不純物や堆積物により閉塞又は一部が閉塞すると、閉塞した出口孔に接続する噴霧流体や噴霧用媒体の流路は、流れが停止又は遅くなる。
 噴霧流体や噴霧用媒体の流路の流れが停止又は遅くなると、噴霧流体として流れる液体燃料は、燃焼装置内からの放射熱により加熱され、液体燃料中の固形分が析出することがある。液体燃料中の固形分が析出すると流路が閉塞されてしまい、流路の上流側まで閉塞区間が拡大し、メンテナンスがし難くなる。
 一方、特許文献3に記載されている内部混合型の場合は、噴霧ノズル出口孔の1つが閉塞しても、噴霧流体や噴霧用媒体は他の出口孔から噴出するので、上流側の流路まで閉塞する可能性は小さい。
 しかし、特許文献3は、噴霧流体と噴霧用媒体の混合する空間(混合室)が広いため、噴霧ノズル出口孔の一部が閉塞すると、混合室内の流動状態が変わり、噴霧流体と噴霧用媒体の比率を一定に保つことが難しい。
 このため、噴霧ノズル出口孔により、混合流体に占める噴霧用媒体の比率が異なり、微粒化特性も変わってしまうという課題がある。
 本発明は上述の点に鑑みなされたもので、その目的とするところは、噴霧流体の微粒化の促進及び噴霧用媒体の使用量の低減と加圧力の低減を両立させることのできる噴霧ノズル及びそれを備えたバーナ並びに燃焼装置を提供することにある。
 本発明の噴霧ノズルは、上記目的を達成するために、噴霧流体が流れる少なくとも2つの噴霧流体流路と、噴霧用媒体が流れ、それぞれの前記噴霧流体流路と第1の合流部で合流する少なくとも2つの噴霧用媒体流路と、それぞれの前記第1の合流部で合流した前記噴霧流体と噴霧用媒体の混合流体が流れると共に、互いに対向して形成され、前記混合流体が対向した流れとなり衝突し合流する第2の合流部を有する少なくとも2つの混合流体流路と、前記第2の合流部で合流した前記混合流体を噴出させる出口孔とを備え、前記混合流体流路には、前記第1の合流部から前記第2の合流部までの間に、前記混合流体の流れ方向が変わる屈曲部が形成されていることを特徴とする。
 また、本発明のバーナは、上記目的を達成するために、液体燃料を燃料として利用するバーナであって、上記構成の噴霧ノズルを用い、前記液体燃料を前記噴霧流体として前記噴霧ノズルの先端部に供給し、蒸気又は圧縮空気を前記噴霧用媒体として前記噴霧ノズルの先端部に供給するか、
 或いは、固体燃料とその搬送気体を噴出する燃料ノズルと、液体燃料を噴霧する噴霧ノズルと、前記固体燃料や液体燃料を燃焼させる燃焼用気体を噴出する燃焼用気体ノズルを有するバーナであり、前記噴霧ノズルとして、上記構成の噴霧ノズルを用い、前記液体燃料を前記噴霧流体として前記噴霧ノズルの先端部に供給し、蒸気又は圧縮空気を前記噴霧用媒体として前記噴霧ノズルの先端部に供給することを特徴とする。
 また、本発明の燃焼装置は、上記目的を達成するために、固体燃料と液体燃料を燃焼させる燃焼装置であって、燃料を燃焼させる燃焼炉と、前記燃焼炉に固体燃料を供給する固体燃料供給系統と、前記燃焼炉に液体燃料を供給する液体燃料供給系統と、前記燃焼炉に燃焼用気体を供給する燃焼用気体供給系統と、前記燃料供給系統と前記燃焼用気体供給系統が接続し前記燃焼炉の炉壁に設けられた前記固体燃料や液体燃料を燃焼させる複数のバーナと、前記燃焼炉で発生した燃焼排ガスから熱回収する熱交換器と、前記熱回収された燃焼排ガスを前記燃焼炉の外部へ供給する煙道とを有し、前記バーナの一つは、上記構成のバーナを用いたことを特徴とする。
 本発明によれば、噴霧流体の微粒化の促進及び噴霧用媒体の使用量の低減と加圧力の低減を両立させることのできる効果がある。
本発明の噴霧ノズルを用いたバーナの概略構成を示す断面図である。 本発明の噴霧ノズルを備えた燃焼装置の概略構成を示す図である。 本発明の噴霧ノズルの実施例1を示し、噴霧ノズル先端部の断面図である。 図3の縦断面図である。 本発明の噴霧ノズルの実施例1における微粒化性能の一例を示し、混合流体流路の屈曲部変更角度と噴霧の平均粒子径及び圧力損失比率の関係を示す特性図である。 本発明の噴霧ノズルの実施例2を示し、噴霧ノズル先端部の断面図である。 図6の断面図である。 本発明の噴霧ノズルの実施例3を示し、噴霧ノズル先端部の平面図である。 図8のA-A線に沿う断面図である。 図8のB-B線に沿う断面図である。
 以下、図示した実施例に基づいて本発明の噴霧ノズル及びそれを備えたバーナ並びに燃焼装置を説明する。尚、各実施例において、同一部品には同一符号を使用する。
 図1に本発明の噴霧ノズルを備えたバーナの一例を、図2にそのバーナを備えた燃焼装置の一例をそれぞれ示す。
 図1に示す如く、本実施例のバーナ20は、その中心に噴霧ノズル1と噴霧流体(液体燃料)及び噴霧用媒体(蒸気又は圧縮空気等)が流れる中心軸21を有し、該中心軸21の先端近くには、火炎安定用の障害物22を備えている。そして、噴霧ノズル1からは、燃料が噴射されて扇型の噴霧23が形成される。尚、障害物22としては、旋回流発生器やスリットを有する邪魔板などが一般的である。
 一方、燃焼用空気は、ウインドボックス24から3つの流路に分かれて供給される。即ち、3つの流路とは、バーナ20の中心の噴霧ノズル1に近い方から1次流路25、2次流路26、3次流路27であり、この1次流路25、2次流路26、3次流路27から、それぞれ1次空気28、2次空気29、3次空気30が燃焼用空気として火炉内31に噴出するものである。
 また、燃焼用空気は、旋回流発生器32、33やガイド板34により燃焼用空気の噴出方向が変えられて、煤塵やNOxの発生が抑制されている。尚、燃焼用空気は、流路にそれぞれ設けられたダンパ(図示せず)にて、その流量が制御されている。
 更に、バーナ20は火炉壁35に接続されており、火炉壁35には伝熱管36を設けて熱回収が行われている。このバーナ20は、図2に示すように、火炉壁35に複数個(図2では2箇所)設置され、それぞれのバーナ20には、燃焼用空気供給系統41と液体燃料供給系統42及び噴霧用媒体供給系統43が接続されている。
 本実施例では、燃焼用空気供給系統41は、バーナ20に接続する配管45と、その下流側の空気供給口44に接続する配管46に分岐しており、各々の配管45、46には、流量調節弁(図示せず)が接続されている。また、液体燃料供給系統42と噴霧用媒体供給系統43は、それぞれの上流側に圧力や流量を調整する供給器(図示せず)が接続され、その下流端には、噴霧ノズル1が設置されている。
 そして、本実施例では、噴霧ノズル1が、噴霧流体と噴霧用媒体とを混合する混合部から出口孔の間の混合流体流路に、流れ方向が変化する屈曲部を設けたことを特徴としている。
 以下、図3及び図4を用いて、本実施例の噴霧ノズル1について説明する。
 図3に示すように、本実施例での噴霧流体2と噴霧用媒体3は、噴霧ノズル1を構成する独立した噴霧流体流路4、5と噴霧用媒体流路6、7を通り、噴霧流体流路4、5の途中で混合される。この噴霧流体2と噴霧用媒体3の混合流体8は、互いに対向して流れる混合流体流路9、10を通り、噴霧ノズル1の出口孔11近傍にて衝突して、出口孔11から噴出する。
 出口孔11から噴出する混合流体8は、出口孔11近傍での衝突により混合流体流路9、10の流れ方向(混合流体流路が伸びる方向)に対し、直角方向に扇型の噴霧が形成される。噴霧ノズル1の出口孔11には、扇型噴霧の形成方向と同じ方向に溝部12が形成されており、この溝部12と混合流体流路9、10との交差部が出口孔11となる。
 噴霧流体2は噴霧用媒体3との混合により微粒化する他、出口孔11で混合流体8の衝突により薄い液膜となり、出口孔11から噴出後に周囲の気体とのせん断力により液膜が分裂し、微粒化する。
 このように、流体の衝突力により微粒化する噴霧方式を、一般にファンスプレー式噴霧という。
 ファンスプレー式噴霧では、出口孔11の近傍で、互いに対向している流混合流体流路9、10を流れる混合流体8が衝突することで、直角方向に拡がるため、噴霧の運動量は低下する。特に、噴霧の外周部分では噴霧が拡がり易く、薄い液膜が形成されるので、微粒子(直径100μm未満)が多くなる。運動量が低いため微粒子は噴霧ノズル近傍に留まりやすくなる。直径で100μm未満、できれば50μm以下に微粒化させた粒子(以下、微粒子と記す)は、体積に占める表面積が大きく、炉内からの熱放射により昇温して燃焼し易い。
 このため、これらの微粒子を噴霧ノズル1の近傍に滞留させることで、噴霧の着火が早まり、火炎の安定化や燃焼反応の促進に寄与する。
 尚、微粒化の程度は、混合流体の圧力や噴霧用媒体量(噴霧流体に対する噴霧用媒体の割合)により調整することができる。
 一方、ファンスプレー式噴霧の中央部分は、外周部分に対して流量が多く、噴霧が拡がり難いため、外周部分に比べて厚い液膜が形成される。このため、大粒子(直径100~300μm)が多い。大粒子は微粒子に比べて運動量が高く、離れた位置を流れる燃焼用空気と混合し易いものの、微粒子に比べて燃焼反応は遅れる。
 このため、混合流体の衝突だけでなく、噴霧用媒体との混合により微粒化を促進する必要がある。
 しかしながら、噴霧流体2と噴霧用媒体3は、密度や粘度が異なるため、混合し難いことがある。特に、混合流体流路9、10が短く、また、直線状の場合、両者が混合しないまま出口孔11まで流れることが考えられる。
 この場合、混合流体8のうち噴霧用媒体3の比率が高い部分は微粒化が進むものの、噴霧用媒体3の比率が低い部分は微粒化が進まず、大粒子が生成し易い。
 そこで、本実施例の噴霧ノズル1は、前述の流路構成において、噴霧流体2と噴霧用媒体3の流路が合流する部分(第1の合流部)から、互いに対向して形成される混合流体流路9、10を流れる混合流体8が合流する部分(第2の合流部)にある出口孔11の間の混合流体流路9、10に屈曲部13、14を設けたものである。
 混合流体流路9、10に屈曲部13、14を設けることで、混合流体8は流れ方向が変わる。このため、混合流体流路9、10の流れには乱れが生じ、混合流体8を構成する噴霧流体2と噴霧用媒体3との混合が進む。
 両者が均一に混合することで混合流体8中の噴霧用媒体3の比率は均一となり、一様に微粒化が進むため、微粒化の促進に必要な噴霧用媒体3の使用量を抑制できるし、噴霧流体2や噴霧用媒体3に加える圧力を低減しても微粒化を維持できる。
 尚、屈曲部13、14での流れ方向の変更角度は乱れを生じさせるために、30度以上120度程度が望ましい。即ち、変更角度が30度以下では流れ方向の変化が小さいために乱れが少なく、混合が促進され難く、また、変更角度が120度以上では、流れの変化による圧力損失が大きくなるためである。
 図5に、本実施例に係る噴霧ノズル1の微粒化性能の一例を示す。図中の左側の縦軸は噴霧の平均粒子径を、右側の縦軸は圧力損失の比率を、横軸は屈曲部13、14での流れ方向の変更角度をそれぞれ示す。圧力損失は変更角度90度を基準とした。
 そして、噴霧の平均粒子径は出口孔11から噴出する扇型噴霧について、噴霧の下流300mmの位置で扇型噴霧の中心軸を通る長辺方向と短辺方向について噴霧の粒子径を光学計測により計測し、その平均値を体面積平均粒子径で示したものである。
 図5に示すように、屈曲部13、14での流れ方向の変更角度が20度と狭い場合、変更角度が30度に比べ噴霧の平均粒子径は約10μm程度大きい。これは、屈曲部13、14が小さい角度の場合、流れ方向の変化が小さいために乱れが少なく、混合が促進され難いためである。一方、120度以上の角度では流れの変化による圧力損失が大きくなる。
 このため、屈曲部13、14での流れ方向の乱れを生じさせるための変更角度は、30度以上120度までが望ましいことが分かる。
 また、噴霧流体2と噴霧用媒体3の噴霧流体流路4、5と噴霧用媒体流路6、7の混合部は、両者の混合を促進するため、交差角が30~90度の角度で合流することが望ましい。即ち、30度より小さい角度では流れ方向の変化が小さく、両者が平行して流れるため、混合が促進され難く、また、90度以上の角度では対向して混合することとなり、圧力損失が大きくなるためである。
 本実施例の噴霧ノズル1では、微粒化により液体燃料の単位重量当たりの表面積が増加するので燃焼反応が進み、燃焼装置出口での未燃焼分や煤塵、一酸化炭素が低減し、燃焼効率を高くできる。また、燃焼反応を早く進めることで、酸素の消費が進み、窒素酸化物の発生を抑えることができる。更に、未燃焼分や煤塵、一酸化炭素が低減することで、燃焼装置に投入する余剰な空気を削減できる。また、余剰な空気が減ると、燃焼排ガス量も低下し、燃焼排ガスとともに燃焼装置外に放出される顕熱を低下させ、熱効率を高めることができる。
 噴霧用媒体の使用量の抑制や圧力の低減により、各々の供給や加圧力に使用なエネルギー消費量を低減できる。また、噴霧用媒体として蒸気を用いる場合、燃焼装置内に投入された蒸気による燃焼装置での熱効率が低下するが、本実施例の噴霧ノズル1を用いると、蒸気の使用量を減らしても、微粒化を従来と同等に維持できるため、熱効率の低下を防ぐことができる。
 また、本実施例では、燃焼装置として液体燃料を使用する場合を示したが、主燃料として微粉炭等の固体燃料を使用し、補助燃料として液体燃料を使用する場合も適用可能である。この場合、噴霧ノズル1から液体燃料を火炉31内に噴霧する際に、上記の効果が得られる。
 また、本実施例では、図2に示す如く、燃焼用空気は、配管45及び46に分岐され、それぞれバーナ20と空気供給口44から火炉31内に噴出されている。このように、燃焼用空気を分けて供給することで、バーナ20で形成される火炎の温度を低減することができる。
 また、バーナ20の近傍で空気不足の状態で燃焼すると、燃料中に含まれる窒素分の一部が還元剤として生成され、燃焼で発生するNOxを窒素に還元する反応が生じる。
 このため、火炉31の出口でのNOx濃度は、バーナ20から全ての燃焼用空気を供給する場合に比べて低減される。また、空気供給口44から残りの燃焼用空気を供給して燃料を完全燃焼させることで、未燃焼分が低減できる。
 また、空気供給口44からの燃焼用空気と混合した燃焼ガス47は、火炉31の上部の熱交換器48を介して煙道49を通り、煙突50から大気に放出される。
 図2に示す燃焼装置の例では、燃焼用空気を配管45及び46に分岐する例を示したが、燃焼用空気を分岐せず、バーナ20からのみ供給する場合も、本実施例の噴霧ノズル1を適用することができる。また、図1及び図2では、バーナ20を火炉31の1つの壁面に設けた場合を示すが、複数の壁面に設けた場合や壁面の角部に設けた場合にも適用できる。
 このような本実施例の噴霧ノズルのように、噴霧流体と噴霧用媒体が混合した混合流体の流路の出口孔までの間に屈曲部分を設けることで、混合流体は流れ方向が変わるため、流路を流れる混合流体の流れには乱れが生じ、噴霧流体と噴霧用媒体との混合が進む。しかも、両者が均一に混合することで、混合流体中の噴霧用媒体の比率は均一となり、一様に微粒化が進む。
 このため、微粒化の促進に必要な噴霧用媒体の使用量を抑制できるし、噴霧流体や噴霧用媒体に加える圧力を低減しても、微粒化が維持できる効果がある。
 図6及び図7に、本発明の噴霧ノズルの実施例2を示す。該図に示す本実施例は、噴霧ノズル1に出口孔を複数有すると共に、互いに対向して形成される混合流体流路を流れる混合流体が合流する第2の合流部を複数有し、噴霧流体と噴霧用媒体の流路が合流する第1の合流部から第2の合流部までの間に、複数の第2の合流部を接続する連絡流路を有することを特徴とする。
 即ち、本実施例と実施例1との違いは、噴霧ノズル1に複数の出口孔11A、11Bを複数有することと、出口孔11A、11Bの上流側の流路構造にある。ここでは、流路構造に関る部分を中心に説明する。
 尚、図6では、出口孔を上下2つ有する場合を示し、それぞれ添え字A、Bで区別するが、さらに多数の出口孔を設ける場合も、その構成は同じである。
 図6及び図7に示す本実施例の噴霧ノズル1の先端部において、噴霧流体2と噴霧用媒体3は、独立した噴霧流体流路4A、4B、5A、5Bと噴霧用媒体流路6A、6B、7A、7Bを通り、屈曲部13A、13B,14A、14Bを介して第1の合流部で混合される。この噴霧流体2と噴霧用媒体3の混合流体8は、互いに対向して流れる混合流体流路9A、9B、10A、10Bを通り、第2の合流部である出口孔11A、11Bの近傍にて衝突し、それぞれの出口孔11A、11Bから噴出する。
 出口孔11A、11Bから噴出する混合流体8は、衝突により混合流体流路9A、9B、10A、10Bの流れ方向(混合流体流路が伸びる方向)に対し、直角方向に扇型の噴霧を形成する。噴霧ノズル1の出口孔11A、11Bには、扇型噴霧の形成方向と同じ方向に溝部12A、12Bが形成され、この溝部12A、12Bと混合流体流路9A、9B、10A、10Bとの交差部が、出口孔11A、11Bとなる。
 本実施例では、中央部の混合流体流路10Aと10Bは、出口孔11Aと11Bまでの途中が、両者を互いに連絡する連絡管(連絡流路)60で接続されている。また、外周側の混合流体流路9A、9Bは、出口孔11A、11Bまでの途中が、両者を互いに連絡する分岐管(連絡流路)61(図7参照)で接続されている。
 噴霧流体2は、噴霧用媒体3との混合により微粒化することは勿論、出口孔11A、11Bで混合流体8の衝突により薄い液膜となり、出口孔11A、11Bから噴出後に周囲の気体とのせん断力により液膜が分裂し微粒化する。この流体の衝突力により液膜が微粒化し、かつ、実施例1のように、混合流体流路9、10に屈曲部13、14を有することで、噴霧流体2と噴霧用媒体3の混合が促進され、微粒化が進む。
 噴霧ノズル1の出口孔を増やす、いわゆる多孔化により、一つの出口孔からの噴出量を多くせずに、噴霧ノズル1からの噴出量を増やすことができる。この噴霧ノズル1からの噴出量を増やす大容量化の課題として、出口孔の一部が閉塞した際の微粒化性能の悪化や流路の閉塞がある。
 本実施例の噴霧ノズル1では、出口孔11A、11Bの一部が噴霧流体2や噴霧用媒体3中の不純物や堆積物により閉塞、又は一部が閉塞した場合、該当する出口孔に繋がる混合流体8の流路では、分岐管61を経て、他の開口している出口孔に向けて混合流体8や噴霧流体2、噴霧用媒体3の各流路を流体が流れ、各流路は流体により温度が維持される。
 例えば、出口孔11Aが何らかの原因により閉塞した場合は、出口孔11Aに接続する混合流体流路9Aのうち出口孔11Aに近い部分や分岐後の混合流体流路10Aでは流れが止まる。
 しかし、混合流体流路9Aの上流側と、噴霧流体流路4Aや噴霧用媒体流路6Aでは、分岐管61を通して混合流体8が出口孔11Bに流れる。また、混合流体流路10Aやその上流の噴霧流体流路5A及び噴霧用媒体流路7Aでは、連絡管60を経て流体が出口孔11Bに流れる。
 このため、出口孔11Bには、多数の流路から混合流体8が流れることで流路内での抵抗が小さくなり、流量が増加するため、出口孔11Aの閉塞による噴霧流体2の流量の低下を抑制できる。
 噴霧流体2として流れる液体燃料は、加熱された場合に、固形分の析出が生じ、この固形分の析出が流路の閉塞をもたらすことがあるが、本実施例の噴霧ノズル1では、分岐管61を経て、開口している出口孔に向けて流れを維持できるため、閉塞が進展し難い。
 即ち、出口孔の一部が閉塞しても、閉塞箇所は出口孔から分岐管61までに留まり、その除去が容易である。例えば、前述の出口孔11Aが閉塞した場合では、閉塞箇所は混合流体流路9A、10Aのうち、出口孔11Aに近い部分に留まる。
 更に、本実施例の噴霧ノズル1では、噴霧流体2と噴霧用媒体3を流路途中の混合部で個別に混合しており、混合流体8に占める噴霧用媒体3の比率を維持できる。このため、個々の出口孔から噴出する混合流体8の微粒化特性は一定に維持できる。
 このように本実施例では、一部の出口孔が閉塞した場合も、正常な出口孔から噴出する混合流体8の微粒化特性は、一定に維持できる。また、流路の閉塞が一部分に留まるので、噴霧ノズル1からの噴霧流体2の噴出量の低下を抑制できる。
 このため、混合流体8の微粒化を維持できることで、噴霧用媒体3の使用量が抑制できる。また、噴出量を補うために、噴霧流体2や噴霧用媒体3の加圧力を高める場合も、加圧力の上昇を抑制できる。
 前述の通り、混合流体8の微粒化により、液体燃料の単位重量当たりの表面積が増加するので燃焼反応が進み、燃焼装置出口での未燃焼分や煤塵、一酸化炭素が低減し、燃焼効率を高くできる。また、燃焼反応を早く進めることで、酸素の消費が進み、窒素酸化物の発生を抑えることができる。
 更に、未燃焼分や煤塵、一酸化炭素が低減することで、燃焼装置に投入する余剰な空気を削減できる。余剰な空気が減ると、燃焼排ガス量も低下し、燃焼排ガスと共に燃焼装置外に放出される顕熱を低下させ、熱効率を高めることができる。
 また、噴霧用媒体2の使用量の抑制や圧力の低減により、各々の供給や加圧力に使用なエネルギー消費量を低減できる。また、噴霧用媒体2として蒸気を用いる場合、燃焼装置内に投入された蒸気による燃焼装置での熱効率が低下するが、本実施例の噴霧ノズル1を用いると、蒸気の使用量を減らしても、混合流体8の微粒化を従来と同等に維持できるため、熱効率の低下を防ぐことができる。
 図8乃至図10に、本発明の噴霧ノズルの実施例3を示す。該図に示す本実施例は、噴霧ノズル1に出口孔を複数有すると共に、噴霧流体と噴霧用媒体の流路が合流する第1の合流部分の下流で、前記混合流体流路が複数に分岐され、該分岐された混合流体流路が、各々異なる前記出口孔に接続される流路を形成することを特徴とする。
 即ち、本実施例と実施例2との違いは、出口孔11A、11Bの上流側の流路構造である。ここでは、流路構造に関る部分を中心に説明する。尚、図8乃至図10では、出口孔11A、11Bを上下2つ有する場合を示すが、さらに多数の出口孔を設ける場合もその構成は同じである。
 図9に示す本実施例の噴霧ノズル1の先端部において、噴霧流体2と噴霧用媒体3は、独立した噴霧流体流路4A、4Bと噴霧用媒体流路6A、6Bを通り、第1の合流部で混合される。噴霧流体2と噴霧用媒体3の混合流体8は、混合流体流路9A、9Bを通る。
混合流体流路9A、9Bは途中で分岐され、更に、図8の点線に示す円環状の混合流体流路9C、9D、9E、9Fに分岐され、それぞれ出口孔11A、11Bに向けて混合流体8が流れる。
 本実施例での噴霧ノズル1の出口孔11A、11Bは、噴霧ノズル1の中心軸に対し同心円状に設けられ、かつ、前記分岐された混合流体流路9C、9D、9E、9Fから前記第2の合流部までの流路が、噴霧ノズル1の中心軸に対し円周状に形成されている。
 そして、混合流体8は、第2の合流部である出口孔11A、11Bの近傍にて衝突し、出口孔11A、11Bから噴出する。出口孔11A、11Bから噴出する混合流体8は、衝突により混合流体流路9C、9D、9E、9Fの流れ方向(図8の円周方向)に対し、直角方向に扇型の噴霧を形成する。
 このため、本実施例では、噴霧ノズル1の中心軸に対して、放射方向に噴霧が形成されることになる。
 噴霧ノズル1の出口孔11A、11Bには、扇型噴霧の形成方向と同じ方向(放射方向)に溝部12A、12Bが形成され、この溝部12A、12Bと混合流体流路との交差部が出口孔11A、11Bとなる。
 噴霧流体2は噴霧用媒体3との混合により微粒化する他、出口孔11A、11Bで混合流体8の衝突により薄い液膜となり、出口孔11A、11Bから噴出後に周囲の気体とのせん断力により液膜が分裂し、微粒化する。
 このように、流体の衝突力により液膜が微粒化し、かつ、実施例1及び2に示すように、混合流体流路に屈曲部13、14を有することで、噴霧流体2と噴霧用媒体3の混合が促進され、微粒化が進む。
 また、本実施例の噴霧ノズル1では、実施例2に示すように、出口孔の一部が噴霧流体2や噴霧用媒体3中の不純物や堆積物により閉塞、又は一部が閉塞した場合、該当する出口孔に繋がる混合流体8の流路では、分岐管61を経て、他の開口している出口孔に向けて混合流体8や噴霧流体2、噴霧用媒体3の流路を流体が流れ、各流路は流体により温度が維持される。
 噴霧流体2として流れる液体燃料は、加熱された場合に固形分の析出が生じ、この固形分の析出が流路の閉塞をもたらすことがあるが、本実施例の噴霧ノズル1では分岐管61を経て、開口している出口孔に向けて流れを維持できるため、閉塞が進展し難い。
 即ち、出口孔の一部が閉塞しても、閉塞箇所は出口孔から分岐管61までに留まり、その除去が容易である。例えば、前述の出口孔11Aが閉塞した場合では、閉塞箇所は混合流体流路9Aのうち出口孔11Aに近い混合流体流路9Cや9Eに留まる。
 更に、本実施例の噴霧ノズル1では、噴霧流体2と噴霧用媒体3を流路途中の混合部で個別に混合しており、混合流体8に占める噴霧用媒体3の比率を維持できるため、個々の出口孔から噴出する混合流体8の微粒化特性は一定に維持できる。
 このように、本実施例でも実施例2と同様に、一部の出口孔が閉塞した場合でも、正常な出口孔から噴出する混合流体の微粒化特性は一定に維持できる。また、流路の閉塞が一部分に留まるので、噴霧ノズル1からの噴霧流体2の噴出量の低下を抑制できる。
 このため混合流体8の微粒化が維持できることで、噴霧用媒体3の使用量を抑制できる。また、噴出量を補うために噴霧流体2や噴霧用媒体3の加圧力を高める場合も加圧力の上昇を抑制できる。
 また、前述した実施例2及び3では、出口孔が2つの場合を例に示したが、多数の出口孔を設ける場合もその効果は前述の通りである。更に、燃焼装置に噴霧ノズル1を組み込んだ場合、実施例1に示すものと同様に、微粒化促進と噴霧用媒体の低減や加圧力の低減の効果が得られる。
 また、上述した実施例の燃焼装置として、固体燃料と液体燃料を燃焼させるものについて説明したが、固体燃料と液体燃料に変えて、化石燃料を燃焼させる燃焼装置にも適用できることは、勿論である。
 尚、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成を置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 1…噴霧ノズル、2…噴霧流体、3…噴霧用媒体、4、4A、4B、5、5A、5B…噴霧流体流路、6、6A、6B、7、7A、7B…噴霧用媒体流路、8…混合流体、9、9A、9B、9C、9D、9E、9F、10、10A、10B…混合流体流路、11、11A、11B…出口孔、12、12A、12B…溝部、13、13A、13B、14、14A、14B…屈曲部、20…バーナ、21…中心軸、22…障害物、23…噴霧、24…ウインドボックス、25…1次流路、26…2次流路、27…3次流路、28…1次空気、29…2次空気、30…3次空気、31…火炉、32、33…旋回流発生器、34…ガイド板、35…火炉壁、36…伝熱管、41…燃焼用空気供給系統、42…液体燃料供給系統、43…噴霧用媒体供給系統、44…空気供給口、45、46…配管、47…燃焼ガス、48…熱交換器、49…煙道、50…煙突、60…連絡管、61…分岐管。

Claims (13)

  1.  噴霧流体が流れる少なくとも2つの噴霧流体流路と、噴霧用媒体が流れ、それぞれの前記噴霧流体流路と第1の合流部で合流する少なくとも2つの噴霧用媒体流路と、それぞれの前記第1の合流部で合流した前記噴霧流体と噴霧用媒体の混合流体が流れると共に、互いに対向して形成され、前記混合流体が対向した流れとなり衝突し合流する第2の合流部を有する少なくとも2つの混合流体流路と、前記第2の合流部で合流した前記混合流体を噴出させる出口孔とを備え、
     前記混合流体流路には、前記第1の合流部から前記第2の合流部までの間に、前記混合流体の流れ方向が変わる屈曲部が形成されていることを特徴とする噴霧ノズル。
  2.  噴霧流体を噴霧用媒体と混合して微粒化させる噴霧ノズルであり、前記噴霧ノズルの入口に噴霧流体流路と噴霧用媒体流路を有し、該噴霧流体流路と噴霧用媒体流路は、前記噴霧ノズル内で互いの流路が合流する第1の合流部を有すると共に、前記噴霧流体と噴霧用媒体が合流した混合流体流路を前記噴霧ノズル内に複数有し、前記混合流体流路の一部は互いに対向して前記混合流体が流れ、かつ、前記噴霧ノズルの出口部で対向した流れが衝突し合流する第2の合流部を有し、該第2の合流部の直後に出口孔を備え、
     前記混合流体流路は、前記第1の合流部から前記第2の合流部までの間に、前記混合流体の流れ方向が変わる屈曲部が形成されていることを特徴とする噴霧ノズル。
  3.  請求項1又は2に記載の噴霧ノズルにおいて、
     前記第1の合流部から第2の合流部までの間の前記混合流体流路に形成されている屈曲部は、前記混合流体の流れ方向の変更角度が30乃至120度であることを特徴とする噴霧ノズル。
  4.  請求項1乃至3のいずれか1項に記載の噴霧ノズルにおいて、
     前記噴霧ノズルに出口孔を複数有すると共に、前記第2の合流部を複数有し、前記第1の合流部から前記第2の合流部までの間に、前記複数の第2の合流部を接続する連絡流路を有することを特徴とする噴霧ノズル。
  5.  請求項4に記載の噴霧ノズルにおいて、
     前記連絡流路は、前記噴霧ノズルの中央部に位置する2つの混合流体流路が、前記出口孔までの途中で両者を互いに連絡する連絡管と、前記噴霧ノズルの外周側に位置する2つの混合流体流路が、前記出口孔までの途中で両者を互いに連絡する分岐管とから成ることを特徴とする噴霧ノズル。
  6.  請求項1乃至3のいずれか1項に記載の噴霧ノズルにおいて、
     前記噴霧ノズルに出口孔を複数有すると共に、前記第1の部分の下流で、前記混合流体流路が複数に分岐され、該分岐された混合流体流路が、各々異なる前記出口孔に接続される流路を形成することを特徴とする噴霧ノズル。
  7.  請求項6に記載の噴霧ノズルにおいて、
     前記噴霧ノズルの出口孔は、前記噴霧ノズルの中心軸に対し同心円状に設けられ、かつ、前記分岐された混合流体流路から前記第2の合流部までの流路が、前記噴霧ノズルの中心軸に対し円周状に形成されていることを特徴とする噴霧ノズル。
  8.  請求項1乃至7のいずれか1項に記載の噴霧ノズルにおいて、
     前記噴霧ノズルの出口孔には、前記噴霧ノズルからの噴霧の形成方向と同じ方向に溝部が形成されていることを特徴とする噴霧ノズル。
  9.  請求項8に記載の噴霧ノズルにおいて、
     前記溝部と前記混合流体流路との交差部が、前記出口孔であることを特徴とする噴霧ノズル。
  10.  液体燃料を燃料として利用するバーナであって、
     請求項1乃至9のいずれか1項に記載の噴霧ノズルを用い、前記液体燃料を前記噴霧流体として前記噴霧ノズルの先端部に供給し、蒸気又は圧縮空気を前記噴霧用媒体として前記噴霧ノズルの先端部に供給することを特徴とするバーナ。
  11.  固体燃料とその搬送気体を噴出する燃料ノズルと、液体燃料を噴霧する噴霧ノズルと、前記固体燃料や液体燃料を燃焼させる燃焼用気体を噴出する燃焼用気体ノズルを有するバーナであり、
     前記噴霧ノズルとして、請求項1乃至9のいずれか1項に記載の噴霧ノズルを用い、前記液体燃料を前記噴霧流体として前記噴霧ノズルの先端部に供給し、蒸気又は圧縮空気を前記噴霧用媒体として前記噴霧ノズルの先端部に供給することを特徴とするバーナ。
  12.  固体燃料と液体燃料を燃焼させる燃焼装置であって、
     燃料を燃焼させる燃焼炉と、前記燃焼炉に固体燃料を供給する固体燃料供給系統と、前記燃焼炉に液体燃料を供給する液体燃料供給系統と、前記燃焼炉に燃焼用気体を供給する燃焼用気体供給系統と、前記燃料供給系統と前記燃焼用気体供給系統が接続し前記燃焼炉の炉壁に設けられた前記固体燃料や液体燃料を燃焼させる複数のバーナと、前記燃焼炉で発生した燃焼排ガスから熱回収する熱交換器と、前記熱回収された燃焼排ガスを前記燃焼炉の外部へ供給する煙道とを有し、
     前記バーナの1つは、請求項10又は11に記載のバーナを用いたことを特徴とする燃焼装置。
  13.  化石燃料を燃焼させる燃焼装置であって、
     化石燃料を燃焼させる燃焼炉と、前記燃焼炉に化石燃料を供給する燃料供給系統と、前記燃焼炉に燃焼用気体を供給する燃焼用気体供給系統と、前記燃料供給系統と前記燃焼用気体供給系統が接続し前記燃焼炉の炉壁に設けられた化石燃料を燃焼させるバーナと、前記燃焼炉で発生した燃焼排ガスから熱回収する熱交換器と、前記熱回収された燃焼排ガスを前記燃焼炉の外部へ供給する煙道とを有し、
     前記バーナとして、化石燃料として液体燃料を用いた請求項10に記載のバーナを用いたことを特徴とする燃焼装置。
PCT/JP2013/071102 2012-08-06 2013-08-05 噴霧ノズル及びそれを備えたバーナ並びに燃焼装置 WO2014024813A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020157003083A KR101591634B1 (ko) 2012-08-06 2013-08-05 분무 노즐 및 그것을 구비한 버너와 연소 장치
EP13827932.8A EP2881662B1 (en) 2012-08-06 2013-08-05 Spray nozzle, and burner and combustion device equipped with same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012173996A JP6029375B2 (ja) 2012-08-06 2012-08-06 噴霧ノズル及びそれを備えたバーナ並びに燃焼装置
JP2012-173996 2012-08-06

Publications (1)

Publication Number Publication Date
WO2014024813A1 true WO2014024813A1 (ja) 2014-02-13

Family

ID=50068039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071102 WO2014024813A1 (ja) 2012-08-06 2013-08-05 噴霧ノズル及びそれを備えたバーナ並びに燃焼装置

Country Status (4)

Country Link
EP (1) EP2881662B1 (ja)
JP (1) JP6029375B2 (ja)
KR (1) KR101591634B1 (ja)
WO (1) WO2014024813A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2955444A1 (en) * 2014-06-12 2015-12-16 Mitsubishi Hitachi Power Systems, Ltd. Atomizer, combustion device including atomizer, and gas turbine plant
CN107083258A (zh) * 2017-06-23 2017-08-22 航天长征化学工程股份有限公司 一种气化烧嘴装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5758926B2 (ja) * 2013-01-28 2015-08-05 佐々木 勉 ミスト発生方法、ミスト発生装置
JP6491898B2 (ja) * 2015-02-05 2019-03-27 三菱日立パワーシステムズ株式会社 噴霧ノズルおよび噴霧ノズルを用いた燃焼装置、ガスタービンプラント
CN106122954B (zh) * 2016-06-30 2018-03-20 南通业顺机械制造有限公司 一种高精度燃烧器系统
KR101930009B1 (ko) * 2016-11-30 2018-12-17 주식회사 컴버스텍 고온 가압 환경용 버너
DE102017113207A1 (de) 2017-06-15 2018-12-20 Alfons Kenter Zerstäuberdüse zum Zerstäuben eines Fluids
FR3068113B1 (fr) * 2017-06-27 2019-08-23 Safran Helicopter Engines Injecteur de carburant a jet plat pour une turbomachine d'aeronef
JP7003983B2 (ja) * 2019-10-18 2022-01-21 株式会社デンソー 液体噴射ノズル及び車両のセンサ洗浄装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153639U (ja) * 1984-09-11 1986-04-11
JPS62112905A (ja) 1985-11-11 1987-05-23 Babcock Hitachi Kk スラリ燃焼用アトマイザ
JPS62186112A (ja) 1986-02-07 1987-08-14 Babcock Hitachi Kk 流体燃料燃焼用バ−ナの燃料噴霧ノズル装置
JPH06299932A (ja) * 1993-02-17 1994-10-25 Nippondenso Co Ltd 流体噴射ノズル
JPH09159113A (ja) * 1995-12-13 1997-06-20 Kawasaki Heavy Ind Ltd 重質油燃焼方法
JPH09239299A (ja) 1996-03-08 1997-09-16 Ikeuchi:Kk 二流体ノズル
JPH105633A (ja) * 1996-06-21 1998-01-13 Mitsubishi Electric Corp スプレーチップ及びスプレー装置
WO2012096318A1 (ja) * 2011-01-12 2012-07-19 バブコック日立株式会社 噴霧ノズル及び噴霧ノズルを有する燃焼装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59137342U (ja) * 1983-03-05 1984-09-13 ヤンマーディーゼル株式会社 エンジンのレギユレ−タハンドル操作装置
US4645129A (en) * 1985-12-05 1987-02-24 Phillips Petroleum Company Atomizing nozzle and use
DE102009037828A1 (de) * 2008-11-11 2010-05-20 Wurz, Dieter, Prof. Dr. Zweistoffdüse, Bündeldüse und Verfahren zum Zerstäuben von Fluiden
JP5417258B2 (ja) * 2010-06-01 2014-02-12 バブコック日立株式会社 噴霧ノズルを備えた燃焼装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153639U (ja) * 1984-09-11 1986-04-11
JPS62112905A (ja) 1985-11-11 1987-05-23 Babcock Hitachi Kk スラリ燃焼用アトマイザ
JPS62186112A (ja) 1986-02-07 1987-08-14 Babcock Hitachi Kk 流体燃料燃焼用バ−ナの燃料噴霧ノズル装置
JPH06299932A (ja) * 1993-02-17 1994-10-25 Nippondenso Co Ltd 流体噴射ノズル
JPH09159113A (ja) * 1995-12-13 1997-06-20 Kawasaki Heavy Ind Ltd 重質油燃焼方法
JPH09239299A (ja) 1996-03-08 1997-09-16 Ikeuchi:Kk 二流体ノズル
JPH105633A (ja) * 1996-06-21 1998-01-13 Mitsubishi Electric Corp スプレーチップ及びスプレー装置
WO2012096318A1 (ja) * 2011-01-12 2012-07-19 バブコック日立株式会社 噴霧ノズル及び噴霧ノズルを有する燃焼装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2955444A1 (en) * 2014-06-12 2015-12-16 Mitsubishi Hitachi Power Systems, Ltd. Atomizer, combustion device including atomizer, and gas turbine plant
CN105318352A (zh) * 2014-06-12 2016-02-10 三菱日立电力系统株式会社 喷雾喷嘴、具备喷雾喷嘴的燃烧装置及燃气轮机设备
US9970356B2 (en) 2014-06-12 2018-05-15 Mitsubishi Hitachi Power Systems, Ltd. Atomizer, combustion device including atomizer, and gas turbine plant
CN105318352B (zh) * 2014-06-12 2018-07-20 三菱日立电力系统株式会社 喷雾喷嘴、具备喷雾喷嘴的燃烧装置及燃气轮机设备
CN107083258A (zh) * 2017-06-23 2017-08-22 航天长征化学工程股份有限公司 一种气化烧嘴装置
CN107083258B (zh) * 2017-06-23 2024-03-26 航天长征化学工程股份有限公司 一种气化烧嘴装置

Also Published As

Publication number Publication date
KR101591634B1 (ko) 2016-02-03
EP2881662A4 (en) 2016-04-06
KR20150036393A (ko) 2015-04-07
JP6029375B2 (ja) 2016-11-24
EP2881662B1 (en) 2017-07-19
JP2014031990A (ja) 2014-02-20
EP2881662A1 (en) 2015-06-10

Similar Documents

Publication Publication Date Title
JP6029375B2 (ja) 噴霧ノズル及びそれを備えたバーナ並びに燃焼装置
TWI465291B (zh) Combustion apparatus having the spray nozzle and the spray nozzle
JP3099109B2 (ja) 微粉炭バーナ
JP4896143B2 (ja) バーナ、バーナを備えた燃焼装置及びボイラ
JP6317631B2 (ja) 噴霧ノズル、噴霧ノズルを備えた燃焼装置、及びガスタービンプラント
JP5386230B2 (ja) 燃料バーナ及び旋回燃焼ボイラ
JP6491898B2 (ja) 噴霧ノズルおよび噴霧ノズルを用いた燃焼装置、ガスタービンプラント
JP5417258B2 (ja) 噴霧ノズルを備えた燃焼装置
JP6173868B2 (ja) 噴霧ノズル及び噴霧ノズルを備えた燃焼装置
JP2009250532A (ja) 微粉炭焚きボイラ
WO2013118665A1 (ja) 噴霧ノズル及び噴霧ノズルを備えた燃焼装置
WO2014142305A1 (ja) 噴霧ノズル、噴霧ノズルを備えたバーナ、及び噴霧ノズルを有するバーナを備えた燃焼装置
JP6053815B2 (ja) 噴霧ノズル、噴霧ノズルを備えたバーナ及びバーナを備えた燃焼装置
WO2014097812A1 (ja) 噴霧ノズル、噴霧ノズルを備えたバーナ及びバーナを備えた燃焼装置
JP2014031988A (ja) 噴霧ノズル及びそれを備えたバーナ並びに燃焼装置
JP2013190161A (ja) 噴霧ノズル、バーナ及び燃焼装置
JP2020112283A (ja) 燃焼装置
KR102257041B1 (ko) 소각용 연료 분무 장치
JP2013185776A (ja) 噴霧ノズル、バーナ及び燃焼装置
JPH0233506A (ja) NOxおよび煤じん低減バーナ
JP2015040666A (ja) 噴霧ノズル及び燃焼装置
JP2007057184A (ja) ボイラ
JPS62206313A (ja) 固体粒子を含む液体状燃料の燃焼装置
JPH0480288B2 (ja)
JP2017138042A (ja) ボイラ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13827932

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157003083

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013827932

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013827932

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE