WO2014019523A1 - 两种腐蚀深度的一次成形方法 - Google Patents

两种腐蚀深度的一次成形方法 Download PDF

Info

Publication number
WO2014019523A1
WO2014019523A1 PCT/CN2013/080575 CN2013080575W WO2014019523A1 WO 2014019523 A1 WO2014019523 A1 WO 2014019523A1 CN 2013080575 W CN2013080575 W CN 2013080575W WO 2014019523 A1 WO2014019523 A1 WO 2014019523A1
Authority
WO
WIPO (PCT)
Prior art keywords
corrosion
etching
depths
depth
forming method
Prior art date
Application number
PCT/CN2013/080575
Other languages
English (en)
French (fr)
Inventor
张新伟
夏长奉
李祥
苏巍
Original Assignee
无锡华润上华半导体有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡华润上华半导体有限公司 filed Critical 无锡华润上华半导体有限公司
Publication of WO2014019523A1 publication Critical patent/WO2014019523A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • H01L21/30608Anisotropic liquid etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3083Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane

Definitions

  • the present invention relates to manufacturing techniques such as semiconductors, and more particularly to etching processes used in the fabrication of semiconductor devices. Background technique
  • a Chinese patent application discloses a method of etching a structure, the method comprising the steps of: arranging a second material on the top of the bottom of the village substrate with an attached pattern for the bottom of the first material a mask comprising: at least two sub-masks: covering a first sub-mask of the first region with the first sub-pattern, the first sub-mask substantially remaining after the etching process, and the second sub-mask
  • the pattern covers the second sub-mask of the second region, the second sub-mask is a sacrificial mask that increases the etching speed in the at least second region and etches the substrate for a predetermined time.
  • Another Chinese patent application discloses a method of forming a pattern, comprising the steps of: forming a photoresist layer on a stepped substrate, and using a first mask to form a photoresist layer A layer of exposure is used to make a second exposure of the portion of the photoresist layer thick due to the step, and to develop the exposed photoresist.
  • the thick photoresist at the step is subjected to sufficient exposure to avoid bridging or residual glue, resulting in an improved profile.
  • the present invention discloses a primary forming method for two corrosion depths, including: etching a corrosion object from more than one inlet using a corrosion material having lateral corrosion characteristics.
  • a primary forming method for two corrosion depths according to one aspect of the invention includes: prior to initiating corrosion, corrosion material, inlet geometry, and corrosion according to the desired two corrosion depths and desired corrosion profiles The choice of time.
  • a primary forming method of two corrosion depths according to one aspect of the invention wherein the inlet geometry comprises a size of a cross section of the inlet, a distance between each inlet, and a relative position between the respective inlets.
  • a primary forming method of two etching depths wherein a spacing W between the inlets, a first etching depth h1, a second etching depth h2, a longitudinal etching rate Vy, and a transverse etching rate Vx are satisfied
  • W (h1-h2) X (2XVx) /My, where M>h2.
  • the invention also discloses a method for etching a semiconductor device, comprising: applying a photoresist during wafer rotation; exposing a wafer coated with the photoresist using a mask, and removing the dissolved photoresist And etching the exposed wafer portion from more than one inlet using a corrosive material having lateral corrosion characteristics to form two corrosion depths at a time; before starting the corrosion, the corrosion material is subjected to the two corrosion depths desired, Choice of inlet geometry and corrosion time.
  • An etching method of a semiconductor device according to an aspect of the invention wherein the etching material having a lateral etching property is TMAH or KOH.
  • Figure 1 shows a corrosion masking layer pattern
  • Figure 2 illustrates the first stage of corrosion forming two levels of corrosion in accordance with one embodiment of the present invention. State
  • Figure 3 illustrates a corrosion state of a second stage of forming two levels of corrosion in accordance with one embodiment of the present invention
  • Figure 4 illustrates a corrosion state of a third stage of forming two levels of corrosion in accordance with one embodiment of the present invention
  • Figure 5 shows another corrosion masking layer pattern.
  • the starting point for the fabrication process of semiconductor devices is quartz, which exists in the form of silicon dioxide.
  • silicon for the quality of semiconductor fabrication that is, electronic grade silicon
  • the silicon after the smelting exists in the form of a single crystal silicon ingot, which is substantially cylindrical in its entirety.
  • the single crystal silicon ingot is laterally cut into a circular single wafer, i.e., a wafer.
  • the photoresist can be uniformly applied to the wafer. Then, the photoresist layer is exposed to ultraviolet light through a mask. The exposed photoresist becomes soluble. After the dissolved photoresist is removed, the remaining photoresist layer becomes the corrosion masking layer used in the etching process to mask portions that do not need to be etched.
  • the etch masking layer can have different shapes depending on the particular desired circuit structure.
  • Figure 1 is a top plan view of an exemplary corrosion masking layer pattern
  • Figure 5 is a top plan view of another corrosion masking layer pattern.
  • the corrosive material added at the inlet has lateral corrosion characteristics including liquid or gas. It can be, for example, a material such as TMAH or K0H. The two materials are stable in process and good in repeatability, and are particularly suitable for use in the present invention.
  • FIG. 2 is a cross-sectional view of a wafer 210 coated with a photoresist layer 200. It shows the first stage of the corrosion process.
  • the inlets 1 01, 1 02 and 1 03 in Fig. 1 correspond to the inlets 201, 202 and 203 in Fig. 2, respectively.
  • Cavities 21 1 , 21 2 and 21 3 are etched under inlets 201, 202 and 203, respectively. In the first stage of the corrosion process, the depth and width of the three cavities are not large and are not connected to each other.
  • Figure 3 shows the situation when corrosion has entered the second phase after a period of time has elapsed.
  • Cavities 31 1 , 31 2 and 31 3 are etched under the three inlets of the corrosive material, respectively.
  • the transverse corrosion characteristics of the corroded material are more prominent. Therefore, not only the depths of the three cavities 31 1 , 31 2 and 31 3 are larger, but also the width thereof is increased, and contact is started at the upper edge of the cavity.
  • Figure 4 is the third stage of the corrosion process, showing the final result of the corrosion.
  • 3 corrosive materials Cavities 41 1 , 412 and 41 3 are etched under inlets 401, 402 and 403, respectively.
  • the corrosion is further enlarged, as the depth is further deepened and the width is further expanded.
  • the enlargement of the individual cavity width increases the cross section of the entire cavity region.
  • the upper portion of the edge between the individual cavities has been eroded so that the individual cavities are fully connected in the upper half.
  • the lower half is far from the entrance distance from the corrosive material, and the corrosive material does not act, so there is still a "wall" at the boundary.
  • the desired two deep structures appear in the substrate.
  • One is the bottom of each cavity itself, and the other is the bottom of the boundary between the cavity and the cavity.
  • the former is deeper, as the first corrosion depth.
  • the latter is shallower as the second corrosion depth.
  • the corrosive effect can be changed accordingly.
  • the geometry and corrosion time of the inlet to which the corrosion material is applied can be adjusted, and both corrosion depths and corrosion topography can be adjusted.
  • the geometry here includes the size of the cross section of the inlet, the distance between the various inlets, and the relative position between the various inlets. For example, for a given corrosive material, if the distance between the inlets in Figures 2 to 4 is increased, then the first depth of corrosion with a greater depth will not be substantially affected during the same corrosion time, as shown in Figure 4. The "wall" between the cavities shown will be higher, i.e. the second corrosion depth formed will be reduced.
  • the corrosion material if the distance between the inlets is kept constant, but the corrosion time is increased, the first corrosion depth with a larger depth and the second corrosion depth with a smaller depth will be affected. , and both will increase.
  • the above changes can be quantified by theoretical derivation, computer simulation or experimental methods.
  • the corrosive material, inlet geometry and corrosion time can be appropriately selected at the same time, or one or both of them can be selected.
  • W in Figures 1 and 4 shows the spacing of the corrosion entrances, and h is the height difference h between the two steps formed by the corrosion, which can be approximated as:
  • Vy represents the longitudinal corrosion rate and Vx represents the transverse corrosion rate. Both the lateral and longitudinal corrosion rates are determined by the nature of the corrosive material.
  • hi the first corrosion depth, that is, the first stage of the corrosion step deeper
  • h2 the second corrosion depth, which is the second stage of the corrosion step.
  • the height difference of the steps h h1 - h2.
  • the semiconductor etching process will include the following steps.
  • a photoresist is applied during wafer rotation. This step may include removing particles, organics, process residues, and water from the surface of the wafer. Cleaning and drying by gas; coating to make the surface of the wafer hydrophobic, enhancing the adhesion of the surface of the substrate to the photoresist; and finally static or dynamic coating.
  • the wafer coated with the photoresist is then exposed using a mask.
  • a mask There are several basic ways to expose:
  • Exposure is achieved by using a lens to collect light between the mask and the photoresist. This improves resolution, makes masking easier, and reduces the effects of defects on the mask.
  • the exposed photoresist will become soluble. After the developing solution is used to dissolve and remove the portion of the photoresist, the portion of the wafer that needs to be etched is exposed.
  • the above etching method and etching method can be applied to fields other than semiconductor technology, for example, in the field of manufacturing optical devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Weting (AREA)

Abstract

提供一种两种腐蚀深度的一次成形方法,包括采用具有横向腐蚀特性的腐蚀材料从多于一个入口处(401、402、403)对腐蚀对象进行腐蚀。该方法可以实现工艺流程的简化,提高效率,降低生产成本,还可能可以缩短生产时间。

Description

两种腐蚀深度的一次成形方法 技术领域
本发明涉及半导体等制造技术, 尤其涉及半导体器件制造过程中使用的蚀 刻工艺。 背景技术
在传统技术中, 为了在基板上腐蚀出不同的腐蚀深度, 需要多次进行 "光 刻一腐蚀" 的过程。 一件中国专利申请 (公开号 CN1977376A) 公开了一种蚀刻 结构的方法, 该方法包括如下步骤: 为第一材料的村底在该村底的顶部上设置 第二材料的采用所附图案的蚀刻掩模, 该蚀刻掩模包括至少两个子掩模: 以第 一子图案覆盖第一区域的第一子掩模, 该第一子掩模在蚀刻工艺之后基本上保 留下来, 以及以第二子图案覆盖第二区域的第二子掩模, 该第二子掩模是牺牲 掩模, 该牺牲掩模增大了该至少第二区域中的蚀刻速度, 对村底蚀刻预定时间。
另一件中国专利申请 (公开号 CN1 089370A) 公开了一种形成图形的方法, 包括以下步骤: 在有台阶的村底上形成光刻胶层、 用第一掩模将光刻胶层作第 一层曝光, 用第二掩模将由于台阶使光刻胶层很厚的部位作第二次曝光, 以及 将曝过光的光刻胶显影。 尤其是, 在台阶处的厚光刻胶要进行充足的曝光, 从 而避免形成桥接或残胶, 而获得改善了轮廓的图形。
但是, 如果能够通过一次的 "光刻一腐蚀" 过程就形成多种符合要求的腐 蚀深度, 将在很大程度上简化工艺流程, 提高效率, 降低产生成本, 还可能可 以缩短生产时间。 发明内容
为了至少解决上述问题的一个方面, 本发明公开了两种腐蚀深度的一次成 形方法, 包括: 采用具有横向腐蚀特性的腐蚀材料从多于一个入口处对腐蚀对 象进行腐蚀。
根据本发明的一个方面的两种腐蚀深度的一次成形方法, 包括: 在开始腐 蚀之前, 根据希望获得的所述两种腐蚀深度及希望获得的腐蚀形貌, 进行腐蚀 材料、 入口几何尺寸和腐蚀时间的选择。 根据本发明的一个方面的两种腐蚀深度的一次成形方法, 其中所述入口几 何尺寸包括入口的横截面的大小、 各个入口之间的距离以及各个入口之间的相 对位置。
根据本发明的一个方面的两种腐蚀深度的一次成形方法, 其中所述具有横 向腐蚀特性的所述腐蚀材料是 TMAH或 K0H。
根据本发明的一个方面的两种腐蚀深度的一次成形方法, 其中, 入口之间 的间距 W、 第一腐蚀深度 h1、 第二腐蚀深度 h2、 纵向腐蚀速率 Vy、 以及横向腐 蚀速率 Vx之间满足如下关系: W = (h1-h2) X (2XVx) /My, 其中 M>h2。
根据本发明的一个方面的两种腐蚀深度的一次成形方法, 其中, 腐蚀时间 t、 第一腐蚀深度 hi 以及纵向腐蚀速率 Vy 之间满足如下关系: t = h1/Vy。
本发明还公开了一种半导体器件的蚀刻方法, 包括: 在晶圆旋转过程中涂 上光刻胶; 使用掩模对涂有所述光刻胶的晶圆进行曝光, 并清除溶解掉的光刻 胶; 以及使用具有横向腐蚀特性的腐蚀材料从多于一个入口处腐蚀暴露出来的 晶圆部分, 以一次成形两种腐蚀深度; 在开始腐蚀之前, 根据希望获得的两种 腐蚀深度, 进行腐蚀材料、 入口几何尺寸和腐蚀时间的选择。
根据本发明的一个方面的半导体器件的蚀刻方法, 其中具有横向腐蚀特性 的所述腐蚀材料是 TMAH或 K0H。
根据本发明的一个方面的半导体器件的蚀刻方法, 其中, 入口之间的间距 W、 第一腐蚀深度 h1、 第二腐蚀深度 h2、 纵向腐蚀速率 Vy、 以及横向腐蚀速率 Vx之间满足如下关系: W = (h1-h2) X (2XVx) /Vy, 其中 h1>h2。
根据本发明的一个方面的蚀刻方法, 其中, 腐蚀时间 t、 第一腐蚀深度 hi 以及纵向腐蚀速率 Vy 之间满足如下关系: t = h1/Vy。
通过使用本发明, 可以实现工艺流程的简化, 提高效率, 降低产生成本, 还可能可以缩短生产时间。 附图说明
通过阅读以下详细说明, 并参考附图, 可以对本发明有一个更全面的了解。 附图中: 图 1示出了一种腐蚀掩蔽层图形;
图 2 示出了根据本发明一个实施例的形成两种腐蚀深度的第一阶段的腐蚀 状态;
图 3 示出了根据本发明一个实施例的形成两种腐蚀深度的第二阶段的腐蚀 状态;
图 4 示出了根据本发明一个实施例的形成两种腐蚀深度的第三阶段的腐蚀 状态;
图 5示出了另外一种腐蚀掩蔽层图形。 具体实施方式
半导体器件的制造过程的起点是石英, 其以二氧化硅的形式存在。 在硅熔 炼工艺中, 通过多步净化可得到用于半导体制造质量的硅, 即电子级硅。 熔炼 之后的硅以单晶硅锭的形式存在, 其整体基本呈圆柱形。 单晶硅锭被横向切割 成圆形的单个硅片, 即晶圆。
通过晶圆旋转, 可以在晶圆上均 地涂上光刻胶。 然后, 将光刻胶层透过 掩模在紫外线下曝光。 曝光后的光刻胶变得可溶。 在清除了被溶解掉的光刻胶 之后, 剩下的光刻胶层就成为了腐蚀过程所用的腐蚀掩蔽层, 用以遮蔽不需要 被腐蚀的部分。腐蚀掩蔽层可以根据具体所需要的电路结构而具有不同的形状。 图 1 是一个示例的腐蚀掩蔽层图形的俯视图, 图 5中是另一个腐蚀掩蔽层图形 的俯视图。
在图 1所示的腐蚀掩蔽层图形中, 矩形 1 01、 1 02和 1 03表示在曝光过程中 被溶解掉的部分。 这三个部分将是添加腐蚀材料的入口。 在本发明中, 在入口 处所添加的腐蚀材料具有横向腐蚀特性,包括液体或气体。其可以是,例如 TMAH 或 K0H等材料。 该两种材料工艺稳定, 重复性好, 特別适用于本发明。
图 2是涂上了光刻胶层 200的晶圆 21 0的剖面图。 其示出的是腐蚀过程的 第一阶段。 图 1 中的入口 1 01、 1 02和 1 03分別对应于图 2中的入口 201、 202 和 203。 在入口 201、 202和 203下方分別腐蚀出了空腔 21 1、 21 2和 21 3。 在腐 蚀过程的第一阶段, 三个空腔的深度和宽度的数值都不大, 彼此也不连通。
图 3示出了在经过了一段时间后, 腐蚀进入了第二阶段时的情况。 在腐蚀 材料的 3个入口下方分別腐蚀出了空腔 31 1、 31 2和 31 3。 在腐蚀过程的第二阶 段, 腐蚀材料的横向腐蚀特性更加凸显。 因此, 不仅三个空腔 31 1、 31 2和 31 3 的深度更大, 其宽度也增大了, 并且在空腔的上部边缘开始接触。
图 4是腐蚀过程的第三阶段, 示出了腐蚀的最终结果。 在腐蚀材料的 3个 入口 401、 402和 403下方分別腐蚀出了空腔 41 1、 412和 41 3。 在腐蚀过程的 第三阶段, 腐蚀进一步扩大, 表现为深度进一步加深, 宽度也进一步扩展。 在 2个外侧空腔 41 1 和 41 3的外侧, 单个的空腔宽度的扩大使得整个空腔区域的 横截面增大。 而在各个空腔之间的边缘的上部分已经被腐蚀掉了, 使得各个空 腔在上半部分是完全连通的。 而下半部分由于距离腐蚀材料的入口距离较远, 腐蚀材料没有作用到, 因而仍然在分界处存在 "壁"。 因此腐蚀到了第三阶段, 基材中就出现了期望的两种深度结构。 一是各个空腔自身的底部, 另外则是空 腔与空腔之前的分界处的底部。 前者更深, 作为第一腐蚀深度。 后者较浅, 作 为第二腐蚀深度。
通过选用不同的腐蚀材料, 腐蚀效果可以相应地改变。 此外, 调节施加腐 蚀材料的入口的几何尺寸和腐蚀时间,两种腐蚀深度和腐蚀形貌可以得到调节。 这里几何尺寸包括入口的横截面的大小、 各个入口之间的距离以及各个入口之 间的相对位置等。 例如, 对于给定腐蚀材料, 如果增加图 2至图 4中的入口之 间的距离, 那么在同样的腐蚀时间内, 深度较大的第一腐蚀深度基本上不会受 到影响, 而如图 4所示的空腔之间的 "壁" 会更高, 即所形成的第二腐蚀深度 会减小。
此外, 同样是在给定腐蚀材料的前提下, 如果保持入口之间的距离不变, 但增加腐蚀时间, 则深度较大的第一腐蚀深度和深度较小的第二腐蚀深度都将 受到影响, 并且都将增大。 上述变化可以通过理论推导、 计算机仿真或者实验 的方式得到量化的结果。 为了获得期望的效果, 可以同时对腐蚀材料、 入口几 何尺寸和腐蚀时间进行适当的选择, 或者对其中的一项或两项进行选择。
图 1 和图 4中的 W表示的是腐蚀入口的间距, h是腐蚀形成的两种台阶的 高度差 h, 其可以近似为:
W = h X (2 X Vx) /My
其中, Vy表示纵向腐蚀速率, 而 Vx表示横向腐蚀速率。 横向和纵向腐蚀 速率都由腐蚀材料的特性决定。
在图 4中, hi表示第一腐蚀深度, 即较深处的腐蚀台阶的第一级, h2表示 第二腐蚀深度, 是腐蚀台阶的第二级。 台阶的高度差 h = h1— h2。
另外, 腐蚀时间 t = h1 /Vy。
因此, 半导体蚀刻过程将包括以下几个步骤。 首先在晶圆旋转过程中涂上 光刻胶。 该步骤可以包括为了除去晶圆表面的颗粒、 有机物、 工艺残余和水蒸 气所进行的清洗烘干; 为了使得晶圆表面具有疏水性、 增强基底表面与光刻胶 的黏附性而进行涂底; 以及最后的静态涂胶或动态涂胶。
然后使用掩模对涂有所述光刻胶的晶圆进行曝光。曝光有几种基本的方式:
( 1 ) 接触式曝光。 掩膜板直接与光刻胶层接触。 曝光出来的图形与掩膜板 上的图形分辨率相当。 这种曝光方式的优点是设备简单, 其缺点是光刻胶污染 掩膜板, 并且会造成掩膜板的磨损。
(2) 接近式曝光。 掩膜板与光刻胶层的略微分开, 可以避免与光刻胶直接 接触而引起的掩膜板损伤。 但是同时引入了衍射效应, 降低了分辨率。
(3) 投影式曝光。 在掩膜板与光刻胶之间使用透镜聚集光实现曝光。 这样 可以提高分辨率, 使得掩膜板的制作更加容易, 并且掩膜板上的缺陷影响也会 减小。
被曝光的光刻胶将变得可溶。在用显影液体溶解并清除掉这部分光刻胶后, 晶圆需要被腐蚀的部分就暴露出来了。
最后, 采用上文中所述的具有横向腐蚀特性的腐蚀材料对晶圆进行腐蚀, 并注意腐蚀材料的选取以及施加腐蚀材料的入口的几何尺寸和腐蚀时间, 就可 以获得所期望的具有两种腐蚀深度的晶圆。
同样, 上述腐蚀方法和蚀刻方法也可以用于半导体技术以外的领域, 例如 光学器件的制造领域中。
虽然附图和前面的详述中介绍了本发明的优选实施方案, 但是应当理解的 是, 本发明并不局限于具体公布的实施方案, 在不偏离权利要求规定的范围的 前提下, 仍然可以有多种的修改和变形。

Claims

权利要求
1. 两种腐蚀深度的一次成形方法, 包括:
采用具有横向腐蚀特性的腐蚀材料从多于一个入口处对腐蚀对象进行腐 蚀。
2. 如权利要求 1所述的两种腐蚀深度的一次成形方法, 包括:
在开始腐蚀之前, 根据希望获得的所述两种腐蚀深度及希望获得的腐蚀形
Figure imgf000007_0001
进行腐蚀材料、 入口几何尺寸和腐蚀时间的选择。
3. 如权利要求 2所述的两种腐蚀深度的一次成形方法, 其中所述入口几何 尺寸包括入口的横截面的大小、 各个入口之间的距离以及各个入口之间的相对 位置。
4. 如权利要求 1所述的两种腐蚀深度的一次成形方法, 其中所述具有横向 腐蚀特性的所述腐蚀材料是 TMAH或 KOH。
5. 如权利要求 1所述的两种腐蚀深度的一次成形方法, 其中, 入口之间的 间距 W、 第一腐蚀深度 hl、 第二腐蚀深度 h2、 纵向腐蚀速率 Vy、 以及横向腐 蚀速率 Vx之间满足如下关系:
W = (hl-h2) (2xVx) Ny, 其中 hl>h2。
6. 如权利要求 5所述的两种腐蚀深度的一次成形方法, 其中, 腐蚀时间 1、 第一腐蚀深度 hi 以及纵向腐蚀速率 Vy 之间满足如下关系:
t = hl/Vy。
7. 一种半导体器件的蚀刻方法, 包括:
在晶圆旋转过程中涂上光刻胶;
使用掩模对涂有所述光刻胶的晶圆进行曝光, 并清除溶解掉的光刻胶; 以 及
使用具有横向腐蚀特性的腐蚀材料从多于一个入口处腐蚀暴露出来的晶圆 部分, 以一次成形两种腐蚀深度; 在开始腐蚀之前, 根据希望获得的两种腐蚀深度, 进行腐蚀材料、 入口几 何尺寸和腐蚀时间的选择。
8. 如权利要求 7所述的半导体器件的蚀刻方法, 其中具有横向腐蚀特性的 所述腐蚀材料是 TMAH或 KOH。
9. 如权利要求 7所述的半导体器件的蚀刻方法,其中,入口之间的间距 W、 第一腐蚀深度 hi、 第二腐蚀深度 h2、 纵向腐蚀速率 Vy、 以及横向腐蚀速率 Vx 之间满足如下关系:
W = (hl-h2) (2xVx) Ny, 其中 hl>h2。
10. 如权利要求 9所述的半导体器件的蚀刻方法, 其中, 腐蚀时间 1、 第一 腐蚀深度 hi 以及纵向腐蚀速率 Vy 之间满足如下关系:
t = hl/Vy。
PCT/CN2013/080575 2012-07-31 2013-07-31 两种腐蚀深度的一次成形方法 WO2014019523A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210269511.4 2012-07-31
CN201210269511.4A CN103578965B (zh) 2012-07-31 2012-07-31 两种腐蚀深度的一次成形方法

Publications (1)

Publication Number Publication Date
WO2014019523A1 true WO2014019523A1 (zh) 2014-02-06

Family

ID=50027272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/080575 WO2014019523A1 (zh) 2012-07-31 2013-07-31 两种腐蚀深度的一次成形方法

Country Status (2)

Country Link
CN (1) CN103578965B (zh)
WO (1) WO2014019523A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4957592A (en) * 1989-12-27 1990-09-18 Xerox Corporation Method of using erodable masks to produce partially etched structures in ODE wafer structures
CN1547242A (zh) * 2003-12-11 2004-11-17 西安交通大学 一种硅半导体器件双级台阶结构的湿法化学腐蚀方法
JP2005183419A (ja) * 2003-12-16 2005-07-07 Ricoh Co Ltd シリコン基板の加工方法
CN1959939A (zh) * 2005-11-03 2007-05-09 茂德科技股份有限公司 蚀刻方法及开口的形成方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2282261A (en) * 1992-09-17 1995-03-29 Mitsubishi Electric Corp Infrared detector array and production method therefor
US7439093B2 (en) * 2005-09-16 2008-10-21 Dalsa Semiconductor Inc. Method of making a MEMS device containing a cavity with isotropic etch followed by anisotropic etch
US7972888B1 (en) * 2010-03-11 2011-07-05 Memsensing Microsystems Technology Co., Ltd. Methods for manufacturing MEMS sensor and thin film and cantilever beam thereof with epitaxial growth process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4957592A (en) * 1989-12-27 1990-09-18 Xerox Corporation Method of using erodable masks to produce partially etched structures in ODE wafer structures
CN1547242A (zh) * 2003-12-11 2004-11-17 西安交通大学 一种硅半导体器件双级台阶结构的湿法化学腐蚀方法
JP2005183419A (ja) * 2003-12-16 2005-07-07 Ricoh Co Ltd シリコン基板の加工方法
CN1959939A (zh) * 2005-11-03 2007-05-09 茂德科技股份有限公司 蚀刻方法及开口的形成方法

Also Published As

Publication number Publication date
CN103578965B (zh) 2016-08-03
CN103578965A (zh) 2014-02-12

Similar Documents

Publication Publication Date Title
TWI651757B (zh) 形成圖案的方法
KR900002688B1 (ko) 플라즈마 에칭처리시의 측벽 형태제어용 이중층 감광성 내식막 기술
JP2012511253A (ja) 基板作製方法
JP2011165855A (ja) パターン形成方法
KR20120126725A (ko) 반도체 소자의 형성 방법
TWI400752B (zh) 在基板中形成深溝槽之方法
KR20100134418A (ko) 스페이서 패터닝 공정을 이용한 콘택홀 형성 방법
CN103123896B (zh) 非感光性聚酰亚胺钝化层的制备方法
WO2014019523A1 (zh) 两种腐蚀深度的一次成形方法
JP5682202B2 (ja) パターン形成方法、パターン形成体
JP2011167780A (ja) パターン形成方法およびパターン形成体
US7045463B2 (en) Method of etching cavities having different aspect ratios
JP6794308B2 (ja) マイクロレンズアレイ製造用金型の作製方法
CN105374671A (zh) T形栅结构的光刻方法
JP2006019496A (ja) 集積回路にフォトリソグラフィ解像力を超える最小ピッチを画定する方法
KR100840498B1 (ko) 반도체소자의 패턴 붕괴 방지 방법
KR100866681B1 (ko) 반도체 소자의 패턴 형성방법
JP2010183208A (ja) ウエットエッチング方法及び音叉型圧電素子片の加工方法
KR20060015949A (ko) 금속 패턴 형성 방법
JP2005109035A (ja) 半導体装置の製造方法
KR100584498B1 (ko) 포토레지스트 패턴 제거 방법
JP2007335628A (ja) コンタクトホール形成方法
KR100905599B1 (ko) 반도체 소자의 제조방법
CN104671190B (zh) 器件表面的保护方法
KR101178566B1 (ko) 반도체 소자의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13824901

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13824901

Country of ref document: EP

Kind code of ref document: A1