WO2014024340A1 - 高周波半導体スイッチ回路とそれを備えた高周波無線システム - Google Patents

高周波半導体スイッチ回路とそれを備えた高周波無線システム Download PDF

Info

Publication number
WO2014024340A1
WO2014024340A1 PCT/JP2013/001406 JP2013001406W WO2014024340A1 WO 2014024340 A1 WO2014024340 A1 WO 2014024340A1 JP 2013001406 W JP2013001406 W JP 2013001406W WO 2014024340 A1 WO2014024340 A1 WO 2014024340A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
semiconductor switch
input
path switching
switch circuit
Prior art date
Application number
PCT/JP2013/001406
Other languages
English (en)
French (fr)
Inventor
篤 重谷
崇仁 宮崎
野崎 雄介
勝 福泉
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2014529242A priority Critical patent/JP6120227B2/ja
Publication of WO2014024340A1 publication Critical patent/WO2014024340A1/ja
Priority to US14/612,195 priority patent/US9312853B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • H03K17/689Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors with galvanic isolation between the control circuit and the output circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/161Modifications for eliminating interference voltages or currents in field-effect transistor switches
    • H03K17/162Modifications for eliminating interference voltages or currents in field-effect transistor switches without feedback from the output circuit to the control circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • H03K17/6877Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors the control circuit comprising active elements different from those used in the output circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • H03K17/693Switching arrangements with several input- or output-terminals, e.g. multiplexers, distributors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/44Transmit/receive switching
    • H04B1/48Transmit/receive switching in circuits for connecting transmitter and receiver to a common transmission path, e.g. by energy of transmitter
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/06Modifications for ensuring a fully conducting state
    • H03K2017/066Maximizing the OFF-resistance instead of minimizing the ON-resistance
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0054Gating switches, e.g. pass gates

Definitions

  • the present invention relates to a high-frequency semiconductor switch circuit mounted on a compact, lightweight, low power consumption wireless communication device such as a mobile phone and a high-frequency wireless system using the same.
  • small and low-power high-frequency semiconductor switch circuits are desired to switch high-frequency signal transmission paths such as switching between antenna transmission and reception.
  • a high-frequency semiconductor switch circuit using a GaAsFET (Gallium Arsenide Field Effect Transistor) excellent in high-frequency characteristics and low power consumption as a switching element is used.
  • MOSFET Metal Oxide Semiconductor Semiconductor Field Field Effect Transistor
  • a high-frequency semiconductor switch circuit in which a path switching FET is provided between a common input / output terminal and each of a plurality of individual input / output terminals is known.
  • the high-frequency semiconductor switch circuit is configured only by the path switching FET, there is a problem that it is difficult to improve the isolation characteristics without deteriorating the insertion loss.
  • Patent Documents 1 and 2 a path switching FET and a shunt FET are used in combination.
  • the path switching FET and the shunt FET cannot be individually controlled, there is a problem that the isolation of the FET that is turned off deteriorates.
  • each FET since each of the path switching FET and the shunt FET is separated by a capacitor, each FET can be controlled by an individual voltage.
  • each of the path switching FET and the shunt FET are controlled by a high voltage (for example, 2.5 V) or a low voltage (0 V). Accordingly, when a large amplitude signal is input to the common input / output terminal (for example, 2 Vpp), the FET in the off state can swing from 1.5 V to 3.5 V centering on 2.5 V, so that the withstand voltage (for example, maximum rating 2. 7V). For this reason, it is necessary to limit the amplitude of the RF input signal to the common input / output terminal or to change the FET to a high withstand voltage. However, if the amplitude of the RF input signal is limited, the desired characteristics cannot be satisfied. Further, when the FET is changed to a high withstand voltage, there is a problem that the insertion loss is deteriorated and the chip size is increased.
  • An object of the present invention is to provide a high-frequency semiconductor switch circuit that solves the increase in chip size and the deterioration of on-path insertion loss and is not limited by the withstand voltage of the FET.
  • Another object of the present invention is to provide a high-performance high-frequency semiconductor switch circuit that achieves isolation that has been difficult in the case of multibanding.
  • a high-frequency semiconductor switch circuit includes one common input / output terminal, two or more individual input / output terminals, and two or more control terminals corresponding to the individual input / output terminals, Provided between two or more sets of path switching FET stages provided between the common input / output terminal and each of the individual input / output terminals, and between at least one of the two or more individual input / output terminals.
  • One or more shunt FET stages, DC cut capacitors provided at both ends of the two or more path switching FET stages, and both ends of the one or more shunt FET stages.
  • the present invention it is possible to realize a high-performance high-frequency semiconductor switch circuit having a large power resistance characteristic while maintaining good characteristics such as low insertion loss and high isolation with small size and low power consumption.
  • FIG. 1 is a circuit diagram showing a configuration example of a high-frequency semiconductor switch circuit according to a first embodiment of the present invention.
  • FIG. 2 is a circuit diagram illustrating a configuration example of a power supply circuit in FIG. 1. It is a figure which shows the control logic table
  • FIG. 6 is a circuit diagram showing a first modification of the high-frequency semiconductor switch circuit of FIG. 1.
  • FIG. 6 is a circuit diagram showing a second modification of the high-frequency semiconductor switch circuit of FIG. 1.
  • FIG. 1 is a circuit diagram showing a configuration example of a high-frequency semiconductor switch circuit according to the first embodiment of the present invention.
  • the high-frequency semiconductor switch circuit of FIG. 1 has a common input / output terminal 101 and two individual input / output terminals 102 and 103, and a direct current is connected between the common input / output terminal 101 and one individual input / output terminal 102.
  • a series circuit of the cut capacitor 131, the path switching FET 121, and the DC cut capacitor 132 has a DC cut capacitor 135, a path switching FET 122, and a DC cut between the common input / output terminal 101 and the other individual input / output terminal 103.
  • a series circuit with the capacitor 136 is connected to each other.
  • the signal path between the common input / output terminal 101, the individual input / output terminal 102, and the individual input / output terminal 103 can be switched by turning on or off the path switching FET 121 and the path switching FET 122, respectively. Yes.
  • the path switching FETs 121 and 122 are each composed of a MOSFET, and a voltage necessary for turning on or off the gate of the path switching FET 121 can be applied via the gate bias resistor 141, and the gate bias resistance Via 142, a voltage required to turn on or off the gate of the path switching FET 122 can be applied.
  • a series circuit of a DC cut capacitor 133, a shunt FET 123 and a DC cut capacitor 134 is provided between the individual input / output terminal 102 and the ground, and a DC cut capacitor 137 is provided between the individual input / output terminal 103 and the ground.
  • a series circuit of a shunt FET 124 and a DC cut capacitor 138 is connected to each other.
  • Each of the shunt FETs 123 and 124 is composed of a MOSFET, and a voltage necessary for turning on or off the gate of the shunt FET 123 can be applied via the gate bias resistor 143. A voltage necessary for turning on or off the gate of the shunt FET 124 can be applied via the via.
  • a high isolation characteristic is realized by turning on or off the shunt FET 123 and the shunt FET 124 with opposite polarities to the path switching FET 121 and the path switching FET 122, respectively.
  • a voltage can be applied to the source of the path switching FET 121 via the source bias resistor 149, and a voltage can be applied to the source of the path switching FET 122 via the source bias resistor 150.
  • a voltage having a polarity opposite to the source voltage of the path switching FET 121 and the source voltage of the path switching FET 122 is applied.
  • a voltage can be applied to the source of the shunt FET 123 via the source bias resistor 151, and a voltage can be applied to the source of the shunt FET 124 via the source bias resistor 152.
  • a voltage having a polarity opposite to the source voltage of the shunt FET 123 and the source voltage of the shunt FET 124 is applied.
  • the gate voltage and the source voltage of the FETs 121, 122, 123, and 124 can be individually controlled.
  • Source / drain short-circuit resistors 145, 146, 147, and 148 are connected between the source and drain of the FETs 121, 122, 123, and 124, respectively, so that the source and drain of the FETs 121, 122, 123, and 124 have the same potential. Yes.
  • the source / drain short-circuit resistors 145, 146, 147, and 148 may have a configuration in which at least one is not provided.
  • a power supply circuit 300 uses a power supply circuit 300, control terminals 301 and 302, and inverter circuits 311 to 318 as means for supplying a gate voltage and a source voltage to the FETs 121, 122, 123, and 124.
  • a voltage necessary for turning on or off the gate of the path switching FET 121 can be applied from the control terminal 301 via the two-stage inverter circuits 311 and 312 and the gate bias resistor 141.
  • a voltage necessary for turning on or off the gate of the path switching FET 122 can be applied from the control terminal 302 via the two-stage inverter circuits 315 and 316 and the gate bias resistor 142.
  • a voltage necessary for turning on or off the gate of the shunt FET 123 can be applied from the control terminal 301 via the one-stage inverter circuit 311 and the gate bias resistor 143.
  • a voltage necessary for turning on or off the gate of the shunt FET 124 can be applied via the inverter circuit 315 of the stage and the gate bias resistor 144. Further, a voltage can be applied from the control terminal 301 to the source of the path switching FET 121 via the one-stage inverter circuit 313 and the source bias resistor 149, and the one-stage inverter circuit 317 and the source are connected from the control terminal 302. A voltage can be applied to the source of the path switching FET 122 via the bias resistor 150.
  • a voltage can be applied from the control terminal 301 to the source of the shunt FET 123 via the two-stage inverter circuits 313, 314 and the source bias resistor 151, and the two-stage inverter circuits 317, 317, A voltage can be applied to the source of the shunt FET 124 via 318 and the source bias resistor 152.
  • the power of the inverter circuits 311 to 318 is supplied from the power circuit 300, and the first internal power supply voltage IntVDD1 is supplied to the sources of the FETs in the inverter circuits 311, 312, 315, and 316 connected to the gates of the FETs.
  • a second internal power supply voltage IntVDD2 is supplied to the connected inverter circuits 313, 314, 317, and 318, respectively.
  • IntVDD1 is larger than IntVDD2, for example, IntVDD1 is 2.5V and IntVDD2 is 1.25V.
  • IntVDD1 and IntVDD2 are generated by the power supply circuit 300 based on, for example, the input voltage Vbat from the battery.
  • FIG. 2 is a circuit diagram showing a configuration example of the power supply circuit 300.
  • the power supply circuit 300 in FIG. 2 includes PMOSFETs 511 and 512, NMOSFETs 513 and 514, resistors 515 to 518, and a current source 519.
  • the current generated by the current source 519 is supplied to the PMOSFET 511 whose drain and gate are connected.
  • the gate of the PMOSFET 511 and the gate of the PMOSFET 512 are connected, and the source is connected to the input voltage Vbat of the power supply circuit 300.
  • a series circuit of a resistor 515 and a resistor 516 is inserted between the drain of the PMOSFET 512 and the ground.
  • the connection point between the resistor 515 and the PMOSFET 512 is connected to the gate of the NMOSFET 513, the connection point between the resistor 515 and the resistor 516 is connected to the gate of the NMOSFET 514, and the resistor 517 is inserted between the source of the NMOSFET 513 and the ground.
  • a resistor 518 is inserted between the source of the NMOSFET 514 and the ground.
  • a connection point between the NMOSFET 513 and the resistor 517 is taken out and the voltage is set to IntVDD1.
  • a connection point between the NMOSFET 514 and the resistor 518 is taken out, and the voltage is set to IntVDD2.
  • FIG. 3 is a diagram showing a control logic table of the high-frequency semiconductor switch circuit of FIG. FIG. 3 shows four cases, but here, the case of the fourth line from the bottom will be described. That is, a case where the high-frequency signal path between the common input / output terminal 101 and the individual input / output terminal 102 is turned on and the high-frequency signal path between the common input / output terminal 101 and the individual input / output terminal 103 is turned off. Is assumed. In the following description, an intermediate potential between the high level and the low level is referred to as a mid level.
  • the values as shown in the control logic table of FIG. 3 are supplied to each control terminal. That is, the control terminal 301 is at a high level and the control terminal 302 is at a low level. At this time, the gate voltage of the path switching FET 121 is at a high level, for example, 2.5 V, and the source and drain voltages of the path switching FET 121 are at a low level, for example, 0 V, so that the path switching FET 121 is turned on. Since the gate voltage of the path switching FET 122 is at a low level, for example, 0V, and the source and drain voltages of the path switching FET 122 are at a mid level, for example, 1.25V, the path switching FET 122 is turned off.
  • the shunt FET 123 Since the gate voltage of the shunt FET 123 is at a low level, for example, 0V, and the source and drain voltages of the shunt FET 123 are at a mid level, for example, 1.25V, the shunt FET 123 is turned off. Since the gate voltage of the shunt FET 124 is at a high level, for example, 2.5V, and the source and drain voltages of the shunt FET 124 are at a low level, for example, 0V, the shunt FET 124 is turned on. Therefore, a signal passes from the common input / output terminal 101 to the individual input / output terminal 102, and no signal passes from the common input / output terminal 101 to the individual input / output terminal 103. That is, on / off control can be performed reliably, leakage to the signal path in the off state can be suppressed, and a high frequency semiconductor switch circuit having good characteristics such as high isolation and low distortion can be realized.
  • the path switching FET 122 and the shunt FET 123 are turned on. It will not exceed the withstand voltage.
  • a high-frequency signal of 2 Vpp one side 1 V
  • a maximum voltage of 1.25 V + 1 V is applied to the sources of the path switching FET 122 and the shunt FET 123.
  • the breakdown voltage of the path switching FET 122 and the shunt FET 123 is, for example, 2.7 V, the breakdown voltage is not exceeded, and these FETs 122 and 123 operate normally.
  • the high-frequency semiconductor switch circuit according to the present embodiment can achieve both low insertion loss and high isolation characteristics and can reduce the chip size. Further, by using the power supply circuit 300 and the inverter circuits 311 to 318, the high-frequency semiconductor switch circuit according to this embodiment can be easily realized in one chip.
  • the inverter circuits 311 to 318 are assumed to be general inverter circuits composed of PMOSFETs and NMOSFETs for low power consumption and chip size reduction. For example, there is no problem with other circuits.
  • the inverter circuits are connected in two stages. However, as long as an equivalent logic can be realized, there is no problem even if the number of stages, the connection form, and the circuit form are different.
  • the present embodiment is not limited to the high-frequency semiconductor switch circuit having two individual input / output terminals 102 and 103, and can be modified to a high-frequency semiconductor switch circuit having three or more individual input / output terminals.
  • FIG. 4 is a circuit diagram showing a first modification of the high-frequency semiconductor switch circuit of FIG.
  • the high-frequency semiconductor switch circuit of FIG. 4 represents a case where a shunt FET 123 for securing isolation is connected to only one high-frequency signal path in FIG. That is, although the shunt FETs 123 and 124 are connected to the high-frequency signal paths in FIG. 1, the present embodiment is also applied to the case where the shunt FET 123 is connected only to a specific high-frequency signal path as shown in FIG. Is possible.
  • FIG. 5 is a circuit diagram showing a second modification of the high-frequency semiconductor switch circuit of FIG.
  • one path switching FET stage is connected in series by four path switching FETs 801a to 801d, and another path switching FET is connected in series by four path switching FETs 802a to 802d.
  • Each stage is configured.
  • 811a to 811d are gate bias resistors
  • 821a to 821d are source / drain short-circuit resistors
  • 812a to 812d are gate bias resistors
  • 822a to 822d are source / drain short-circuit resistors.
  • one shunt FET stage is constituted by series connection of four shunt FETs 803a to 803d
  • another one shunt FET stage is constituted by series connection of four shunt FETs 804a to 804d.
  • 813a to 813d are gate bias resistors
  • 823a to 823d are source / drain short-circuit resistors
  • 814a to 814d are gate bias resistors
  • 824a to 824d are source / drain short-circuit resistors.
  • FIG. 1 illustrates the case where there is one MOSFET constituting the path switching FET stage and the shunt FET stage provided in each high-frequency signal path, but the present embodiment is also performed when two or more MOSFETs are connected in series. The form is applied. In this way, by connecting a plurality of MOSFETs in series to form a path switching FET stage and a shunt FET stage, isolation characteristics and breakdown voltage can be improved.
  • FIG. 6 is a circuit diagram showing a configuration example of the high-frequency semiconductor switch circuit according to the second embodiment. 6 includes a common input / output terminal 101, individual input / output terminals 102 and 103, path switching FETs 121 and 122, shunt FETs 123 and 124, gate bias resistors 141 to 144, and source / drain short-circuit resistors 145 to 148, source bias resistors 149 to 152, DC cut capacitors 131 to 138, and inverter circuits 311 to 318 are provided. These configurations are the same as those of the high-frequency semiconductor switch circuit of FIG. However, in FIG.
  • the power supply terminals of the inverter circuits 311, 312, 315, and 316 are connected to IntVDD 1
  • the power supply terminals of the inverter circuits 313, 314, 317, and 318 are connected to IntVDD 2
  • All power supply terminals 318 are connected to IntVDD1.
  • a voltage dividing resistor 901 is connected between the connection point between the source bias resistor 149 and the source terminal of the path switching FET 121 and the ground, and the connection point between the source bias resistor 151 and the source terminal of the shunt FET 123 is connected to the ground.
  • the voltage dividing resistor 902 is interposed between the source bias resistor 150 and the source terminal of the path switching FET 122 and the ground, and the voltage dividing resistor 903 is connected between the source bias resistor 152 and the shunt FET 124 source terminal.
  • a voltage dividing resistor 904 is connected between the connection point and the ground.
  • the voltage applied to the source of the path switching FET 121 can be made lower than IntVDD1.
  • the voltage applied to the source of the shunt FET 123 can be set to a value lower than IntVDD1.
  • the voltage applied to the source of the path switching FET 122 can be made lower than IntVDD1.
  • the voltage applied to the source of the shunt FET 124 can be made lower than IntVDD1. . In this way, even when a large amplitude signal is input to the common input / output terminal 101 (for example, 2 Vpp), it is possible to control the FET in the off state within the optimum operating range, and the breakdown voltage is not exceeded.
  • the high-frequency signal path between the common input / output terminal 101 and the individual input / output terminal 102 is turned on and the high-frequency signal path between the common input / output terminal 101 and the individual input / output terminal 103 is turned off.
  • the control terminal 301 is at a high level and the control terminal 302 is at a low level.
  • the gate voltage of the path switching FET 121 becomes a high level, for example, 2.5 V
  • the source and drain voltages of the path switching FET 121 are values obtained by dividing the low level voltage by the source bias resistor 149 and the voltage dividing resistor 901.
  • the path switching FET 121 is turned on.
  • the gate voltage of the path switching FET 122 is at a low level, for example, 0V
  • the source and drain voltages of the path switching FET 122 are a value obtained by dividing the high level voltage by the source bias resistor 150 and the voltage dividing resistor 903, for example, 1.25V. Therefore, the path switching FET 122 is turned off.
  • the gate voltage of the shunt FET 123 is low level, for example, 0V, and the source and drain voltages of the shunt FET 123 are a value obtained by dividing the high level voltage by the source bias resistor 151 and the voltage dividing resistor 902, for example, 1.25V.
  • the shunt FET 123 is turned off.
  • the gate voltage of the shunt FET 124 becomes a high level, for example, 2.5V, and the source and drain voltages of the shunt FET 124 become a value obtained by dividing the low level voltage by the source bias resistor 152 and the voltage dividing resistor 904, for example, 0V.
  • the shunt FET 124 is turned on.
  • a signal passes from the common input / output terminal 101 to the individual input / output terminal 102, and no signal passes from the common input / output terminal 101 to the individual input / output terminal 103. That is, on / off control can be performed reliably, leakage to the signal path in the off state can be suppressed, and a high frequency semiconductor switch circuit having good characteristics such as high isolation and low distortion can be realized.
  • the path switching even when a large amplitude signal is input to the common input / output terminal 101.
  • the breakdown voltage of the FET 122 and the shunt FET 123 is not exceeded. Specifically, when a high-frequency signal of 2 Vpp (one side 1 V) is input to the common input / output terminal 101, a maximum voltage of 1.25 V + 1 V is applied to the sources of the path switching FET 122 and the shunt FET 123.
  • the breakdown voltage of the path switching FET 122 and the shunt FET 123 is, for example, 2.7 V, the breakdown voltage is not exceeded, and these FETs 122 and 123 operate normally.
  • an effect equivalent to the effect of the first embodiment can be realized.
  • a modification similar to that in the first embodiment can be basically adopted.
  • the configuration of FIG. 6 can be modified to a high-frequency semiconductor switch circuit having three or more individual input / output terminals.
  • the present embodiment can also be applied to a case where a shunt FET stage is connected only to a specific high-frequency signal path.
  • the present embodiment can also be applied when the number of FETs constituting the FET stage of each high-frequency signal path is two or more.
  • an SOI substrate or an SOS substrate can be adopted as a semiconductor substrate on which the high-frequency semiconductor switch circuit according to the first and second embodiments is formed.
  • FIG. 7 is a schematic diagram illustrating a configuration example of a high-frequency wireless system according to the third embodiment of the present invention.
  • the high-frequency wireless system in FIG. 7 is a system that performs transmission / reception switching with respect to the antenna ANT and handles two or more high-frequency powers that are different in size, for example, in a quasi-microwave mobile communication device.
  • the transmission unit TX includes m transmission circuits TX1 to TXm
  • the reception unit RX includes n reception circuits RX1 to RXn.
  • SW1 is a transmission switch circuit
  • SW2 is a reception switch circuit.
  • the high-frequency semiconductor switch circuit described with reference to FIGS. 1, 4, 5, and 6 is the transmission switch circuit SW1 connected to the transmission circuit TX1 in FIG.
  • each of the path switching FET stages is constituted by a series circuit of a plurality of MOSFETs (see FIG. 5), and among the plurality of path switching FET stages. Some of the MOSFETs can be shared. As a result, it is possible to reduce the size of the antenna switch circuit having distortion characteristics equivalent to those of the prior art.
  • the high-frequency semiconductor switch circuit of the present invention is useful for a high-frequency radio system such as a mobile phone that requires small size, light weight, and low power consumption.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Electronic Switches (AREA)

Abstract

 経路切替用FET(121,122)及びシャント用FET(123,124)は、キャパシタ(131~138)でそれぞれ分離されている。経路切替用FETのゲートと、シャント用FETのゲートとは、第1の内部電源電圧IntVDD1(例えば2.5V)を電源とするインバータ回路(311,312,315,316)を用いて制御される。経路切替用FETのソース・ドレインと、シャント用FETのソース・ドレインとは、IntVDD1よりも小さい第2の内部電源電圧IntVDD2(例えば1.25V)を電源とするインバータ回路(313,314,317,318)を用いて制御される。

Description

高周波半導体スイッチ回路とそれを備えた高周波無線システム
 本発明は、携帯電話機等の小型・軽量・低消費電力の無線通信機に搭載される高周波半導体スイッチ回路及びそれを用いた高周波無線システムに関するものである。
 携帯電話機に代表されるモバイル通信機器にとって、アンテナの送信及び受信の切替等、高周波の信号伝達経路を切り替えるために、小型、低消費電力の高周波半導体スイッチ回路が望まれている。例えば、高周波特性及び低消費電力性に優れたGaAsFET(Gallium Arsenide Field Effect Transistor)をスイッチング素子として用いた高周波半導体スイッチ回路が用いられている。
 近年では、SOS(Silicon On Sapphire)基板やSOI(Silicon OnInsulator)基板に代表される、絶縁性に優れる半導体基板の改良も進んでいる。また、高周波半導体スイッチ回路に不利であったMOSFET(Metal Oxide Semiconductor Field Effect Transistor)を経路切替用のスイッチング素子として採用する技術も開発されている。
 具体的には、共通入出力端子と複数の個別入出力端子の各々との間に経路切替用FETを設けた高周波半導体スイッチ回路が知られている。しかしながら、経路切替用FETのみで高周波半導体スイッチ回路が構成される場合、挿入損失を劣化させることなく、アイソレーション特性を向上させることが難しいという課題があった。
 そこで、特許文献1及び2では、経路切替用FETとシャント用FETとを併用する。ところが、経路切替用FET及びシャント用FETをそれぞれ個別に制御することができないため、オフしているFETのアイソレーションが劣化するという課題があった。
 これに対して、特許文献3では、経路切替用FETとシャント用FETとのそれぞれをキャパシタによって分離しているので、各FETを個別の電圧で制御することが可能である。
特開平6-85641号公報 特開2008-109591号公報 特開2012-114729号公報
 ところが、特許文献3の技術では、経路切替用FET及びシャント用FETの各々のゲート、ソース及びドレインをHigh電圧(例えば2.5V)又はLow電圧(0V)で制御している。したがって、共通入出力端子に大振幅信号が入力された場合(例えば2Vpp)に、オフ状態のFETでは2.5Vを中心に1.5Vから3.5Vまで振れるため、耐圧(例えば最大定格2.7V)を超えてしまう。そのため、共通入出力端子へのRF入力信号の振幅に制限を設けるか、又は耐圧の高いFETに変更する必要が出てくる。ところが、RF入力信号の振幅に制限を設けると、要望特性を満たさなくなる。また、耐圧の高いFETに変更すると、挿入損失の劣化を招き、またチップサイズが増大するといった課題があった。
 本発明の目的は、チップサイズの増大、オン経路の挿入損失の悪化を解決し、かつFETの耐圧に制限されない高周波半導体スイッチ回路を提供することにある。
 本発明の他の目的は、マルチバンド化の際に困難であったアイソレーションの確保を実現し、高性能な高周波半導体スイッチ回路を提供することにある。
 上記目的を達成するため、本発明に係る高周波半導体スイッチ回路は、1つの共通入出力端子、2つ以上の個別入出力端子、及び前記個別入出力端子に対応した2つ以上の制御端子と、前記共通入出力端子と前記個別入出力端子それぞれとの間に設けられた2組以上の経路切替用FET段と、グランドと前記2つ以上の個別入出力端子のうち少なくとも1つとの間に設けられた1組以上のシャント用FET段と、前記2組以上の経路切替用FET段の両端にそれぞれ設けられた直流カットキャパシタと、前記1組以上のシャント用FET段の両端にそれぞれ設けられた直流カットキャパシタと、前記2組以上の経路切替用FET段と前記1組以上のシャント用FET段とのそれぞれのソースバイアス抵抗とを含む構成を採用し、前記共通入出力端子と前記個別入出力端子それぞれとの間の高周波信号経路のうち少なくとも1つを導通させ、かつ残りを遮断させるべく前記2つ以上の制御端子それぞれに入力された制御電圧を、前記2組以上の経路切替用FET段それぞれのゲートに印加し、前記2つ以上の制御端子それぞれに入力された電圧の反転電位の制御電圧を、前記1組以上のシャント用FET段それぞれのゲートに印加し、前記2つ以上の制御端子それぞれに入力された電圧の反転でかつ絶対値が小さな制御電圧を、前記2組以上の経路切替用FET段のそれぞれのソース又はドレインに印加し、前記2つ以上の制御端子それぞれに入力された電圧の正転でかつ絶対値が小さな制御電圧を、前記1組以上のシャント用FET段のそれぞれのソース又はドレインに印加することとしたものである。
 本発明によれば、低挿入損失及び高アイソレーションといった良好な特性を維持しつつ、耐電力特性が大きい高機能の高周波半導体スイッチ回路を小型かつ低消費電力で実現できる。
本発明の第1の実施形態に係る高周波半導体スイッチ回路の構成例を示す回路図である。 図1中の電源回路の構成例を示す回路図である。 図1の高周波半導体スイッチ回路の制御論理表を示す図である。 図1の高周波半導体スイッチ回路の第1変形例を示す回路図である。 図1の高周波半導体スイッチ回路の第2変形例を示す回路図である。 本発明の第2の実施形態に係る高周波半導体スイッチ回路の構成例を示す回路図である。 本発明の高周波半導体スイッチ回路を含む、本発明の第3の実施形態に係る高周波無線システムの構成例を示す模式図である。
 以下、本発明の好ましい実施の形態を、図面を参照しながら説明する。なお、以下では全ての図を通じて同一又は相当する要素には同一の参照符号を付して、その重複する説明を省略する。
 《第1の実施形態》
 図1は、本発明の第1の実施形態に係る高周波半導体スイッチ回路の構成例を示す回路図である。図1の高周波半導体スイッチ回路は、共通入出力端子101と、2つの個別入出力端子102,103とを有し、共通入出力端子101と一方の個別入出力端子102との間には、直流カットキャパシタ131と経路切替用FET121と直流カットキャパシタ132との直列回路が、共通入出力端子101と他方の個別入出力端子103との間には、直流カットキャパシタ135と経路切替用FET122と直流カットキャパシタ136との直列回路がそれぞれ接続されている。経路切替用FET121、経路切替用FET122をそれぞれオンあるいはオフとすることで、共通入出力端子101と、個別入出力端子102及び個別入出力端子103との信号経路を切り替えることができる構成となっている。
 経路切替用FET121,122はそれぞれMOSFETで構成されており、ゲートバイアス抵抗141を経由して、経路切替用FET121のゲートをオン又はオフするために必要な電圧を印加することができ、ゲートバイアス抵抗142を経由して、経路切替用FET122のゲートをオン又はオフするために必要な電圧を印加することができる。
 個別入出力端子102とグランドとの間には、直流カットキャパシタ133とシャント用FET123と直流カットキャパシタ134との直列回路が、個別入出力端子103とグランドとの間には、直流カットキャパシタ137とシャント用FET124と直流カットキャパシタ138との直列回路がそれぞれ接続されている。
 シャント用FET123,124はそれぞれMOSFETで構成されており、ゲートバイアス抵抗143を経由して、シャント用FET123のゲートをオン又はオフするために必要な電圧を印加することができ、ゲートバイアス抵抗144を経由して、シャント用FET124のゲートをオン又はオフするために必要な電圧を印加することができる。シャント用FET123、シャント用FET124をそれぞれ経路切替用FET121、経路切替用FET122とは逆の極性でオンあるいはオフとすることで、高アイソレーション特性を実現する。
 また、ソースバイアス抵抗149を経由して、経路切替用FET121のソースに電圧を印加することができ、ソースバイアス抵抗150を経由して、経路切替用FET122のソースに電圧を印加することができる。経路切替用FET121のソース電圧と経路切替用FET122のソース電圧とは逆の極性の電圧を印加する。また、ソースバイアス抵抗151を経由して、シャント用FET123のソースに電圧を印加することができ、ソースバイアス抵抗152を経由して、シャント用FET124のソースに電圧を印加することができる。シャント用FET123のソース電圧とシャント用FET124のソース電圧とは逆の極性の電圧を印加する。以上のとおり、FET121,122,123,124のゲート電圧とソース電圧とを個別に制御できる。
 FET121,122,123,124のソース・ドレイン間にはそれぞれソース・ドレイン短絡抵抗145,146,147,148が接続されており、FET121,122,123,124のソース・ドレイン間を同電位にしている。なお、ソース・ドレイン短絡抵抗145,146,147,148については、少なくとも1本がない態様も可能である。
 図1の高周波半導体スイッチ回路では、FET121,122,123,124にゲート電圧とソース電圧とを供給する手段として、電源回路300、制御端子301,302、及びインバータ回路311~318を用いている。
 具体的には、制御端子301から2段のインバータ回路311,312とゲートバイアス抵抗141とを経由して、経路切替用FET121のゲートをオン又はオフするために必要な電圧を印加することができ、制御端子302から2段のインバータ回路315,316とゲートバイアス抵抗142とを経由して、経路切替用FET122のゲートをオン又はオフするために必要な電圧を印加することができる。また、制御端子301から1段のインバータ回路311とゲートバイアス抵抗143とを経由して、シャント用FET123のゲートをオン又はオフするために必要な電圧を印加することができ、制御端子302から1段のインバータ回路315とゲートバイアス抵抗144とを経由して、シャント用FET124のゲートをオン又はオフするために必要な電圧を印加することができる。更に、制御端子301から1段のインバータ回路313とソースバイアス抵抗149とを経由して、経路切替用FET121のソースに電圧を印加することができ、制御端子302から1段のインバータ回路317とソースバイアス抵抗150とを経由して、経路切替用FET122のソースに電圧を印加することができる。また、制御端子301から2段のインバータ回路313,314とソースバイアス抵抗151とを経由して、シャント用FET123のソースに電圧を印加することができ、制御端子302から2段のインバータ回路317,318とソースバイアス抵抗152とを経由して、シャント用FET124のソースに電圧を印加することができる。
 インバータ回路311~318の電源は電源回路300から供給されており、各FETのゲートに接続されるインバータ回路311,312,315,316には第1の内部電源電圧IntVDD1が、各FETのソースに接続されるインバータ回路313,314,317,318には第2の内部電源電圧IntVDD2がそれぞれ供給される。ここでIntVDD1はIntVDD2よりも大きく例えば、IntVDD1は2.5V、IntVDD2は1.25Vである。IntVDD1、IntVDD2は、例えばバッテリからの入力電圧Vbatをもとに、電源回路300で生成される。
 図2は、電源回路300の構成例を示す回路図である。図2の電源回路300は、PMOSFET511,512、NMOSFET513,514、抵抗515~518及び電流源519で構成されている。
 電流源519で発生した電流をドレインとゲートとが接続されたPMOSFET511に供給する。PMOSFET511のゲートとPMOSFET512のゲートとは接続され、共にソースは電源回路300の入力電圧Vbatに接続されている。PMOSFET512のドレインとグランドとの間には抵抗515と抵抗516との直列回路が挿入されている。抵抗515とPMOSFET512との間の接続点をNMOSFET513のゲートに接続し、抵抗515と抵抗516との間の接続点をNMOSFET514のゲートに接続し、NMOSFET513のソースとグランドとの間に抵抗517を挿入し、NMOSFET514のソースとグランドとの間に抵抗518を挿入している。NMOSFET513と抵抗517との間の接続点を外に取り出し、その電圧をIntVDD1とする。また、NMOSFET514と抵抗518との間の接続点を外に取り出し、その電圧をIntVDD2とする。このような回路構成にすることで、IntVDD1とIntVDD2といった大きさの違う2種類の電位を容易に作成することができる。
 図3は、図1の高周波半導体スイッチ回路の制御論理表を示す図である。図3には4つの場合が示されているが、ここでは、下から4行目の場合について説明する。つまり、共通入出力端子101と個別入出力端子102との間の高周波信号経路を導通状態にし、かつ共通入出力端子101と個別入出力端子103との間の高周波信号経路を遮断状態にする場合を想定する。以下の説明では、HighレベルとLowレベルとの中間の電位をMidレベルと呼ぶ。
 各制御端子には、図3の制御論理表に示すような値を供給する。すなわち、制御端子301はHighレベル、制御端子302はLowレベルである。このとき、経路切替用FET121のゲート電圧はHighレベル例えば2.5Vとなり、経路切替用FET121のソース及びドレイン電圧はLowレベル例えば0Vとなるため、経路切替用FET121はオン状態となる。経路切替用FET122のゲート電圧はLowレベル例えば0Vとなり、経路切替用FET122のソース及びドレイン電圧はMidレベル例えば1.25Vとなるため、経路切替用FET122はオフ状態となる。シャント用FET123のゲート電圧はLowレベル例えば0Vとなり、シャント用FET123のソース及びドレイン電圧はMidレベル例えば1.25Vとなるため、シャント用FET123はオフ状態となる。シャント用FET124のゲート電圧はHighレベル例えば2.5Vとなり、シャント用FET124のソース及びドレイン電圧はLowレベル例えば0Vとなるため、シャント用FET124はオン状態となる。よって、共通入出力端子101から個別入出力端子102へ信号が通過し、共通入出力端子101から個別入出力端子103へは信号は通過しない。つまり、オン・オフ制御を確実に行うことができ、オフ状態の信号経路へのリークの抑制につながり、高アイソレーション、低歪といった良好な特性を有する高周波半導体スイッチ回路を実現することができる。
 また、オフ状態の経路切替用FET122、シャント用FET123のソース及びドレイン電圧をMidレベルとしたことで、共通入出力端子101に大振幅信号が入力された場合においても経路切替用FET122、シャント用FET123の耐圧を超えることはない。具体的には、共通入出力端子101に2Vpp(片側1V)の高周波信号が入力されたとき、経路切替用FET122、シャント用FET123のソースには最大で1.25V+1Vの電圧が印加される。経路切替用FET122、シャント用FET123の耐圧が例えば2.7Vの場合、耐圧を超えることはなく、これらのFET122,123は正常に動作する。
 以上のとおり、本実施形態に係る高周波半導体スイッチ回路では、低挿入損失と高アイソレーション特性とを両立させ、かつ、チップサイズを縮小させることが可能である。また、電源回路300とインバータ回路311~318とを用いることで、本実施形態に係る高周波半導体スイッチ回路を1チップ内に容易に実現することが可能である。
 なお、上記インバータ回路311~318は、低消費電力かつチップサイズの小型化のため、PMOSFETとNMOSFETとで構成される一般的なインバータ回路を想定しているが、同等の機能を持つ回路であれば、他の回路でも問題はない。また、図1では、インバータ回路を2段に接続しているが、同等の論理が実現できれば、段数や接続形式、また回路形式が異なっていても問題ない。
 また、本実施形態は、2つの個別入出力端子102,103を有する高周波半導体スイッチ回路に限定されず、3つ以上の個別入出力端子を有する高周波半導体スイッチ回路に変形可能である。
 図4は、図1の高周波半導体スイッチ回路の第1変形例を示す回路図である。図4の高周波半導体スイッチ回路は、図1中の1つの高周波信号経路のみにアイソレーション確保用のシャント用FET123を接続した場合を表している。つまり、図1では高周波信号経路それぞれにシャント用FET123,124を接続していたが、図4のように特定の高周波信号経路のみにシャント用FET123が接続される場合にも、本実施形態は適用可能である。
 図5は、図1の高周波半導体スイッチ回路の第2変形例を示す回路図である。図5の高周波半導体スイッチ回路では、4つの経路切替用FET801a~801dの直列接続により1つの経路切替用FET段が、4つの経路切替用FET802a~802dの直列接続により他の1つの経路切替用FET段がそれぞれ構成されている。811a~811dはゲートバイアス抵抗、821a~821dはソース・ドレイン短絡抵抗、812a~812dはゲートバイアス抵抗、822a~822dはソース・ドレイン短絡抵抗である。また、4つのシャント用FET803a~803dの直列接続により1つのシャント用FET段が、4つのシャント用FET804a~804dの直列接続により他の1つのシャント用FET段がそれぞれ構成されている。813a~813dはゲートバイアス抵抗、823a~823dはソース・ドレイン短絡抵抗、814a~814dはゲートバイアス抵抗、824a~824dはソース・ドレイン短絡抵抗である。つまり、図1では各高周波信号経路に設けられた経路切替用FET段及びシャント用FET段を構成するMOSFETが1つの場合を例示したが、2つ以上のMOSFETを直列接続する場合にも本実施形態は適用される。このように、複数のMOSFETを直列接続して経路切替用FET段及びシャント用FET段を構成することよって、アイソレーション特性や耐圧の向上が図られる。
 《第2の実施形態》
 図6は、第2の実施形態に係る高周波半導体スイッチ回路の構成例を示す回路図である。図6の高周波半導体スイッチ回路は、共通入出力端子101、個別入出力端子102,103、経路切替用FET121,122、シャント用FET123,124、ゲートバイアス抵抗141~144、ソース・ドレイン短絡抵抗145~148、ソースバイアス抵抗149~152、直流カットキャパシタ131~138、インバータ回路311~318を備えている。これらの構成は、図1の高周波半導体スイッチ回路と同じである。ただし、図1ではインバータ回路311,312,315,316の電源端子はIntVDD1に、インバータ回路313,314,317,318の電源端子はIntVDD2にそれぞれ接続されていたが、図6ではインバータ回路311~318の全ての電源端子がIntVDD1に接続されている。また、ソースバイアス抵抗149と経路切替用FET121のソース端子との接続点とグランドとの間に電圧分割用抵抗901が、ソースバイアス抵抗151とシャント用FET123のソース端子との接続点とグランドとの間に電圧分割用抵抗902が、ソースバイアス抵抗150と経路切替用FET122のソース端子との接続点とグランドとの間に電圧分割用抵抗903が、ソースバイアス抵抗152とシャント用FET124のソース端子との接続点とグランドとの間に電圧分割用抵抗904がそれぞれ接続されている。
 インバータ回路313の出力に対して、ソースバイアス抵抗149と電圧分割用抵抗901とで電圧を抵抗分割することにより、経路切替用FET121のソースにかかる電圧をIntVDD1よりも低い値とすることが可能となる。インバータ回路314の出力に対して、ソースバイアス抵抗151と電圧分割用抵抗902とで電圧を抵抗分割することにより、シャント用FET123のソースにかかる電圧をIntVDD1よりも低い値とすることが可能となる。インバータ回路317の出力に対して、ソースバイアス抵抗150と電圧分割用抵抗903とで電圧を抵抗分割することにより、経路切替用FET122のソースにかかる電圧をIntVDD1よりも低い値とすることが可能となる。インバータ回路318の出力に対して、ソースバイアス抵抗152と電圧分割用抵抗904とで電圧を抵抗分割することにより、シャント用FET124のソースにかかる電圧をIntVDD1よりも低い値とすることが可能となる。このようにして、共通入出力端子101に大振幅信号が入力された場合(例えば2Vpp)にもオフ状態のFETを最適な動作範囲で制御することが可能となり、耐圧を超えることもない。
 図6の高周波半導体スイッチ回路の動作例として、2つの経路のうちのいずれか1つ以上を導通状態にする場合を例に挙げて説明する。ここでも、共通入出力端子101と個別入出力端子102との間の高周波信号経路を導通状態とし、共通入出力端子101と個別入出力端子103との間の高周波信号経路を遮断状態にする場合を想定する。すなわち、制御端子301はHighレベル、制御端子302はLowレベルである。このとき、経路切替用FET121のゲート電圧はHighレベル例えば2.5Vとなり、経路切替用FET121のソース及びドレイン電圧は、Lowレベルの電圧をソースバイアス抵抗149と電圧分割用抵抗901とで分割した値例えば0Vとなるため、経路切替用FET121はオン状態となる。経路切替用FET122のゲート電圧はLowレベル例えば0Vとなり、経路切替用FET122のソース及びドレイン電圧はHighレベルの電圧をソースバイアス抵抗150と電圧分割用抵抗903とで分割した値例えば1.25Vとなるため、経路切替用FET122はオフ状態となる。シャント用FET123のゲート電圧はLowレベル例えば0Vとなり、シャント用FET123のソース及びドレイン電圧はHighレベルの電圧をソースバイアス抵抗151と電圧分割用抵抗902とで分割した値例えば1.25Vとなるため、シャント用FET123はオフ状態となる。シャント用FET124のゲート電圧はHighレベル例えば2.5Vとなり、シャント用FET124のソース及びドレイン電圧は、Lowレベルの電圧をソースバイアス抵抗152と電圧分割用抵抗904とで分割した値例えば0Vとなるため、シャント用FET124はオン状態となる。よって、共通入出力端子101から個別入出力端子102へ信号が通過し、共通入出力端子101から個別入出力端子103へは信号は通過しない。つまり、オン・オフ制御を確実に行うことができ、オフ状態の信号経路へのリークの抑制につながり、高アイソレーション、低歪といった良好な特性を有する高周波半導体スイッチ回路を実現することができる。
 また、オフ状態の経路切替用FET122、シャント用FET123のソース及びドレイン電圧を抵抗分割で生成したMidレベルとしたことで、共通入出力端子101に大振幅信号が入力された場合においても経路切替用FET122、シャント用FET123の耐圧を超えることはない。具体的には、共通入出力端子101に2Vpp(片側1V)の高周波信号が入力されたとき、経路切替用FET122、シャント用FET123のソースには最大で1.25V+1Vの電圧が印加される。経路切替用FET122、シャント用FET123の耐圧が例えば2.7Vの場合、耐圧を超えることはなく、これらのFET122,123は正常に動作する。
 以上のとおり、第2の実施形態によれば、第1の実施形態の効果と同等の効果を実現可能である。しかも、第2の実施形態でも、基本的には第1の実施形態と同様の変形例を採用できる。例えば、図6の構成は、3つ以上の個別入出力端子を有する高周波半導体スイッチ回路に変形可能である。また、特定の高周波信号経路のみにシャント用FET段が接続される場合にも、本実施形態は適用可能である。各高周波信号経路のFET段を構成するFETの直列数が2以上である場合にも、本実施形態は適用可能である。
 なお、上記第1及び第2の実施形態に係る高周波半導体スイッチ回路を形成する半導体基板として、SOI基板又はSOS基板を採用することができる。
 《第3の実施形態》
 図7は、本発明の第3の実施形態に係る高周波無線システムの構成例を示す模式図である。図7の高周波無線システムは、例えば準マイクロ波帯のモバイル通信機器において、アンテナANTに対して送信受信の切替を行い、かつ大小異なる2つ以上の高周波電力を扱うシステムである。m及びnをそれぞれ整数とするとき、送信部TXはm個の送信回路TX1~TXmを備え、受信部RXはn個の受信回路RX1~RXnを備える。SW1は送信用スイッチ回路、SW2は受信用スイッチ回路である。例えば、上記第1及び第2の実施形態にて、図1、図4、図5及び図6を以て説明した高周波半導体スイッチ回路は、図7中の送信回路TX1に接続された送信用スイッチ回路SW1と、受信回路RX1に接続された受信用スイッチ回路SW2とを含む高周波半導体スイッチ回路に相当する。
 なお、高周波信号経路を構成するMOSFETで大電力をとり扱う場合、遮断状態のMOSFETにおいて歪を発生しやすくなる。このため、積極的に、複数のMOSFETを直列接続して多段化することにより大電力の高周波信号を取り扱えるようにする。
 受信用スイッチ回路SW2が複数の高周波信号経路を有する場合には、経路切替用FET段の各々を複数のMOSFETの直列回路で構成するとともに(図5参照)、複数の経路切替用FET段のうちの一部のMOSFETを共通化することができる。これにより、従来と同等の歪特性を有するアンテナスイッチ回路を小型化することが可能となる。
 本発明の高周波半導体スイッチ回路は、小型、軽量、低消費電力が要請される携帯電話機等の高周波無線システムにとって有用である。
101 共通入出力端子
102,103 個別入出力端子
121,122 経路切替用FET
123,124 シャント用FET
131~138 直流カットキャパシタ
141~144 ゲートバイアス抵抗
145~148 ソース・ドレイン短絡抵抗
149~152 ソースバイアス抵抗
300 電源回路
301~302 制御端子
311~318 インバータ回路
511,512 PMOSFET
513,514 NMOSFET
515~518 抵抗
519 電流源
801a~d,802a~d 経路切替用FET
803a~d,804a~d シャント用FET
811a~d,812a~d,813a~d,814a~d ゲートバイアス抵抗
821a~d,822a~d,823a~d,824a~d ソース・ドレイン短絡抵抗
901~904 電圧分割用抵抗
ANT アンテナ
IntVDD1,IntVDD2 内部電源電圧
RX 受信部
SW1~2 スイッチ回路
TX 送信部
Vbat 電源回路の入力電圧

Claims (7)

  1.  1つの共通入出力端子、2つ以上の個別入出力端子、及び前記個別入出力端子に対応した2つ以上の制御端子と、
     前記共通入出力端子と前記個別入出力端子それぞれとの間に設けられた2組以上の経路切替用FET段と、
     グランドと前記2つ以上の個別入出力端子のうち少なくとも1つとの間に設けられた1組以上のシャント用FET段と、
     前記2組以上の経路切替用FET段の両端にそれぞれ設けられた直流カットキャパシタと、
     前記1組以上のシャント用FET段の両端にそれぞれ設けられた直流カットキャパシタと、
     前記2組以上の経路切替用FET段と前記1組以上のシャント用FET段とのそれぞれのソースバイアス抵抗とを含み、
     前記共通入出力端子と前記個別入出力端子それぞれとの間の高周波信号経路のうち少なくとも1つを導通させ、かつ残りを遮断させるべく前記2つ以上の制御端子それぞれに入力された制御電圧を、前記2組以上の経路切替用FET段それぞれのゲートに印加し、
     前記2つ以上の制御端子それぞれに入力された電圧の反転電位の制御電圧を、前記1組以上のシャント用FET段それぞれのゲートに印加し、
     前記2つ以上の制御端子それぞれに入力された電圧の反転でかつ絶対値が小さな制御電圧を、前記2組以上の経路切替用FET段のそれぞれのソース又はドレインに印加し、
     前記2つ以上の制御端子それぞれに入力された電圧の正転でかつ絶対値が小さな制御電圧を、前記1組以上のシャント用FET段のそれぞれのソース又はドレインに印加することを特徴とする高周波半導体スイッチ回路。
  2.  請求項1記載の高周波半導体スイッチ回路において、
     電源電圧として第1の内部電源電圧を持つインバータ回路と、
     電源電圧として前記第1の内部電源電圧よりも小さな値である第2の内部電源電圧を持つインバータ回路とを含み、
     前記共通入出力端子と前記個別入出力端子それぞれとの間の高周波信号経路のうち少なくとも1つを導通させ、かつ残りを遮断させるべく前記2つ以上の制御端子それぞれに入力された制御電圧を、電源電圧として前記第1の内部電源電圧を持つ2段のインバータ回路又は同論理を実現する回路を経由して、前記2組以上の経路切替用FET段それぞれのゲートに印加し、
     前記2つ以上の制御端子それぞれに入力された制御電圧を、電源電圧として前記第1の内部電源電圧を持つ1段のインバータ回路又は同論理を実現する回路を経由して、前記1組以上のシャント用FET段それぞれのゲートに印加し、
     前記2つ以上の制御端子それぞれに入力された制御電圧を、電源電圧として前記第2の内部電源電圧を持つ1段のインバータ回路又は同論理を実現する回路を経由して、前記2組以上の経路切替用FET段それぞれのソースに印加し、
     前記2つ以上の制御端子それぞれに入力された制御電圧を、電源電圧として前記第2の内部電源電圧を持つ2段のインバータ回路又は同論理を実現する回路を経由して、前記1組以上のシャント用FET段それぞれのソースに印加することを特徴とする高周波半導体スイッチ回路。
  3.  請求項1記載の高周波半導体スイッチ回路において、
     インバータ回路と電圧分割用抵抗とを含み、
     前記共通入出力端子と前記個別入出力端子それぞれとの間の高周波信号経路のうち少なくとも1つを導通させ、かつ残りを遮断させるべく前記2つ以上の制御端子それぞれに入力された制御電圧を、2段のインバータ回路又は同論理を実現する回路を経由して、前記2組以上の経路切替用FET段それぞれのゲートに印加し、
     前記2つ以上の制御端子それぞれに入力された制御電圧を、1段のインバータ回路又は同論理を実現する回路を経由して、前記1組以上のシャント用FET段それぞれのゲートに印加し、
     前記2つ以上の制御端子それぞれに入力された制御電圧を、1段のインバータ回路又は同論理を実現する回路を経由し、かつ前記電圧分割用抵抗を介して分圧した電圧を、前記2組以上の経路切替用FET段それぞれのソースに印加し、
     前記2つ以上の制御端子それぞれに入力された制御電圧を、2段のインバータ回路又は同論理を実現する回路を経由し、かつ前記電圧分割用抵抗を介して分圧した電圧を、前記1組以上のシャント用FET段それぞれのソースに印加することを特徴とする高周波半導体スイッチ回路。
  4.  請求項1~3のいずれか1項に記載の高周波半導体スイッチ回路において、
     半導体基板がSOI基板又はSOS基板であることを特徴とする高周波半導体スイッチ回路。
  5.  請求項1~3のいずれか1項に記載の高周波半導体スイッチ回路において、
     前記経路切替用FET段は、複数のMOSFETを直列接続して構成されたことを特徴とする高周波半導体スイッチ回路。
  6.  請求項1~3のいずれか1項に記載の高周波半導体スイッチ回路において、
     前記シャント用FET段は、複数のMOSFETを直列接続して構成されたことを特徴とする高周波半導体スイッチ回路。
  7.  請求項1~6のいずれか1項に記載の高周波半導体スイッチ回路を備えたことを特徴とする高周波無線システム。
PCT/JP2013/001406 2012-08-09 2013-03-06 高周波半導体スイッチ回路とそれを備えた高周波無線システム WO2014024340A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014529242A JP6120227B2 (ja) 2012-08-09 2013-03-06 高周波半導体スイッチ回路とそれを備えた高周波無線システム
US14/612,195 US9312853B2 (en) 2012-08-09 2015-02-02 High frequency semiconductor switch circuit and high frequency radio system including same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012176986 2012-08-09
JP2012-176986 2012-08-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/612,195 Continuation US9312853B2 (en) 2012-08-09 2015-02-02 High frequency semiconductor switch circuit and high frequency radio system including same

Publications (1)

Publication Number Publication Date
WO2014024340A1 true WO2014024340A1 (ja) 2014-02-13

Family

ID=50067613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001406 WO2014024340A1 (ja) 2012-08-09 2013-03-06 高周波半導体スイッチ回路とそれを備えた高周波無線システム

Country Status (3)

Country Link
US (1) US9312853B2 (ja)
JP (1) JP6120227B2 (ja)
WO (1) WO2014024340A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105024677A (zh) * 2014-04-30 2015-11-04 恩智浦有限公司 Rf开关电路
EP3002876A1 (en) * 2014-10-03 2016-04-06 Analog Devices Global Apparatus and methods for biasing radio frequency switches

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9667244B1 (en) 2015-11-16 2017-05-30 Analog Devices Global Method of and apparatus for biasing switches
US9712158B1 (en) 2016-04-07 2017-07-18 Analog Devices Global Apparatus and methods for biasing radio frequency switches
WO2019104015A1 (en) * 2017-11-22 2019-05-31 Integrated Device Technology, Inc. High power silicon on insulator switch
RU2691593C1 (ru) * 2018-09-20 2019-06-14 Самсунг Электроникс Ко., Лтд. Высокочастотные коммутаторы с уменьшенным числом коммутирующих элементов

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08228138A (ja) * 1994-12-16 1996-09-03 Matsushita Electron Corp 半導体集積回路
JP2001217653A (ja) * 1999-11-26 2001-08-10 Matsushita Electric Ind Co Ltd 高周波増幅回路およびそれを用いた移動体通信端末
JP2006121217A (ja) * 2004-10-19 2006-05-11 Toshiba Corp 半導体切替回路

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0685641A (ja) 1992-08-31 1994-03-25 Mitsubishi Electric Corp マイクロ波スイッチ
US5903178A (en) 1994-12-16 1999-05-11 Matsushita Electronics Corporation Semiconductor integrated circuit
JP2005006072A (ja) * 2003-06-12 2005-01-06 Matsushita Electric Ind Co Ltd 高周波スイッチ装置および半導体装置
JP4945215B2 (ja) 2006-10-27 2012-06-06 新日本無線株式会社 半導体スイッチ集積回路
JP5366914B2 (ja) 2010-11-25 2013-12-11 パナソニック株式会社 高周波半導体スイッチ回路
US9231578B2 (en) * 2012-01-06 2016-01-05 Richwave Technology Corp. Apparatus and method for obtaining auxiliary voltage from control signals
US8729952B2 (en) * 2012-08-16 2014-05-20 Triquint Semiconductor, Inc. Switching device with non-negative biasing
US8854111B2 (en) * 2012-08-29 2014-10-07 Richwave Technology Corp. RF switch with adaptive drain and source voltage and associated method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08228138A (ja) * 1994-12-16 1996-09-03 Matsushita Electron Corp 半導体集積回路
JP2001217653A (ja) * 1999-11-26 2001-08-10 Matsushita Electric Ind Co Ltd 高周波増幅回路およびそれを用いた移動体通信端末
JP2006121217A (ja) * 2004-10-19 2006-05-11 Toshiba Corp 半導体切替回路

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105024677A (zh) * 2014-04-30 2015-11-04 恩智浦有限公司 Rf开关电路
EP2940866A3 (en) * 2014-04-30 2016-01-27 Nxp B.V. Rf switch circuit
US11316515B2 (en) 2014-04-30 2022-04-26 Nxp B.V. RF switch circuit
EP3002876A1 (en) * 2014-10-03 2016-04-06 Analog Devices Global Apparatus and methods for biasing radio frequency switches
US9374124B2 (en) 2014-10-03 2016-06-21 Analog Devices Global Apparatus and methods for biasing radio frequency switches

Also Published As

Publication number Publication date
JPWO2014024340A1 (ja) 2016-07-25
US9312853B2 (en) 2016-04-12
US20150145587A1 (en) 2015-05-28
JP6120227B2 (ja) 2017-04-26

Similar Documents

Publication Publication Date Title
JP6120227B2 (ja) 高周波半導体スイッチ回路とそれを備えた高周波無線システム
JP5997624B2 (ja) 高周波半導体スイッチおよび無線機器
TWI604694B (zh) 具有非負性偏壓之切換裝置
US7847655B2 (en) Switching circuit
US8884650B2 (en) High-frequency semiconductor switching circuit
US20100225378A1 (en) Radio frequency switching circuit and semiconductor device
US8818298B2 (en) High frequency switch
US12132474B2 (en) RF switch with bypass topology
US9331690B2 (en) Switching circuit and RF switch including the same
US20240048143A1 (en) Radio frequency switch biasing topologies
KR101228742B1 (ko) 고주파 스위치
US20230163732A1 (en) Balanced amplifier arrangement for power control and improved deep back-off efficiency
US20150180465A1 (en) Rf switch
JP6466872B2 (ja) 通信回路
WO2023223938A1 (ja) 増幅回路および通信装置
US20200343889A1 (en) Field-effect transistor switch
US9197253B2 (en) RF switch
WO2024073556A1 (en) Methods and devices to control radiated spurious emission in rf antenna switches
JP2006081073A (ja) 送受信回路
JP2009278461A (ja) スイッチ半導体集積回路
JP2014112907A (ja) アンテナスイッチ回路及び通信端末
JP2010219955A (ja) アンテナスイッチ回路及び通信端末

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13828266

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014529242

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13828266

Country of ref document: EP

Kind code of ref document: A1