WO2014024557A1 - アレイ導波路回折格子型光合分波器 - Google Patents

アレイ導波路回折格子型光合分波器 Download PDF

Info

Publication number
WO2014024557A1
WO2014024557A1 PCT/JP2013/065606 JP2013065606W WO2014024557A1 WO 2014024557 A1 WO2014024557 A1 WO 2014024557A1 JP 2013065606 W JP2013065606 W JP 2013065606W WO 2014024557 A1 WO2014024557 A1 WO 2014024557A1
Authority
WO
WIPO (PCT)
Prior art keywords
base plate
waveguide
demultiplexer
optical multiplexer
awg
Prior art date
Application number
PCT/JP2013/065606
Other languages
English (en)
French (fr)
Inventor
長谷川 淳一
奈良 一孝
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Publication of WO2014024557A1 publication Critical patent/WO2014024557A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • G02B6/12026Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by means for reducing the temperature dependence
    • G02B6/1203Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by means for reducing the temperature dependence using mounting means, e.g. by using a combination of materials having different thermal expansion coefficients
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • G02B6/12014Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by the wavefront splitting or combining section, e.g. grooves or optical elements in a slab waveguide

Definitions

  • the present invention relates to an arrayed waveguide grating optical multiplexer / demultiplexer.
  • a wavelength multiplexer / demultiplexer using an arrayed waveguide grating has a temperature dependency on the refractive index of the silica-based glass that is a constituent material, so that the transmission center wavelength has a temperature dependency. It has been known.
  • the temperature dependence d ⁇ / dT of the transmission center wavelength of an AWG made of quartz glass is 0.011 nm / ° C., which is a large size that cannot be ignored for use in a D-WDM (Dense-Wavelength Division Multiplexing) optical transmission system. It is a value.
  • Patent Documents 1 and 2 disclose an arrayed waveguide grating optical multiplexer / demultiplexer (hereinafter referred to as an AWG optical multiplexer / demultiplexer as appropriate) that realizes athermalization using a compensation member.
  • the AWG type optical multiplexer / demultiplexer of Patent Documents 1 and 2 includes a compensation member having a predetermined thermal expansion coefficient so that the AWG chip is cut so as to cross the slab waveguide, and the parts separated by the cutting are spanned. The configuration is provided.
  • the compensation member expands and contracts to change the relative position between the separated portions. The change amount of the relative position is adjusted so as to compensate for the shift of the transmission center wavelength depending on the temperature change. As a result, the athermalization of the AWG type optical multiplexer / demultiplexer is realized.
  • the temperature dependence characteristics of optical characteristics such as the transmission wavelength and insertion loss vary among a plurality of AWG type optical multiplexers / demultiplexers.
  • the temperature characteristics are not good due to the occurrence of hysteresis in the optical characteristics with respect to temperature fluctuations.
  • the present invention has been made in view of the above, and an object of the present invention is to provide an arrayed waveguide diffraction grating type optical multiplexer / demultiplexer having excellent temperature-dependent characteristics of optical characteristics.
  • an arrayed waveguide grating optical multiplexer / demultiplexer includes a first input / output waveguide through which light is input / output and the first input / output waveguide.
  • the arrayed waveguide grating optical multiplexer / demultiplexer according to the present invention is characterized in that, in the above invention, the warp mitigating member is provided so as to be interposed between the base plate and the compensating member.
  • the arrayed waveguide grating optical multiplexer / demultiplexer according to the present invention is the above-described invention, wherein the warp mitigating member is provided such that the compensation member is interposed between the warp mitigating member and the base plate. It is characterized by.
  • the arrayed waveguide grating optical multiplexer / demultiplexer according to the present invention is the above-described invention, wherein an adhesive surface between the warp mitigating member and the base plate and an adhesive surface between the warp mitigating member and the compensation member are substantially parallel. It is characterized by being.
  • the arrayed waveguide grating optical multiplexer / demultiplexer according to the present invention is the above invention, wherein an adhesive surface between the warp mitigating member and the base plate and an adhesive surface between the warp mitigating member and the compensation member are non-parallel. It is characterized by being.
  • the arrayed waveguide grating optical multiplexer / demultiplexer according to the present invention is characterized in that, in the above invention, the warp mitigating member is made of a material that transmits ultraviolet rays.
  • the arrayed waveguide grating optical multiplexer / demultiplexer according to the present invention is characterized in that, in the above invention, the warp mitigating member and the base plate have the same linear expansion coefficient.
  • the arrayed waveguide grating optical multiplexer / demultiplexer according to the present invention is the above-described invention, wherein the arrayed waveguide grating chip and the base plate are the first slab waveguide or the second slab waveguide.
  • a fixed piece and a movable piece are cut at the cutting plane crossing the line to form a fixed piece and a movable piece, and the compensation member is provided to be spanned between the fixed piece and the movable piece.
  • the arrayed waveguide grating optical multiplexer / demultiplexer according to the present invention is the above-described invention, wherein the fixed piece is joined and the movable piece abuts on the reference plate, and the movable piece is on the reference plate. And a clip for sandwiching the reference plate and the movable piece so as to be slidable.
  • the arrayed waveguide grating optical multiplexer / demultiplexer according to the present invention is characterized in that, in the above invention, the arrayed waveguide grating chip has a shape along the contour of the arrayed waveguide grating. To do.
  • FIG. 1 is a schematic top view of an AWG type optical multiplexer / demultiplexer according to the first embodiment.
  • FIG. 2 is a rear view of the AWG type optical multiplexer / demultiplexer shown in FIG.
  • FIG. 5 is a diagram illustrating a case where a step is generated between two base plate pieces.
  • FIG. 6 is a diagram for explaining a manufacturing process of the AWG type optical multiplexer / demultiplexer shown in FIG. FIG.
  • FIG. 7 is a diagram for explaining a manufacturing process of the AWG type optical multiplexer / demultiplexer shown in FIG.
  • FIG. 8 is a diagram showing the measurement points of the step.
  • FIG. 9 is a diagram illustrating the temperature dependence of the variation of the transmission center wavelength and the insertion loss of the AWG type optical multiplexer / demultiplexer according to the first embodiment.
  • FIG. 10 is a diagram showing the temperature dependence of the variation of the transmission center wavelength and the insertion loss for a certain sample of the AWG type optical multiplexer / demultiplexer of Comparative Example 1.
  • FIG. 11 is a schematic top view of the AWG type optical multiplexer / demultiplexer according to the second embodiment.
  • FIG. 11 is a schematic top view of the AWG type optical multiplexer / demultiplexer according to the second embodiment.
  • FIG. 12 is a diagram showing the temperature dependence of the transmission center wavelength and insertion loss variation of the AWG type optical multiplexer / demultiplexer according to the second embodiment.
  • FIG. 13 is a schematic cross-sectional side view of a main part of an AWG type optical multiplexer / demultiplexer according to the third embodiment.
  • FIG. 14 is a schematic cross-sectional side view of a main part of an AWG type optical multiplexer / demultiplexer according to the fourth embodiment.
  • FIG. 1 is a schematic top view of an AWG type optical multiplexer / demultiplexer 100 according to the first embodiment.
  • FIG. 2 is a rear view of the AWG type optical multiplexer / demultiplexer 100 shown in FIG. 3 is a cross-sectional view of the AWG type optical multiplexer / demultiplexer 100 shown in FIG.
  • the AWG type optical multiplexer / demultiplexer 100 includes an AWG chip 10, a base plate 20, a reference plate 30, a clip 40, a compensation member 50, and a warp mitigating member 51. ing.
  • the AWG chip 10 is made of silica glass on a substrate made of silicon, quartz glass, or the like, and each waveguide constituting the AWG 10A, that is, a first input / output waveguide 10Aa to which light is input and output, and a first input.
  • a first slab waveguide 10Ab connected to the output waveguide 10Aa
  • an array waveguide 10Ac connected to the first slab waveguide 10Ab
  • a second slab waveguide 10Ad connected to the array waveguide 10Ac
  • This is a planar lightwave circuit (PLC) chip formed with a plurality of second input / output waveguides 10Ae connected to the slab waveguide 10Ad and through which light is input and output.
  • PLC planar lightwave circuit
  • the optical fiber core wire 2 to which the optical connector 1 is attached is connected to the first input / output waveguide 10Aa of the AWG chip 10.
  • the optical fiber core 2 is for inputting / outputting signal light to / from the first input / output waveguide 10Aa.
  • An optical fiber tape 4 to which an optical connector 3 is attached is connected to the second input / output waveguide 10Ae.
  • the optical fiber tape 4 includes a plurality of optical fiber cores that are connected to the second input / output waveguides 10Ae and allow signal light to be input / output through the waveguides 10Ae.
  • the arrayed waveguide 10Ac is configured such that channel waveguides having different lengths are arranged in parallel at a predetermined pitch.
  • Each channel waveguide is bent in an arc shape and is arranged in the order of increasing length from the inner circumference side to the outer circumference side of the arc.
  • the difference in optical path length between adjacent channel waveguides is the same.
  • the number of channel waveguides is set according to the number of channels of the input WDM signal light.
  • the first slab waveguide 10Ab and the second slab waveguide 10Ad are linearly formed. Further, the first input / output waveguide 10Aa and the plurality of second input / output waveguides 10Ae are bent in an arc shape in a direction opposite to that of the array waveguide 10Ac.
  • the number of the plurality of second input / output waveguides 10Ae is set to the number of channels of the WDM signal light to be used, for example, 40.
  • the AWG chip 10 has a shape (boomerang shape) bent along the outline shape of the AWG 10A.
  • the base plate 20 is bonded to the lower surface of the AWG chip 10 with an adhesive 61.
  • the adhesive 61 is, for example, an epoxy ultraviolet curing adhesive.
  • the base plate 20 is made of, for example, quartz glass.
  • the base plate 20 is preferably made of a material having substantially the same linear expansion coefficient as the AWG chip 10, but is not particularly limited.
  • the AWG chip 10 and the base plate 20 are cut into two at the cut surface C in a joined state, and separated into a fixed piece 71 and a movable piece 72.
  • the cut surface C crosses the first slab waveguide 10Ab along a direction substantially perpendicular to the longitudinal direction of the first slab waveguide 10Ab, and is bent by about 90 degrees in the middle.
  • those included in the fixed piece 71 are referred to as an AWG chip fragment 11 and a base plate piece 21, respectively.
  • the AWG chip fragment 12 and the base plate piece 22 are included in the movable piece 72, respectively.
  • the fixed piece 71 and the movable piece 72 are arranged with a groove G formed by the cut surface C therebetween.
  • the groove G is preferably filled with matching oil or matching grease.
  • the reference plate 30 is joined to the fixed piece 71 and the movable piece 72. That is, the fixed piece 71 is joined to the predetermined region 31 on the surface by, for example, an epoxy-based ultraviolet curable adhesive. On the other hand, the movable piece 72 is not joined to the fixed piece 71.
  • standard board 30 is not specifically limited, For example, what consists of quartz glass can be used.
  • the clip 40 holds the reference plate 30 and the movable piece 72 as shown in FIGS.
  • a pressing force F as shown in FIG. 3 is applied to the reference plate 30 and the movable piece 72, and this pressing force F is set to such a magnitude that the movable piece 72 can slide on the reference plate 30.
  • a so-called Zem clip can be used which is formed by bending a single rod made of metal such as steel.
  • the compensation member 50 has a plate shape and is provided so as to be spanned between the fixed piece 71 and the movable piece 72, and is fixed to the fixed piece 71 and the movable piece 72 by an adhesive via a warp mitigating member 51. Has been.
  • the compensation member 50 extends substantially parallel to the cut surface C in the first slab waveguide 10Ab.
  • the AWG chip 10 since the AWG chip 10 has a boomerang shape along the shape of the AWG 10A, the AWG chip 10 has no space for joining the compensation member 50. Therefore, the compensation member 50 is joined to the base plate pieces 21 and 22.
  • the compensation member 50 is made of, for example, aluminum (for example, pure aluminum (JIS: A1050)).
  • the compensation member 50 may have an anodized surface (anodized) on its surface.
  • the warp mitigating member 51 is plate-shaped and has a linear expansion coefficient that is greater than or equal to the linear expansion coefficient of the base plate 20 (that is, the base plate piece 21 and the base plate piece 22) and less than the linear expansion coefficient of the compensation member 50. .
  • the operation of the AWG type optical multiplexer / demultiplexer 100 will be described.
  • the first slab waveguide 10Ab is the first slab waveguide 10Ab.
  • the WDM signal light input from the input / output waveguide 10Aa is spread by diffraction and input to the arrayed waveguide 10Ac.
  • the arrayed waveguide 10Ac adds a phase difference to the signal light included in the WDM signal light and inputs the signal light to the second slab waveguide 10Ad.
  • the second slab waveguide 10Ad condenses each signal light having a different wavelength on each of the plurality of second input / output waveguides 10Ae by the phase difference added by the arrayed waveguide 10Ac. As a result, signal light having different wavelengths is demultiplexed and output from each of the plurality of second input / output waveguides 10Ae.
  • the AWG type optical multiplexer / demultiplexer 100 functions as a wavelength division multiplexing optical demultiplexer.
  • the AWG type optical multiplexer / demultiplexer 100 functions as a wavelength division multiplexing optical multiplexer. Therefore, the AWG type optical multiplexer / demultiplexer 100 functions as a wavelength multiplexing optical multiplexer / demultiplexer.
  • the refractive index of the material constituting the AWG chip is temperature-dependent, when the AWG chip changes in temperature, the wavelength of light collected on each of the plurality of second input / output waveguides Shift from the wavelength that should be collected. As a result, the light transmission center wavelength of the AWG chip is shifted.
  • the movable member 72 is slid by the compensation member 50 extending and contracting in the direction D according to the temperature change of the AWG type optical multiplexer / demultiplexer 100.
  • the temperature-dependent shift of the light transmission center wavelength of the AWG chip 10 is compensated by changing the relative position of the fixed piece 71 and the movable piece 72.
  • athermalization of the AWG type optical multiplexer / demultiplexer 100 is realized.
  • the compensation member 50 extends substantially in parallel with the cut surface C in the first slab waveguide 10Ab, the expansion / contraction direction D is also substantially parallel to the cut surface C. Therefore, even when the compensation member 50 expands and contracts, the width of the groove G hardly changes. As a result, even if the compensation member 50 expands and contracts, the optical characteristics of the AWG type optical multiplexer / demultiplexer 100 are stabilized without fluctuation.
  • the position correction amount dx by the compensation member 50 for compensating for the temperature-dependent shift of the light transmission center wavelength of the AWG chip 10 is set by the following equation (1) using the circuit parameters of the AWG chip 10 and the like. Can do.
  • L f is the focal length of the first slab waveguide 10Ab
  • [Delta] L is the optical path difference between the channels adjacent waveguides in the arrayed waveguide 10Ac
  • d is the pitch between the channels adjacent waveguides in the arrayed waveguide 10Ac
  • n s is the The effective refractive index of one slab waveguide 10Ab
  • ng is the group refractive index of the arrayed waveguide 10Ac
  • d ⁇ / dT is the temperature dependence of the transmission center wavelength (eg, 0.011 nm / ° C.)
  • ⁇ T is the amount of temperature change.
  • ⁇ 0 is a wavelength at which the diffraction angle becomes 0 degree in the first slab waveguide 10Ab, and is called a center wavelength of the AWG.
  • the linear expansion coefficient and length of the compensation member 50 are set so that the movable piece 72 slides by the position correction amount dx expressed by the equation (1), thereby reducing the light of the AWG chip 10.
  • a temperature-dependent shift of the transmission center wavelength can be compensated.
  • the clip 40 applies the pressing force F and sandwiches the reference plate 30 and the movable piece 72, the relative position between the fixed piece 71 and the movable piece 72 changes due to expansion and contraction of the compensation member 50. However, the fluctuation of the optical axis of the AWG type optical multiplexer / demultiplexer 100 is suppressed.
  • the clip 40 since the fixed piece 71 is joined to the reference plate 30, the clip 40 only needs to press the movable piece 72 against the reference plate 30. Thereby, the pressing force F to be applied by the clip 40 may be small. As a result, since a small and simple clip 40 can be used, the component cost is reduced. Further, since the clip 40 only needs to press the movable piece 72 against the reference plate 30, it is not necessary to use complicated and expensive parts such as a pressing board, and the cost can be reduced and the size can be reduced.
  • the movable piece 72 to be clamped by the clip 40 has a smaller mass than the fixed piece 71 joined to the reference plate 30, so that a smaller and simpler clip 40 can be used. .
  • FIG. 4 is a cross-sectional view taken along line YY of the AWG type optical multiplexer / demultiplexer 100 shown in FIG.
  • the compensation member 50 has two substantially rectangular parallelepiped convex portions 50a formed at both ends in the longitudinal direction.
  • a warp mitigating member 51 is bonded to each of the two convex portions 50 a via an adhesive 62.
  • the two warp mitigating members 51 are respectively bonded to the base plate piece 21 included in the fixed piece 71 and the base plate piece 22 included in the movable piece 72 via an adhesive 63.
  • the compensation member 50 is fixed to the base plate piece 21 and the base plate piece 22 via the adhesives 62 and 63, respectively, with the warp mitigating member 51 interposed.
  • the adhesives 62 and 63 are, for example, epoxy-based ultraviolet curing adhesives.
  • the warp mitigating member 51 has a linear expansion coefficient that is equal to or greater than the linear expansion coefficient of the base plate 20 (that is, the base plate piece 21 and the base plate piece 22) and less than the linear expansion coefficient of the compensation member 50.
  • the base plate and the compensation member are directly bonded with an adhesive.
  • the linear expansion coefficient differs between the base plate and the compensation member. May occur and warp may occur. When such warpage occurs, a step may be generated between the two base plate pieces or between the two AWG chip pieces bonded to the base plate piece.
  • FIG. 5 is a diagram illustrating a case where a step is generated between two base plate pieces.
  • a step t is generated between the base plate piece 22 and the base plate piece 21.
  • the AWG chip fragment 12 bonded to the base plate piece 22 via the adhesive 61 and the AWG chip fragment 11 bonded to the base plate piece 21 existing on the back side of the paper surface. (See FIG. 1 etc.)
  • the optical axes of the AWG chip fragment 11 and the AWG chip fragment 12 (that is, the optical axis of the first slab waveguide 10Ab formed across the AWG chip fragment 11 and the AWG chip fragment 12) are shifted. It becomes.
  • Such an optical axis shift is corrected by the pressing force of the clip 40, but it causes a shift in transmission center wavelength and an increase in insertion loss. Further, the deviation of the optical axis causes, for example, the generation of temperature hysteresis at the transmission center wavelength. Furthermore, if the pressing force of the clip 40 is increased in order to correct the deviation of the optical axis, the frictional force between the reference plate and the movable piece increases, which may further increase the temperature hysteresis.
  • the magnitude of the warp occurring in FIG. 5 also depends on the thickness of the adhesive 64.
  • the thickness of the adhesive 64 is, for example, 2 ⁇ m to 10 ⁇ m, but it is difficult to keep the thickness of the adhesive 64 constant during manufacture.
  • temperature dependent characteristics of optical characteristics such as transmission wavelength and insertion loss vary among AWG type optical multiplexers / demultiplexers.
  • the base plate piece 22 is made of quartz glass (linear expansion coefficient; 4.3 ⁇ 10 ⁇ 7 / ° C., Young's modulus 73 GPa), and the compensation member 50 is pure aluminum (linear expansion coefficient; 2.3 ⁇ 10 ⁇ 5 /
  • the step t at the center in the width direction of the AWG chip fragment 12 in the YY cross section is, for example, 4 ⁇ m. It was confirmed by calculation and actual measurement.
  • warpage occurs in the V shape with the center in the width direction in the YY cross section of the bonded portion of the compensation member 50 as an axis.
  • the warpage is about 1.5 ⁇ m.
  • the warp mitigating member 51 having a linear expansion coefficient that is greater than or equal to the linear expansion coefficient of the base plate 20 and less than the linear expansion coefficient of the compensation member 50 is used as the compensation member 50 and the base plate. Since it is interposed between the piece 21 and the base plate piece 22, the stress generated between the base plate 20 and the compensation member 50 during temperature fluctuation is relieved. Thereby, the curvature of the base plate piece 22 is suppressed. Accordingly, since the step t generated between the base plate piece 22 and the base plate piece 21 is reduced, the transmission center wavelength shift, the insertion loss is increased, the temperature hysteresis of the transmission center wavelength is generated, or the AWG type optical multiplexer / demultiplexer. Variations in the temperature-dependent characteristics of the optical characteristics are suppressed. As a result, the AWG type optical multiplexer / demultiplexer 100 according to the first embodiment has good temperature dependency of the optical characteristics.
  • the linear expansion coefficient of the warp mitigating member 51 is more preferably a value closer to the linear expansion coefficient of the base plate 20 than the intermediate value between the linear expansion coefficient of the base plate 20 and the linear expansion coefficient of the compensation member 50. More preferably, it is the same value as the linear expansion coefficient of 20.
  • a silica material (SiO 2 glass particles) serving as a lower cladding layer and a core layer is sequentially deposited on a substrate made of silicon, quartz glass, or the like by a flame deposition (FHD) method. Is heated and made transparent.
  • FHD flame deposition
  • a core layer is formed on the waveguide pattern of the plurality of AWGs 10A using photolithography and reactive ion etching.
  • an upper cladding layer is formed again by the FHD method so as to cover the upper and side portions of the waveguide pattern.
  • a first input / output waveguide 10Aa, a first slab waveguide 10Ab, an arrayed waveguide 10Ac, a second slab waveguide 10Ad, and a plurality of second input / output waveguides are formed on the substrate S.
  • a plurality of AWGs 10A formed of the waveguide 10Ae are cut along a cutting line L along the outline of the AWG 10A using a CO 2 laser.
  • the cutting may be performed using not only the CO 2 laser but also various processing lasers, water jets, and the like.
  • the substrate is cut into a rectangular shape including the AWG. Also, a larger number of AWG chips 10 can be obtained from one substrate S. As a result, the AWG chip 10 can be manufactured at low cost.
  • the base plate 20 is bonded to the manufactured AWG chip 10 with an adhesive 61 (see FIG. 3).
  • the AWG chip 10 and the base plate 20 are cut into two at the cut surface C in a joined state, and separated into a fixed piece 71 and a movable piece 72. Thereafter, the fixed piece 71 is joined to the reference plate 30 and the movable piece 72 is brought into contact therewith.
  • the warp mitigating member 51 is bonded to each of the two convex portions 50 a of the compensation member 50 via an adhesive 62.
  • the warp mitigating member 51 is made of a material that transmits ultraviolet rays, such as quartz glass
  • the adhesive 62 can be irradiated with ultraviolet rays through the warp mitigating member 51 when the adhesive 62 is an ultraviolet curing adhesive.
  • the compensation member 50 to which the warp mitigating member 51 is bonded is annealed at a temperature higher than the operating temperature of the AWG type optical multiplexer / demultiplexer 100 to relieve the stress of the adhesive 62 and remove the distortion.
  • the annealing temperature is 90 ° C., for example.
  • one warp mitigating member 51 is bonded to the base plate piece 22 with an adhesive 63.
  • the other warp mitigating member 51 is bonded to the base plate piece 21 via an adhesive 63.
  • the base plate pieces 21 and 22 are made of a material that transmits ultraviolet rays, such as quartz glass, the ultraviolet ray is passed through the base plate pieces 21 and 22 when the adhesive 63 is an ultraviolet curable adhesive. It is preferable because it can be irradiated.
  • annealing is performed at a temperature higher than the operating temperature of the AWG type optical multiplexer / demultiplexer 100 as described above.
  • the warp of the warp mitigating member 51 and the compensating member 50 is absorbed by the adhesive 63, the warp is hardly transmitted to the base plate pieces 21 and 22.
  • the warp mitigating member 51 is bonded to the compensation member 50 via the adhesive 62, and after annealing, the warp mitigating member 51 is bonded to the base plate pieces 21 and 22 via the adhesive 63. Since the fluctuation of the environmental temperature is large, the effect of suppressing the warp generated in the base plate pieces 21 and 22 by the warp mitigating member 51 is effectively exhibited.
  • a sealing process may be performed to close the surface micropores in order to stabilize the surface state.
  • the adhesive strength of the adhesive is increased.
  • the adhesive strength varies depending on the time during which the surface is exposed to air from the alumite treatment to the time when the adhesive is applied, which causes the adhesive strength to vary.
  • the warp mitigating member 51 is attached to the compensation member 50 after anodizing. Since it is easy to manage the time until bonding to be constant, the bonding strength between the compensation member 50 and the warp mitigating member 51 is stabilized.
  • the effect of the warp mitigating member 51 does not depend on the order of processes.
  • the warp mitigating member 51 is bonded to the base plate pieces 21 and 22 via the adhesive 63, and then annealed, and then the warp mitigating member 51 is bonded to the warp mitigating member 51 via the adhesive 62.
  • the process of adhering 50 may be performed.
  • the compensation member 50, the warp mitigating member 51, and the base plate pieces 21 and 22 are simultaneously bonded via the adhesives 62 and 63, and then annealing is performed.
  • the warp mitigating member 51 has a linear expansion coefficient that is greater than or equal to the linear expansion coefficient of the base plate 20 and less than the linear expansion coefficient of the compensation member 50, the base plate 20 and the compensation member Since the stress between 50 is relieved, the warp of the base plate 20 is relieved.
  • the AWG type optical multiplexer / demultiplexer 100 according to Embodiment 1 has good temperature dependency of optical characteristics.
  • Example 1 an AWG type optical multiplexer / demultiplexer having the configuration of Embodiment 1 shown in FIG. 1 was manufactured according to the above manufacturing method.
  • the compensation member a pure aluminum (JIS: A1050) plate material whose entire surface was anodized and not sealed was used.
  • Comparative Example 1 the same AWG type optical multiplexer / demultiplexer as in Example 1 except that the compensation member and the base plate piece are directly bonded with an adhesive without using the warp mitigating member as shown in FIG. Manufactured.
  • Table 1 is a diagram showing circuit parameters of the AWG type optical multiplexer / demultiplexer of Example 1 and Comparative Example 1. Using this circuit parameter, the length of the compensation member was set to 18.0 mm.
  • the step between the base plate pieces was measured.
  • the steps were measured at measurement points P1, P2, and P3 corresponding to both ends and the center of the AWG chip pieces 11 and 12 of the AWG type optical multiplexer / demultiplexer 100 as shown in FIG.
  • Comparative Example 1 measurement was performed at the same measurement point.
  • measurement was performed with no clip attached.
  • the steps at the measurement points P1, P2, and P3 were about 10 ⁇ m, about 7 ⁇ m, and about 3 ⁇ m, respectively, as average values of 10 samples.
  • the steps at the measurement points P1, P2, and P3 were all 1 ⁇ m or less as an average value of 10 samples.
  • the warpage of the warp mitigation member after the warp mitigation member was bonded to the compensation member and annealed at 90 ° C. was measured to be about 1.5 ⁇ m. Warpage occurred. However, when the warp of the base plate piece of the manufactured AWG type optical multiplexer / demultiplexer of Example 1 was measured, almost no warp occurred.
  • FIG. 9 is a diagram showing the temperature dependence of the variation of the transmission center wavelength and the insertion loss of the AWG type optical multiplexer / demultiplexer according to the first embodiment.
  • transmission center wavelength and “insertion loss” are simply described as “center wavelength” and “loss”, respectively.
  • the AWG type optical multiplexer / demultiplexer of Example 1 had a small variation in transmission center wavelength and insertion loss.
  • the graph of the temperature dependence of the variation of the transmission center wavelength is, in principle, a smooth quadratic curve convex downward, but in FIG. 9 and the following FIGS. 10 and 12, in order to make the hysteresis easier to see, Data points at the measured temperature are connected by straight lines.
  • FIG. 10 is a diagram showing the temperature dependence of the variation of the transmission center wavelength and the insertion loss for a certain sample of the AWG type optical multiplexer / demultiplexer of Comparative Example 1.
  • a certain sample of the AWG type optical multiplexer / demultiplexer of Comparative Example 1 had a large variation in transmission center wavelength and insertion loss, and a large hysteresis with respect to the transmission center wavelength.
  • Comparative Example 1 it is difficult to stably reduce the level difference in all samples, and some samples have deteriorated optical characteristics, resulting in variations in characteristics.
  • FIG. 11 is a schematic top view of an AWG type optical multiplexer / demultiplexer according to Embodiment 2 of the present invention.
  • the AWG type optical multiplexer / demultiplexer 200 has the same configuration as the AWG type optical multiplexer / demultiplexer 100 according to Embodiment 1 except that the clip 40 is not used.
  • the AWG type optical multiplexer / demultiplexer 200 has a good temperature dependency of optical characteristics and does not use the clip 40, so the number of parts is reduced. And the occurrence of temperature hysteresis is further suppressed.
  • Example 2 As Example 2 of the present invention, an AWG type optical multiplexer / demultiplexer having the configuration of Embodiment 2 shown in FIG.
  • FIG. 12 is a graph showing the temperature dependence of the variation of the transmission center wavelength and insertion loss of the AWG type optical multiplexer / demultiplexer according to the second embodiment. As shown in FIG. 12, in the AWG type optical multiplexer / demultiplexer of the second example, the fluctuations in the transmission center wavelength and the insertion loss are as small as those in the first example shown in FIG.
  • the warp mitigating member is provided so as to be interposed between the base plate and the compensation member.
  • the curvature reduction member is provided so that a compensation member may interpose between the said curvature reduction member and a base plate.
  • FIG. 13 is a schematic cross-sectional side view of an essential part of an AWG type optical multiplexer / demultiplexer according to Embodiment 3 of the present invention. Since the first embodiment and the third embodiment are different only in the positional relationship among the warp mitigating member, the base plate, and the compensation member, this point will be described below.
  • one warp mitigating member 51 has a compensating member 50 interposed between the warp mitigating member 51 and the base plate piece 22. It is provided as follows. Similarly, the other warp mitigating member 51 is also provided so that the compensation member 50 is interposed between the warp mitigating member 51 and the base plate piece 21. Specifically, the compensation member 50 is bonded to the base plate pieces 21 and 22 via the adhesive 63 at the convex portion 50a. In addition, it is preferable to have the convex portion 50a as described above, because the adhesion area between the compensation member 50 and the base plate pieces 21 and 22 can be easily managed to be constant. Further, the warp mitigating member 51 is bonded to the compensation member 50 via the adhesive 62 on the side opposite to the side where the convex portion 50a is provided.
  • the compensation member 50 and the base plate pieces 21 and 22 are provided.
  • the stress generated between the two is relaxed.
  • warpage occurring in the base plate pieces 21 and 22 is suppressed, and the step between the base plate pieces 21 and 22 is also reduced.
  • the AWG type optical multiplexer / demultiplexer 300 according to the third embodiment has good temperature dependency of the optical characteristics.
  • the region where the warp mitigating member 51 is bonded to the compensation member 50 is a region where the stress generated between the compensating member 50 and the base plate pieces 21 and 22 is mitigated by the presence of the warp mitigating member 51. If it is.
  • the adhesive surface between the warp mitigating member 51 and the base plate 20 (the base plate pieces 21 and 22) and the adhesive surface between the warp mitigating member 51 and the compensation member 50 are substantially parallel. However, it may be non-parallel.
  • FIG. 14 is a schematic cross-sectional side view of a main part of an AWG type optical multiplexer / demultiplexer according to Embodiment 4 of the present invention. Since the first embodiment and the fourth embodiment differ only in the positional relationship between the warp mitigating member, the base plate, and the compensation member, and only the shapes of the warp mitigating member and the compensation member, this point will be described below.
  • the warp mitigating member 451 is provided so as to be interposed between the base plate pieces 21 and 22 and the compensating member 450.
  • the warp mitigating member 451 has a rectangular parallelepiped shape, for example.
  • the compensation member 450 is, for example, a plate shape without a convex portion.
  • the compensation member 450 is bonded to the side surface 451a of the warp mitigating member 451 via the adhesive 462 on the side surface 450a.
  • the warp mitigating member 451 is bonded to the base plate pieces 21 and 22 via an adhesive 463.
  • the adhesives 462 and 463 are, for example, epoxy ultraviolet curing adhesives.
  • the warp mitigation member 451 even if the adhesion surface between the warp mitigation member 451 and the base plate 20 (the base plate pieces 21 and 22) and the adhesion surface between the warp mitigation member 451 and the compensation member 450 are substantially perpendicular, the warp mitigation member 451. As a result, the stress generated between the base plate 20 and the compensation member 450 is relieved. As a result, the AWG type optical multiplexer / demultiplexer 400 according to the fourth embodiment has good temperature dependence of optical characteristics.
  • the adhesive surface between the warp mitigating member 451 and the base plate 20 (the base plate pieces 21 and 22) and the adhesive surface between the warp mitigating member 451 and the compensation member 450 are substantially perpendicular to each other.
  • the surface may be in another non-parallel state, for example acute or obtuse.
  • the warp mitigating member 451 may have a wedge shape, the side surface 451a may be inclined, and the side surface 450a of the compensation member 450 may also be inclined corresponding to the side surface 451a.
  • the warp mitigating member 451 is made of a material that transmits ultraviolet rays
  • the ultraviolet rays are passed through the warp mitigating member 451 to the adhesive 62 when the adhesives 462 and 463 are ultraviolet curing adhesives.
  • the base plate 20 may not be made of a material that transmits ultraviolet light, and may be made of a material such as silicon having a linear expansion coefficient larger than that of quartz glass. .
  • an epoxy ultraviolet curable adhesive is used as the adhesive, but a thermosetting adhesive may be used.
  • a thermosetting adhesive may be used.
  • a coupling agent such as a silane coupling agent is applied to the surface of the compensation member, the base plate, or the warp mitigating member to be bonded, and the adhesive is bonded with the adhesive via the coupling agent, the adhesive strength is further increased. Therefore, it is preferable.
  • the smaller one of the AWG chips cut and separated is pressed with a clip as a movable piece.
  • the larger piece is pressed with a clip as a movable piece. May be. That is, only one of the separated AWG chips is pressed against the reference plate with the clip, and the other is joined and fixed to the reference plate, whereby the clip can be made small and simple.
  • the first slab waveguide is cut and separated.
  • the second slab waveguide or both the first slab waveguide and the second slab waveguide are cut and separated. It may be.
  • the concave portion may be formed by subjecting the surface of the reference plate to uneven processing such as frost processing or by providing a groove.
  • uneven processing such as frost processing
  • the aspect will not be specifically limited.
  • the extending direction is not restricted to the direction along the cut surface of an AWG chip
  • the constituent material of the base plate and the reference plate is not limited to quartz glass. If the length of the compensation member is determined in consideration of the linear expansion coefficients of the constituent materials of the base plate and the reference plate, various materials such as metals, semiconductors, and ceramics can be used.
  • the compensation member is not limited to aluminum or anodized aluminum, but may be another metal such as copper or a surface treated to prevent alteration.
  • the position where the AWG chip and the base plate are joined and the position where the compensation member is bridged are not limited to those in the embodiment, and the position of the AWG chip cut by expansion and contraction of the compensation member can be changed relatively. Any position is acceptable.
  • the arrayed waveguide diffraction grating chip and the base plate are cut into two at the cutting plane crossing the first slab waveguide to form a fixed piece and a movable piece.
  • the base plate does not necessarily have to be completely cut, and may be cut in part along the cut surface of the arrayed waveguide grating chip and connected in part.
  • the compensation member is stretched over the region of the base plate separated by the cut surface, when the compensation member expands and contracts, the relative position between the separated portions changes with the connected portion as a fulcrum. It will be.
  • the change amount of the relative position may be adjusted to a change amount that compensates for the shift of the transmission center wavelength depending on the temperature change.
  • the substrate is cut along the outline of the AWG to obtain a boomerang-shaped AWG chip.
  • the substrate may be cut into a rectangle to obtain a rectangular AWG chip.
  • the arrayed waveguide diffraction grating type optical multiplexer / demultiplexer according to the present invention is suitable for use in optical communication.
  • Optical connector 2 Optical fiber core wire 4
  • Optical fiber tape 10 AWG chip 10A AWG 10Aa first input / output waveguide 10Ab first slab waveguide 10Ac array waveguide 10Ad second slab waveguide 10Ae second input / output waveguide 11, 12 AWG chip fragment 20 base plate 21, 22 base plate piece 30 reference plate 40 clip 50, 450 Compensation member 50a Convex part 51, 451 Warp mitigation member 61, 62, 63, 64, 462, 463 Adhesive 71 Fixed piece 72 Movable piece 100, 200, 300, 400 AWG type optical multiplexer / demultiplexer C Cut surface D Direction F Pressing force G Groove L Cutting line P1, P2, P3 Measurement point S Substrate

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

 第1入出力導波路に接続された第1スラブ導波路、第1スラブ導波路に接続された複数のチャネル導波路からなるアレイ導波路、アレイ導波路に接続された第2スラブ導波路、および第2スラブ導波路に接続された複数の第2入出力導波路、を有し、第1または第2スラブ導波路を横断する切断面で2つに切断されたAWGチップと、AWGチップの下面に接合されAWGチップの切断面に沿って少なくとも一部で切断された下地板と、切断面で離隔された下地板の領域に掛け渡されるように設けられ、AWGの光透過中心波長の温度依存シフトを補償する補償部材と、下地板の線膨張係数以上かつ補償部材の線膨張係数未満の線膨張係数を有し、下地板-補償部材間の応力を緩和するように、接着剤を介して補償部材に接着された反り緩和部材と、を備える。

Description

アレイ導波路回折格子型光合分波器
 本発明は、アレイ導波路回折格子型光合分波器に関する。
 アレイ導波路回折格子(Arrayed Waveguide Grating:AWG)を利用した波長合分波器は、構成材料である石英系ガラスの屈折率に温度依存性があるため、透過中心波長に温度依存性が生じることが知られている。
 石英系ガラスからなるAWGの透過中心波長の温度依存性dλ/dTは、0.011nm/℃であり、D-WDM(Dense-Wavelength Division Multiplexing)光伝送システムで使用するためには、無視できない大きな値となっている。
 温度依存性を解消するために、電力を用いる加熱素子や冷却素子によってAWGの温度を一定に制御する技術がある。しかしながら、近年多様化が進むD-WDM光伝送システムにおいては、AWGに対して、電力を必要としないアサーマル化(温度無依存化)が強く求められている。
 補償部材を用いてアサーマル化を実現したアレイ導波路回折格子型光合分波器(以下、適宜AWG型光合分波器と記載する)が特許文献1、2に開示されている。特許文献1、2のAWG型光合分波器は、AWGチップを、スラブ導波路を横断するように切断し、切断により分離した部分間を掛け渡すように所定の熱膨張係数を有する補償部材を設けた構成を有する。このAWG型光合分波器の温度が変化した場合には、補償部材が伸縮し、分離した部分間の相対位置を変化させる。この相対位置の変化量は、温度変化に依存した透過中心波長のシフトが補償されるような変化量に調整されている。これによって、AWG型光合分波器のアサーマル化が実現されている。
特許第3764105号公報 特開2009-237205号公報
 ところが、AWG型光合分波器を製造した場合に、複数のAWG型光合分波器間でその透過波長や挿入損失等の光学特性の温度依存特性がばらついたり、各AWG型光合分波器において温度変動に対して光学特性にヒステリシスが生じたりして、温度特性が良くない場合があった。
 本発明は、上記に鑑みてなされたものであって、光学特性の温度依存特性が良好なアレイ導波路回折格子型光合分波器を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係るアレイ導波路回折格子型光合分波器は、光が入出力される第1入出力導波路と、前記第1入出力導波路に接続された第1スラブ導波路と、前記第1スラブ導波路に接続され、互いに長さが異なり並列に配列された複数のチャネル導波路からなるアレイ導波路と、前記アレイ導波路に接続された第2スラブ導波路と、前記第2スラブ導波路に接続された、光が入出力される複数の第2入出力導波路と、を有し、前記第1スラブ導波路または前記第2スラブ導波路を横断する切断面において2つに切断されたアレイ導波路回折格子チップと、前記アレイ導波路回折格子チップの下面に接合され、前記アレイ導波路回折格子チップの切断面に沿って少なくとも一部で切断された下地板と、前記切断面で離隔された前記下地板の領域に掛け渡されるように接着剤を介して固定され、温度変化に応じて伸縮して前記切断されたアレイ導波路回折格子チップのそれぞれの間の相対位置を変えることにより、前記アレイ導波路回折格子の光透過中心波長の温度依存シフトを補償する補償部材と、前記下地板の線膨張係数以上かつ前記補償部材の線膨張係数未満の線膨張係数を有し、前記下地板と前記補償部材との間に発生する応力を緩和するように、接着剤を介して前記補償部材に接着された反り緩和部材と、を備えることを特徴とする。
 また、本発明に係るアレイ導波路回折格子型光合分波器は、上記発明において、前記反り緩和部材は、前記下地板と前記補償部材との間に介在するように設けられていることを特徴とする。
 また、本発明に係るアレイ導波路回折格子型光合分波器は、上記発明において、前記反り緩和部材は、当該反り緩和部材と前記下地板との間に前記補償部材が介在するように設けられていることを特徴とする。
 また、本発明に係るアレイ導波路回折格子型光合分波器は、上記発明において、前記反り緩和部材と前記下地板との接着面と前記反り緩和部材と前記補償部材との接着面が略平行であることを特徴とする。
 また、本発明に係るアレイ導波路回折格子型光合分波器は、上記発明において、前記反り緩和部材と前記下地板との接着面と前記反り緩和部材と前記補償部材との接着面が非平行であることを特徴とする。
 また、本発明に係るアレイ導波路回折格子型光合分波器は、上記発明において、前記反り緩和部材は紫外線を透過する材料からなることを特徴とする。
 また、本発明に係るアレイ導波路回折格子型光合分波器は、上記発明において、前記反り緩和部材と前記下地板とは同一の線膨張係数を有することを特徴とする。
 また、本発明に係るアレイ導波路回折格子型光合分波器は、上記発明において、前記アレイ導波路回折格子チップと、前記下地板とは、前記第1スラブ導波路または前記第2スラブ導波路を横断する前記切断面において2つに切断されて、固定片および可動片を構成し、前記補償部材は、前記固定片と前記可動片との間に掛け渡されるように設けられていることを特徴とする。
 また、本発明に係るアレイ導波路回折格子型光合分波器は、上記発明において、前記固定片が接合されるとともに前記可動片が当接される基準板と、前記可動片が前記基準板上をスライドできるように前記基準板と前記可動片とを挟持するクリップと、をさらに備えることを特徴とする。
 また、本発明に係るアレイ導波路回折格子型光合分波器は、上記発明において、前記アレイ導波路回折格子チップは、前記アレイ導波路回折格子の輪郭形状に沿った形状を有することを特徴とする。
 本発明によれば、光学特性の温度依存特性が良好なアレイ導波路回折格子型光合分波器を実現できるという効果を奏する。
図1は、実施の形態1に係るAWG型光合分波器の模式的な上面図である。 図2は、図1に示すAWG型光合分波器の背面図である。 図3は、図1に示すAWG型光合分波器のX-X線断面図である。 図4は、図1に示すAWG型光合分波器のY-Y線断面図である。 図5は、2つの下地板片間に段差が発生する場合を説明する図である。 図6は、図1に示すAWG型光合分波器の製造工程を説明する図である。 図7は、図1に示すAWG型光合分波器の製造工程を説明する図である。 図8は、段差の測定点を示す図である。 図9は、実施例1のAWG型光合分波器の透過中心波長および挿入損失の変動の温度依存性を示す図である。 図10は、比較例1のAWG型光合分波器の或るサンプルについての透過中心波長および挿入損失の変動の温度依存性を示す図である。 図11は、実施の形態2に係るAWG型光合分波器の模式的な上面図である。 図12は、実施例2のAWG型光合分波器の透過中心波長および挿入損失の変動の温度依存性を示す図である。 図13は、実施の形態3に係るAWG型光合分波器の模式的な要部側断面図である。 図14は、実施の形態4に係るAWG型光合分波器の模式的な要部側断面図である。
 以下に、図面を参照して本発明に係るアレイ導波路回折格子型光合分波器の実施の形態を詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、各図面において、同一または対応する要素には適宜同一の符号を付している。さらに、図面は模式的なものであり、各要素の寸法の関係、各要素の比率などは、現実のものとは異なる場合があることに留意する必要がある。図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。
(実施の形態1)
 図1は、実施の形態1に係るAWG型光合分波器100の模式的な上面図である。図2は、図1に示すAWG型光合分波器100の背面図である。図3は、図1に示すAWG型光合分波器100のX-X線断面図である。
 図1~3に示すように、AWG型光合分波器100は、AWGチップ10と、下地板20と、基準板30と、クリップ40と、補償部材50と、反り緩和部材51と、を備えている。
 AWGチップ10は、シリコンや石英ガラス等からなる基板上に、石英系ガラスからなり、AWG10Aを構成する各導波路、すなわち、光が入出力される第1入出力導波路10Aaと、第1入出力導波路10Aaに接続された第1スラブ導波路10Abと、第1スラブ導波路10Abに接続されたアレイ導波路10Acと、アレイ導波路10Acに接続された第2スラブ導波路10Adと、第2スラブ導波路10Adに接続され、光が入出力される複数の第2入出力導波路10Aeとが形成された平面光波回路(Planar Lightwave Circuit:PLC)チップである。
 AWGチップ10の第1入出力導波路10Aaには、光コネクタ1が取り付けられた光ファイバ心線2が接続されている。光ファイバ心線2は第1入出力導波路10Aaに信号光を入出力させるためのものである。第2入出力導波路10Aeには、光コネクタ3が取り付けられた光ファイバテープ4が接続されている。光ファイバテープ4は各第2入出力導波路10Aeに接続してこれに信号光を入出力させるための複数の光ファイバ心線を含んでいる。
 アレイ導波路10Acは、互いに長さが異なるチャネル導波路が所定のピッチで並列に配列されたものである。各チャネル導波路は円弧状に屈曲しており、かつ円弧の内周側から外周側に向かって長さが長くなる順に配列されている。隣接するチャネル導波路の光路長の差は同一である。また、チャネル導波路の数は、入力されるWDM信号光のチャネル数に応じて設定されている。
 第1スラブ導波路10Abおよび第2スラブ導波路10Adは直線状に形成されている。また、第1入出力導波路10Aaおよび複数の第2入出力導波路10Aeはアレイ導波路10Acとは逆の方向に円弧状に屈曲している。複数の第2入出力導波路10Aeの数は、使用するWDM信号光のチャネル数に設定されており、たとえば40本である。また、AWGチップ10は、AWG10Aの輪郭形状に沿って屈曲した形状(ブーメラン形状)を有している。
 下地板20は、図3に示すように、AWGチップ10の下面に接着剤61によって接着されている。接着剤61はたとえばエポキシ系の紫外線硬化型の接着剤である。下地板20は、たとえば石英系ガラスからなる。下地板20はAWGチップ10と線膨張係数が略同一である材料からなるものが好ましいが、特に限定はされない。
 AWGチップ10と下地板20とは、接合された状態で切断面Cにおいて2つに切断され、固定片71と可動片72とに分離している。切断面Cは、第1スラブ導波路10Abの長手方向に略垂直な方向に沿って第1スラブ導波路10Abを横断し、かつ途中で略90度だけ屈曲している。ここで、分離したAWGチップ10および下地板20のうち、固定片71に含まれるものをそれぞれAWGチップ断片11、下地板片21とする。また、可動片72に含まれるものをそれぞれAWGチップ断片12、下地板片22とする。固定片71と可動片72とは切断面Cにより形成される溝Gを隔てて配置されている。第1スラブ導波路10Abにおける溝Gによる反射や光損失を抑制するために、溝Gにはマッチングオイルやマッチンググリースを充填することが好ましい。
 基準板30は、図3に示すように、固定片71が接合されるとともに可動片72が当接される。すなわち、固定片71は、表面の所定領域31に固定片71が、たとえばエポキシ系の紫外線硬化型接着剤等で接合されている。一方、可動片72は、固定片71には接合されていない。基準板30を構成する材料は特に限定されないが、たとえば石英ガラスからなるものを用いることができる。
 クリップ40は、図1、2に示すように、基準板30と可動片72とを挟持するものである。これによって、基準板30と可動片72とに図3に示すような押圧力Fが印加されるが、この押圧力Fは、可動片72が基準板30上をスライドできる程度の大きさとする。クリップ40は、たとえばいわゆるゼムクリップと同様に、スチール等の金属からなる1本の棒体を折り曲げて形成されたものを使用することができる。
 補償部材50は、板状であり、固定片71と可動片72との間に掛け渡されるように設けられ、固定片71と可動片72とにそれぞれ反り緩和部材51を介して接着剤によって固定されている。また、補償部材50は、第1スラブ導波路10Abにおける切断面Cと略平行に延伸している。なお、本実施の形態1では、AWGチップ10がAWG10Aの形状に沿ったブーメラン形状をしているので、AWGチップ10には補償部材50を接合するスペースが無い。そのため、補償部材50は下地板片21、22に接合されている。補償部材50は、たとえばアルミニウム(たとえば、純アルミニウム(JIS:A1050))からなる。補償部材50は、その表面に陽極酸化処理(アルマイト処理)をしたものでもよい。
 反り緩和部材51は、板状であって、下地板20(すなわち下地板片21および下地板片22)の線膨張係数以上かつ補償部材50の線膨張係数未満の線膨張係数を有している。
 つぎに、このAWG型光合分波器100の動作について説明する。
 AWG型光合分波器100のAWGチップ10では、第1入出力導波路10Aaから、波長が互いに信号光が波長多重されたWDM信号光が入力されると、第1スラブ導波路10Abは第1入出力導波路10Aaから入力されたWDM信号光を回折により広げてアレイ導波路10Acに入力させる。アレイ導波路10Acは、WDM信号光に含まれる信号光に位相差を付加して第2スラブ導波路10Adに入力させる。第2スラブ導波路10Adは、アレイ導波路10Acによって付加された位相差によって、波長の異なる各信号光を複数の第2入出力導波路10Aeのそれぞれに集光させる。その結果、複数の第2入出力導波路10Aeのそれぞれからは、互いに波長の異なる信号光が分波されて出力される。このように、AWG型光合分波器100は波長多重光分波器として機能する。
 一方、複数の第2入出力導波路10Aeのそれぞれから波長の異なる信号光を入力した場合は、光の相反性によって上記した作用と逆の作用が生じ、第1入出力導波路10Aaからは、複数の第2入出力導波路10Aeから入力された信号光が波長多重されたWDM信号光が出力される。この場合、AWG型光合分波器100は波長多重光合波器として機能する。したがって、AWG型光合分波器100は波長多重光合分波器として機能する。
 ここで、通常のAWGチップでは、AWGチップを構成する材料の屈折率に温度依存性があるため、AWGチップが温度変化すると、複数の第2入出力導波路のそれぞれに集光する光の波長が、本来集光されるべき波長からシフトする。その結果、AWGチップの光透過中心波長はシフトしてしまう。
 これに対して、本実施の形態1に係るAWG型光合分波器100では、AWG型光合分波器100の温度変化に応じて補償部材50が方向Dで伸縮することによって可動片72をスライドさせて、固定片71と可動片72との相対位置を変えることにより、AWGチップ10の光透過中心波長の温度依存シフトを補償する。これによって、AWG型光合分波器100のアサーマル化が実現されている。
 さらに、補償部材50は、第1スラブ導波路10Abにおける切断面Cと略平行に延伸しているので、その伸縮の方向Dも切断面Cと略平行である。したがって、補償部材50が伸縮した場合にも溝Gの幅が殆ど変化しない。その結果、補償部材50が伸縮してもAWG型光合分波器100の光学特性は変動せずに安定する。
 なお、AWGチップ10の光透過中心波長の温度依存シフトを補償するための補償部材50による位置補正量dxは、AWGチップ10の回路パラメータ等を用いて、以下の式(1)により設定することができる。
Figure JPOXMLDOC01-appb-M000001

 Lは第1スラブ導波路10Abの焦点距離、ΔLはアレイ導波路10Acにおける隣接するチャネル導波路間の光路差、dはアレイ導波路10Acにおける隣接するチャネル導波路間のピッチ、nは第1スラブ導波路10Abの実効屈折率、nはアレイ導波路10Acの群屈折率、dλ/dTは透過中心波長の温度依存性(たとえば0.011nm/℃)、ΔTは温度変化量である。また、λは第1スラブ導波路10Abにおいて回折角が0度になる波長であり、AWGの中心波長と呼ばれるものである。
 温度変化量がΔTの場合に、可動片72が式(1)で示される位置補正量dxだけスライドするように補償部材50の線膨張係数と長さとを設定することによって、AWGチップ10の光透過中心波長の温度依存シフトを補償することができる。
 また、クリップ40は、押圧力Fを印加して基準板30と可動片72とを挟持しているので、補償部材50が伸縮して固定片71と可動片72との相対位置が変化した場合でも、AWG型光合分波器100の光軸の変動が抑制される。
 また、本実施の形態1では、固定片71を基準板30に接合しているので、クリップ40は可動片72のみを基準板30に押圧すればよい。これによって、クリップ40が印加すべき押圧力Fは小さくてよい。その結果、クリップ40として小型で簡略なものを使用できるので、部品コストが低減される。また、クリップ40は可動片72のみを基準板30に押圧すればよいので、押さえ基板のような複雑かつ高価な部品を使用しなくてもよくなり、より低コストかつ小型にできる。
 さらに、本実施の形態1では、クリップ40で挟持すべき可動片72の方が、基準板30に接合した固定片71よりも質量が小さいので、クリップ40としてより小型で簡略なものを使用できる。
 つぎに、補償部材50および反り緩和部材51についてさらに説明する。図4は、図1に示すAWG型光合分波器100のY-Y線断面図である。図4に示すように、補償部材50は、長手方向の両端部に形成された略直方体状の2つの凸部50aを有する。2つの凸部50aのそれぞれには接着剤62を介して反り緩和部材51が接着されている。さらに、2つの反り緩和部材51は、固定片71に含まれる下地板片21と可動片72に含まれる下地板片22とにそれぞれ接着剤63を介して接着されている。これによって、補償部材50は、反り緩和部材51が介在した状態で、下地板片21と下地板片22とのそれぞれに接着剤62、63を介して固定されている。接着剤62、63は、たとえばエポキシ系の紫外線硬化型の接着剤である。
 反り緩和部材51は、下地板20(すなわち下地板片21および下地板片22)の線膨張係数以上かつ補償部材50の線膨張係数未満の線膨張係数を有している。これによって、AWG型光合分波器100間で光学特性の温度依存性のばらつきが小さくなり、または、温度変動に対して生じるヒステリシスが抑制されるので、光学特性の温度依存性が良好になる。
 以下、具体的に説明する。公知のAWG型光合分波器の構造では、下地板と補償部材とを直接的に接着剤で接着している。この場合、たとえば環境温度等の変動によってAWG型光合分波器の温度が変動した場合に、下地板と補償部材とで互いに線膨張係数が異なるために、下地板と補償部材との間に応力が発生して反りが発生する場合があった。このような反りが発生すると、2つの下地板片間、または下地板片に接着された2つのAWGチップ断片間に段差が生じる場合がある。
 図5は、2つの下地板片間に段差が発生する場合を説明する図である。図5に示すように、下地板片22と補償部材50とを直接的に接着剤64で接着した場合、下地板22と補償部材50との両方に反りが発生する場合がある。反りが生じた場合、下地板片22と下地板片21との間に段差tが生じる。このように段差tが発生すると、下地板片22に接着剤61を介して接着されたAWGチップ断片12と、その紙面奥側に存在している下地板片21に接着されたAWGチップ断片11(図1等参照)との間にも段差が生じる。これによってAWGチップ断片11とAWGチップ断片12との光軸(すなわち、AWGチップ断片11とAWGチップ断片12とに跨がって形成されている第1スラブ導波路10Abの光軸)がずれることとなる。
 このような光軸のずれは、クリップ40の押圧力によって矯正されるが、透過中心波長のずれや挿入損失の増大の原因となる。さらに、光軸のずれはたとえば透過中心波長の温度ヒステリシスの発生の原因となる。さらには、光軸のずれを矯正するためにクリップ40の押圧力を大きくすると、基準板と可動片との間の摩擦力が大きくなるため、温度ヒステリシスがさらに大きくなる場合がある。
 また、図5において発生している反りの大きさは、接着剤64の厚さにも依存する。接着剤64の厚さはたとえば2μm~10μmであるが、製造時に接着剤64の厚さを一定に管理することは困難である。その結果、AWG型光合分波器間でその透過波長や挿入損失等の光学特性の温度依存特性がばらつくことになる。
 たとえば、下地板片22が石英ガラス(線膨張係数;4.3×10-7/℃、ヤング率73GPa)からなり、補償部材50が純アルミニウム(線膨張係数;2.3×10-5/℃、ヤング率73GPa)からなる場合に、Y-Y断面におけるAWGチップ断片12の幅方向中心(第1スラブ導波路10Abの光軸付近)での段差tの大きさは、たとえば4μmとなる場合があることが、計算および実測によって確認された。この場合、補償部材50の接着されている部分のY-Y断面における幅方向中心を軸としてV字形状に反りが発生する。補償部材50の接着されている部分の幅方向中心とAWGチップ断片12の幅方向中心との間の距離lを例えば8.0mmとすると、反りの大きさは1.5μm程度である。
 これに対して、本実施の形態1では、下地板20の線膨張係数以上かつ補償部材50の線膨張係数未満の線膨張係数を有している反り緩和部材51を、補償部材50と下地板片21と下地板片22との間に介在させているので、温度変動の際に下地板20と補償部材50との間に発生する応力が緩和される。これによって、下地板片22の反りは抑制される。したがって、下地板片22と下地板片21との間に生じる段差tが減少するので、透過中心波長のずれ、挿入損失の増大、透過中心波長の温度ヒステリシスの発生、またはAWG型光合分波器間の光学特性の温度依存特性のばらつき等が、抑制される。その結果、本実施の形態1に係るAWG型光合分波器100は光学特性の温度依存性が良好になる。
 なお、反り緩和部材51の線膨張係数については、下地板20の線膨張係数と補償部材50の線膨張係数との中間値よりも下地板20の線膨張係数に近い値がより好ましく、下地板20の線膨張係数と同じ値であることがより好ましい。
 つぎに、本実施の形態1に係るAWG型光合分波器100の製造方法の一例について説明する。はじめに、AWGチップ10の製造方法の一例について説明する。
 まず、シリコンや石英ガラス等からなる基板上に、火炎堆積(Flame Hydrolysis Deposition:FHD)法により、下部クラッド層およびコア層となるシリカ材料(SiO系のガラス粒子)を順次堆積し、堆積層を加熱して溶融透明化する。つぎに、フォトリソグラフィと反応性イオンエッチングとを用いて、複数のAWG10Aの導波路パターンにコア層を形成する。つぎに、再びFHD法により、導波路パターンの上部および側部を覆うように上側部クラッド層を形成する。
 つぎに、図6に示すように、基板S上に、第1入出力導波路10Aa、第1スラブ導波路10Ab、アレイ導波路10Ac、第2スラブ導波路10Ad、および複数の第2入出力導波路10AeからなるAWG10Aを複数形成したものを、COレーザを用いてAWG10Aの輪郭形状に沿った切断線Lに沿って切断する。これによって、AWG10Aの輪郭形状に沿ったブーメラン形状のAWGチップ10を得ることができる。なお、切断は、COレーザに限らず種々の加工用のレーザやウォータージェット等を用いて行ってもよい。
 このように、基板S上にAWG10Aを高密度に複数形成し、AWG10Aの輪郭形状に沿ったブーメラン形状に切断してAWGチップ10を得ることによって、AWGを含む矩形状に基板を切断する場合よりも、1つの基板Sからより多数のAWGチップ10を得ることができる。これによってAWGチップ10を低コストに製造することができる。
 つぎに、製造したAWGチップ10に接着剤61(図3参照)によって下地板20を接着する。つぎに、AWGチップ10と下地板20とを、接合された状態で切断面Cにおいて2つに切断し、固定片71と可動片72とに分離する。その後、基準板30に対して、固定片71を接合するとともに、可動片72を当接する。
 一方、図7の上段の図に示すように、補償部材50の2つの凸部50aのそれぞれに接着剤62を介して反り緩和部材51を接着する。このとき、反り緩和部材51が石英系ガラス等の、紫外線を透過する材料からなれば、接着剤62が紫外線硬化型の接着剤の場合に反り緩和部材51を通して紫外線を接着剤62に照射できるので好ましい。その後、反り緩和部材51を接着した補償部材50に対して、AWG型光合分波器100の使用温度よりも高い温度でアニールを行い、接着剤62の応力を緩和して歪みを除去する。アニール温度はたとえば90℃とする。
 反り緩和部材51を接着した補償部材50をアニール温度から室温に降温させると、図7の中段の図に示すように、反り緩和部材51と補償部材50との間の線膨張係数の違いによって矢印に示すように大きさが異なる応力が発生する。この結果、反り緩和部材51および補償部材50には反りが発生する。
 その後、図7の下段の図に示すように、一方の反り緩和部材51を下地板片22に接着剤63を介して接着する。同様に、他方の反り緩和部材51を下地板片21に接着剤63を介して接着する。このとき、下地板片21、22が石英系ガラス等の、紫外線を透過する材料からなれば、接着剤63が紫外線硬化型の接着剤の場合に下地板片21、22を通して紫外線を接着剤63に照射できるので好ましい。その後、上記と同様にAWG型光合分波器100の使用温度よりも高い温度でアニールを行う。なお、反り緩和部材51および補償部材50の反りは、接着剤63によって吸収されるので、下地板片21、22にはほとんど反りが伝わらないことになる。
 このように、補償部材50に接着剤62を介して反り緩和部材51を接着し、その後アニールを行ってから、反り緩和部材51を下地板片21、22に接着剤63を介して接着する工程を行う場合は、環境温度の変動が大きいので、反り緩和部材51によって下地板片21、22に発生する反りを抑制する効果が効果的に発揮される。
 また、補償部材50として、その表面にアルマイト処理をした場合は、その表面状態を安定化させるために、表面の微細孔を塞ぐための封孔処理を行う場合があるが、無封孔の方が接着剤による接着強度が高くなるので好ましい。しかしながら、無封孔の場合はアルマイト処理から接着剤を塗布するまでに表面が空気に晒される時間によって接着強度が変動するため、接着強度がばらつく原因となる。しかしながら、補償部材50に反り緩和部材51を接着し、その後反り緩和部材51を下地板片21、22に接着する工程を行う場合は、補償部材50にアルマイト処理をしてから反り緩和部材51を接着するまでの時間を一定に管理しやすいので、補償部材50と反り緩和部材51との間の接着強度が安定する。
 ただし、反り緩和部材51の効果は工程の順番にはよらない。たとえば、上記以外の工程としては、接着剤63を介して反り緩和部材51を下地板片21、22に接着し、その後アニールを行ってから、接着剤62を介して反り緩和部材51に補償部材50を接着する工程を行う場合がある。または、接着剤62、63を介して補償部材50、反り緩和部材51、および下地板片21、22を同時に接着し、その後アニールを行う工程を行う場合がある。しかし、これらのいずれの工程においても、反り緩和部材51が下地板20の線膨張係数以上かつ補償部材50の線膨張係数未満の線膨張係数を有しているために、下地板20と補償部材50との間の応力が緩和されるので、下地板20の反りは緩和される。
 以上説明したように、本実施の形態1に係るAWG型光合分波器100は、光学特性の温度依存性が良好になる。
(実施例1および比較例1)
 本発明の実施例1として、上記製造方法にしたがって、図1に示す実施の形態1の構成のAWG型光合分波器を製造した。なお、補償部材としては、純アルミニウム(JIS:A1050)板材の表面全面をアルマイト処理し、封孔処理はしていないものを用いた。
 また、比較例1として、図5のように反り緩和部材を使用せずに補償部材と下地板片とを接着剤によって直接的に接着する点以外は実施例1と同じAWG型光合分波器を製造した。
 表1は、実施例1および比較例1のAWG型光合分波器の回路パラメータを示す図である。
Figure JPOXMLDOC01-appb-T000002

 この回路パラメータを用いて、補償部材の長さを18.0mmに設定した。
 そして、実施例1および比較例1のAWG型光合分波器について、下地板片間の段差(図5参照)を測定した。なお、段差の測定は図8に示すようにAWG型光合分波器100のAWGチップ片11、12の両端部および中心に対応する測定点P1、P2、P3で行った。比較例1についても同様の測定点で測定を行った。なお、実施例1および比較例1のいずれもクリップは取り付けない状態で測定を行った。
 その結果、比較例1のAWG型光合分波器では、測定点P1、P2、P3における段差は、10個のサンプルの平均値として、それぞれ約10μm、約7μm、約3μmであった。これに対して、実施例1のAWG型光合分波器では、測定点P1、P2、P3における段差は、10個のサンプルの平均値として、いずれも1μm以下であった。
 また、実施例1のAWG型光合分波器の製造工程において、補償部材に反り緩和部材を接着して90℃でアニールを行った後の反り緩和部材の反りを測定したところ、約1.5μmの反りが発生した。しかしながら、製造した実施例1のAWG型光合分波器の下地板片の反りを測定したところ、反りはほとんど発生していなかった。
 つぎに、実施例1および比較例1のAWG型光合分波器に、クリップを取り付けた状態で、20℃→50℃→65℃→50℃→20℃→-5℃→20℃の順で温度を変化させながら、透過中心波長および挿入損失の変動を測定した。
 図9は、実施例1のAWG型光合分波器の透過中心波長および挿入損失の変動の温度依存性を示す図である。図中では「透過中心波長」、「挿入損失」はそれぞれ単に「中心波長」、「損失」と記載してある。図9に示すように、実施例1のAWG型光合分波器は、透過中心波長および挿入損失の変動が小さいものであった。なお、透過中心波長の変動の温度依存性のグラフは、原理的には下に凸のなめらかな2次曲線となるが、図9および以下の図10、12では、ヒステリシスを見やすくするために、測定した温度でのデータ点を直線で結んで表している。
 図10は、比較例1のAWG型光合分波器の或るサンプルについての透過中心波長および挿入損失の変動の温度依存性を示す図である。図10に示すように、比較例1のAWG型光合分波器の或るサンプルは、透過中心波長および挿入損失の変動が大きく、かつ透過中心波長についてのヒステリシスが大きかった。このように、比較例1では、すべてのサンプルで安定して段差を小さくすることが困難であり、サンプルによっては光学特性が劣化するものがあり、特性にばらつきが生じた。
(実施の形態2)
 ところで、上記実施の形態1に係るAWG型光合分波器100は、下地板片22と下地板片21との間に生じる段差がきわめて小さいため、段差を矯正するためのクリップの押圧力が小さくてもよい。これによって温度ヒステリシスの発生がさらに抑制される。さらには、クリップを用いなくてもよい。
 図11は、本発明の実施の形態2に係るAWG型光合分波器の模式的な上面図である。図11に示すように、AWG型光合分波器200は、クリップ40を用いていない以外は、実施の形態1に係るAWG型光合分波器100と同様の構成を有する。
 AWG型光合分波器200は、本実施の形態1に係るAWG型光合分波器100と同様に、光学特性の温度依存性が良好になり、かつ、クリップ40を用いていないので部品点数が削減され、かつ温度ヒステリシスの発生がよりいっそう抑制される。
(実施例2)
 本発明の実施例2として、実施例1と同様に上記製造方法にしたがって、図11に示す実施の形態2の構成のAWG型光合分波器を製造した。
 図12は、実施例2のAWG型光合分波器の透過中心波長および挿入損失の変動の温度依存性を示す図である。図12に示すように、実施例2のAWG型光合分波器は、透過中心波長および挿入損失の変動が、図9に示す実施例1の場合と同等に小さいものであった。
(実施の形態3)
 上記実施の形態1、2では、反り緩和部材は、下地板と補償部材との間に介在するように設けられている。これに対して、本発明の実施の形態3に係るAWG型光合分波器では、反り緩和部材は、当該反り緩和部材と下地板との間に補償部材が介在するように設けられている。
 図13は、本発明の実施の形態3に係るAWG型光合分波器の模式的な要部側断面図である。実施の形態1と実施の形態3とでは、反り緩和部材と下地板と補償部材との位置関係のみが異なるので、以下ではその点を説明する。
 図13に示すように、本実施の形態3に係るAWG型光合分波器300では、一方の反り緩和部材51は、反り緩和部材51と下地板片22との間に補償部材50が介在するように設けられている。同様に、他方の反り緩和部材51についても、反り緩和部材51と下地板片21との間に補償部材50が介在するように設けられている。具体的には、補償部材50は凸部50aにおいて接着剤63を介して下地板片21、22とにそれぞれ接着している。なお、このように凸部50aが有ると、補償部材50と下地板片21、22との接着面積が一定に管理することが容易にできるので好ましい。また、反り緩和部材51は凸部50aが設けられた側とは反対側において、接着剤62を介して補償部材50に接着している。
 AWG型光合分波器300では、補償部材50と下地板片21、22との間に発生すべき応力が、反り緩和部材51側でも負担されるので、補償部材50と下地板片21、22との間に発生する応力が緩和される。これによって、下地板片21、22に発生する反りが抑制され、下地板片21、22間の段差も減少する。その結果、本実施の形態3に係るAWG型光合分波器300は光学特性の温度依存性が良好になる。
 このように、反り緩和部材51が補償部材50に接着される領域は、反り緩和部材51の存在によって補償部材50と下地板片21、22との間に発生する応力が緩和されるような領域であればよい。
 また、上記実施の形態1~3では、反り緩和部材51と下地板20(下地板片21、22)との接着面と、反り緩和部材51と補償部材50との接着面が略平行であるが、非平行でもよい。
(実施の形態4)
 図14は、本発明の実施の形態4に係るAWG型光合分波器の模式的な要部側断面図である。実施の形態1と実施の形態4とでは、反り緩和部材と下地板と補償部材との位置関係や、反り緩和部材および補償部材の形状のみが異なるので、以下ではその点を説明する。
 本実施の形態4に係るAWG型光合分波器400では、反り緩和部材451は、下地板片21、22と補償部材450との間に介在するように設けられている。ただし、反り緩和部材451はたとえば直方体状である。また、補償部材450はたとえば凸部の無い板状である。そして、補償部材450は、その側面450aにおいて、接着剤462を介して反り緩和部材451の側面451aに接着している。なお、反り緩和部材451は接着剤463を介して下地板片21、22に接着している。ここで、接着剤462、463は、たとえばエポキシ系の紫外線硬化型の接着剤である。
 このように、反り緩和部材451と下地板20(下地板片21、22)との接着面と、反り緩和部材451と補償部材450との接着面が略直角であっても、反り緩和部材451によって下地板20と補償部材450との間に発生する応力が緩和される。その結果、本実施の形態4に係るAWG型光合分波器400は光学特性の温度依存性が良好になる。
 上記実施の形態4では、反り緩和部材451と下地板20(下地板片21、22)との接着面と、反り緩和部材451と補償部材450との接着面が略直角であるが、両接着面が別の非平行の状態、たとえば鋭角または鈍角を成していてもよい。たとえば、反り緩和部材451がくさび型状であって側面451aが傾斜しており、補償部材450の側面450aも側面451aに対応して傾斜していてもよい。
 また、上記実施の形態4では、反り緩和部材451が紫外線を透過する材料からなれば、接着剤462、463が紫外線硬化型の接着剤の場合に、反り緩和部材451を通して紫外線を接着剤62に照射できる。この場合、下地板20(下地板片21、22)は、紫外線を透過する材料からなるものでなくてもよく、たとえば線膨張係数が石英系ガラスよりも大きいシリコン等の材料からなるものでもよい。
 なお、上記実施の形態では、接着剤としてエポキシ系の紫外線硬化型接着剤を用いているが、熱硬化性の接着剤を用いてもよい。また、補償部材を下地板または反り緩和部材と接着剤で接着する際に、補償部材の表面を有機溶剤およびプラズマ等で洗浄すれば、表面の濡れ性が向上し、より接着強度が高まるので好ましい。また、補償部材、下地板、または反り緩和部材の接着する面の表面にシランカップリング剤等のカップリング剤を塗布し、カップリング剤を介して接着剤で接着すれば、より接着強度が高まるので好ましい。
 また、上記実施の形態では、AWGチップを切断して分離したうちの質量が小さい方を可動片としてクリップで押圧するようにしているが、質量が大きい方を可動片としてクリップで押圧するようにしてもよい。すなわち、分離したAWGチップの一方のみをクリップで基準板に押圧し、他方は基準板に接合固定することによって、クリップを小型で簡略なものとすることができる。
 また、上記実施の形態では、第1スラブ導波路を切断して分離しているが、第2スラブ導波路、または第1スラブ導波路および第2スラブ導波の両方を切断して分離するようにしてもよい。
 また、上記実施の形態において、可動片をスムーズにスライドさせるために、基準板の表面にフロスト処理等の凹凸処理をしたり、溝を設けたりして、窪み部を形成してもよい。このような窪み部は、可動片と基準板との接触面積を減少させるようなものであれば、その態様は特に限定はされない。また、溝を設ける場合は、その延伸方向はAWGチップの切断面に沿う方向に限られず、切断面に垂直の方向でもよい。
 また、下地板、基準板の構成材料は、石英ガラスに限られない。下地板、基準板の構成材料の線膨張係数を考慮して補償部材の長さを決定すれば、金属、半導体、セラミックスなどの種々の材料を用いることができる。
 また、補償部材も、アルミニウム、またはアルミニウムにアルマイト処理を施したものに限定されず、銅などの他の金属や、これに変質を防止するための表面処理を施したものでもよい。
 また、AWGチップと下地板とを接合する位置および補償部材を掛け渡す位置も、実施の形態のものに限られず、補償部材の伸縮によって切断されたAWGチップの位置が相対的に変化できるような位置であればよい。
 さらに、上記実施の形態では、アレイ導波路回折格子チップと下地板とが、第1スラブ導波路を横断する切断面において2つに切断して固定片および可動片としている。しかしながら、下地板は必ずしも完全に切断されていなくてもよく、アレイ導波路回折格子チップの切断面に沿って一部で切断され、一部で接続されていてもよい。この場合、切断面で離隔された下地板の領域に補償部材を掛け渡す構成とすると、補償部材が伸縮した場合は、接続された部分を支点にして、離隔した部分間の相対位置が変化することとなる。これによって、切断したアレイ導波路回折格子チップの断片間の相対位置が変化することとなる。相対位置の変化量は、温度変化に依存した透過中心波長のシフトが補償されるような変化量に調整すればよい。
 また、上記実施の形態では、基板をAWGの輪郭形状に沿って切断し、ブーメラン形状のAWGチップを得ているが、基板を矩形に切断して矩形のAWGチップを得るようにしてもよい。
 また、上記実施の形態により本発明が限定されるものではない。上述した各構成要素を適宜組み合わせて構成したものも本発明に含まれる。また、さらなる効果や変形例は、当業者によって容易に導き出すことができる。よって、本発明のより広範な態様は、上記の実施の形態に限定されるものではなく、様々な変更が可能である。
 以上のように、本発明に係るアレイ導波路回折格子型光合分波器は、光通信の用途に利用して好適なものである。
 1、3 光コネクタ
 2 光ファイバ心線
 4 光ファイバテープ
 10 AWGチップ
 10A AWG
 10Aa 第1入出力導波路
 10Ab 第1スラブ導波路
 10Ac アレイ導波路
 10Ad 第2スラブ導波路
 10Ae 第2入出力導波路
 11、12 AWGチップ断片
 20 下地板
 21、22 下地板片
 30 基準板
 40 クリップ
 50、450 補償部材
 50a 凸部
 51、451 反り緩和部材
 61、62、63、64、462、463 接着剤
 71 固定片
 72 可動片
 100、200、300、400 AWG型光合分波器
 C 切断面
 D 方向
 F 押圧力
 G 溝
 L 切断線
 P1、P2、P3 測定点
 S 基板

Claims (10)

  1.  光が入出力される第1入出力導波路と、前記第1入出力導波路に接続された第1スラブ導波路と、前記第1スラブ導波路に接続され、互いに長さが異なり並列に配列された複数のチャネル導波路からなるアレイ導波路と、前記アレイ導波路に接続された第2スラブ導波路と、前記第2スラブ導波路に接続された、光が入出力される複数の第2入出力導波路と、を有し、前記第1スラブ導波路または前記第2スラブ導波路を横断する切断面において2つに切断されたアレイ導波路回折格子チップと、
     前記アレイ導波路回折格子チップの下面に接合され、前記アレイ導波路回折格子チップの切断面に沿って少なくとも一部で切断された下地板と、
     前記切断面で離隔された前記下地板の領域に掛け渡されるように接着剤を介して固定され、温度変化に応じて伸縮して前記切断されたアレイ導波路回折格子チップのそれぞれの間の相対位置を変えることにより、前記アレイ導波路回折格子の光透過中心波長の温度依存シフトを補償する補償部材と、
     前記下地板の線膨張係数以上かつ前記補償部材の線膨張係数未満の線膨張係数を有し、前記下地板と前記補償部材との間に発生する応力を緩和するように、接着剤を介して前記補償部材に接着された反り緩和部材と、
     を備えることを特徴とするアレイ導波路回折格子型光合分波器。
  2.  前記反り緩和部材は、前記下地板と前記補償部材との間に介在するように設けられていることを特徴とする請求項1に記載のアレイ導波路回折格子型光合分波器。
  3.  前記反り緩和部材は、当該反り緩和部材と前記下地板との間に前記補償部材が介在するように設けられていることを特徴とする請求項1に記載のアレイ導波路回折格子型光合分波器。
  4.  前記反り緩和部材と前記下地板との接着面と前記反り緩和部材と前記補償部材との接着面が略平行であることを特徴とする請求項1~3のいずれか一つに記載のアレイ導波路回折格子型光合分波器。
  5.  前記反り緩和部材と前記下地板との接着面と前記反り緩和部材と前記補償部材との接着面が非平行であることを特徴とする請求項1~3のいずれか一つに記載のアレイ導波路回折格子型光合分波器。
  6.  前記反り緩和部材は紫外線を透過する材料からなることを特徴とする請求項1~5のいずれか一つに記載のアレイ導波路回折格子型光合分波器。
  7.  前記反り緩和部材と前記下地板とは同一の線膨張係数を有することを特徴とする請求項1~6のいずれか一つに記載のアレイ導波路回折格子型光合分波器。
  8.  前記アレイ導波路回折格子チップと、前記下地板とは、前記第1スラブ導波路または前記第2スラブ導波路を横断する前記切断面において2つに切断されて、固定片および可動片を構成し、
     前記補償部材は、前記固定片と前記可動片との間に掛け渡されるように設けられていることを特徴とする請求項1~7のいずれか一つに記載のアレイ導波路回折格子型光合分波器。
  9.  前記固定片が接合されるとともに前記可動片が当接される基準板と、前記可動片が前記基準板上をスライドできるように前記基準板と前記可動片とを挟持するクリップと、をさらに備えることを特徴とする請求項8に記載のアレイ導波路回折格子型光合分波器。
  10.  前記アレイ導波路回折格子チップは、前記アレイ導波路回折格子の輪郭形状に沿った形状を有することを特徴とする請求項1~9のいずれか一つに記載のアレイ導波路回折格子型光合分波器。
PCT/JP2013/065606 2012-08-09 2013-06-05 アレイ導波路回折格子型光合分波器 WO2014024557A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012177045A JP2014035474A (ja) 2012-08-09 2012-08-09 アレイ導波路回折格子型光合分波器
JP2012-177045 2012-08-09

Publications (1)

Publication Number Publication Date
WO2014024557A1 true WO2014024557A1 (ja) 2014-02-13

Family

ID=50067799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065606 WO2014024557A1 (ja) 2012-08-09 2013-06-05 アレイ導波路回折格子型光合分波器

Country Status (2)

Country Link
JP (1) JP2014035474A (ja)
WO (1) WO2014024557A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103926654B (zh) * 2014-04-25 2017-06-06 珠海保税区光联通讯技术有限公司 无热阵列波导光栅波分复用器
CN104090339B (zh) * 2014-07-03 2017-03-29 深圳市易飞扬通信技术有限公司 阵列波导光栅波分复用器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10223986A (ja) * 1997-02-07 1998-08-21 Nec Corp 半導体レーザ装置
JP2002031729A (ja) * 2000-07-14 2002-01-31 Furukawa Electric Co Ltd:The アレイ導波路回折格子型光合分波器
JP2002341163A (ja) * 2001-03-13 2002-11-27 Furukawa Electric Co Ltd:The アレイ導波路回折格子型光合分波器
JP2009237205A (ja) * 2008-03-27 2009-10-15 Furukawa Electric Co Ltd:The アレイ導波路回折格子型光合分波器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10223986A (ja) * 1997-02-07 1998-08-21 Nec Corp 半導体レーザ装置
JP2002031729A (ja) * 2000-07-14 2002-01-31 Furukawa Electric Co Ltd:The アレイ導波路回折格子型光合分波器
JP2002341163A (ja) * 2001-03-13 2002-11-27 Furukawa Electric Co Ltd:The アレイ導波路回折格子型光合分波器
JP2009237205A (ja) * 2008-03-27 2009-10-15 Furukawa Electric Co Ltd:The アレイ導波路回折格子型光合分波器

Also Published As

Publication number Publication date
JP2014035474A (ja) 2014-02-24

Similar Documents

Publication Publication Date Title
US20120195553A1 (en) Arrayed waveguide grating type optical multiplexer and demultiplexer
US20110116802A1 (en) Optical Wavelength Multiplexing/ De-multiplexing Circuit
KR20080045256A (ko) 어레이 도파로 회절 격자
JPWO2002033462A1 (ja) アレイ導波路型回折格子およびその光透過中心波長補正方法
JP5351522B2 (ja) 光特性補償のための温度無依存のアレイ導波路回折格子合分波器及びその製作方法
JP2011034056A (ja) アレイ導波路回折格子型光合分波器
WO2013035434A1 (ja) アレイ導波路回折格子型光合分波器
JP4667927B2 (ja) アレイ導波路回折格子型光合分波器
US6735364B2 (en) Arrayed waveguide grating optical multiplexer/demultiplexer and method for manufacturing the same
JP5027031B2 (ja) アレイ導波路回折格子型光合分波器
WO2014024557A1 (ja) アレイ導波路回折格子型光合分波器
WO2012002368A1 (ja) アレイ導波路回折格子型光合分波器
KR20020092209A (ko) 광도파로 장치 및 그 제조 방법
JP5039523B2 (ja) 光導波回路チップ
JP3796183B2 (ja) 石英系光導波路部品
KR101327158B1 (ko) 배열 도파로 격자
WO2013183687A1 (ja) アレイ導波路回折格子型光合分波器およびアレイ導波路回折格子型光合分波器モジュール
KR101885497B1 (ko) Uv 경화조립 공정이 용이한 온도 보상 모듈을 구비한 어레이도파로 회절격자 및 그 제작 방법
US20030118308A1 (en) Thermal compensation and alignment for optical devices
JP4762422B2 (ja) アレイ導波路型回折格子
JP4477263B2 (ja) アレイ導波路回折格子型光合分波器の製造方法
JP2006133798A (ja) 石英系光導波路部品
JP4699435B2 (ja) 光モジュール
JP2010204696A (ja) アレイ導波路回折格子の作製方法
JP2001305361A (ja) アレイ導波路型回折格子およびその作製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13827865

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13827865

Country of ref document: EP

Kind code of ref document: A1