WO2014017466A1 - 溶存ガス除去装置、ならびに有機性被処理物の生物処理装置および生物処理方法 - Google Patents
溶存ガス除去装置、ならびに有機性被処理物の生物処理装置および生物処理方法 Download PDFInfo
- Publication number
- WO2014017466A1 WO2014017466A1 PCT/JP2013/069872 JP2013069872W WO2014017466A1 WO 2014017466 A1 WO2014017466 A1 WO 2014017466A1 JP 2013069872 W JP2013069872 W JP 2013069872W WO 2014017466 A1 WO2014017466 A1 WO 2014017466A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- organic
- reaction tank
- biological
- treated
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/20—Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F11/00—Treatment of sludge; Devices therefor
- C02F11/02—Biological treatment
- C02F11/04—Anaerobic treatment; Production of methane by such processes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/28—Anaerobic digestion processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2311/00—Details relating to membrane separation process operations and control
- B01D2311/04—Specific process operations in the feed stream; Feed pretreatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2311/00—Details relating to membrane separation process operations and control
- B01D2311/06—Specific process operations in the permeate stream
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2311/00—Details relating to membrane separation process operations and control
- B01D2311/18—Details relating to membrane separation process operations and control pH control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2311/00—Details relating to membrane separation process operations and control
- B01D2311/26—Further operations combined with membrane separation processes
- B01D2311/2653—Degassing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2311/00—Details relating to membrane separation process operations and control
- B01D2311/26—Further operations combined with membrane separation processes
- B01D2311/2688—Biological processes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/03—Pressure
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/06—Controlling or monitoring parameters in water treatment pH
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/08—Chemical Oxygen Demand [COD]; Biological Oxygen Demand [BOD]
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/12—Volatile Fatty Acids (VFAs)
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/24—CO2
- C02F2209/245—CO2 in the gas phase
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/28—CH4
- C02F2209/285—CH4 in the gas phase
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/28—Anaerobic digestion processes
- C02F3/2806—Anaerobic processes using solid supports for microorganisms
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/28—Anaerobic digestion processes
- C02F3/2846—Anaerobic digestion processes using upflow anaerobic sludge blanket [UASB] reactors
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/28—Anaerobic digestion processes
- C02F3/2853—Anaerobic digestion processes using anaerobic membrane bioreactors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
Definitions
- the present invention relates to a dissolved gas removal apparatus, a biological treatment apparatus for organic processing objects, and a biological treatment method.
- a biological treatment method in which organic waste such as human waste, septic tank sludge, or wastewater is biologically treated (a treatment that causes a reaction such as a chemical change to a substance by an organism such as a microorganism).
- organic waste such as human waste, septic tank sludge, or wastewater is biologically treated (a treatment that causes a reaction such as a chemical change to a substance by an organism such as a microorganism).
- these organic wastes are decomposed and reduced in volume, and useful digestive gas generated in this treatment is recovered.
- the following methods are known as such biological treatment methods.
- biological treatment method first, after removing residue (solid matter) from organic waste, biological treatment is performed in a biological treatment means for removing organic matter and nitrogen.
- methane fermentation performed by this biological treatment method organic substances are hydrolyzed into carbohydrates, lipids, proteins, etc. under the anaerobic conditions by the action of facultative anaerobic bacteria and absolute anaerobic bacteria, and then these are acetic acid and propionic acid. Or it is acid-fermented to organic acids, such as butyric acid, or carbon dioxide. Furthermore, these organic acids, carbon dioxide and hydrogen are finally converted into methane gas. In these series of processes, the organic matter is decomposed and gasified, so that the volume of the organic workpiece is reduced.
- methane fermentation can recover digestive gas that can be used as a fuel, and does not require aeration that consumes a large amount of power, and the amount of surplus sludge generated is small. Excellent in terms of energy saving.
- Such biological treatment of an organic treatment object that generates digestion gas includes a plurality of biological reaction processes as described above.
- the gasification process of the organic acid is less susceptible to the load applied during the treatment than the acid fermentation process in which the organic matter is decomposed into the organic acid.
- the microorganism group involved in the acid fermentation process may change its activity even if conditions such as COD amount (Chemical Oxigen Demand, chemical oxygen demand), temperature, pH, or dissolved gas composition fluctuate during processing. small.
- COD amount Chemical Oxigen Demand, chemical oxygen demand
- temperature temperature
- pH or dissolved gas composition fluctuate during processing.
- Patent Document 2 as a biological treatment method that stably recovers gas without falling into a spoiled state even under high load, a methane fermentation tank for methane fermentation of an organic material to be processed, and the methane fermentation tank Hydrogen partial pressure measuring means for measuring the hydrogen partial pressure of the digested gas generated in the gas, hydrogen gas removing means for removing hydrogen gas from the digested gas according to the measurement result of the hydrogen partial pressure measuring means, and hydrogen from the digested gas There has been proposed a method using a methane fermentation apparatus provided with gas reflux means for refluxing residual gas obtained by removing gas to the methane fermentation tank.
- the dissolved hydrogen gas concentration contained in an organic to-be-processed object becomes low by lowering
- a decrease in the activity of gasifying bacteria is suppressed, and methane gas can be recovered stably.
- the present invention has a high effect of suppressing the occurrence of an rancidity in a bioreactor that biologically treats an organic treatment object and generates digestion gas without using a separation membrane having a high separation function. It is an object of the present invention to provide a dissolved gas removal apparatus that can stably obtain a target gas, and a biological treatment apparatus and a biological treatment method for an organic workpiece.
- the dissolved gas removal apparatus is a dissolved gas removal apparatus attached to a biological reaction tank that biologically treats an organic object to be treated containing moisture to generate digestion gas.
- a biological reaction tank that biologically treats an organic object to be treated containing moisture to generate digestion gas.
- the pH value of the organic treated object or the treated water, or the organic treated object or the treated water is It has a monitoring means for measuring the value of one or more of the contained substances, and a gas removing means for removing dissolved gas from the organic material to be treated in the biological reaction tank.
- the gas removal means uses the values measured by the monitoring means at regular intervals as each evaluation value, and sets a threshold value at which a change with time of the evaluation value is constant. You may be comprised so that it may operate when exceeding.
- the monitoring means determines a pH value of the treated water discharged from the organic treatment object or the biological reaction tank during the biological treatment.
- PH monitoring means for measuring, organic acid concentration monitoring means for measuring the value of the organic acid contained in the treated water discharged from the organic treatment object or the biological reaction tank during the biological treatment, and the biological treatment At least one selected from the group consisting of gas monitoring means for measuring the value of the amount of digestion gas generated in the biological reaction tank and the concentration of one or more digestion gases among the gases contained in the digestion gas It may be.
- gas monitoring means for measuring the value of the amount of digestion gas generated in the biological reaction tank and the concentration of one or more digestion gases among the gases contained in the digestion gas It may be.
- a gas separation unit having a separation membrane that is immersed in the organic workpiece in the biological reaction tank and permeates the dissolved gas; And a decompression means configured to decompress the secondary side of the separation membrane of the gas separation means.
- the organic processing object is taken out from the biological reaction tank, returned to the biological reaction tank, and circulated.
- a circulation means a gas separation means having a separation membrane immersed in the organic workpiece circulated by the circulation means and permeating the dissolved gas, and a secondary side of the separation membrane of the gas separation means.
- Pressure reducing means configured to reduce pressure.
- the main component of the digestion gas may be methane gas.
- the dissolved gas may be hydrogen gas or carbon dioxide gas.
- the dissolved gas removal device according to any one of (1) to (7) may further include a gas storage unit that stores the dissolved gas removed by the gas removal unit.
- the biological treatment apparatus for organic treatment objects performs biological treatment on biological treatment of organic treatment objects containing moisture to generate digestion gas.
- the biological reaction tank may include a holding carrier that supports anaerobic bacteria.
- the dissolved substance in the treatment liquid having activated sludge containing microorganisms in the tank and treated by the dissolved gas removal apparatus configured to perform biological treatment and the membrane separation activated sludge treatment apparatus tank provided with a solid-liquid separation type membrane filtration means for separating the activated sludge from the treated water by membrane separation. It may be configured as follows.
- a biological treatment method for an organic object to be treated includes a step of biologically treating an organic object to be treated containing moisture to generate digestion gas, and the organic substance to be treated in a biological reaction tank. About the treated water discharged from the treated product or the biological reaction tank, one or more kinds of pH values of the organic treated material or the treated water, or substances contained in the organic treated material or the treated water A step of measuring the value of the amount, and using the measured value as an evaluation value or a change over time of the measured value as an evaluation value, when the evaluation value reaches a certain threshold value, A step of removing dissolved gas from the organic object to be treated;
- the measurement is performed by measuring the pH of the organic treatment object or the treated water discharged from the biological reaction tank during the biological treatment, Contained in the digested gas, the concentration of organic acid contained in the treated organic matter to be treated or the treated water discharged from the biological reaction tank, the amount of digestion gas generated in the biological reaction tank by the biological treatment You may measure at least 1 sort (s) of values chosen from the group which consists of the value of the density
- the evaluation value is a value obtained by measuring a pH of treated water discharged from the organic treatment object or the biological reaction tank.
- the threshold value may be any one of pH values representing acidity.
- the evaluation value is an increase amount of the organic acid concentration per day, and the threshold value is 50 mg-COD / L / day. It may be.
- the evaluation value is a reduction amount of the digestion gas generation amount per hour, and the threshold value is 30% by volume. Also good.
- the methane gas is recovered from a gas phase portion of the biological reaction tank, and the methane gas and the organic being processed A step of mixing dissolved gas recovered from the property-treated material, wherein the dissolved gas may contain hydrogen gas or methane gas.
- methane gas may be a main component of digestion gas generated in the biological reaction tank.
- the dissolved gas may be hydrogen gas or carbon dioxide gas.
- the dissolved gas removal apparatus of the present invention is a dissolved gas removal apparatus attached to a biological reaction tank for biologically treating an organic material to be treated containing moisture to generate digestion gas, A monitoring means for monitoring the treatment status in the biological reaction tank; and a gas removal means for removing dissolved gas that interferes with biological treatment from the organic object to be treated. Accordingly, the dissolved gas is removed by the gas removing means.
- the digestion gas generated in the biological reaction tank contains 40% by volume or more of methane gas.
- the digestion gas is recovered from the gas phase part of the biological reaction tank, the digestion gas recovered from the gas phase part, and the hydrogen gas removed from the organic workpiece to be processed Or dissolved gas containing either methane gas.
- a dissolved gas removal apparatus attached to a biological reaction tank that biologically processes an organic workpiece containing water to generate digestion gas, the processing state in the biological reaction tank And a gas removal means for removing dissolved gas that hinders biological treatment from the organic object to be treated.
- the gas removing unit starts operation in conjunction with a monitoring result by the monitoring unit.
- a biological treatment method of an organic treatment object is a method of biologically treating an organic treatment object containing moisture to generate digestion gas, wherein the treatment state in a biological reaction tank
- the organic processing object is biologically processed while monitoring the gas, and the dissolved gas is removed from the organic processing object being processed according to the monitoring result.
- a method of monitoring the pH of treated water discharged from the organic treatment object being treated or the biological reaction tank, from the organic treatment object being treated or the biological reaction tank Treatment status by at least one method selected from the group consisting of a method for monitoring the concentration of organic acid contained in the discharged treated water, and a method for monitoring the amount or gas composition of digestion gas generated in the biological reaction tank To monitor.
- the organic acid concentration of treated water is monitored using a method of monitoring the concentration of organic acid contained in the treated organic matter to be treated or the treated water discharged from the biological reaction tank.
- the dissolved gas removal is driven when the organic acid concentration increases by 50 mg-COD / L / day or more per day.
- the organic acid concentration of the treated water is monitored using a method for monitoring the generation amount or gas composition of digestion gas generated from the organic workpiece or the biological reaction tank during the treatment.
- the removal of dissolved gas is driven when the generation amount of digestion gas per holding time is reduced by 30% or more.
- the rancidity state is generated in a biological reaction tank that biologically treats an organic object to generate digestion gas without using a separation membrane having an advanced separation function. Therefore, the target gas can be stably obtained.
- the biological treatment apparatus for an organic object to be processed according to one embodiment of the present invention it is highly effective in suppressing the occurrence of a sour state in a biological reaction tank, and a target gas can be obtained stably.
- the biological treatment method of an organic object to be treated according to one embodiment of the present invention the effect of suppressing falling into a rancid state in a biological reaction tank is high without using a separation membrane having a high separation function. The target gas can be obtained stably.
- the biological treatment apparatus 100 is an apparatus that generates digestion gas (biogas) by performing biological treatment on an organic workpiece under anaerobic conditions.
- the biological treatment refers to a treatment that causes a reaction such as a chemical change to a substance (a material to be treated) by a living organism such as a microorganism, as will be described later.
- the biological treatment apparatus 100 is a biological reaction tank 10 that biologically treats an organic workpiece 1 containing moisture to generate gas (digestion gas), and a dissolved substance attached to the biological reaction tank 10.
- a gas removal device 20 is shown in FIG. 1, the biological treatment apparatus 100 that biologically treats an organic workpiece 1 containing moisture to generate gas (digestion gas), and a dissolved substance attached to the biological reaction tank 10.
- the biological reaction tank 10 in this example is a so-called UASB (Up-flow Anaerobic Sludge Blanket) reactor.
- the biological reaction tank 10 is provided with a treatment flow inlet 12 provided at the bottom for allowing the organic treatment object 1 to flow into the biological reaction tank 10, and an organic covering accommodated in the biological reaction tank 10.
- Generated by biological treatment provided on the side wall near the liquid surface of the treated product 1, and the treated water outlet 14 for discharging the treated water 3 subjected to biological treatment, and the biological reaction tank 10.
- a gas discharge port 16 for discharging the digestion gas 4 is formed.
- the organic workpiece 1 flows from the bottom of the processed material inlet 12 and is biologically treated inside the biological reaction tank 10 (biological substances contained in the biological reaction tank 10 and biological treatments). The reaction at this time will be described later).
- a part of the digestion gas 4 generated by this biological treatment is discharged from the upper gas discharge port 16.
- Part of the digested gas 4 may remain in a part of the treated water 3 after the treatment, and the treated water 3 is configured to be discharged from the treated water outlet 14 above the side wall.
- the biological reaction tank 10 is not limited to a UASB reactor using the above-described structure and microorganisms as described later as long as it can biologically process the organic workpiece 1.
- a carrier having a microorganism carrying mechanism with high bioadhesiveness can be used. Examples thereof include a carrier made of a porous material having a high specific surface area, a carrier made of a material that easily adheres to microorganisms, or a carrier made of the porous material made of a material that easily adheres to microorganisms.
- foamed plastic or carbon fiber may be used as the holding carrier.
- microorganisms such as anaerobic microorganisms may be supplied into the biological reaction tank 10 and attached to the holding carrier.
- the attached holding carrier may be installed inside the biological reaction tank 10.
- the dissolved gas removal apparatus 20 of this embodiment removes the dissolved gas 2 from the monitoring means 22 for monitoring the processing status of the organic workpiece 1 in the biological reaction tank 10 and the organic workpiece 1 being processed.
- the dissolved gas 2 mainly refers to a gas that hinders biological treatment, as will be described later, among gases contained in the organic workpiece 1.
- the dissolved gas removal device 20 is configured to start operation in accordance with the value (monitoring result) measured by the monitoring means 22 as described below. More specific actions of the monitoring means 22 and the dissolved gas removing device 20 will be described later.
- the dissolved gas removing device 20 is configured to remove the dissolved gas 2 contained in the organic workpiece 1 by the gas removing means 24 and store it in the gas storage means 34.
- the monitoring means 22 is a means for monitoring the state of the biological reaction, that is, the organic object 1 in the biological reaction tank 10 or the treated water discharged from the biological reaction tank 10. Alternatively, it is a means for measuring the pH value of the treated water or the value of one or more of the substances to be treated 1 or the substance contained in the treated water.
- the amount of the substance contained in the organic workpiece 1 or the treated water widely includes the concentration of the substance dissolved in or mixed with the substance or the amount of gas mixed therein. Examples of dissolved substances include acids such as organic acids, mixed substances include hydrophobic organic substances, and mixed gases include methane, carbon dioxide, and other dissolved gases.
- the monitoring means 22 include a measuring device (monitoring device, monitoring unit) that can measure the above-described pH and concentration and amount of a substance.
- the monitoring means 22 includes a pH monitoring means (pH monitoring device, pH monitoring unit) 26 for monitoring the pH of the organic workpiece 1 being processed in the biological reaction tank 10, and the biological reaction tank 10.
- Gas monitoring means (gas monitoring device, gas monitoring unit) 28 for monitoring the generation amount or gas composition of the digested gas 4 to be generated.
- Examples of the pH monitoring unit 26 include an electrode pH sensor.
- the gas monitoring means 28 is a means for monitoring the gas composition of the digestion gas 4, a means for measuring the concentration of one or more specific components of the digestion gas 4, and a component when the specific component is above a certain concentration Means for detecting the presence of the can be used.
- a wet gas meter, a methane gas detector, a carbon dioxide concentration meter, etc. are mentioned.
- the monitoring means 22 in the dissolved gas removal apparatus of the present embodiment is not limited to the pH monitoring means 26 or the gas monitoring means 28.
- the pH monitoring means 26 may monitor the pH of the treated water discharged from the biological reaction tank.
- the organic acid concentration monitoring means include gas chromatography (GC) and high performance liquid chromatography (HPLC).
- GC gas chromatography
- HPLC high performance liquid chromatography
- the monitoring means 22 can determine the processing status more accurately by providing at least two types. In this embodiment, two types of pH monitoring means 26 and gas monitoring means 28 are provided.
- the gas removal means 24 has a gas separation means 30 and a decompression means 32.
- the gas separation means 30 is installed in the biological reaction tank 10 so as to be immersed in the organic workpiece 1.
- the gas separation means 30 has a separation membrane that transmits the dissolved gas 2 contained in the organic workpiece 1.
- the decompression means 32 is configured to decompress the secondary side of the separation membrane of the gas separation means 30.
- the inlet side the side where the separation membrane is in contact with the organic workpiece
- the outlet side dissolved gas permeation side from which the permeated dissolved gas 2 is discharged is called a secondary side.
- a non-permeable separation membrane may be used, and when this is used, even when the organic workpiece 1 having a high moisture content is biologically treated, the dissolved gas 2 containing no moisture is separated. It is easy to collect.
- a non-permeable hollow fiber membrane may be used as the separation membrane, and the dissolved gas 2 can be separated and recovered more easily.
- the non-permeable hollow fiber membrane for example, a hollow fiber membrane made of a hydrophobic material or a three-layer composite hollow fiber membrane in which both sides of a gas permeable non-porous separation layer are sandwiched between porous support layers can be used. .
- a gas permselective separation membrane may be used.
- a gas permselective hollow fiber membrane may be used, which makes it easier to separate and recover the gas.
- a gas permselective hollow fiber membrane for example, a three-layer composite hollow fiber membrane having a non-porous separation layer made of polyurethane can be used.
- the form of the gas separation means 30 is not particularly limited, and those employed from various known separation membrane modules (such as hollow fiber membrane modules or flat membrane modules) can be used as appropriate.
- a hollow fiber membrane module may be used, and by using this, the inside can be easily decompressed, and the specific surface area of the membrane is large and the filling rate can be increased.
- the hollow fiber membrane module includes a hollow fiber membrane bundle in which a plurality of hollow fiber membranes (separation membranes) are bundled, and an air collection tube provided so as to communicate with at least one end of the hollow fiber membrane bundle.
- the structure of this hollow fiber membrane module is configured such that the gas that permeates through each hollow fiber membrane and is separated is collected via the air collection tube.
- the hollow fiber membrane module may be one in which air collecting tubes are provided at both ends of the hollow fiber membrane bundle, the air collecting tube is provided only in one end of the hollow fiber membrane bundle, and the other end is sealed. It may be stopped.
- the hollow fiber membrane bundle may be folded back in a loop shape and connected so that both ends thereof communicate with one air collecting tube.
- the gas separation means 30 may be installed so as not to disturb the flow of the organic workpiece 1 in the biological reaction tank 10.
- the gas separation means 30 has a hollow fiber membrane as a separation membrane
- the axial direction of the hollow fiber membrane may be installed along the vertical direction of the biological reaction tank 10.
- the flat surface of the flat membrane may be installed along the vertical direction of the biological reaction tank 10.
- the decompression means 32 is means for decompressing the secondary side of the separation membrane of the gas separation means 30. By depressurizing the secondary side of the separation membrane, the dissolved gas 2 contained in the organic workpiece 1 can be transmitted to the secondary side of the separation membrane and removed.
- the decompression means 32 is not particularly limited as long as it can decompress the secondary side of the separation membrane of the gas separation means 30, and examples thereof include a suction pump.
- the gas separation means 30 is a hollow fiber membrane module in which an air collection tube is connected to the end of the hollow fiber membrane bundle
- the hollow fiber membrane is connected via the air collection tube by connecting the air collection tube and the decompression means 32. The pressure inside is reduced.
- the gas storage means 34 is connected to the downstream side of the decompression means 32, and collects and stores the dissolved gas 2 separated by the gas separation means 30.
- the digestion gas 4 generated in the biological reaction tank 10 and discharged from the gas discharge port 16 can also be recovered and stored.
- the gas storage means 34 is not particularly limited as long as it can store the separated and recovered gas, and may be an aluminum bag or a pressure vessel.
- the operation of the biological treatment apparatus 100 will be described.
- the organic processing object 1 in the biological reaction tank 10, the organic processing object 1 is allowed to flow from the processing object inlet 12 in a state where microorganisms used for biological processing are accommodated in the biological reaction tank 10.
- Biological treatment of the organic workpiece 1 is performed.
- the digested gas 4 generated by the biological treatment is discharged from the gas discharge port 16 at the upper part of the biological reaction tank 10 and stored in the gas storage means 34, and the treated water after the biological treatment is discharged from the treated water outlet 14 and next. It is guided to a process (not shown).
- the pH monitoring means 26 and the gas monitoring means 28 monitor the pH of the organic workpiece 1 being processed in the biological reaction tank 10 and the amount or gas composition of the digested gas 4 generated in the biological reaction tank 10. By doing so, the processing status of the organic workpiece 1 in the biological reaction tank 10 is monitored. And according to the monitoring results of the pH monitoring means 26 and the gas monitoring means 28, that is, the value measured by the monitoring means or the evaluation value obtained from the value, the dissolved gas contained in the organic processing object 1 by the gas removing means 24. 2 is separated and removed.
- the pH of the organic workpiece 1 is used as an evaluation value, and when this evaluation value reaches a predetermined threshold value, or the amount of digestion gas 4 generated or the target gas concentration is used as an evaluation value, or these generations The value obtained from the amount or the gas concentration is used as an evaluation value.
- the evaluation value reaches a predetermined threshold value, the decompression means 32 is operated, and the dissolved gas 2 hindering biological treatment is separated and removed by the gas separation means 30. Is done.
- the dissolved gas 2 removed by the gas separation means 30 is stored in the gas storage means 34.
- the biological treatment method for an organic object to be processed according to this embodiment is a method for biologically treating an organic object to be treated containing moisture to generate digestion gas.
- the biological treatment of the present embodiment refers to treatment for causing a reaction such as a chemical change to a substance by a living organism such as a microorganism.
- the substance (object to be processed) that causes the reaction is the organic object 1.
- the organic processing object 1 include organic processing objects containing water such as waste water, sewage, human waste, septic tank sludge, or sewage sludge in various fields such as agriculture, livestock industry, fishery industry, and food industry. .
- the ratio (moisture content) of the water to the whole weight of the organic workpiece 1 may be 75% by weight or more.
- the water content of the organic workpiece 1 can be considered up to the maximum when the water occupies most of its weight (nearly 100% by weight, for example, 95 to 99% by weight). That is, the moisture content may be 75 to 95% by weight, 75 to 99% by weight, or the like.
- an organic substance contained in an organic material to be treated is subjected to anaerobic microorganisms under anaerobic conditions such as methane fermentation or hydrogen fermentation. It may be a process.
- the anaerobic microorganism may be a methanogenic archaea.
- the biological treatment method of this embodiment may be applied to methane fermentation or hydrogen fermentation.
- the dissolved gas 2 increases and the COD load (COD concentration, the oxygen concentration required for the oxidation of the dissolved gas 2 by the oxidant, here the oxygen concentration required from the respective composition of the dissolved gas 2
- COD concentration the oxygen concentration required for the oxidation of the dissolved gas 2 by the oxidant
- the gas removal means 24 for removing the dissolved gas 2 is provided in the present embodiment.
- the dissolved gas 2 is removed. This has been fixed. Therefore, the biological treatment method of the present embodiment is particularly preferably applied to methane fermentation.
- the biological treatment method of the present embodiment is particularly effective for biological treatment of complex organic objects to be processed that have multiple biological reactions.
- the organic treatment object 1 is caused to flow into the biological reaction tank 10 from the bottom treatment flow inlet 12 and the organic treatment object is processed in the biological reaction tank 10.
- the thing 1 is biologically processed and the digestion gas 4 is generated.
- the biological treatment status is grasped based on the value measured by the monitoring means 22, the decompression means 32 is activated according to the change in the biological treatment status, the gas removal means 24 is operated, The dissolved gas 2 contained in the workpiece 1 is separated and removed.
- Microorganisms used for biological treatment may be newly added to the organic workpiece 1 to be treated in the biological reaction tank 10, or microorganisms that are originally present in the organic workpiece 1 may be used.
- the treated water 3 obtained by biologically treating the organic workpiece 1 is discharged from the treated water outlet 14 and led to the next step.
- the digested gas 4 generated in the biological reaction tank 10 is discharged from the upper gas discharge port 16 and is collected and stored in the gas storage means 34 together with the dissolved gas 2 separated and removed by the gas separation means 30.
- the organic material to be treated 1 is continuously supplied to the biological reaction tank 10 from the material flow inlet 12 and the treated water 3 is continuously discharged from the gas outlet 16.
- the hydraulic residence time of the organic workpiece 1 in the biological reaction tank varies depending on the configuration of the biological reaction tank used for the biological treatment and the type of microorganisms, and the trial is performed to optimize the biological treatment according to these. May be selected as appropriate.
- the hydraulic residence time may be varied during processing or may be constant.
- the biological treatment method of this embodiment can be applied to various types of anaerobic biological treatments, and dissolved gases that adversely affect the treatment can be appropriately removed depending on the type of biological treatment.
- the dissolved gas 2 to be removed include oxygen gas, carbon dioxide gas, nitrogen gas, hydrogen gas, methane gas, and the like, depending on the type of biological treatment.
- the dissolved gas 2 removed from the organic workpiece 1 may contain digestion gas dissolved in the organic workpiece 1.
- the dissolved gas 2 to be removed in methane fermentation includes hydrogen gas and carbon dioxide gas that hinder methane fermentation.
- the dissolved gas 2 removed from the organic workpiece 1 may contain methane gas dissolved in the organic workpiece 1.
- carbon dioxide gas that hinders hydrogen fermentation can be used.
- the dissolved gas 2 removed from the organic workpiece 1 may contain hydrogen gas dissolved in the organic workpiece 1.
- the dissolved gas removing device 20 is configured to operate according to the value measured by the monitoring means 22.
- the operation according to the value measured by the monitoring means means that when the dissolved gas removal device 20 receives a signal directly from the monitoring means 22 and starts motion, another processing device or the like that has received the signal from the monitoring means 22 (FIG. (Not shown) when the dissolved gas removal device 20 starts to move according to the signal, when the dissolved gas removal device is moved based on the value obtained by analyzing the signal by another processing device or the like, or the operator of the device Includes a case where the value measured by the monitoring means 22 is confirmed and the gas removal device 20 is manually operated.
- the monitoring of the processing status (value measurement) by the monitoring means 22 may be performed continuously during the processing or periodically (at an arbitrary interval) depending on the equipment and the monitoring target. .
- the fixed time is appropriately determined according to the type of situation measured by the monitoring means 22, and when evaluating a change in value per unit time (for example, one day or one hour), the fixed time is the unit time.
- monitoring by the monitoring unit 22 may be continuously performed during biological treatment.
- an evaluation value is obtained from the value (measurement value) measured by the monitoring unit 22, and the gas storage unit 34 is operated according to the evaluation value.
- Values and threshold values (setting values) that need to be set are set in advance.
- the evaluation value is the measured value to be monitored (the pH of the treated water discharged from the organic treatment object or the biological reaction tank during biological treatment, the content of one or more of the components of the substances contained therein, etc.) ) May be used as the evaluation value.
- the evaluation value is a value obtained by comparing a plurality of measurement values, for example, a change in comparison of measurement values recorded over time, that is, an increase amount, a decrease amount, an increase rate, or a decrease of the measurement value per unit time.
- a value obtained from the rate or the like may be used as the evaluation value.
- the evaluation value may always be obtained from the measured value and compared with the threshold value (regular monitoring may be performed), or obtained at regular intervals (for example, unit time) and compared with the threshold value. May be performed.
- the gas storage means 34 is operated.
- the threshold value can be arbitrarily set depending on the equipment and the monitoring target so that the organic workpiece 1 can be maintained under conditions suitable for biological treatment by operating the gas storage means 34.
- the amount of dissolved hydrogen gas and dissolved carbon dioxide gas contained in the organic workpiece 1 is too large, it is disadvantageous for the generation of methane gas.
- the increase in the amount of these dissolved gases 2 to an amount that could interfere with biological treatment is due to a decrease in the pH of the organic material being treated or the treated water after treatment, a reduction in the amount of digestion gas that is produced, and the digestion that occurs.
- the determination can be made based on an increase in the hydrogen gas concentration in the gas, an increase in the organic acid concentration in the organic workpiece to be treated or the treated water after the treatment, and the like.
- the method of monitoring the treatment status is a method of measuring the pH value of the treated water discharged from the organic treatment object or biological reaction tank being treated, from the organic treated water or biological reaction tank being treated.
- a method for measuring the value of the concentration of organic acid contained in the discharged treated water, a method for measuring the value of the amount of gas generated in the biological reaction tank, and one or more kinds of gases contained in the digestion gas It may be at least one selected from the group consisting of methods for measuring the concentration value with respect to the digestion gas (in other words, monitoring the composition of the digestion gas).
- the decompression means 32 is set.
- the gas removal means 24 may be operated and the dissolved gas 2 contained in the organic to-be-processed object 1 may be removed.
- the gas removal means 24 may be operated when the pH of the organic workpiece 1 is acidic, that is, when the pH is less than 7, which is the threshold value. This is because an increase in the concentration of hydrogen gas or methane gas is observed when the organic workpiece 1 becomes acidic.
- the pH threshold is set to a value of about 4 to 7 indicating acidity
- the pH threshold is set to 6.5 or 6, and the pH of the organic workpiece 1 becomes lower than that value
- the gas removal means 24 may be operated with reference to the above.
- the threshold value of the pH may be set to a value of 5, and the gas removing unit 24 may be operated when the pH of the organic workpiece 1 is equal to or lower than that value.
- the gas removing means 24 is operated to remove the dissolved carbon dioxide gas contained in the organic workpiece 1, thereby removing the organic coating.
- the pH of the processed product 1 can be controlled within a range suitable for the biological treatment, and the biological treatment can be performed more stably. The same applies to monitoring the pH of the treated water 3 after the biological treatment.
- the gas removal means 24 may be operated to remove the dissolved gas 2 contained in the organic workpiece 1 when it becomes equal to or lower than the threshold value.
- the gas removal means 24 may be operated when the hydrogen partial pressure in the digestion gas 4 deviates from the range of 10 ⁇ 4 atm to 10 ⁇ 6 atm.
- the gas removing means 24 When the amount of digestion gas 4 generated is monitored by the gas monitoring means 28, the gas removing means 24 is operated when the target gas generation amount falls below a preset gas generation amount threshold value. Then, the dissolved gas 2 contained in the organic workpiece 1 may be removed.
- the theoretical value of the generation amount of digestion gas containing methane gas when there is no dissolved gas 2 that hinders methane fermentation is appropriately predicted depending on the amount of carbon contained in the organic workpiece and the processing environment.
- the amount of methane gas generated decreases due to its presence.
- the amount of methane gas generated is measured by the gas monitoring means 28, and the amount generated per unit time is used as an evaluation value.
- the gas removal means 24 may be operated when the evaluation value is reduced to 75% or less of the predicted generation amount (theoretical value), and when the generation amount of methane gas is reduced to 85% or less.
- the gas removing means 24 may be operated. By this operation, the dissolved hydrogen gas contained in the organic workpiece 1 is removed, so that the thermodynamic balance of the biological reaction in the biological treatment can be improved, and the decomposition of the organic acid can be further promoted. The generation efficiency increases.
- the monitoring means is an organic acid concentration monitoring means for monitoring the organic acid concentration of the organic workpiece 1 being treated or the treated water 3 after treatment
- the increase amount of the organic acid concentration is used as an evaluation value.
- the gas removal means 24 may be operated to remove the dissolved gas 2 contained in the organic workpiece 1.
- the organic acid concentration of the organic workpiece 1 being treated or the treated water 3 after treatment is measured by the organic acid concentration monitoring means, and the amount of increase in the organic acid concentration per day is used as the evaluation value.
- the evaluation value exceeds a certain threshold value, the gas removal means 24 is set to operate.
- Examples of the organic acid to be monitored in methane fermentation include lactic acid, acetic acid, formic acid, propionic acid, isobutyric acid and butyric acid, and the propionic acid concentration may be particularly monitored.
- the threshold value is 50 mg ⁇ COD / L / day, that is, the increase amount of COD per liter per day is 50 mg.
- the gas removal means 24 is operated when the propionic acid concentration of the organic workpiece 1 being treated or the treated water 3 after treatment has increased to 50 mg-COD / L / day or more.
- the threshold value may be 75 mg-COD / L / day
- the gas removal means 24 may be operated when the propionic acid concentration increases to 75 mg-COD / L / day or more.
- a threshold value of the methane gas concentration of the gas monitoring means 28 or the like may be set so that the main component of the digestion gas 4 is methane gas.
- the main component in the digestion gas 4 generated in the biological reaction tank 10 may be methane gas.
- the phrase “methane gas is the main component” means that the ratio of the volume to the total volume of the digestion gas 4 among the components in the digestion gas 4 is the largest.
- the methane gas concentration may be 40% by volume or more, or 55% by volume or more.
- the COD load is set so that the methane gas concentration in the digestion gas 4 is equal to or higher than the lower limit, and the gas is removed according to the monitoring result (measurement result) of the monitoring means 22.
- the biological treatment is performed by operating the means 24.
- the methane gas concentration is 100% by volume with respect to the total volume of the digestion gas 4, that is, the digestion gas 4 is substantially composed of only methane gas (within the range of the accuracy of measurement usually performed such as comparison of weight and volume, It may consist of approximately 100% by volume methane gas). Therefore, the methane gas concentration with respect to the entire volume of the fire extinguishing gas 4 may be 40 to 100% by volume, or may be 55 to 100% by volume.
- the dissolved gas 2 removed by the gas removing means 24 can be mixed with the digestion gas 4 to be a valuable gas as long as it maintains the preferable range of the methane gas concentration of the digestion gas 4.
- the dissolved gas 2 removed from the organic workpiece 1 being processed by the gas removing means 24 contains either hydrogen gas or methane gas
- the removed dissolved gas 2 and the gas exhaust are removed.
- the digested gas 4 recovered from the gas phase part of the biological reaction tank 10 can be mixed and used through the outlet 16. At this time, if the content ratio of hydrogen gas or methane gas in the dissolved gas is 20% by volume or more, it becomes more useful as a valuable gas.
- the COD removal rate can be measured as follows in this embodiment. Measure the COD of the organic material to be treated before being supplied to the biological reaction tank and the COD of the treated water discharged from the biological reaction tank according to the sewage test method, and calculate the COD removal rate using the following formula (I) To do.
- X (Y ⁇ Z) / Y ⁇ 100
- X is the COD removal rate (%)
- Y is the COD (g-COD / L / day) of the organic material before being supplied to the biological reaction tank
- Z is the COD of the treated water. (G-COD / L / day).
- the dissolved hydrogen gas concentration and the dissolved carbon dioxide gas concentration can be measured by the headspace method.
- the organic acid concentration (mg of artificial wastewater being treated in the biological reaction tank is measured using various chromatographs such as a liquid chromatograph. -COD / L) can be measured.
- the organic acid concentration monitoring means described above can be used.
- the measurement object one or more selected from lactic acid, acetic acid, formic acid, propionic acid, isobutyric acid, butyric acid, acetic acid concentration and propionic acid concentration, or a total concentration of these may be measured.
- the biological treatment apparatus 100 of this embodiment may have a control means for controlling the biological treatment or the removal of dissolved gas.
- the control means may be incorporated in any of the constituent elements shown in the figure, and may be, for example, an electronic circuit incorporated in the pH monitoring means 26 or the gas monitoring means 28. Further, although not shown, a computer device or a computer system provided outside may be used.
- the control means is connected to the monitoring means 22 (such as the pH monitoring means 26 or the gas monitoring means 28) or a means for measuring the temperature in the biological reaction tank 10 (not shown), and the values measured by these means are input. You may be comprised so that.
- the control means is connected to the treated water outlet 14, the decompression means 32, the gas storage means 34, or a means for adjusting the temperature in the biological reaction tank 10 (not shown), and the treated water flow is determined according to each of the above measured values.
- the outlet 14, the decompression means 32, the gas storage means 34, or the means for adjusting the temperature may be controlled to control the biological reaction conditions in the biological reaction tank 10.
- the control means may be connected to the gas removal means 24.
- the control means may be configured to obtain an evaluation value from the value measured by the monitoring means 22 and to operate the gas removal means 24 when the evaluation value reaches a certain threshold value.
- the biological treatment apparatus 200 includes a biological reaction tank 10 that biologically processes an organic workpiece 1 containing moisture to generate gas, and a dissolved gas removal apparatus 20A attached to the biological reaction tank 10. And have. That is, the biological treatment apparatus 200 is the same as the biological treatment apparatus 100 except that the biological treatment apparatus 200 includes a dissolved gas removal apparatus 20A instead of the dissolved gas removal apparatus 20.
- the dissolved gas removal apparatus 20A removes the dissolved gas 2 that hinders the biological treatment from the monitoring means 22 that monitors the treatment status of the organic treatment object 1 in the biological reaction tank 10 and the organic treatment object 1 that is being processed.
- the gas removal means 24A takes out the organic processing object 1 from the biological reaction tank 10 and returns it to the biological reaction tank 10 for circulation, and the organic processing object 1 circulated by the circulation means 36.
- the gas separation means 30 is provided so as to be immersed and has a separation membrane that allows the dissolved gas 2 to pass through, and the decompression means 32 that decompresses the secondary side of the separation membrane of the gas separation means 30.
- the gas removal means 24A is the same as the gas removal means 24 except that the gas separation means 30 is provided so as to remove the dissolved gas 2 from the organic workpiece 1 circulating outside the biological reaction tank 10. Is the same.
- the dissolved gas removal device 20A is effective in that the dissolved gas can be efficiently removed even when it is difficult to install a large amount of separation membrane inside the biological reaction tank 10 such as in the case of a large biological reaction tank 10.
- the circulation means 36 may be any means as long as it can circulate the organic treatment object 1 outside the biological reaction tank 10.
- the circulation means 36 is provided in a pipe through which the organic treatment object 1 circulates and the pipe. Means including a liquid feed pump for feeding the workpiece 1 may be used.
- the place where the organic treatment object 1 is taken out from the biological reaction tank 10 by the circulation means 36 and the place where the organic treatment object 1 is returned can be any place in the biological reaction tank 10. You may select the location which can remove and collect efficiently. For example, when the biological reaction tank 10 is a UASB reactor as in this example, the organic processing object 1 is taken out from above the biological reaction tank 10 from the viewpoint of the removal efficiency of dissolved gas, and below the biological reaction tank 10. Alternatively, the organic workpiece 1 may be returned.
- the monitoring means in the biological treatment apparatus 200 is not limited to the pH monitoring means 26 and the gas monitoring means 28, and the same ones as those mentioned in the biological treatment apparatus 100 can be mentioned, and the preferred aspects are also the same.
- the biological treatment apparatus 200 biological treatment of the organic workpiece 1 is performed in the same manner as the biological treatment apparatus 100.
- the digested gas 4 generated by the biological treatment is discharged from the gas discharge port 16 at the upper part of the biological reaction tank 10 and stored in the gas storage means 34, and the treated water after the biological treatment is discharged from the treated water outlet 14 and next. It is led to the process.
- the organic processing object 1 in the biological reaction tank 10 is circulated outside the biological reaction tank 10 by the circulation means 36.
- the pH monitoring means 26 and the gas monitoring means 28 monitor the processing status of the organic workpiece 1 in the biological reaction tank 10 (pH or concentration of a substance contained in the gas, etc.). According to the monitoring result, the gas removal means 24A separates and removes the dissolved gas 2 contained in the organic processing object 1 being circulated.
- the biological treatment method using the biological treatment apparatus 200 can be performed in the same manner as when the biological treatment apparatus 100 is used, and the preferred embodiment is also the same.
- the methane gas concentration in the digestion gas 4 generated in the biological reaction tank 10 is preferably 40% by volume or more, and may be 55% by volume or more. That is, the COD load or the like may be set so that the methane gas concentration in the digestion gas 4 is equal to or higher than the lower limit value, and the biological treatment may be performed by operating the gas removing unit 24A according to the monitoring result of the monitoring unit 22.
- the value of digestion gas per hour is obtained by a control means (not shown) such as an arithmetic unit, and the value is compared with that before one hour.
- a control means such as an arithmetic unit
- the volume is reduced by 40% by volume or more, more preferably by 30% by volume or more, it is preferable to operate the gas removing means 24A.
- the dissolved gas 2 removed by the gas removing means 24A can be mixed with the digestion gas 4 as a valuable gas as long as the methane gas concentration of the digestion gas 4 is within the above-mentioned range.
- the dissolved gas 2 removed from the organic workpiece 1 being treated by the gas removing means 24A contains either hydrogen gas or methane gas
- the removed dissolved gas 2 and the biological reaction The digested gas 4 recovered from the gas phase part of the tank 10 can be mixed and used. At this time, if the content ratio of hydrogen gas or methane gas in the dissolved gas 2 is 20% by volume or more, it becomes more useful as a valuable gas.
- the dissolved gas in the organic workpiece that is preventing the biological treatment can be removed with high efficiency in accordance with the monitoring result of the treatment status of the biological treatment. Therefore, the effect which suppresses falling into a sour state in a biological reaction tank is high, and the target gas can be obtained stably.
- the dissolved hydrogen gas concentration and dissolved carbon dioxide gas concentration contained in the organic material to be treated in the biological reaction tank can be easily controlled, so that decomposition of propionic acid, butyric acid, benzoic acid, etc. into acetic acid can be prevented. It is promoted, and further, the accumulation of organic acids is eliminated by suppressing the decrease in the activity of gasifying bacteria.
- the biological treatment method of this embodiment can achieve good operating efficiency because dissolved gas can be removed while grasping the treatment status of the biological reaction tank even when fluctuations in loads such as COD load occur. it can.
- a separation membrane having an advanced separation function is used to separate and remove dissolved gas contained in an organic object to be processed, instead of separating and removing gas that hinders biological treatment from digestion gas. Even if it is not used, sufficient separation efficiency can be obtained.
- the biological treatment apparatus, dissolved gas removal apparatus, and biological treatment method of the present embodiment are not limited to those described above.
- the dissolved gas removing device may include an organic acid concentration monitoring unit that monitors the organic acid concentration contained in the treated water discharged from the organic workpiece to be processed or the biological reaction tank as the monitoring unit.
- the dissolved gas removed and recovered by the gas removing means and the digested gas recovered from the gas outlet of the biological reaction tank may be stored separately.
- an organic to-be-processed object may be flowed in from the upper part, and processed water may be discharged
- this embodiment is not limited to the continuous type which supplies an organic to-be-processed object, and discharges treated water continuously, It is good also as a batch type.
- ⁇ Other embodiments As an example of a modification of the present embodiment, it is more preferable to perform a waste liquid treatment on a treatment liquid excluding digestion gas and dissolved gas.
- a treatment liquid excluding digestion gas and dissolved gas.
- impurities such as nitrogen compounds such as ammonia are often dissolved or suspended in the treatment liquid, and therefore it is preferable to perform waste liquid treatment by activated sludge treatment.
- the method there is a biological treatment method that biodegrades pollutants contained in water to be treated by the action of microorganisms in activated sludge.
- This biological treatment includes an activated sludge treatment tank (not shown) having activated sludge, and is configured to supply a treatment liquid treated by a dissolved gas removal device to the activated sludge treatment tank.
- the biological treatment apparatus may be used.
- the liquid to be treated is introduced into an activated sludge treatment tank having activated sludge containing microorganisms, and a biological reaction is performed by the microorganisms. Aerobic bacteria may be used as the microorganism.
- the activated sludge containing aerobic latest is put into the activated sludge treatment tank, and the waste liquid treatment is performed by reacting the nitrogen compound with aerobic bacteria.
- a membrane separation activated sludge treatment method that combines the biological treatment and a membrane treatment in which activated sludge is subjected to solid-liquid separation by a separation membrane to obtain treated water having no suspended solids
- the biological treatment apparatus has a membrane separation activated sludge treatment means for performing the membrane separation activated sludge treatment method.
- the membrane separation activated sludge treatment means has an activated sludge treatment tank for performing the biological treatment described above, and a solid-liquid separation type membrane filtration means (separation membrane) for separating the water to be treated and the activated sludge by membrane separation.
- the membrane separation activated sludge treatment means is provided with a membrane separation tank equipped so that the separation membrane is immersed in the water to be treated supplied into the tank, and biological treatment was performed in the activated sludge treatment tank (reaction tank). It may be configured to supply the later treated water to the membrane separation tank to perform membrane separation (so-called separate type).
- the membrane separation activated sludge treatment means membrane separation activated sludge treatment tank
- a suction pump is connected to the separation membrane, and the membrane treatment may be performed by sucking and filtering the water to be treated by operating this suction pump and separating it from the activated sludge.
- treated water that has been biologically treated in the activated sludge treatment tank by operating a pump (raw water pump) for feeding the treated water in the activated sludge treatment tank (reaction tank) (Biologically treated water) is fed to the membrane separation tank in a state containing activated sludge.
- membrane treatment is performed on the sludge-containing treated water consisting of the treated water and activated sludge sent from the activated sludge treatment tank, the activated sludge is removed on the membrane surface, and the treated water (filtered water) Is obtained.
- the obtained treated water is discharged out of the system.
- a liquid chromatograph was used to measure the organic acid concentration (mg-COD / L) of the artificial wastewater being treated in the biological reaction tank.
- the organic acid concentration to be measured was the total organic acid concentration obtained by adding the concentrations of lactic acid, acetic acid, formic acid, propionic acid, isobutyric acid and butyric acid, acetic acid concentration, and propionic acid concentration.
- Example 1 A bench-scale UASB reactor (40 cm high, 7 cm diameter cylindrical shape, effective volume 1.1 L) was used as the bioreactor. 0.7 L of granule collected from a UASB reactor for treating isomerized sugar production wastewater was charged as a seeding sludge into a biological reaction tank.
- the separation membrane of the gas removal means about 5500 three-layer composite hollow fiber membranes (manufactured by Mitsubishi Rayon Engineering Co., Ltd., support layer (inner layer, outer layer) material: polyethylene, intermediate layer (degassing membrane) material: polyurethane,
- the inner diameter of the hollow fiber was 200 ⁇ m
- the outer diameter of the hollow fiber was 280 ⁇ m
- the length of the membrane (effective length) was about 360 mm.
- the said separation membrane was installed so that it might be immersed in the organic to-be-processed object in a biological reaction tank.
- the total surface area of the separation membrane was about 1.7 m 2
- the membrane filling rate in the biological reaction tank was about 22%.
- an air pump Iwaki, APN-110 KV-1
- monitoring means pH monitoring means (electrode type pH sensor, manufactured by Horiba, Ltd.) for monitoring the pH of treated water discharged from the biological reaction tank, and gas monitoring for monitoring the amount of methane gas generated in the biological reaction tank Means (product name “GC-14B”, manufactured by Shimadzu Corporation) were used.
- organic material to be treated artificial wastewater whose COD was adjusted with powdered milk was used.
- the COD load of artificial wastewater is 10 g-COD / L / day from the first day to the 74th day, 25 g-COD / L / day from the 75th day to the 86th day, and 35 g-COD from the 87th day to the 97th day.
- / L / day 25 g-COD / L / day from the 98th day to the 104th day, and 50 g-COD / L / day from the 105th day to the 106th day.
- the gas removal means was not operated until the 86th day from the start of the methane fermentation, but when the COD load reached 35 g-COD / L / day on the 87th day, the pH of the treated water was 6.7. Therefore, in the operation on the 87th to the 97th day, gas removal was started by driving the air pump, and methane fermentation was continued while removing hydrogen gas, methane gas and carbon dioxide gas dissolved in the artificial wastewater.
- the amount of methane gas generated per hour on the 87th day is 380 mg-COD-CH 4 / L / h, and the amount of methane gas generated per hour at the beginning of operation (500 mg-COD-CH 4 / L / h) On the other hand, it decreased by 34%, but increased to 750 mg-COD-CH 4 / L / h after driving the gas removal means. Thereafter, from day 98 to day 104, methane fermentation was carried out without operating the gas removal means. Further, since the pH became 6.7 again on the 105th day, the gas removal was started, and on the 105th to 106th days, the methane fermentation was performed while the gas removal means was operated again by driving the air pump.
- methane gas generated per hour in 106 day 300mg-COD-CH 4 / A L / h
- methane gas generation amount per hour of the day 105 550mg-COD-CH 4 / L / h
- methane gas generation amount per hour of the day 105 550mg-COD-CH 4 / L / h
- Table 1 shows the dissolved hydrogen gas concentration and dissolved carbon dioxide gas concentration, methane gas generation rate, COD removal rate, total organic acid concentration, acetic acid concentration, and propionic acid concentration contained in the artificial wastewater. All the measurement results shown in Table 1 are average values during each period.
- Example 1 did not operate the gas removal means, and the COD load of artificial wastewater was reduced by 25 g-COD / L / day. The situation was equivalent. On Day 105 to Day 106 when the COD load of artificial wastewater was increased by 50 g-COD / L / day, the same tendency as in Day 75 to Day 86 was observed. Specifically, in Comparative Example 1, particularly acetic acid accumulated significantly, and the amount of methane gas generated was greatly reduced, whereas in Example 1, the accumulation of organic acid was suppressed, and the amount of methane gas generated was increased as the COD load increased. increased. Further, in Comparative Example 1, the COD removal rate decreased, whereas in Example 1, the decrease in the COD removal rate was suppressed.
- the organic processing object is biologically processed to generate digestion gas, resulting in a septic state.
- the target gas can be stably obtained.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Water Supply & Treatment (AREA)
- Hydrology & Water Resources (AREA)
- Organic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Microbiology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Molecular Biology (AREA)
- Health & Medical Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Biodiversity & Conservation Biology (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
- Treatment Of Sludge (AREA)
- Activated Sludge Processes (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
Description
この生物処理方法では、まず、有機性廃棄物からし渣(固形物)を除去した後、有機物や窒素を除去する生物処理手段において生物処理を行う。前記生物処理手段において回収される余剰汚泥を濃縮し、厨芥等の分解され易い有機性廃棄物を破砕したものと混合槽にて混合することで、ガス回収のための有機性被処理物を得る。次いで、前記混合槽から水分量を調整した有機性被処理物をメタン発酵槽に導入し、メタン発酵を行う。メタン発酵によって生じた消化汚泥は脱水し、得られた脱水ろ液は前記生物処理手段に戻し、さらに生物処理を行う(例えば、特許文献1、2)。
この技術によれば、メタン発酵により発生したメタンガスは、発電設備等に送ることで、処理場内の電力供給の燃料として有効に利用できる。また、消化汚泥の脱水で生じた脱水ケーキは、コンポスト化することで、肥料等として有効利用できる。
これら一連の過程では、有機物が分解してガス化するため、有機性被処理物が減容化される。また、メタン発酵は、燃料として利用可能な消化ガスが回収できるうえ、多大な電力を消費する曝気が不要であり、余剰汚泥の発生量が少ないことから、有機性被処理物の生物処理方法として省エネルギーの観点で優れている。
そこで、特許文献2ではまた、高い負荷がかかっても酸敗状態に陥らずに安定してガスを回収する生物処理方法として、有機性被処理物をメタン発酵するメタン発酵槽と、前記メタン発酵槽で発生する消化ガスの水素分圧を測定する水素分圧測定手段と、前記水素分圧測定手段の測定結果に応じて前記消化ガスから水素ガスを除去する水素ガス除去手段と、消化ガスから水素ガスを除去して得た残留ガスを前記メタン発酵槽へ還流させるガス還流手段と、を備えたメタン発酵装置を用いる方法について提案されている。
前記方法では、メタン発酵槽内において、ガス化菌の活性を低下させる水素ガスの分圧を下げることで、有機性被処理物に含まれる溶存水素ガス濃度が低くなる。その結果、ガス化菌の活性が低下することが抑制され、安定してメタンガスを回収することが可能となる。
(3)前記(1)または(2)の溶存ガス除去装置において、前記監視手段が、前記生物処理中の前記有機性被処理物または前記生物反応槽から排出される処理水のpHの値を測定するpH監視手段、前記生物処理中の前記有機性被処理物または前記生物反応槽から排出される処理水に含まれる有機酸濃度の値を測定する有機酸濃度監視手段、前記生物処理によって前記生物反応槽で発生する消化ガスの発生量の値、および前記消化ガスが含有するガスのうち1種以上の前記消化ガスに対する濃度の値を測定するガス監視手段からなる群から選ばれる少なくとも1種であってもよい。
(4)前記(1)から(3)のいずれかの溶存ガス除去装置において、前記生物反応槽内の前記有機性被処理物に浸漬され前記溶存ガスを透過する分離膜を有するガス分離手段と、前記ガス分離手段の前記分離膜の二次側を減圧するように構成されてなる減圧手段と、を有していてもよい。
(5)前記(1)から(3)のいずれかの溶存ガス除去装置において、前記生物反応槽から前記有機性被処理物を取り出し、前記生物反応槽に返送して循環させるように構成されてなる循環手段と、前記循環手段により循環している前記有機性被処理物に浸漬され前記溶存ガスを透過する分離膜を有するガス分離手段と、前記ガス分離手段の前記分離膜の二次側を減圧するように構成されてなる減圧手段と、を有していてもよい。
(6)前記(1)から(5)のいずれかの溶存ガス除去装置において、前記消化ガスの主成分がメタンガスであってもよい。
(7)前記(1)から(6)のいずれかの溶存ガス除去装置において、前記溶存ガスは水素ガスまたは二酸化炭素ガスであってもよい。
(8)前記(1)から(7)のいずれかの溶存ガス除去装置において、前記ガス除去手段により除去した前記溶存ガスを貯留するガス貯留手段を有していてもよい。
(10)前記(9)の有機性被処理物の生物処理装置において、前記生物反応槽が、嫌気性細菌を担持させた保持担体を備えていてもよい。
(11)前記(9)または(10)の有機性被処理物の生物処理装置において、槽内に微生物を含む活性汚泥を有し前記溶存ガス除去装置が処理した被処理液中の溶存物質を生物処理するよう構成されてなる活性汚泥処理槽と、前記被処理水から前記活性汚泥を膜分離により分離する固液分離型膜ろ過手段とを備えた前記膜分離活性汚泥処理装置槽に供給するよう構成されていてもよい。
(14)前記(13)の有機性被処理物の生物処理方法において、前記評価値は、前記有機性被処理物または前記生物反応槽から排出される処理水のpHを測定した値で、前記しきい値は、酸性を表すpHの値のうちいずれかの値であってもよい。
(15)前記(13)の有機性被処理物の生物処理方法において、前記評価値は、前記有機酸濃度の1日あたりの増加量で、前記しきい値は、50mg-COD/L/日であってもよい。
(16)前記(13)の有機性被処理物の生物処理方法において、前記評価値は、前記消化ガス発生量の1時間あたりの減少量で、前記しきい値は、30体積%であってもよい。
(17)前記(12)から(16)のいずれかの有機性被処理物の生物処理方法において、前記生物反応槽の気相部から前記メタンガスを回収し、前記メタンガスと、前記処理中の有機性被処理物から回収した溶存ガスを混合する工程を有し、前記溶存ガスは水素ガス、またはメタンガスを含有していてもよい。
(18)前記(12)から(17)のいずれかの有機性被処理物の生物処理方法において、前記生物反応槽で発生する消化ガスの主成分がメタンガスであってもよい。
(19)前記(18)の有機性被処理物の生物処理方法において、前記溶存ガスは水素ガスまたは二酸化炭素ガスであってもよい。
また、本発明の一態様の有機性被処理物の生物処理装置を用いれば、生物反応槽において酸敗状態に陥ることを抑制する効果が高く、安定して目的のガスを得ることができる。
本発明の一態様の有機性被処理物の生物処理方法によれば、高度な分離機能を有する分離膜を使用しなくても、生物反応槽において酸敗状態に陥ることを抑制する効果が高く、安定して目的のガスを得ることができる。
[生物処理装置および溶存ガス除去装置]
以下、本発明の第1実施形態に係る溶存ガス除去装置の一例である溶存ガス除去装置20を有する生物処理装置100について、図1に基づいて説明する。
生物処理装置100は、嫌気性条件下において有機性被処理物に対して生物処理を行うことによって消化ガス(バイオガス)を発生させる装置である。ここで生物処理とは、後述するように、微生物等の生物により物質(被処理物)に化学変化等の反応を起こさせる処理を指す。生物処理装置100は、図1に示すように、水分を含む有機性被処理物1を生物処理してガス(消化ガス)を発生させる生物反応槽10と、生物反応槽10に付設される溶存ガス除去装置20とを有する。
なお、生物反応槽10は、有機性被処理物1を生物処理できる槽であれば前記構造及び後述するような微生物を用いたUASBリアクターには限定されない。
前記保持担体としては、生物付着性の高い微生物担持機構を有する担体を用いることができる。例えば、比表面積の高い多孔質体からなる担体、微生物の付着し易い素材からなる担体、または微生物の付着し易い素材で形成された前記多孔質体からなる担体等が挙げられる。前記保持担体としては、発泡プラスチックまたは炭素繊維等を用いてもよい。
保持担体を使用する場合、生物反応槽10の内部に保持担体を設置した後に、嫌気性微生物等の微生物を生物反応槽10内に供給して前記保持担体に付着させてもよく、予め微生物を付着させた保持担体を生物反応槽10の内部に設置してもよい。
監視手段22としては、上述のpHや物質の濃度や量を測定することができる測定装置(監視装置、監視部)等が挙げられる。
本実施形態では、監視手段22として、生物反応槽10内における処理中の有機性被処理物1のpHを監視するpH監視手段(pH監視装置、pH監視部)26と、生物反応槽10で発生する消化ガス4の発生量またはガス組成を監視するガス監視手段(ガス監視装置、ガス監視部)28と、を有している。
pH監視手段26としては、例えば、電極式pHセンサー等が挙げられる。
ガス監視手段28としては、消化ガス4のガス組成を監視する手段として、消化ガス4の1以上の特定の成分について濃度を測定する手段、特定の成分がある濃度以上であった際にその成分の存在を検知する手段などを用いることができる。例えば、湿式ガスメータ、メタンガス検知器または二酸化炭素濃度計等が挙げられる。
監視手段22としては、これらpH監視手段、ガス監視手段および有機酸濃度監視手段からなる群から選ばれる少なくとも1種を用いてもよい。pH監視手段またはガス監視手段を用いることで、有機性被処理物1の処理状況の測定および監視が容易である。監視手段22は、少なくとも2種を設けることで処理状況をより正確に判別できる。本実施形態ではpH監視手段26およびガス監視手段28の2種を設けている。
分離膜としては、気体選択透過性分離膜を用いてもよく、これを用いることで水素ガス、アンモニアガスまたはメタンガス等の有用なガスを高濃度で分離、回収することが容易になる。分離膜としては気体選択透過性中空糸膜を用いてもよく、ガスの分離、回収がより容易となる。気体選択透過性中空糸膜としては、例えば、ポリウレタン製の非多孔質分離層を有する三層複合中空糸膜等を用いることができる。
中空糸膜モジュールは、複数の中空糸膜(分離膜)が束ねられた中空糸膜束と、前記中空糸膜束の少なくとも一方の端部と連通するように設けられた集気管とを有する。この中空糸膜モジュールの構造は、各々の中空糸膜を透過して分離されたガスが集気管を介して回収されるように構成されてなるものである。中空糸膜モジュールは、中空糸膜束の両方の端部にそれぞれ集気管が設けられたものでもよく、中空糸膜束の一方の端部のみに集気管が設けられ、他方の端部が封止されたものでもよい。また、中空糸膜束をループ状に折り返し、それら両方の端部が1つ集気管に連通するように接続されたものでもよい。
減圧手段32は、ガス分離手段30の分離膜の二次側を減圧できるものであれば特に限定されず、例えば、吸引ポンプ等が挙げられる。例えば、ガス分離手段30が、中空糸膜束の端部に集気管が連結された中空糸膜モジュールの場合、前記集気管と減圧手段32を接続することで、集気管を介して中空糸膜の内部が減圧される。
ガス貯留手段34としては、分離、回収したガスを貯留できるものであれば特に限定されず、アルミバッグまたは圧力容器等であってもよい。
生物処理装置100では、例えば、生物反応槽10内に生物処理に利用する微生物を収容した状態で、被処理物流入口12から有機性被処理物1を流入させることで、生物反応槽10内において有機性被処理物1の生物処理が行われる。生物処理によって発生した消化ガス4は、生物反応槽10の上部のガス排出口16から排出されてガス貯留手段34に貯留され、生物処理後の処理水は、処理水流出口14から排出されて次工程(図示せず)へと導かれるようになっている。
また、pH監視手段26とガス監視手段28によって、生物反応槽10内における処理中の有機性被処理物1のpHと、生物反応槽10で発生する消化ガス4の発生量またはガス組成を監視することで、生物反応槽10内での有機性被処理物1の処理状況が監視される。そして、pH監視手段26およびガス監視手段28の監視結果、すなわち監視手段が測定した値またはその値から求めた評価値に応じて、ガス除去手段24によって有機性被処理物1に含まれる溶存ガス2が分離除去されるようになっている。例えば、有機性被処理物1のpHを評価値とし、この評価値が所定のしきい値に達したとき、または消化ガス4の発生量もしくは目的のガス濃度を評価値とし、またはこれらの発生量もしくはガス濃度から求めた値を評価値とし、評価値が所定のしきい値に達したしたときに、減圧手段32が稼動され、生物処理を妨げる溶存ガス2がガス分離手段30によって分離除去される。ガス分離手段30によって除去された溶存ガス2は、ガス貯留手段34に貯留される。
本実施形態の有機性被処理物の生物処理方法は、水分を含む有機性被処理物を生物処理して消化ガスを発生させる方法である。以下、その一例として、前記生物処理装置100を用いた生物処理方法について説明する。
本実施形態の生物処理とは、微生物等の生物により物質に化学変化等の反応を起こさせる処理を指す。本実施形態では反応を起こさせる物質(被処理物)は有機性被処理物1である。有機性被処理物1としては、例えば、農業、畜産業、水産業、食品業等の各種分野における廃水、下水、し尿、浄化槽汚泥または下水汚泥等の水分を含む有機性被処理物が挙げられる。有機性被処理物1の重量全体に対して水分の占める割合(水分率)は、75重量%以上であってもよい。有機性被処理物1の水分率は、最大で水分がその重量のうち大半(100重量%近く、例えば95~99重量%)を占める場合まで考えられる。すなわち前記水分率は75~95重量%、75~99重量%等が考えられる。
本実施形態の生物処理方法は、メタン発酵または水素発酵に適用してもよい。メタン発酵では溶存ガス2が増加してCOD負荷(COD濃度、溶存ガス2の酸化剤による酸化に必要とされる酸素の濃度で、ここでは溶存ガス2のそれぞれの組成から必要とされる酸素濃度を求め合計したものを指すとする)が高くなると酸敗状態に陥りやすく、一旦酸敗状態に陥ると容易に回復できないが、本実施形態では溶存ガス2を除去するガス除去手段24を設けていることでこの問題が解決されている。そのため、本実施形態の生物処理方法はメタン発酵に適用するのが特によい。本実施形態の生物処理方法は、生物反応が多段にわたる複雑な有機性被処理物の生物処理に特に有効である。
生物処理に利用する微生物は、生物反応槽10内で処理する有機性被処理物1に新たに加えてもよく、有機性被処理物1内に元から存在する微生物を利用してもよい。
有機性被処理物1を生物処理した処理水3は、処理水流出口14から排出して次工程に導く。生物反応槽10内で発生した消化ガス4は、上部のガス排出口16から排出し、ガス分離手段30によって分離除去した溶存ガス2と共にガス貯留手段34に回収して貯留する。
生物反応槽における有機性被処理物1の水理学的滞留時間は、生物処理に用いる生物反応槽の構成および微生物等の種類によっても異なり、これらに合わせて生物処理の効率が最良となるよう試行により適宜選択してよい。前記水理学的滞留時間は、処理中に変動させてもよく、一定としてもよい。
除去対象となる溶存ガス2としては、生物処理の種類によっても異なるが、例えば、酸素ガス、二酸化炭素ガス、窒素ガス、水素ガスまたはメタンガス等が挙げられる。なお、有機性被処理物1から除去する溶存ガス2には、有機性被処理物1に溶存していた消化ガスが含まれていてもよい。
例えば、メタン発酵における除去対象の溶存ガス2としては、メタン発酵を妨げる水素ガスおよび二酸化炭素ガスが挙げられる。メタン発酵の場合、有機性被処理物1から除去する溶存ガス2には、有機性被処理物1に溶存していたメタンガスが含まれていてもよい。また、水素発酵における除去対象の溶存ガス2としては、水素発酵を妨げる二酸化炭素ガスが挙げられる。水素発酵の場合、有機性被処理物1から除去する溶存ガス2には、有機性被処理物1に溶存していた水素ガスが含まれていてもよい。
溶存ガス除去装置20は、監視手段22が測定した値に応じて動作するよう構成されてなる。監視手段の測定した値に応じて動作するとは、溶存ガス除去装置20が監視手段22から直接信号を受け取って運動を開始する場合、監視手段22からの信号を受け取った別の処理装置等(図示せず)からその信号に応じて溶存ガス除去装置20が運動を開始する場合、別の処理装置等により信号を分析した値に基づいて溶存ガス除去装置を運動させる場合、または、装置の操作者が監視手段22の測定した値を確認し、手動でガス除去装置20を動作させる場合等を広く含む。
そのため、処理状況を監視する方法は、処理中の有機性被処理物または生物反応槽から排出される処理水のpHの値を測定する方法、処理中の有機性被処理水または生物反応槽から排出される処理水に含まれる有機酸濃度の値を測定する方法、生物反応槽で発生するガスの発生量の値を測定する方法、および、前記消化ガスが含有するガスのうち1種以上の前記消化ガスに対する濃度の値を測定する(言い換えると、消化ガスの組成を監視する)方法からなる群から選ばれる少なくとも1種であってもよい。
具体的には、メタン発酵であれば、有機性被処理物1のpHが酸性を示した時、すなわちしきい値である7未満を示した時に、ガス除去手段24を稼動させてもよい。有機性被処理物1が酸性となったときに、水素ガスやメタンガスの濃度上昇が認められるためである。また、pHのしきい値を、酸性を示す約4~7の値とし、例えばpHのしきい値を6.5または6として、有機性被処理物1のpHがその値以下になったときを目安としてガス除去手段24を稼動させてもよい。特に、pHのしきい値を5の値とし、有機性被処理物1のpHがその値以下となったときにガス除去手段24を稼動させてもよい。
有機性被処理物1の前記pHが前記しきい値以下となったときにガス除去手段24を稼動させ、有機性被処理物1に含まれる溶存二酸化炭素ガスを除去することで、有機性被処理物1のpHを前記生物処理に適した範囲に制御でき、生物処理をより安定して行うことができる。前記生物処理後の処理水3のpHを監視する場合も同様である。
例えば、メタン発酵であれば、消化ガス4中の水素分圧が10-4atm~10-6atmの範囲を逸脱したときにガス除去手段24を稼動させてもよい。この操作により、有機性被処理物1に含まれる溶存水素ガスが除去されることで、生物処理における生物反応の熱力学バランスが改善され、有機酸の分解をより促進することができる。
例えば、メタン発酵を妨げる溶存ガス2が存在しない場合のメタンガスを含有する消化ガスの発生量の理論的な値は、有機性被処理物の含有炭素量や処理環境によって適宜予測される。しかし、生物処理に伴ってメタン発酵を妨げる溶存ガス2が増加すると、その存在により、メタンガスの発生量は減少していく。ここで、ガス監視手段28によってメタンガスの発生量を測定し、その単位時間あたりの発生量を評価値とする。この評価値が、前記予測される発生量(理論的な値)の75%以下まで低下したときにガス除去手段24を稼動させてもよく、メタンガスの発生量が85%以下まで低下したときにガス除去手段24を稼動させてもよりよい。この操作により、有機性被処理物1に含まれる溶存水素ガスが除去されることで、生物処理における生物反応の熱力学バランスが改善され、有機酸の分解をより促進することができ、メタンガスの発生効率が高まる。
メタン発酵において監視する有機酸としては、乳酸、酢酸、ギ酸、プロピオン酸、イソ酪酸または酪酸等が挙げられ、特にプロピオン酸濃度を監視してもよい。
例えば、メタン発酵であれば、しきい値を50mg-COD/L/日、すなわち1日あたり、1LあたりのCODの増加量が50mgとする。この際、処理中の有機性被処理物1または処理後の処理水3のプロピオン酸濃度が50mg-COD/L/日以上に増加したときにガス除去手段24を稼動させる。また、しきい値を75mg-COD/L/日としてもよく、前記プロピオン酸濃度が75mg-COD/L/日以上に増加したときにガス除去手段24を稼動させてもよい。この操作により、有機性被処理物1に含まれる溶存水素ガスが除去されることで、生物処理における生物反応の熱力学バランスが改善され、有機酸の分解をより促進することができ、生物反応槽10内で発生する消化ガス4中の主成分であるメタンガスの発生効率が高まる。
具体的には、ガス除去手段24によって処理中の有機性被処理物1から除去された溶存ガス2が、水素ガス、またはメタンガスのいずれかを含有する場合、除去した溶存ガス2と、ガス排出口16を通じて生物反応槽10の気相部から回収した消化ガス4とを混合して利用することができる。このとき、溶存ガス中の水素ガス、またはメタンガスの含有割合が20体積%以上であると有価ガスとしてより有益なものとなる。
X=(Y-Z)/Y×100 ・・・(I)
ただし、式(I)中、XはCOD除去率(%)、Yは生物反応槽に供給する前の有機性被処理物のCOD(g-COD/L/日)、Zは処理水のCOD(g-COD/L/日)である。
[生物処理装置および溶存ガス除去装置]
以下、本発明の第2実施形態に係る溶存ガス除去装置である溶存ガス除去装置20Aを有する生物処理装置200について、図2に基づいて説明する。図2における図1と同じ部分は同符号を付して説明を省略する。
生物処理装置200は、図2に示すように、水分を含む有機性被処理物1を生物処理してガスを発生させる生物反応槽10と、生物反応槽10に付設される溶存ガス除去装置20Aとを有する。すなわち、生物処理装置200は、溶存ガス除去装置20の代わりに溶存ガス除去装置20Aを有する以外は、生物処理装置100と同じである。
ガス除去手段24Aは、生物反応槽10から有機性被処理物1を取り出し、生物反応槽10に返送して循環させる循環手段36と、循環手段36により循環している有機性被処理物1に浸漬されるように設置され、溶存ガス2を透過する分離膜を有するガス分離手段30と、ガス分離手段30の分離膜の二次側を減圧する減圧手段32と、を有する。すなわち、ガス除去手段24Aは、生物反応槽10の外部を循環させている有機性被処理物1から溶存ガス2を除去するようにガス分離手段30が設けられている以外は、ガス除去手段24と同じである。
溶存ガス除去装置20Aは、大型の生物反応槽10の場合等、生物反応槽10の内部に分離膜を大量に設置するのが困難な場合でも効率よく溶存ガス除去ができる点で有効である。
循環手段36によって生物反応槽10から有機性被処理物1を取り出す箇所と、有機性被処理物1を返送する箇所は、生物反応槽10における任意の箇所にすることができるが、溶存ガスを効率良く除去して回収できる箇所を選択してもよい。
例えば、この例のように生物反応槽10をUASBリアクターとする場合は、溶存ガスの除去効率の点から、生物反応槽10の上方から有機性被処理物1を取り出し、生物反応槽10の下方に有機性被処理物1を返送してもよい。
生物処理装置200では、生物処理装置100と同様にして有機性被処理物1の生物処理が行われる。生物処理によって発生した消化ガス4は、生物反応槽10の上部のガス排出口16から排出されてガス貯留手段34に貯留され、生物処理後の処理水は、処理水流出口14から排出されて次工程へと導かれるようになっている。また、循環手段36によって、生物反応槽10内の有機性被処理物1が生物反応槽10の外部で循環されている。
また、第1の実施形態と同様、pH監視手段26とガス監視手段28によって、生物反応槽10内での有機性被処理物1の処理状況が監視(pHまたはガスが含有する物質の濃度等の値が測定)され、その監視結果に応じて、ガス除去手段24Aによって、循環されている有機性被処理物1に含まれている溶存ガス2が分離除去されるようになっている。
前記生物処理装置200を用いた生物処理方法は、生物処理装置100を用いる場合と同様にして行うことができ、好ましい態様も同じである。
メタン発酵の場合、生物反応槽10内で発生する消化ガス4中のメタンガス濃度が、40体積%以上であることが好ましく、55体積%以上であってもよい。すなわち、消化ガス4中のメタンガス濃度が前記下限値以上となるようにCOD負荷等を設定し、監視手段22の監視結果によってガス除去手段24Aを稼動させて生物処理を行ってもよい。具体的には、監視手段22によって測定した消化ガスの発生量について、演算装置等の制御手段(図示せず)によって一時間あたりの消化ガスの値を求め、その値が一時間前と比べて40体積%以上、より好ましくは30体積%以上減少した場合には、ガス除去手段24Aを稼動させることが好ましい。
具体的には、ガス除去手段24Aによって処理中の有機性被処理物1から除去された溶存ガス2が、水素ガス、またはメタンガスのいずれかを含有する場合、除去した溶存ガス2と、生物反応槽10の気相部から回収した消化ガス4とを混合して利用することができる。このとき、溶存ガス2中の水素ガス、またはメタンガスの含有割合が20体積%以上であると有価ガスとしてより有益なものとなる。
また、本実施形態の生物処理方法は、COD負荷等の負荷の変動が生じる場合でも、生物反応槽の処理状況を把握しながら溶存ガスの除去が行えるので、良好な運転効率を達成することができる。
また、本実施形態では、消化ガス中から生物処理を妨げるガスを分離除去するのではなく、有機性被処理物中に含まれる溶存ガスを分離除去するため、高度な分離機能を有する分離膜を使用しなくても充分な分離効率が得られる。
例えば、監視手段として、処理中の有機性被処理物または生物反応槽から排出される処理水に含まれる有機酸濃度を監視する有機酸濃度監視手段を備えた溶存ガス除去装置としてもよい。また、ガス除去手段によって除去して回収した溶存ガスと、生物反応槽のガス排出口から回収した消化ガスを別々に貯留するようにしてもよい。また、ガス貯留手段を有しない溶存ガス除去装置としてもよい。
また、生物反応槽において、上部から有機性被処理物を流入させ、処理水を底部から排出するようにしてもよい。
また、本実施形態は、有機性被処理物の供給と処理水の排出を連続的に行う連続式には限定されず、バッチ式としてもよい。
本実施形態の変更態様の例として、消化ガス及び溶存ガスを除いた処理液を廃液処理することがさらに好ましい。特にメタンガス発酵の場合、処理液にアンモニアなどの窒素化合物等の不純物が溶解または浮遊していることが多いため、活性汚泥処理による廃液処理を行うことが好ましい。その方法としては活性汚泥中の微生物の作用により、被処理水に含まれる汚濁物質を生物分解する生物処理法がある。この生物処理は、活性汚泥を有する活性汚泥処理槽(図示せず)を備え、溶存ガス除去装置により処理した被処理液を前記活性汚泥処理槽に供給するよう構成されてなる有機性被処理物の生物処理装置を用いて行ってもよい。生物処理は、前記被処理液を微生物を含む活性汚泥を有する活性汚泥処理槽内に投入し、この微生物により生物反応を行う。微生物としては好気性細菌を用いてもよい。この場合、好気性最近を含む活性汚泥を活性汚泥処理槽内に投入し、好気性細菌により窒素化合物を反応させることにより廃液処理を行う。
さらに前記生物処理と、活性汚泥を分離膜により固液分離して浮遊物のない処理水を得る膜処理とを組み合わせた膜分離活性汚泥処理法(MBR法)を行ってもよい。この場合、生物処理装置は、膜分離活性汚泥処理法を行うための膜分離活性汚泥処理手段を有している。膜分離活性汚泥処理手段は、前記した生物処理を行う活性汚泥処理槽と、被処理水と活性汚泥とを膜分離により分離する固液分離型膜ろ過手段(分離膜)を有している。膜分離活性汚泥処理手段は、槽内に供給された被処理水に分離膜が浸漬するように備えられた膜分離槽が設けられ、前記活性汚泥処理槽(反応槽)で生物処理を行った後の被処理水を膜分離槽に供給して膜分離を行うように構成されていてもよい(いわゆる別置型)。また、膜分離活性汚泥処理手段(膜分離活性汚泥処理槽)は、前記活性汚泥処理槽内に膜分離処理ユニットが配置されていてもよい(いわゆる一体型)。別置型と一体型のいずれの場合も、分離膜に吸引ポンプが接続され、この吸引ポンプを作動させることにより被処理水を吸引ろ過し、活性汚泥と分離することにより膜処理を行ってもよい。別置型の処理装置においては、活性汚泥処理槽(反応槽)内で被処理水を送液するためのポンプ(原水ポンプ)を作動させることにより、活性汚泥処理槽で生物処理された被処理水(生物処理水)が、活性汚泥を含んだ状態で膜分離槽に送液される。膜分離槽では、活性汚泥処理槽から送られた被処理水と活性汚泥とからなる汚泥含有処理水に対して膜処理が行われ、活性汚泥が膜面で除去され、処理水(ろ過水)が得られる。得られた処理水は系外へと排出される。
生物反応槽に供給する前の人工廃水のCODと、生物反応槽から排出される処理水のCODを、下水試験方法に準じて測定し、下式(I)によりCOD除去率を算出した。
X=(Y-Z)/Y×100 ・・・(I)
ただし、式(I)中、XはCOD除去率(%)、Yは生物反応槽に供給する前の人工廃水のCOD(g-COD/L/日)、Zは処理水のCOD(g-COD/L/日)である。
ヘッドスペース法により、生物反応槽内の人工廃水に含まれる溶存水素ガス濃度および溶存二酸化炭素ガス濃度を測定した。
液体クロマトグラフを用いて、生物反応槽内における処理中の人工廃水の有機酸濃度(mg-COD/L)を測定した。測定対象の有機酸濃度は、乳酸、酢酸、ギ酸、プロピオン酸、イソ酪酸および酪酸の濃度を合計した全有機酸濃度と、酢酸濃度と、プロピオン酸濃度とした。
生物反応槽として、ベンチスケールのUASBリアクター(高さ40cm、直径7cmの円筒形。有効容積は1.1L。)を用いた。異性化糖製造廃水を処理するUASBリアクターから採取したグラニュール0.7Lを、植種汚泥として生物反応槽に投入した。
ガス除去手段の分離膜としては、約5500本の三層複合中空糸膜(三菱レイヨン・エンジニアリング株式会社製、支持層(内層、外層)材質:ポリエチレン、中間層(脱気膜)材質:ポリウレタン、中空糸の内径:200μm、中空糸の外径280μm、膜の長さ(有効長):約360mm。)をU字状にして束ねたものを使用した。前記分離膜を、生物反応槽内の有機性被処理物中に浸漬されるように設置した。分離膜の総表面積は約1.7m2であり、生物反応槽内の膜充填率は約22%であった。減圧手段としては、エアーポンプ(イワキ、APN-110 KV-1)を使用した。
監視手段としては、生物反応槽から排出される処理水のpHを監視するpH監視手段(電極式pHセンサー、株式会社堀場製作所製)と、生物反応槽内におけるメタンガスの発生量を監視するガス監視手段(製品名「GC-14B」、株式会社島津製作所製)を使用した。
有機性被処理物としては、粉ミルクでCODを調整した人工廃水を使用した。
ガス除去手段は、メタン発酵の開始から86日目までは稼動させなかったが、87日目においてCOD負荷が35g-COD/L/日となったときに、処理水のpHが6.7となったことから、87~97日目の運転では、エアーポンプを駆動させてガス除去を開始し、人工廃水に溶存する水素ガス、メタンガスおよび二酸化炭素ガスを除去しつつ、メタン発酵を継続した。
87日目における1時間あたりのメタンガス発生量は、380mg-COD-CH4/L/hであって、運転当初の1時間あたりのメタンガス発生量(500mg-COD-CH4/L/h)に対し、34%も低下していたが、ガス除去手段駆動後には750mg-COD-CH4/L/hに増加した。
その後、98日目~104日目は、ガス除去手段を稼動させずにメタン発酵を行った。さらに、105日目に再びpHが6.7となったことから、ガス除去を開始し、105~106日目はエアーポンプを駆動させて再びガス除去手段を稼動させながらメタン発酵を行った。
また、106日目における1時間あたりのメタンガス発生量は、300mg-COD-CH4/L/hであって、105日目の1時間あたりのメタンガス発生量(550mg-COD-CH4/L/h)に対し、46%も低下していたが、ガス除去手段駆動後は710mg-COD-CH4/L/hに増加した。
1日目から106日目まで、pHが7を下回って酸性条件下となってもガス除去手段を稼動させなかった以外は、実施例1と同様にしてメタン発酵を行った。
98日目~104日目においては、実施例1および比較例1は、共にガス除去手段を稼動させず、人工廃水のCOD負荷を25g-COD/L/日に低下させたため、メタンガス発酵の処理状況が同等であった。
人工廃水のCOD負荷を50g-COD/L/日に増大させた105日目~106日目では、75日目~86日目と同様の傾向が見られた。具体的には、比較例1は特に酢酸が顕著に蓄積し、メタンガス発生量が大きく低下したのに対し、実施例1では有機酸の蓄積が抑えられ、COD負荷の増大に応じてメタンガス発生量が増加した。また、比較例1ではCOD除去率が低下したのに対し、実施例1ではCOD除去率の低下が抑制された。
2 溶存ガス
3 処理水
4 消化ガス
10 生物反応槽
20,20A 溶存ガス除去装置
22 監視手段
24,24A ガス除去手段
26 pH監視手段
28 ガス監視手段
30 ガス分離手段
32 減圧手段
34 ガス貯留手段
36 循環手段
100,200 生物処理装置
Claims (19)
- 水分を含む有機性被処理物を生物処理して消化ガスを発生させる生物反応槽に付設される溶存ガス除去装置であって、
前記生物反応槽内の前記有機性被処理物または前記生物反応槽から排出される処理水について、前記有機性被処理物もしくは前記処理水のpHの値、または前記有機性被処理物もしくは前記処理水が含有する物質のうち1種以上の量の値を測定する監視手段と、
前記生物反応槽内の前記有機性被処理物から生物処理を妨げる溶存ガスを除去するガス除去手段と、を有する溶存ガス除去装置。 - 前記ガス除去手段は、前記監視手段が一定時間ごとに測定した値を各評価値とし、前記評価値の経時変化が一定のしきい値を越えた際に動作するように構成されてなる、請求項1に記載の溶存ガス除去装置。
- 前記監視手段が、前記生物処理中の前記有機性被処理物または前記生物反応槽から排出される処理水のpHの値を測定するpH監視手段、前記生物処理中の前記有機性被処理物または前記生物反応槽から排出される処理水に含まれる有機酸濃度の値を測定する有機酸濃度監視手段、前記生物処理によって前記生物反応槽で発生する消化ガスの発生量の値、および前記消化スが含有するガスのうち1種以上の前記消化ガスに対する濃度の値を測定するガス監視手段からなる群から選ばれる少なくとも1種である、請求項1または2に記載の溶存ガス除去装置。
- 前記ガス除去手段が、前記生物反応槽内の前記有機性被処理物に浸漬され、前記溶存ガスを透過する分離膜を有するガス分離手段と、前記ガス分離手段の前記分離膜の二次側を減圧するように構成されてなる減圧手段と、を有する、請求項1から3のいずれか1項に記載の溶存ガス除去装置。
- 前記ガス除去手段が、前記生物反応槽から前記有機性被処理物を取り出し、前記生物反応槽に返送して循環させるように構成されてなる循環手段と、前記循環手段により循環している前記有機性被処理物に浸漬され前記溶存ガスを透過する分離膜を有するガス分離手段と、前記ガス分離手段の前記分離膜の二次側を減圧するように構成されてなる減圧手段と、を有する、請求項1から3のいずれか1項に記載の溶存ガス除去装置。
- 前記消化ガスの主成分がメタンガスである請求項1から5のいずれか1項に記載の溶存ガス除去装置。
- 前記溶存ガスが水素ガスまたは二酸化炭素ガスである請求項6に記載の溶存ガス除去装置。
- 前記ガス除去手段により除去した前記溶存ガスを貯留するガス貯留手段を有する、請求項1から7のいずれか1項に記載の溶存ガス除去装置。
- 水分を含む有機性被処理物を生物処理して消化ガスを発生させる生物反応槽と、該生物反応槽に付設される請求項1から8のいずれか1項に記載の溶存ガス除去装置と、を有する、有機性被処理物の処理装置。
- 前記生物反応槽が、嫌気性細菌を担持させた保持担体を備える請求項9に記載の有機性被処理物の処理装置。
- 槽内に微生物を含む活性汚泥を有し前記溶存ガス除去装置が処理した被処理液中の溶存物質を生物処理するよう構成されてなる活性汚泥処理槽と、前記被処理水から前記活性汚泥を膜分離により分離する固液分離型膜ろ過手段とを備えた膜分離活性汚泥処理手段を備え、前記被処理水を前記膜分離活性汚泥処理手段に供給するよう構成されてなる請求項9または10に記載の有機性被処理物の生物処理装置。
- 水分を含む有機性被処理物を生物処理して消化ガスを発生させる工程と、
生物反応槽内の前記有機性被処理物または前記生物反応槽から排出される処理水について、前記有機性被処理物もしくは前記処理水のpHの値、または前記有機性被処理物もしくは前記処理水が含有する物質のうち1種以上を測定する工程と、
前記測定した値を評価値とし、または前記測定した値の経時変化を評価値とし、前記評価値が一定のしきい値に達した際に前記生物処理中の前記有機性被処理物から溶存ガスを除去する工程を有する、有機性被処理物の生物処理方法。 - 前記測定は、前記生物処理中の前記有機性被処理物または前記生物反応槽から排出される処理水のpH、前記生物処理中の前記有機性被処理物または前記生物反応槽から排出される処理水に含まれる有機酸濃度、前記生物処理によって前記生物反応槽で発生する消化ガスの発生量、および前記消化ガスが含有するガスのうち1種以上の前記消化ガスに対する濃度の値からなる群から選ばれる少なくとも1種を測定する、請求項12に記載の有機性被処理物の生物処理方法。
- 前記評価値は、前記有機性被処理物または前記生物反応槽から排出される処理水のpHを測定した値で、
前記しきい値は、酸性を表すpHの値のうちいずれかの値である請求項13に記載の有機性被処理物の生物処理方法。 - 前記評価値は、前記有機酸濃度の1日あたりの増加量で、
前記しきい値は、50mg-COD/L/日である請求項13に記載の有機性被処理物の生物処理方法。 - 前記評価値は、前記消化ガス発生量の1時間あたりの減少量で、
前記しきい値は、30体積%である請求項13に記載の有機性被処理物の生物処理方法。 - 前記生物反応槽の気相部から前記消化ガスを回収し、前記消化ガスと、前記処理中の有機性被処理物から回収した溶存ガスを混合する工程を有する請求項12から16いずれかに記載の有機性被処理物の生物処理方法。
- 前記生物反応槽で発生する消化ガスの主成分がメタンガスである請求項12から17のいずれか1項に記載の有機性被処理物の生物処理方法。
- 前記溶存ガスは水素ガス、または二酸化炭素ガスである請求項18に記載の有機性被処理物の生物処理方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201390000765.4U CN204803071U (zh) | 2012-07-23 | 2013-07-23 | 溶存气体除去装置以及有机性被处理物的生物处理装置 |
JP2014526924A JP5979566B2 (ja) | 2012-07-23 | 2013-07-23 | 溶存ガス除去装置、ならびに有機性被処理物の生物処理装置および生物処理方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012162682 | 2012-07-23 | ||
JP2012-162682 | 2012-07-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014017466A1 true WO2014017466A1 (ja) | 2014-01-30 |
Family
ID=49997276
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/069872 WO2014017466A1 (ja) | 2012-07-23 | 2013-07-23 | 溶存ガス除去装置、ならびに有機性被処理物の生物処理装置および生物処理方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5979566B2 (ja) |
CN (1) | CN204803071U (ja) |
WO (1) | WO2014017466A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019025438A (ja) * | 2017-07-31 | 2019-02-21 | 三菱化工機株式会社 | 有機性排水処理装置および有機性排水処理方法 |
JP7605517B1 (ja) | 2023-10-11 | 2024-12-24 | Wota株式会社 | 生物槽管理システム、生物槽管理方法及び生物槽管理プログラム |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62244495A (ja) * | 1986-04-16 | 1987-10-24 | バイオセイン システムズ インターナショナル ベスローテン フェンノートシャップ | 硫酸塩及び有機物含有廃水の嫌気的浄化方法 |
JPS63190700A (ja) * | 1987-01-30 | 1988-08-08 | Meidensha Electric Mfg Co Ltd | メタン発酵制御装置 |
JPH01203098A (ja) * | 1988-02-09 | 1989-08-15 | Akua Runesansu Gijutsu Kenkyu Kumiai | 嫌気性廃水処理方法 |
JPH03127697A (ja) * | 1989-10-09 | 1991-05-30 | Shimizu Corp | 嫌気性発酵による廃水処理制御方法及び装置 |
JPH06134494A (ja) * | 1992-10-30 | 1994-05-17 | Meidensha Corp | 嫌気性消化装置のモニタ装置 |
JP2003039052A (ja) * | 2001-07-30 | 2003-02-12 | Toshiba Corp | 有機性廃棄物の処理システム |
JP2003211194A (ja) * | 2002-01-22 | 2003-07-29 | Ebara Corp | メタン発酵方法及び装置 |
JP2003260449A (ja) * | 2002-03-12 | 2003-09-16 | Kubota Corp | 高濃度有機性廃棄物の処理方法 |
JP2005211733A (ja) * | 2004-01-28 | 2005-08-11 | Fuji Electric Holdings Co Ltd | メタン発酵処理装置 |
JP2006015335A (ja) * | 2004-06-01 | 2006-01-19 | Kubota Corp | 膜型メタン発酵処理方法および装置 |
JP2006042691A (ja) * | 2004-08-05 | 2006-02-16 | Takuma Co Ltd | 連続水素生産方法 |
JP2009183848A (ja) * | 2008-02-05 | 2009-08-20 | Hokkaido Univ | 生物処理装置及び生物処理方法 |
JP2011211976A (ja) * | 2010-03-31 | 2011-10-27 | Mitsui Eng & Shipbuild Co Ltd | バイオガス調質方法、バイオガス調質装置及びバイオガスシステム |
-
2013
- 2013-07-23 WO PCT/JP2013/069872 patent/WO2014017466A1/ja active Application Filing
- 2013-07-23 JP JP2014526924A patent/JP5979566B2/ja not_active Expired - Fee Related
- 2013-07-23 CN CN201390000765.4U patent/CN204803071U/zh not_active Expired - Lifetime
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62244495A (ja) * | 1986-04-16 | 1987-10-24 | バイオセイン システムズ インターナショナル ベスローテン フェンノートシャップ | 硫酸塩及び有機物含有廃水の嫌気的浄化方法 |
JPS63190700A (ja) * | 1987-01-30 | 1988-08-08 | Meidensha Electric Mfg Co Ltd | メタン発酵制御装置 |
JPH01203098A (ja) * | 1988-02-09 | 1989-08-15 | Akua Runesansu Gijutsu Kenkyu Kumiai | 嫌気性廃水処理方法 |
JPH03127697A (ja) * | 1989-10-09 | 1991-05-30 | Shimizu Corp | 嫌気性発酵による廃水処理制御方法及び装置 |
JPH06134494A (ja) * | 1992-10-30 | 1994-05-17 | Meidensha Corp | 嫌気性消化装置のモニタ装置 |
JP2003039052A (ja) * | 2001-07-30 | 2003-02-12 | Toshiba Corp | 有機性廃棄物の処理システム |
JP2003211194A (ja) * | 2002-01-22 | 2003-07-29 | Ebara Corp | メタン発酵方法及び装置 |
JP2003260449A (ja) * | 2002-03-12 | 2003-09-16 | Kubota Corp | 高濃度有機性廃棄物の処理方法 |
JP2005211733A (ja) * | 2004-01-28 | 2005-08-11 | Fuji Electric Holdings Co Ltd | メタン発酵処理装置 |
JP2006015335A (ja) * | 2004-06-01 | 2006-01-19 | Kubota Corp | 膜型メタン発酵処理方法および装置 |
JP2006042691A (ja) * | 2004-08-05 | 2006-02-16 | Takuma Co Ltd | 連続水素生産方法 |
JP2009183848A (ja) * | 2008-02-05 | 2009-08-20 | Hokkaido Univ | 生物処理装置及び生物処理方法 |
JP2011211976A (ja) * | 2010-03-31 | 2011-10-27 | Mitsui Eng & Shipbuild Co Ltd | バイオガス調質方法、バイオガス調質装置及びバイオガスシステム |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019025438A (ja) * | 2017-07-31 | 2019-02-21 | 三菱化工機株式会社 | 有機性排水処理装置および有機性排水処理方法 |
JP2022093738A (ja) * | 2017-07-31 | 2022-06-23 | 三菱化工機株式会社 | 有機性排水処理装置および有機性排水処理方法 |
JP7111300B2 (ja) | 2017-07-31 | 2022-08-02 | 三菱化工機株式会社 | 有機性排水処理装置および有機性排水処理方法 |
JP7605517B1 (ja) | 2023-10-11 | 2024-12-24 | Wota株式会社 | 生物槽管理システム、生物槽管理方法及び生物槽管理プログラム |
Also Published As
Publication number | Publication date |
---|---|
JP5979566B2 (ja) | 2016-08-24 |
CN204803071U (zh) | 2015-11-25 |
JPWO2014017466A1 (ja) | 2016-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Fuchs et al. | Anaerobic treatment of wastewater with high organic content using a stirred tank reactor coupled with a membrane filtration unit | |
Gavala et al. | Treatment of dairy wastewater using an upflow anaerobic sludge blanket reactor | |
US7045063B2 (en) | Treatment of swine wastewater by biological and membrane separation technologies | |
US20120145627A1 (en) | Anaerobic fermentation to produce biogas | |
US11180392B2 (en) | Sequencing batch reactor for sewage treatment and sewage treatment system comprising same | |
JP7070416B2 (ja) | 連続発酵による化学品の製造方法および製造装置 | |
US9944893B2 (en) | Method for organic waste hydrolysis and acidification and an apparatus thereof | |
JP5582388B2 (ja) | 生物処理システムおよび生物処理方法 | |
KR20180116806A (ko) | 하수 처리용 생물반응조 및 이를 포함하는 하수 처리 시스템 | |
Xu et al. | Long-term continuous extraction of medium-chain carboxylates by pertraction with submerged hollow-fiber membranes | |
WO2016027223A1 (en) | Anaerobic membrane bioreactor system | |
JP5979566B2 (ja) | 溶存ガス除去装置、ならびに有機性被処理物の生物処理装置および生物処理方法 | |
Malakahmad et al. | Production of energy from palm oil mill effluent during start-up of carrier anaerobic baffled reactor (CABR) equipped with polymeric media | |
KR101300951B1 (ko) | 교대교차여과 방식을 활용한 막결합형 혐기성소화 시스템 및 이를 이용한 유기성 폐기물 처리방법 | |
JP2004290921A (ja) | メタン発酵処理方法及び装置 | |
Zwain et al. | Biological treatment of recycled paper mill wastewater using modified anaerobic inclining-baffled bioreactor (MAIB-R) | |
KR20180116805A (ko) | 하수 처리용 sbr 반응조 및 이를 포함하는 하수 처리 시스템 | |
CN215756648U (zh) | 一种高温好氧膜曝气生物反应器及污水处理系统 | |
JP7150899B2 (ja) | 嫌気性処理装置及び嫌気性処理方法 | |
JP2005103375A (ja) | メタン発酵処理方法及び装置 | |
JP6533676B2 (ja) | 水処理装置及び水処理方法 | |
JP4006011B2 (ja) | 有機性廃棄物の処理方法及び処理装置 | |
JP4102681B2 (ja) | 水処理システム | |
WO2010046913A2 (en) | Selective filtration process for biogas production | |
CA3113113C (en) | High rate acidification and organic solids solubilization process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201390000765.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13823790 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014526924 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13823790 Country of ref document: EP Kind code of ref document: A1 |