WO2014024388A1 - 多結晶シリコン棒の選択方法、多結晶シリコン塊の製造方法、及び、単結晶シリコンの製造方法 - Google Patents

多結晶シリコン棒の選択方法、多結晶シリコン塊の製造方法、及び、単結晶シリコンの製造方法 Download PDF

Info

Publication number
WO2014024388A1
WO2014024388A1 PCT/JP2013/004402 JP2013004402W WO2014024388A1 WO 2014024388 A1 WO2014024388 A1 WO 2014024388A1 JP 2013004402 W JP2013004402 W JP 2013004402W WO 2014024388 A1 WO2014024388 A1 WO 2014024388A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycrystalline silicon
single crystal
silicon rod
thermal diffusivity
rod
Prior art date
Application number
PCT/JP2013/004402
Other languages
English (en)
French (fr)
Inventor
秀一 宮尾
岡田 淳一
祢津 茂義
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Publication of WO2014024388A1 publication Critical patent/WO2014024388A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • C30B35/007Apparatus for preparing, pre-treating the source material to be used for crystal growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method

Definitions

  • the present invention relates to a method for selecting a polycrystalline silicon rod used as a raw material for producing single crystal silicon, and more specifically to a method for selecting a polycrystalline silicon rod suitable for stably producing single crystal silicon.
  • Siemens method is a method of vapor deposition (deposition) of polycrystalline silicon on the surface of silicon core wire by CVD (Chemical Vapor Deposition) method by bringing silane source gas such as trichlorosilane and monosilane into contact with heated silicon core wire. It is a method to make it.
  • Patent Document 2 discloses that needle-like crystals may be precipitated in a rod during the process of manufacturing a polycrystalline silicon rod (polycrystalline silicon rod) by the Siemens method.
  • the individual crystallites do not melt uniformly according to their size due to the above-mentioned inhomogeneous microstructure, and the unmelted crystallites become solid particles as single particles through the melting zone. It has been reported that it passes through the crystal rod and is incorporated into the solidified surface of the single crystal as unmelted particles, which causes defect formation, but in single crystallization by the FZ method, the single crystal is formed by one FZ operation.
  • Patent Document 2 the sample surface cut perpendicularly to the long axis direction of the polycrystalline silicon rod is polished or polished, and after etching, the microcrystals of the structure are contrasted to such an extent that they can be visually recognized under an optical microscope.
  • the present invention has been made in view of such problems, and the object of the present invention is to select polycrystalline silicon suitable as a raw material for producing single crystal silicon with high quantitativeness and reproducibility. It is to provide a technology that contributes to stable manufacturing.
  • a method for selecting a polycrystalline silicon rod according to the present invention is a method for selecting a polycrystalline silicon rod used as a raw material for producing single crystal silicon, wherein the polycrystalline silicon rod is chemically A plate-like sample grown by precipitation by a growth method and having a cross section perpendicular to the radial direction of the polycrystalline silicon rod as a main surface is collected, and the plate-like sample is obtained at a temperature T (° C.) of 1100 ° C. or less.
  • a polycrystalline silicon rod for producing single crystal silicon is selected based on the thermal diffusivity ratio ( ⁇ (T) / ⁇ R (T)).
  • the standard sample is a single crystal silicon plate sample having a ⁇ 100> plane as a main surface.
  • a polycrystalline silicon rod whose thermal diffusivity ⁇ (T) satisfies the following formula (1) is selected as a raw material for producing single crystal silicon.
  • ⁇ (T) / ⁇ R (T) ⁇ 0.10 ⁇ 10 ⁇ 3 T + 0.80
  • a polycrystalline silicon rod having the measurement temperature T of 25 ° C. and the thermal diffusivity ⁇ (25 ° C.) satisfying the following formula (2) is selected as a raw material for producing single crystal silicon. ⁇ (25 ° C.) / ⁇ R (25 ° C.) ⁇ 0.80 (2)
  • a polycrystalline silicon rod having the measurement temperature T of 900 ° C. and the thermal diffusivity ⁇ (900 ° C.) satisfying the following formula (3) is selected as a raw material for producing single crystal silicon.
  • T the measurement temperature
  • a polycrystalline silicon rod having the measurement temperature T of 1000 ° C. and the thermal diffusivity ⁇ (1000 ° C.) satisfying the following formula (4) is selected as a raw material for producing single crystal silicon. ⁇ (1000 ° C.) / ⁇ R (1000 ° C.) ⁇ 0.91 (4)
  • the method for producing a polycrystalline silicon lump according to the present invention includes a step of crushing a polycrystalline silicon rod selected by the above-described method.
  • a polycrystalline silicon rod selected by the above method is used as a silicon raw material, or a polycrystalline silicon lump obtained by the above method is used as a raw material.
  • the crystal line disappears in the growth process of single crystal silicon in both the FZ method and the CZ method. Is less likely to occur, and single crystal silicon can be obtained stably.
  • a main surface is a cross section perpendicular to the radial direction of the polycrystalline silicon rod from a polycrystalline silicon rod grown by precipitation by a chemical growth method.
  • a plate sample is taken and the thermal diffusivity ⁇ (T) of the plate sample is measured. Then, this thermal diffusivity ⁇ (T) is compared with the thermal diffusivity ⁇ R (T) of the standard sample, and based on the ratio of thermal diffusivity ( ⁇ (T) / ⁇ R (T)), a single crystal
  • ⁇ R (T) the thermal diffusivity
  • the thermal diffusivity measurement is not limited to the stationary method, but may be a non-stationary method such as a pulse heating method, a periodic heating method, or a hot wire method, but the pulse heating method (flash heating method) that excels in ease and accuracy of measurement should be used. Is preferred.
  • the sample to be measured is plate-shaped (generally disk-shaped), and the thermal diffusivity is measured by the following procedure.
  • a plate-like sample is fixed to an apparatus, and the surface of the plate-like sample is irradiated with pulsed light (usually a laser pulse) and heated instantaneously. By this heating, heat is transferred from the front surface to the back surface of the plate-like sample, and the temperature of the back surface rises.
  • the thermal diffusivity ⁇ (T) is calculated by observing the change in the back surface temperature. .
  • the temperature for measuring the thermal diffusivity can be arbitrarily set by heating from an electric furnace installed in the apparatus.
  • the calculated thermal diffusivity ⁇ (T) is normalized by the thermal diffusivity ⁇ R (T) of the standard sample for the purpose of improving the reproducibility of the measurement result. Specifically, the ratio ( ⁇ (T) / ⁇ R (T)) between the thermal diffusivity ⁇ (T) and the thermal diffusivity ⁇ R (T) is obtained.
  • single crystal silicon is preferable, and in particular, a single crystal silicon plate sample having a ⁇ 100> plane as a main surface is preferable.
  • the present inventors prepared a plurality of polycrystalline silicon rods having different crystal grain states for the purpose of clarifying a suitable measurement temperature range, and cross-sections perpendicular to the radial direction from each polycrystalline silicon rod.
  • a plate-like sample as the main surface is collected, and the thermal diffusivity of these plate-like samples is measured at each temperature of 25 ⁇ 0.5 ° C., 900 ⁇ 1 ° C., 1000 ⁇ 1 ° C., 1100 ⁇ 1 ° C.
  • the ratio of thermal diffusivity ( ⁇ (T) / ⁇ R (T)) was determined, and single crystal crystallization of these polycrystalline silicon rods by the FZ method was conducted to examine whether or not crystal lines disappeared.
  • the thermal diffusivity As a result, there was a relationship between the thermal diffusivity and the presence or absence of crystal line disappearance in one FZ operation, and a polycrystalline silicon rod successfully crystallized by one FZ operation (crystal line disappearance). None) was found to have a higher thermal diffusivity than the unsuccessful polycrystalline silicon rod (with crystal line disappearance). That is, if the measurement temperature is 1100 ° C. or lower, a polycrystalline silicon rod suitable as a raw material for producing single crystal silicon can be selected based on the thermal diffusivity ratio ( ⁇ (T) / ⁇ R (T)). And gained knowledge. For this reason, in the present invention, the measurement temperature for measuring the thermal diffusivity is set to 1100 ° C. or lower.
  • a polycrystalline silicon rod having a thermal diffusivity ⁇ (T) satisfying ⁇ (T) / ⁇ R (T) ⁇ 0.10 ⁇ 10 ⁇ 3 T + 0.80 is used as a raw material for producing single crystal silicon. select.
  • FIG. 1 shows a single crystal whose principal surface is a thermal diffusivity ⁇ (T) of a plate-like sample obtained from a polycrystalline silicon rod successfully single-crystallized by one FZ treatment and a ⁇ 100> plane used as a standard sample.
  • ⁇ (T) thermal diffusivity of a plate-like sample obtained from a polycrystalline silicon rod successfully single-crystallized by one FZ treatment and a ⁇ 100> plane used as a standard sample.
  • the minimum value of the ratio ( ⁇ (T) / ⁇ R (T)) the thermal diffusivity of the silicon plate-shaped sample alpha R (T) is plotted with respect to the measured temperature.
  • the measurement temperature is less than 1100 ° C.
  • the polycrystalline silicon rod and the single crystal having a high single crystallization success rate
  • a reference value for distinguishing polycrystalline silicon rods having a relatively low conversion success rate could be set.
  • the reference for selecting a polycrystalline silicon rod suitable as a raw material for producing single crystal silicon for each of the measurement temperatures of thermal diffusivity measurement of 25 ° C., 900 ° C., and 1000 ° C. Value (value of thermal diffusivity ratio) is set.
  • a polycrystalline silicon rod having a thermal diffusivity ⁇ (900 ° C.) satisfying ⁇ (900 ° C.) / ⁇ R (900 ° C.) ⁇ 0.90 is produced as single crystal silicon. Select as raw material.
  • a polycrystalline silicon rod having a thermal diffusivity ⁇ (1000 ° C.) satisfying ⁇ (1000 ° C.) / ⁇ R (1000 ° C.) ⁇ 0.91 is produced as single crystal silicon. Select as raw material.
  • the reference value (the value of the thermal diffusivity ratio) for selecting the above polycrystalline silicon rod is any case where a single crystal silicon plate sample having a ⁇ 100> plane as a main surface is used as a standard sample. Is the value of
  • a plate-like sample is collected from the polycrystalline silicon rod in order to measure the thermal diffusivity.
  • the plate-like sample is not particularly limited as long as it is suitable for measuring the thermal diffusivity, but the polycrystalline silicon rod often has crystal grains growing in the radial direction. This is because the diameter of the polycrystalline silicon rod is increased due to the progress of the CVD reaction on the surface of the silicon core wire. Therefore, in order to suppress variations in measurement values depending on the sampling position of the plate-like sample, it is preferable to use a plate-like test sample whose main surface is a cross section perpendicular to the radial direction of the polycrystalline silicon rod.
  • FIGS. 2A and 2B are diagrams for explaining an example of collecting a plate-like sample 20 for measuring thermal diffusivity from a polycrystalline silicon rod 10 grown by chemical vapor deposition (Siemens method). is there.
  • reference numeral 1 denotes a silicon core wire for depositing polycrystalline silicon on the surface to form a silicon rod.
  • CTR part close to the silicon core wire 1
  • EDG polycrystalline silicon
  • the plate-like sample 20 is collected from a portion close to the side surface of the rod 10 (R / 2: an intermediate portion between CTR and EGD), but is not limited to collection from such a portion.
  • the diameter of the polycrystalline silicon rod 10 illustrated in FIG. 2A is approximately 120 mm, and the three portions (CTR: the portion close to the silicon core wire 1, EDG: many) from the side surface side of the polycrystalline silicon rod 10 to the silicon core wire 1 side.
  • CTR the portion close to the silicon core wire 1
  • EDG the portion close to the silicon core wire 1 side
  • a rod 11 having a diameter of approximately 20 mm and a length of approximately 60 mm is cut out from a portion close to the side surface of the crystalline silicon rod 10 (R / 2: an intermediate portion between CTR and EGD).
  • the rod 11 is a columnar sample whose bottom is a cross section perpendicular to the radial direction of the polycrystalline silicon rod 10.
  • a plate-like sample 20 having a cross section perpendicular to the major axis direction of these rods 11 as a main surface is sliced and collected with a thickness of about 2 mm. Therefore, in this case, the plate-like sample 20 is collected so that the main surface is a cross section perpendicular to the radial direction of the polycrystalline silicon rod 10.
  • the part and diameter from which the rod 11 is collected need not be limited to the above example, and any part can be used as long as the properties of the polycrystalline silicon rod 10 can be reasonably estimated and the measurement of the thermal diffusivity is not hindered. It may be collected and the diameter may be determined appropriately. The diameter may be determined in consideration of the diameter of the polycrystalline silicon rod 10, the diameter of the rod 11 to be hollowed out, the length of the rod 11 to be hollowed out, or the like. Further, the plate-like sample 20 may be collected from an appropriate portion of the rod 11.
  • the plate-like sample 20 may be collected so that the main surface is a cross section perpendicular to the major axis direction of the polycrystalline silicon rod 10.
  • a plate-like sample having a thickness of about 2 mm and having a principal surface perpendicular to the major axis direction of the polycrystalline silicon rod 10 is obtained by slicing, and a portion (CTR) near the silicon core wire 1 of this plate-like sample is obtained.
  • CTR portion near the silicon core wire 1 of this plate-like sample.
  • the flatness of the surface of the collected plate sample 20 is increased by polishing prior to the measurement of the thermal diffusivity.
  • polishing silicon crystals Various methods are known for polishing silicon crystals, and any method may be used.
  • a vibration polishing apparatus can be used.
  • a plate-like sample (20 CTR , 20 EDG , 20 R / 2 ) having a thickness of about 2 mm and a diameter of about 20 mm was obtained for each of these polycrystalline silicon rods by the sampling method shown in FIGS. 2A and 2B. .
  • the thermal diffusivity of each of these plate-like samples was measured at each temperature of 25 ⁇ 0.5 ° C., 900 ⁇ 1 ° C., 1000 ⁇ 1 ° C., 1100 ⁇ 1 ° C. Further, a thermal diffusivity measurement was performed under the same conditions for a single crystal silicon plate sample having a ⁇ 100> plane as a main surface as a standard sample. The thermal diffusivity is measured by the laser flash method, which is an unsteady method, and the conditions are as shown in Table 1.
  • a single crystal silicon plate sample having a ⁇ 100> plane as a main surface as a standard sample has a thickness of 2 mm by round cutting from a single crystal silicon ingot (diameter 12 mm ⁇ length 170 cm) grown by the FZ method. Collected.
  • the polycrystalline silicon rods A and B having a value of ⁇ (25 ° C.) / ⁇ R (25 ° C.) at a measurement temperature of 25 ° C. of 0.80 or more are 1 Successful single crystallization by FZ treatment.
  • polycrystalline silicon rods A and B having a value of ⁇ (900 ° C.) / ⁇ R (900 ° C.) of 0.90 or more at a measurement temperature of 900 ° C. can be obtained by a single FZ treatment without loss of crystal lines. Successful crystallization.
  • the polycrystalline silicon rods A and B having a value of ⁇ (1000 ° C.) / ⁇ R (1000 ° C.) of 0.91 or more at a measurement temperature of 1000 ° C. can be obtained by a single FZ treatment without the disappearance of crystal lines. Successful crystallization.
  • Polycrystalline silicon rods A and B having a value of ⁇ (1100 ° C.) / ⁇ R (1100 ° C.) of 0.92 or higher at a measurement temperature of 1100 ° C. can be obtained by a single FZ treatment without disappearance of crystal lines. Although the crystallization was successful, the disappearance of the crystal line was observed once for the polycrystalline silicon rod C in which some ⁇ (1100 ° C.) / ⁇ R (1100 ° C.) was 0.92 or more. Single crystallization in FZ treatment has failed.
  • FIG. 1 shows the lowest standardization among the six plate-like samples taken from the polycrystalline silicon rods A and B that were successfully single-crystallized by one FZ treatment among the thermal diffusivities shown in Table 2.
  • the thermal diffusivity (25 ° C .: 0.80, 900 ° C .: 0.90, 1000 ° C .: 0.91, 1100 ° C .: 0.92) is plotted against the measured temperature.
  • 0.92 which is the minimum value at 1100 ° C. is also taken into consideration.
  • the present invention provides a technology that contributes to stable production of single crystal silicon by selecting polycrystalline silicon suitable as a raw material for producing single crystal silicon with high quantitativeness and reproducibility.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

 本発明に係る多結晶シリコン棒の選択方法では、化学成長法による析出で育成された多結晶シリコン棒の径方向に垂直な断面を主面とする板状試料を採取して、この板状試料の熱拡散率α(T)を測定し、標準試料の熱拡散率α(T)と比較して、熱拡散率の比(α(T)/α(T))に基づいて単結晶シリコン製造用の原料として好適な多結晶シリコン棒を選択する。なお、規格化のための標準試料としては単結晶シリコンが好ましく、特に、<100>面を主面とする単結晶シリコン板状試料が好ましい。係る多結晶シリコン棒を用いて単結晶シリコンの育成を行うと、結晶線の消失が生じない。その結果、単結晶シリコンの安定的製造が可能となる。

Description

多結晶シリコン棒の選択方法、多結晶シリコン塊の製造方法、及び、単結晶シリコンの製造方法
 本発明は単結晶シリコン製造用原料として用いられる多結晶シリコン棒の選択方法に関し、より具体的には、単結晶シリコンを安定的に製造するために好適な多結晶シリコン棒を選択する方法に関する。
 半導体デバイス等の製造に不可欠な単結晶シリコンは、CZ法やFZ法により結晶育成され、その際の原料として多結晶シリコン棒や多結晶シリコン塊が用いられる。このような多結晶シリコン材料は多くの場合、シーメンス法により製造される(特許文献1等参照)。シーメンス法とは、トリクロロシランやモノシラン等のシラン原料ガスを加熱されたシリコン芯線に接触させることにより、該シリコン芯線の表面に多結晶シリコンをCVD(Chemical Vapor Deposition)法により気相成長(析出)させる方法である。
 例えば、CZ法で単結晶シリコンを結晶育成する際には、石英ルツボ内に多結晶シリコン塊をチャージし、これを加熱溶融させたシリコン融液に種結晶を漬けて転位線を消滅させ、無転位化させた後に所定の直径となるまで徐々に径拡大させて結晶の引上げが行われる。このとき、シリコン融液中に未溶融の多結晶シリコンが残存していると、この未溶融多結晶片が対流により固液界面近傍を漂い、転位発生を誘発して結晶線を消失させてしまう原因となる。
 また、特許文献2には、多結晶シリコンロッド(多結晶シリコン棒)をシーメンス法で製造する工程中に該ロッド中で針状結晶が析出することがあり、かかる多結晶シリコン棒を用いてFZ法による単結晶シリコン育成を行うと、上述の不均質な微細構造によって個々の晶子がその大きさに相応して均一には溶融せず、不溶融の晶子が固体粒子として溶融帯域をとおって単結晶ロッドへと通り抜けて未溶融粒子として単結晶の凝固面に組み込まれ、これにより欠陥形成が引き起こされる旨が報告されているが、FZ法による単結晶化では1回のFZ操作により単結晶が得られる生産性の高い多結晶シリコンが求められている。
 この問題に対し、特許文献2では、多結晶シリコン棒の長軸方向に対して垂直に切り出された試料面を研磨乃至ポリシングし、エッチング後に組織の微結晶を光学顕微鏡下でも視認できる程度にコントラストを高めて針状結晶のサイズとその面積割合を測定し、その測定結果に基づいてFZ単結晶シリコン育成用原料としての良否を判断する手法を提案している。
特公昭37-18861号公報 特開2008-285403号公報
 しかし、特許文献2に開示の手法のような光学顕微鏡下での視認による良否判断は、観察試料面のエッチングの程度や評価担当者の観察技量等に依存して結果に差が生じ易いことに加え、定量性や再現性にも乏しい。このため、単結晶シリコンの製造歩留まりを高める観点からは良否判断の基準を高めに設定しておく必要があり、結果として、多結晶シリコン棒の不良品率は高くなってしまう。
 また、本発明者らが検討したところによれば、特許文献2に開示の手法では良品と判定された多結晶シリコン棒を用いた場合であっても、FZ法による単結晶シリコンロッドの育成工程で転位が発生し結晶線が消失することがあることも判明した。
 さらに、CZ法による単結晶シリコンの結晶成長においても、原料として用いられる多結晶シリコン塊の結晶配向度が高い場合には、石英ルツボ内のシリコン融液中を不溶融の晶子が漂い、これが固液界面に達して結晶線を消失させる可能性がある。
 従って、単結晶シリコンを高い歩留まりで安定的に製造するためには、単結晶シリコン製造用原料として好適な多結晶シリコンを高い定量性と再現性で選別する技術が求められる。
 本発明は、このような問題に鑑みてなされたもので、その目的とするところは、単結晶シリコン製造用原料として好適な多結晶シリコンを高い定量性と再現性で選別し、単結晶シリコンの安定的製造に寄与する技術を提供することにある。
 上記課題を解決するために、本発明に係る多結晶シリコン棒の選択方法は、単結晶シリコン製造用原料として用いる多結晶シリコン棒を選択するための方法であって、前記多結晶シリコン棒は化学成長法による析出で育成されたものであり、前記多結晶シリコン棒の径方向に垂直な断面を主面とする板状試料を採取し、1100℃以下の温度T(℃)で前記板状試料の熱拡散率α(T)を測定し、該熱拡散率α(T)と標準試料の熱拡散率α(T)との比(α(T)/α(T))を求め、該熱拡散率の比(α(T)/α(T))に基づいて単結晶シリコン製造用の多結晶シリコン棒を選択する、ことを特徴とする。
 好ましくは、前記標準試料は<100>面を主面とする単結晶シリコン板状試料である。
 この場合、第1の態様では、前記熱拡散率α(T)が下式(1)を満足する多結晶シリコン棒を単結晶シリコン製造用原料として選択する。
α(T)/α(T)≧0.10×10-3T+0.80   (1)
 第2の態様では、前記測定温度Tが25℃であり、前記熱拡散率α(25℃)が下式(2)を満足する多結晶シリコン棒を単結晶シリコン製造用原料として選択する。
α(25℃)/α(25℃)≧0.80   (2)
 第3の態様では、前記測定温度Tが900℃であり、前記熱拡散率α(900℃)が下式(3)を満足する多結晶シリコン棒を単結晶シリコン製造用原料として選択する。
α(900℃)/α(900℃)≧0.90   (3)
 第4の態様では、前記測定温度Tが1000℃であり、前記熱拡散率α(1000℃)が下式(4)を満足する多結晶シリコン棒を単結晶シリコン製造用原料として選択する。
α(1000℃)/α(1000℃)≧0.91   (4)
 本発明に係る多結晶シリコン塊の製造方法は、上述の方法により選択された多結晶シリコン棒を破砕する工程を備えている。
 また、本発明に係る単結晶シリコンの製造方法では、上述の方法により選択された多結晶シリコン棒をシリコン原料として用いたり、上述の方法により得られた多結晶シリコン塊を原料として用いる。
 本発明の方法により選択した多結晶シリコン棒ないしこれを粉砕して得られた多結晶シリコン塊を原料として用いることにより、FZ法およびCZ法の何れにおいても単結晶シリコンの育成工程において結晶線消失が起きにくくなり、安定して単結晶シリコンを得ることができる。
1回のFZ処理で単結晶化に成功した多結晶シリコン棒より得た板状試料の熱拡散率α(T)と標準試料として用いる<100>面を主面とする単結晶シリコン板状試料の熱拡散率α(T)との比(α(T)/α(T))を測定温度に対してプロットした図である。 化学気相法で析出させて育成された多結晶シリコン棒からの、熱拡散率測定用の板状試料の採取例について説明するための図である。 化学気相法で析出させて育成された多結晶シリコン棒からの、熱拡散率測定用の板状試料の採取例について説明するための図である。
 以下に、図面を参照して本発明に係る多結晶シリコン棒の選択方法について説明する。なお、以降においては、本発明の方法により選択された多結晶シリコン棒をFZ法による単結晶シリコンの製造に用いる場合を例に説明するが、選択された多結晶シリコン棒を破砕して結晶配向性の低い多結晶シリコン塊を得、これをCZ法による単結晶シリコンの製造用原料として用いるようにしてもよいことは言うまでもない。
 本発明に係る単結晶シリコン製造用原料用多結晶シリコン棒の選択方法では、化学成長法による析出で育成された多結晶シリコン棒から、当該多結晶シリコン棒の径方向に垂直な断面を主面とする板状試料を採取して、この板状試料の熱拡散率α(T)を測定する。そして、この熱拡散率α(T)を、標準試料の熱拡散率α(T)と比較して、熱拡散率の比(α(T)/α(T))に基づいて単結晶シリコン製造用の原料として好適な多結晶シリコン棒を選択する。
 熱拡散率の測定は、定常法に限らず、パルス加熱法や周期加熱法あるいは熱線法といった非定常法でもよいが、測定の容易性と精度において優れるパルス加熱法(フラッシュ加熱法)を用いることが好ましい。
 パルス加熱法では、測定対象試料を板状(一般的には円盤状)とし、以下のような手順で熱拡散率を測定する。
 まず、板状試料を装置に固定し、この板状試料の表面にパルス光(通常はレーザパルス)を照射して瞬間的に加熱する。この加熱により、板状試料の表面から裏面にかけて熱が伝わり、裏面の温度が上昇することとなるが、この裏面温度の変化の様子を観測することで熱拡散率α(T)が算出される。なお、熱拡散率の測定温度は、装置内に設置された電気炉からの加熱により、任意に設定することができる。
 本発明では、測定結果の再現性を高める目的で、算出された熱拡散率α(T)を、標準試料の熱拡散率α(T)で規格化する。具体的には、熱拡散率α(T)と熱拡散率α(T)との比(α(T)/α(T))を求める。
 なお、規格化のための標準試料としては単結晶シリコンが好ましく、特に、<100>面を主面とする単結晶シリコン板状試料が好ましい。
 このような測定は、原理的には、シリコン結晶の溶融温度未満の温度であれば可能である。しかし、本発明者らの検討によれば、α(T)/α(T)の値は、測定温度が高くなるにつれて、測定対象である試料間での差が小さくなる傾向が認められる。つまり、1本の多結晶シリコン棒から得られた複数の試料間でのα(T)/α(T)値の差が小さくなるだけではなく、本来は結晶粒状態が異なるはずの多結晶シリコン棒から得られた試料間でのα(T)/α(T)値の差も小さくなる傾向があり、このような場合には単結晶シリコン製造用原料として好適な多結晶シリコン棒の選択(選別)が難しくなる。
 そこで、本発明者らは、好適な測定温度の範囲を明らかにする目的で、結晶粒状態が異なる複数の多結晶シリコン棒を準備し、それぞれの多結晶シリコン棒から径方向に垂直な断面を主面とする板状試料を採取し、これら板状試料の熱拡散率を、25±0.5℃、900±1℃、1000±1℃、1100±1℃の各温度で行って各温度での熱拡散率の比(α(T)/α(T))を求めると共に、これら多結晶シリコン棒のFZ法による単結晶化を行って結晶線消失の有無を調べた。
 その結果、熱拡散率と1回のFZ操作での結晶線消失の有無との間には関連性が認められ、1回のFZ操作により単結晶化に成功した多結晶シリコン棒(結晶線消失無し)は、成功しなかった多結晶シリコン棒(結晶線消失有り)よりも、熱拡散率が大きい傾向にあることが判明した。つまり、1100℃以下の測定温度であれば、熱拡散率の比(α(T)/α(T))に基づいて単結晶シリコン製造用の原料として好適な多結晶シリコン棒を選択し得るとの知見を得た。このような理由により、本発明では、熱拡散率測定の測定温度は1100℃以下としている。
 具体的には、熱拡散率α(T)が、α(T)/α(T)≧0.10×10-3T+0.80を満足する多結晶シリコン棒を単結晶シリコン製造用原料として選択する。
 図1は、1回のFZ処理で単結晶化に成功した多結晶シリコン棒より得た板状試料の熱拡散率α(T)と標準試料として用いる<100>面を主面とする単結晶シリコン板状試料の熱拡散率α(T)との比(α(T)/α(T))の最低値を測定温度に対してプロットした図である。
 この結果から、1次の相関関係として、上式α(T)/α(T)≧0.10×10-3T+0.80が得られ、その相関係数Rは0.9997と極めて高い直線性をもつ。従って、上式を判別式として用いれば、1100℃以下の任意の温度で行われた熱拡散率測定の結果に基づき、単結晶シリコン製造用原料として好適な多結晶シリコン棒の選択が可能となる。
 なお、上式α(T)/α(T)≧0.10×10-3T+0.80は、<100>面を主面とする単結晶シリコン板状試料を標準試料として用いた場合の判別式である。
 また、1100℃未満の測定温度であれば、1つの多結晶シリコン棒から得られる複数の試料間の熱拡散率の差を考慮しても、単結晶化成功率の高い多結晶シリコン棒と単結晶化成功率の比較的低い多結晶シリコン棒を区別するための基準値を設定し得ることが推定された。このような理由により、本発明では、熱拡散率測定の測定温度が25℃、900℃、1000℃のそれぞれについて、単結晶シリコン製造用の原料として好適な多結晶シリコン棒を選択するための基準値(熱拡散率の比の値)を設定している。
 具体的には、測定温度Tが25℃の場合には、熱拡散率α(25℃)が、α(25℃)/α(25℃)≧0.80を満足する多結晶シリコン棒を単結晶シリコン製造用原料として選択する。
 また、測定温度Tが900℃の場合には、熱拡散率α(900℃)がα(900℃)/α(900℃)≧0.90を満足する多結晶シリコン棒を単結晶シリコン製造用原料として選択する。
 さらに、測定温度Tが1000℃の場合には、熱拡散率α(1000℃)がα(1000℃)/α(1000℃)≧0.91を満足する多結晶シリコン棒を単結晶シリコン製造用原料として選択する。
 なお、上記の多結晶シリコン棒を選択するための基準値(熱拡散率の比の値)は何れも、<100>面を主面とする単結晶シリコン板状試料を標準試料として用いた場合の値である。
 本発明の多結晶シリコン棒の選択方法では、熱拡散率を測定するため、多結晶シリコン棒より板状試料を採取する。板状試料は、熱拡散率測定に適するものである限り特別な制限はないが、多結晶シリコン棒は、径方向に結晶粒が成長している場合が多い。これは、多結晶シリコン棒製造時に、シリコン芯線表面でCVD反応が進行することで径拡大するためである。そこで、板状試料の採取位置による測定値のばらつきを抑制するために、多結晶シリコン棒の径方向に垂直な断面を主面とする板状試験試料を用いることが好ましい。
 図2Aおよび図2Bは、化学気相法(シーメンス法)で析出させて育成された多結晶シリコン棒10からの、熱拡散率測定用の板状試料20の採取例について説明するための図である。図中、符号1で示したものは、表面に多結晶シリコンを析出させてシリコン棒とするためのシリコン芯線である。なお、この例では、多結晶シリコン棒10の結晶状態(配向や粒径等)の径方向依存性の有無を確認すべく3つの部位(CTR:シリコン芯線1に近い部位、EDG:多結晶シリコン棒10の側面に近い部位、R/2:CTRとEGDの中間の部位)から板状試料20を採取しているが、このような部位からの採取に限定されるものではない。
 図2Aで例示した多結晶シリコン棒10の直径は概ね120mmであり、この多結晶シリコン棒10の側面側からシリコン芯線1側に至る3つの部位(CTR:シリコン芯線1に近い部位、EDG:多結晶シリコン棒10の側面に近い部位、R/2:CTRとEGDの中間の部位)から、直径が概ね20mmで長さが概ね60mmのロッド11をくり抜く。この図に示した例では、ロッド11は、多結晶シリコン棒10の径方向に垂直な断面を底面とする柱状試料となる。
 そして、図2Bに図示したように、これらのロッド11の長軸方向に垂直な断面を主面とする板状試料20を概ね2mmの厚みでスライスして採取する。従って、この場合、板状試料20は、多結晶シリコン棒10の径方向に垂直な断面を主面とするように採取されることになる。
 なお、ロッド11を採取する部位や直径は上記例に限定する必要はなく、多結晶シリコン棒10全体の性状を合理的に推定可能であり熱拡散率の測定に支障がない限り、どの部位から採取してもよく、直径も適当に定めればよい。多結晶シリコン棒10の直径やくり抜くロッド11の直径、或いは、くり抜くロッド11の長さ等を考慮して定めればよい。また、板状試料20についても、ロッド11の適当な部位から採取すればよい。
 なお、板状試料20は、多結晶シリコン棒10の長軸方向に垂直な断面を主面とするように採取してもよい。例えば、多結晶シリコン棒10の長軸方向と垂直な主面をもつ概ね2mmの厚みの板状試料をスライスにより採取し、この板状試料のシリコン芯線1に近い部位(CTR)、多結晶シリコン棒10の側面に近い部位(EDG)、CTRとEGDの中間の部位(R/2)から、直径が概ね20mmの板状試料20を採取するようにしてもよい。
 採取した板状試料20は、熱拡散率測定に先立ち、研磨により表面の平坦性を高めておくことが好ましい。シリコン結晶の研磨には種々の方法が知られており、いずれの方法を用いても良いが、例えば振動研磨装置を用いることができる。
 異なる析出条件下で化学成長法で育成された多結晶シリコン棒(A~D)を4本準備した。これらの多結晶シリコン棒のそれぞれにつき、図2Aおよび図2Bで示した採取方法で、厚みが約2mmで直径が約20mmの板状試料(20CTR、20EDG、20R/2)を得た。
 これらの板状試料のそれぞれの熱拡散率を、25±0.5℃、900±1℃、1000±1℃、1100±1℃の各温度で測定した。また、標準試料としての<100>面を主面とする単結晶シリコン板状試料についても、同条件で熱拡散率測定を行った。熱拡散率の測定は、非定常法であるレーザフラッシュ法で行い、条件は表1に示したとおりである。
 なお、標準試料としての<100>面を主面とする単結晶シリコン板状試料は、FZ法にて育成された単結晶シリコンインゴット(直径12mm×長さ170cm)から、輪切りにより厚さ2mmで採取した。
Figure JPOXMLDOC01-appb-T000001
 標準試料(<100>面を主面とする単結晶シリコン板状試料)の熱拡散率α(T)を1.00とした場合の規格化された板状試料の熱拡散率α(T)、すなわち熱拡散率の比α(T)/α(T)を表2に纏めた。
 さらに、これら多結晶シリコン棒A~DのFZ法による単結晶化を行って結晶線消失の有無を調べた。表2には、FZ操作1回における結晶線の消失の有無も示した。
Figure JPOXMLDOC01-appb-T000002
 表2に纏めた結果から、測定温度25℃におけるα(25℃)/α(25℃)の値が0.80以上の多結晶シリコン棒A及びBは、結晶線が消失することなく1回のFZ処理で単結晶化に成功している。
 また、測定温度900℃におけるα(900℃)/α(900℃)の値が0.90以上の多結晶シリコン棒A及びBは、結晶線が消失することなく1回のFZ処理で単結晶化に成功している。
 さらに、測定温度1000℃におけるα(1000℃)/α(1000℃)の値が0.91以上の多結晶シリコン棒A及びBは、結晶線が消失することなく1回のFZ処理で単結晶化に成功している。
 なお、測定温度1100℃におけるα(1100℃)/α(1100℃)の値が0.92以上の多結晶シリコン棒A及びBは、結晶線が消失することなく1回のFZ処理で単結晶化に成功しているが、一部のα(1100℃)/α(1100℃)の値が0.92以上である多結晶シリコン棒Cについては結晶線の消失が認められ1回のFZ処理での単結晶化に失敗している。
 図1は、表2に示した熱拡散率のうち、1回のFZ処理で単結晶化に成功した多結晶シリコン棒A及びBから採取された6つの板状試料のなかの最も低い規格化熱拡散率(25℃:0.80、900℃:0.90、1000℃:0.91、1100℃:0.92)を、測定温度に対してプロットしたものである。なお、ここでは、測定温度との相関を見るため、1100℃での最低値である0.92も考慮している。
 本発明は、単結晶シリコン製造用原料として好適な多結晶シリコンを高い定量性と再現性で選別し、単結晶シリコンの安定的製造に寄与する技術を提供する。
1 シリコン芯線
10 多結晶シリコン棒
11 ロッド
20 板状試料

Claims (9)

  1.  単結晶シリコン製造用原料として用いる多結晶シリコン棒を選択するための方法であって、
     前記多結晶シリコン棒は化学成長法による析出で育成されたものであり、前記多結晶シリコン棒の径方向に垂直な断面を主面とする板状試料を採取し、1100℃以下の温度T(℃)で前記板状試料の熱拡散率α(T)を測定し、該熱拡散率α(T)と標準試料の熱拡散率α(T)との比(α(T)/α(T))を求め、該熱拡散率の比(α(T)/α(T))に基づいて単結晶シリコン製造用の多結晶シリコン棒を選択する、ことを特徴とする多結晶シリコン棒の選択方法。
  2.  前記標準試料は<100>面を主面とする単結晶シリコン板状試料である、請求項1に記載の多結晶シリコン棒の選択方法。
  3.  前記熱拡散率α(T)が下式(1)を満足する多結晶シリコン棒を単結晶シリコン製造用原料として選択する、請求項2に記載の多結晶シリコン棒の選択方法。
    α(T)/α(T)≧0.10×10-3T+0.80   (1)
  4.  前記測定温度Tが25℃であり、前記熱拡散率α(25℃)が下式(2)を満足する多結晶シリコン棒を単結晶シリコン製造用原料として選択する、請求項2に記載の多結晶シリコン棒の選択方法。
    α(25℃)/α(25℃)≧0.80   (2)
  5.  前記測定温度Tが900℃であり、前記熱拡散率α(900℃)が下式(3)を満足する多結晶シリコン棒を単結晶シリコン製造用原料として選択する、請求項2に記載の多結晶シリコン棒の選択方法。
    α(900℃)/α(900℃)≧0.90   (3)
  6.  前記測定温度Tが1000℃であり、前記熱拡散率α(1000℃)が下式(4)を満足する多結晶シリコン棒を単結晶シリコン製造用原料として選択する、請求項2に記載の多結晶シリコン棒の選択方法。
    α(1000℃)/α(1000℃)≧0.91   (4)
  7.  請求項1乃至6の何れか1項に記載の方法により選択された多結晶シリコン棒を破砕する工程を備えている多結晶シリコン塊の製造方法。
  8.  請求項1乃至6の何れか1項に記載の方法により選択された多結晶シリコン棒をシリコン原料として用いる単結晶シリコンの製造方法。
  9.  請求項7に記載の方法により得られた多結晶シリコン塊を原料として用いる単結晶シリコンの製造方法。
PCT/JP2013/004402 2012-08-10 2013-07-18 多結晶シリコン棒の選択方法、多結晶シリコン塊の製造方法、及び、単結晶シリコンの製造方法 WO2014024388A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012178186A JP5868286B2 (ja) 2012-08-10 2012-08-10 多結晶シリコン棒の選択方法、多結晶シリコン塊の製造方法、及び、単結晶シリコンの製造方法
JP2012-178186 2012-08-10

Publications (1)

Publication Number Publication Date
WO2014024388A1 true WO2014024388A1 (ja) 2014-02-13

Family

ID=50067657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/004402 WO2014024388A1 (ja) 2012-08-10 2013-07-18 多結晶シリコン棒の選択方法、多結晶シリコン塊の製造方法、及び、単結晶シリコンの製造方法

Country Status (2)

Country Link
JP (1) JP5868286B2 (ja)
WO (1) WO2014024388A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107268079A (zh) * 2016-04-04 2017-10-20 信越化学工业株式会社 多晶硅、fz单晶硅以及它们的制造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6418778B2 (ja) 2014-05-07 2018-11-07 信越化学工業株式会社 多結晶シリコン棒、多結晶シリコン棒の製造方法、および、単結晶シリコン
JP6345108B2 (ja) 2014-12-25 2018-06-20 信越化学工業株式会社 多結晶シリコン棒、多結晶シリコン棒の加工方法、多結晶シリコン棒の結晶評価方法、および、fz単結晶シリコンの製造方法
JP6454248B2 (ja) 2015-09-14 2019-01-16 信越化学工業株式会社 多結晶シリコン棒

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004315336A (ja) * 2003-04-21 2004-11-11 Sumitomo Mitsubishi Silicon Corp 高抵抗シリコン単結晶の製造方法
WO2012004968A1 (ja) * 2010-07-06 2012-01-12 信越化学工業株式会社 多結晶シリコン棒および多結晶シリコン棒の製造方法
WO2012164803A1 (ja) * 2011-06-02 2012-12-06 信越化学工業株式会社 多結晶シリコン棒の選択方法および単結晶シリコンの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004315336A (ja) * 2003-04-21 2004-11-11 Sumitomo Mitsubishi Silicon Corp 高抵抗シリコン単結晶の製造方法
WO2012004968A1 (ja) * 2010-07-06 2012-01-12 信越化学工業株式会社 多結晶シリコン棒および多結晶シリコン棒の製造方法
WO2012164803A1 (ja) * 2011-06-02 2012-12-06 信越化学工業株式会社 多結晶シリコン棒の選択方法および単結晶シリコンの製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107268079A (zh) * 2016-04-04 2017-10-20 信越化学工业株式会社 多晶硅、fz单晶硅以及它们的制造方法
CN107268079B (zh) * 2016-04-04 2021-06-15 信越化学工业株式会社 多晶硅、fz单晶硅以及它们的制造方法

Also Published As

Publication number Publication date
JP2014034506A (ja) 2014-02-24
JP5868286B2 (ja) 2016-02-24

Similar Documents

Publication Publication Date Title
JP5828795B2 (ja) 多結晶シリコンの結晶配向度評価方法、多結晶シリコン棒の選択方法、および単結晶シリコンの製造方法
WO2013190829A1 (ja) 多結晶シリコンの結晶配向度評価方法、多結晶シリコン棒の選択方法、多結晶シリコン棒、多結晶シリコン塊、および、単結晶シリコンの製造方法
JP6418778B2 (ja) 多結晶シリコン棒、多結晶シリコン棒の製造方法、および、単結晶シリコン
JP5947248B2 (ja) 多結晶シリコン棒の選択方法
JP5868286B2 (ja) 多結晶シリコン棒の選択方法、多結晶シリコン塊の製造方法、及び、単結晶シリコンの製造方法
WO2016132411A1 (ja) 多結晶シリコン棒とその製造方法およびfzシリコン単結晶
WO2017038347A1 (ja) 多結晶シリコン棒の製造方法およびfz単結晶シリコンの製造方法
JP5923463B2 (ja) 多結晶シリコンの結晶粒径分布の評価方法、多結晶シリコン棒の選択方法、多結晶シリコン棒、多結晶シリコン塊、および、単結晶シリコンの製造方法
JP5969956B2 (ja) 多結晶シリコンの粒径評価方法および多結晶シリコン棒の選択方法
KR102405621B1 (ko) 다결정 실리콘 봉 및 다결정 실리콘 봉의 선별 방법
CN109694076B (zh) 多晶硅棒和单晶硅的制造方法
JP2019019010A (ja) 多結晶シリコン棒および多結晶シリコン棒の製造方法
CN107268079B (zh) 多晶硅、fz单晶硅以及它们的制造方法
JP2020125242A (ja) 多結晶シリコン塊、多結晶シリコン棒、および単結晶シリコンの製造方法
WO2017038348A1 (ja) 多結晶シリコン棒の製造方法およびcz単結晶シリコンの製造方法
JP2018065710A (ja) 多結晶シリコン塊、多結晶シリコン棒、および単結晶シリコンの製造方法
WO2014192245A1 (ja) 多結晶シリコン中の局所配向ドメインの評価方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13827131

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13827131

Country of ref document: EP

Kind code of ref document: A1