WO2014016874A1 - ストレージ装置、ストレージ装置の制御装置、ストレージ装置の制御方法及びプログラム - Google Patents

ストレージ装置、ストレージ装置の制御装置、ストレージ装置の制御方法及びプログラム Download PDF

Info

Publication number
WO2014016874A1
WO2014016874A1 PCT/JP2012/004795 JP2012004795W WO2014016874A1 WO 2014016874 A1 WO2014016874 A1 WO 2014016874A1 JP 2012004795 W JP2012004795 W JP 2012004795W WO 2014016874 A1 WO2014016874 A1 WO 2014016874A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
head
track
origin
storage device
Prior art date
Application number
PCT/JP2012/004795
Other languages
English (en)
French (fr)
Inventor
勇人 阿部
理 沼田
Original Assignee
株式会社データサルベージコーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社データサルベージコーポレーション filed Critical 株式会社データサルベージコーポレーション
Priority to JP2013544889A priority Critical patent/JPWO2014016874A1/ja
Priority to PCT/JP2012/004795 priority patent/WO2014016874A1/ja
Publication of WO2014016874A1 publication Critical patent/WO2014016874A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/18Error detection or correction; Testing, e.g. of drop-outs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/18Error detection or correction; Testing, e.g. of drop-outs
    • G11B20/1879Direct read-after-write methods

Definitions

  • the present invention relates to a storage device, a storage device control device, and a storage device control method and program, for example, to a technology for eliminating a read error.
  • storage devices such as magnetic disk storage devices (for example, hard disks) and optical disk storage devices (for example, CDs and DVDs) have been used as means for storing data such as documents, music and videos.
  • heads are used to record data on an information recording disk (hereinafter referred to as a disk) and to read the recorded data.
  • the head is positioned by an automatic control function so as to trace a concentric or spiral data recording area called a track or cylinder (hereinafter referred to as a track) on a disc when writing or reading data (FIG. 1).
  • the automatic control function controls the head to trace the center of the track (hereinafter, "center"). More specifically, special information called servo data or position signal (hereinafter referred to as servo data) is recorded in advance on the disk (FIGS. 1 and 2), and the automatic control function is such that the head performs servo data. Based on the output obtained by reading out, the current position of the head and the ideal position of the head are calculated. For example, as shown in FIG. 2B, when the head reads servo data PA and PB when the head is out of the center by a predetermined distance (offset), the signals Va and Vb are output.
  • offset predetermined distance
  • the automatic control function determines that the current position of the head is offset to the PB side.
  • the automatic control function drives a drive device such as a voice coil motor (VCM) to move the head to the PA side in order to align the head with the center.
  • VCM voice coil motor
  • the automatic control function moves the head to a position for tracing the center, as shown in FIG. 2A, by continuously repeating such control.
  • Va Vb.
  • the automatic control function continuously controls the head to always stay in the ideal position. Therefore, the head should always be able to maintain the ideal position even if the disc has a bias due to any cause.
  • the head may not be able to maintain the ideal position.
  • a bearing having a small frictional force such as a ball bearing is generally used at a portion serving as a fulcrum of a head support mechanism (head arm) for the purpose of improving positioning accuracy by an automatic control function of the head position.
  • the graph in FIG. 3 is necessary when the head tries to trace the center of a track according to the deviation of the track by the automatic control function, when the track having the deviation for some reason exists on the disk. Represents the driving force.
  • the non-linear resistance of the ball bearing in particular due to the influence of the static friction, ie its resistance It indicates that there is a range that can not be overcome and position control becomes impossible.
  • the graph of FIG. 4 shows that the influence of the non-linear resistance appears as hysteresis (hysteresis phenomenon) not only in a minute range such as track deviation but also when moving between tracks.
  • track spacing the width of the tracks on the disk recording information and the track-to-track spacing (hereinafter referred to as track spacing) have become very small, and the resistance of this bearing portion The non-linearity of force can not be ignored.
  • the graph in the left column of FIG. 5 shows the movement of the head when writing data to a certain track or reading data from that track.
  • the chart in the right column of FIG. 5 shows the position of data actually written to the track, and the position of the head from which the data is to be read from the track.
  • the head is ideally located at the center of the track (position 0 in FIG. 5) for either writing or reading.
  • the head is not necessarily located at the ideal position, that is, at the center of the track (position 0).
  • the head which has started moving from a predetermined base point (the position of -6) It is located slightly offset from the center (position 0) and data may be recorded here (Dc in the right column).
  • the head may be located at a point slightly offset from the center (position 0) of the track to be read and may read data.
  • the head when the head moves as shown by locus a, B or A in the graph in the left column of FIG. 5, the head reads the position indicated as Ha, HB or HA in the right column.
  • the output obtained as a result of the head reading the data Dc is Va, VB or VA. If a sufficient output is not obtained here, an error is likely to be included in the read result of the data Dc.
  • the cause of this problem is that the driving force given to the head by the control signal output by the automatic control function, that is, the theoretical driving force for moving the head to an ideal point, is nonlinear due to the fulcrum of the head support mechanism. It is smaller than the resistance and sometimes can not be overcome. Therefore, the result of the correction and control of the autonomous head position by the automatic control function becomes incomplete.
  • the storage apparatus When a data read error occurs due to this cause or the like, the storage apparatus generally performs the following process.
  • writing and reading of data are performed in units of blocks existing on tracks called sectors. Then, when a read failure (error) of data occurs in the sector, error correction using an error detection and correction function (for example, ECC) is performed in the sector unit. If the error can not be corrected, the data reading process (retry) is performed again on the sector.
  • ECC error detection and correction function
  • Patent Document 1 A specific method of retry in the storage device is described, for example, in Patent Document 1.
  • the head is returned once to a track position (generally, the outermost periphery in the magnetic disk storage device, the innermost periphery in the optical disk storage device; hereinafter, the origin) including the head portion where information can be written.
  • the data is sent again to a predetermined track, offset by a fixed amount on the adjacent track side and read processing, and changing the constant of the processing circuit for converting an analog signal read from the head into a digital signal Are trying to recover from errors.
  • a non-linear resistance exists in the bearing portion, it is difficult to sufficiently control the offset amount by the technique described in Patent Document 1.
  • Patent Document 2 describes performing drive control against non-linear resistance such as static friction force by superimposing a predetermined rectangular wave signal on the drive signal.
  • JP 2000-123498 A Japanese Patent Laid-Open No. 2002-209394
  • the present invention has been made to solve such problems, and provides a storage device, a storage device control device, a storage device control method, and a storage device capable of resolving an error that can not be resolved by the conventional retry function.
  • the purpose is
  • a storage apparatus comprises: a disk including a plurality of tracks capable of recording data; a head driven from the origin onto a track on which the data is recorded when reading the data from the disk; A control unit for driving a head, and when an error occurs in the reading of the data, the control unit causes the head to be re-recorded on a track on which the data is recorded from a base point other than the origin It is driven to execute a retry to read out the data.
  • a control method of a storage apparatus controls a storage apparatus in which a head is driven on a track where the data is recorded from an origin when reading the data from a disk including a plurality of tracks capable of recording data.
  • the head is driven again from the origin point other than the origin onto the track where the data is recorded, and a retry is performed to read the data.
  • a program according to the present invention is directed to a storage apparatus in which a head is driven on a track on which data is recorded from an origin when the computer reads the data from a disk including a plurality of tracks on which data can be recorded.
  • control is performed to drive the head from the origin point other than the origin again onto the track where the data is recorded and execute a retry to read the data It is.
  • a control device of a storage device is connected to a storage device in which a head is driven on a track where the data is recorded from an origin when reading the data from a disk including a plurality of tracks capable of recording data. And when an error occurs in reading the data from the storage device, the head is driven again from the origin point other than the origin onto the track where the data is recorded to read the data. To execute the control.
  • the present invention it is possible to provide a storage device, a storage device control device, a storage device control method, and a storage device capable of resolving an error that can not be solved by the conventional retry function.
  • FIG. 1 is a diagram showing a configuration of a storage device 100 according to a first embodiment. It is a figure explaining the subject of the present invention. It is a figure explaining the subject of the present invention. It is a figure explaining the subject of the present invention. It is a figure explaining the subject of the present invention. It is a figure explaining the subject of the present invention. It is a figure explaining the subject of the present invention.
  • FIG. 8 is a diagram showing the operation of the conventional storage device and the head in the storage device 100 according to the first embodiment. It is a figure which shows operation
  • FIG. 6 is a diagram showing an operation of the storage subsystem 100 according to the first embodiment.
  • Embodiment 1 First, the basic configuration of the storage apparatus 100 according to the first embodiment of the present invention will be described with reference to FIG.
  • the storage device 100 includes a disk 110, a head 120 and a control unit 130.
  • the disk 110 has a track 111 which is a concentric or spiral data recording area. Typically, the track 111 is further divided into a plurality of sectors 112. In general, writing data to the disk 110 and reading data from the disk 110 are performed in units of sectors 112.
  • the head 120 is a component for recording data on the disk 110 and reading the recorded data.
  • the head 120 is supported by a head support mechanism (head arm) 123.
  • the head arm 123 can perform rotational movement about the bearing 122, whereby the head 120 moves on the recording surface of the disk 110.
  • the head arm 123 performs the above-described rotational movement in accordance with a control signal output from the control unit 130 described later.
  • the control unit 130 drives the head arm 123 and the head 120 by outputting a control signal.
  • the control unit 130 typically calculates a driving amount of the head 120 based on the preamplifier and the demodulation circuit that amplifies and demodulates a signal that the head 120 reads and outputs data, and controls necessary for driving.
  • the controller includes a controller that generates and outputs signals, and a VCM drive circuit that moves the head arm 123 and the head 120 by a necessary amount by driving a voice coil motor (VCM) based on the control signal.
  • VCM voice coil motor
  • the control unit 130 performs control to drive the head 120 on the track 111 where the sector 112 to which data is written or read is present. Specifically, the control unit 130 has an automatic control function of correcting the position of the head 120 based on the position signal (servo data) recorded in advance on the recording surface of the disk 110, which is read by the head 120.
  • control unit 130 has a function of recovering data by an error detection / correction function or a retry function when data reading becomes an error. Furthermore, as described later, the control unit 130 of the present embodiment has a feature of providing a retry function in which the base point is changed.
  • a controller in the control unit 130 executes a predetermined program stored in a storage unit or the like (not shown), and generates a control signal for driving the head 120. It is realized by generating.
  • the control may be realized by a host computer or the like communicably connected to the control unit 130 (typically, the demodulation circuit and the controller) executing a predetermined program.
  • a facility or apparatus communicably connected to the control unit 130 typically, the demodulation circuit and the controller
  • a dedicated facility or device for the purpose of complete elimination of may be realized by executing a predetermined program.
  • the host computer, a dedicated facility or device, etc. may cause the controller to generate or output the control signal after performing the operation necessary to generate the control signal, and may generate or output the control signal itself. You may.
  • the head In the conventional retry function, generally, the head is moved again from the origin to the track including the sector in which the error has occurred with the origin as the origin. That is, the position of the base point is the same each time through multiple retry operations. However, even if such a retry operation is repeated, the frequency of occurrence of errors is not significantly improved. The inventor has found that the reason is the position control characteristic of the head as shown below.
  • the movement until the head stabilizes in the final position influences the non-linear resistance force such as the static friction force of the bearing mechanism that supports the head. It is shown as a received damping waveform (transient characteristic) (FIG. 6).
  • the head of the storage device performs constant acceleration motion from the stationary state at the base point until reaching the determined maximum velocity, and when the maximum velocity is reached, the motion becomes uniform motion, and then It is designed to have a velocity profile that decelerates and stops with negative equal acceleration motion.
  • the actual movement of the head is accompanied by an error of undulation as compared with the designed velocity profile due to the influence of the inertia mass of the movement system of the head mechanism and the electric and mechanical time constants.
  • the movement distance of the head (A, B or C in FIG. 6) is also substantially constant each time.
  • the transient characteristics of the head at the time of retry (waveform change in speed) are also the same each time.
  • the base point for moving the head toward the track 111 including the sector 112 in which the error has occurred is set to a place other than the base point used in the conventional retry function. That is, the movement distance and movement direction of the head are changed.
  • the velocity of the head changes and the damping waveform also changes (A, B or C in FIG. 6).
  • changing the moving direction changes the influence of the non-linear resistance given to the movement of the head, so the damping waveform itself will change.
  • a conventional storage device for example, a hard disk drive
  • the head moves from a predetermined origin to a track having a sector number to be read and performs a reading operation (S701).
  • the origin is a track including the leading portion to which information can be written, and is typically the outermost track.
  • the storage device attempts data recovery using an error detection and correction function (ECC) (S702).
  • ECC error detection and correction function
  • the storage device tries to recover the error by the internally provided retry function (S703).
  • the retry is performed a plurality of times while changing the amount of off-track, the processing circuit constant, and the like.
  • the storage apparatus performs bad sector processing on the sector where the data to be read should exist (S704).
  • the bad sector processing means that the storage device is defective in the sector which is prepared in advance in the main body of the device and dedicated data recording area which can not be accessed by the user, and as a substitute therefor.
  • it becomes impossible to read out the information existing on the sector and although it becomes a failure (error) as the reading of information, it becomes possible to maintain the function of the storage apparatus.
  • the storage device interrupts or ends the data read process. Do.
  • the storage device shifts to the next data read operation.
  • the control unit 130 of the storage device 100 moves the head from the predetermined origin to the track 111 where the sector number of the read target exists and performs the read operation (S801).
  • the origin is the track 111 including the leading portion to which information can be written, and is typically the outermost track 111.
  • the control unit 130 performs the following operation.
  • the control unit 130 attempts data recovery using an error detection and correction function (ECC) (S802).
  • ECC error detection and correction function
  • the storage device tries to recover the error by the conventional retry function (S 803).
  • the retry may be performed a plurality of times while changing the amount of off-track, the processing circuit constant, and the like. If the error can not be recovered even by the conventional retry function, the control unit 130 performs the following operation.
  • the control unit 130 performs a retry operation in which the base point is changed (S804).
  • the control unit 130 sets the read target track 111 from this base point. That is, the head feeding operation can be performed to the track 111 in which the read error has occurred.
  • the control unit 130 is efficient when trying to recover data from the track 111 in which the read error occurred sequentially from the origin to the origin. .
  • the non-linear resistance force (positive direction) acting on the head can be applied in the reverse direction (negative direction).
  • the distance between the head and the write position of the data to be read becomes close, and it can be expected to eliminate the error.
  • control unit 130 may set the end point as a base point.
  • the non-linear resistance force (positive direction) acting on the head can be applied in the reverse direction (negative direction).
  • the distance between the head and the write position of the data to be read becomes close, and it can be expected to eliminate the error.
  • the control unit 130 can set an arbitrary position between the origin and the track 111 in which an error has occurred as a base point.
  • the origin is the origin and the position m / n of the track 111 or the sector 112 where the error occurred (where m is an integer not less than 1 and not more than n, and n is an arbitrary integer of 2 or more). It is good.
  • the base point may be one or more than one.
  • the origin may be set to a plurality of positions with an arbitrary interval. When a plurality of base points are set, the control unit 130 sequentially executes the head feeding operation and the re-reading operation for each of these base points.
  • the motion of the head due to a plurality of transient characteristics between the motion of moving the head for each track as in normal data reading and the motion of moving the head from the origin as in the conventional retry operation. You can get As a result, the accuracy with which the distance between the head and the write position of the data to be read approaches is increased, and the elimination of an error can be expected.
  • the control unit 130 can set an arbitrary position between the end point and the track 111 in which an error occurs as a reference point.
  • the origin is the position of m / n between the end point and the track 111 or the sector 112 where the error occurred (where m is an integer not less than 1 and not more than n, n is an arbitrary integer of 2 or more) It may be The base point may be one or more than one. Furthermore, the origin may be set to a plurality of positions with an arbitrary interval. When a plurality of base points are set, the control unit 130 sequentially executes the head feeding operation and the re-reading operation for each of these base points.
  • the non-linear resistance force (positive direction) acting on the head can be applied in the reverse direction (negative direction). Furthermore, the movement of the head by a plurality of transient characteristics between the movement of moving the head for each track as in normal data reading and the movement of moving the head from the origin as in the conventional retry operation You can get it. As a result, the accuracy with which the distance between the head and the write position of the data to be read approaches is increased, and the elimination of an error can be expected.
  • bad sector processing is performed on the sector 112 where the data to be read should exist (S805).
  • the bad sector processing means that the storage device is defective in the sector which is prepared in advance in the main body of the device and dedicated data recording area which can not be accessed by the user, and as a substitute therefor.
  • it becomes impossible to read out the information existing on the sector and although it becomes a failure (error) as the reading of information, it becomes possible to maintain the function of the storage apparatus.
  • the storage device interrupts or ends the data read process. Do.
  • the storage apparatus shifts to the next data read operation.
  • the control unit 130 drives the head 120 toward the track 111 to be read from the origin other than the origin on the disk 110 in the retry operation.
  • the control unit 130 drives the head 120 toward the track 111 to be read from the origin other than the origin on the disk 110 in the retry operation.
  • the present invention is not necessarily limited to this.
  • the present invention is applicable to various storage devices having a head feeding mechanism that exerts a non-linear resistance to the head feeding operation.
  • a lead screw type utilizing the principle of screw, etc. has a rotation mechanism and its bearing mechanism etc. in part of the head feed mechanism, and there is a frictional force due to that mechanism, acceleration as shown in FIG.
  • the present invention is applicable to a storage apparatus provided with a head feed mechanism accompanied by deceleration.
  • the present invention is not necessarily limited thereto. It is not a thing.
  • the present invention is also applicable to storage devices such as readable / writable optical disk storage devices represented by CD-R.
  • the retry function for changing the base point according to the present invention can be added to or replaced with a conventionally provided retry function to eliminate errors and reduce the frequency of occurrence.
  • the present invention can be used, for example, by incorporating it into a facility, apparatus, software or host computer for the purpose of creating a copy (clone) of all data including an unused area of a storage device or completely erasing data. It is.
  • a copy (clone) of all data including an unused area of a storage device or completely erasing data. It is.
  • devices, or software in general, if the read error can not be eliminated by the conventional retry function, it stops at that point or skips the part where the error occurs and from the place where the error disappears, It is designed to continue copying and erasing information (bad sector skip).
  • the present invention can eliminate or reduce the loss or retention of information generated thereby.
  • the storage device, equipment, device, software, or host computer including the present invention has a learning function, that is, a function of recording information related to the processing of the present invention and reusing it for processing.
  • Such processing may be added. That is, for the plurality of execution examples (S804) of the retry operation in which the base point is changed as described in the above-described embodiment, the number of times and the probability or the execution time etc.
  • the priority can be set to each of the above-mentioned execution examples, and the execution examples with high priority can be configured to be used preferentially. Further, in the storage apparatus or the like, the execution example with the high priority may be adopted when the read error occurs continuously beyond a certain number of times or frequency. Thereby, error recovery can be realized more effectively in a short time.
  • error recovery may be attempted using any one of these examples.
  • a plurality of execution examples may be combined in any order and tried.
  • control unit 130 specifies the track on which data is recorded, the track as the origin or the base point, and drives the head 120 to the track 111.
  • control unit 130 or the above-mentioned equipment, device, software, or the like capable of controlling the storage apparatus 100 do not have the function of directly designating the track 111 to be moved by the head 120 130 or the equipment, device, software, etc. may be configured to specify the track 111 indirectly by specifying the sector 112 in which the data is recorded and the sector 112 to be the origin or the base point. .
  • the present invention has been mainly described as the hardware configuration, but the present invention is not limited to this, and causes a central processing unit (CPU) to execute a computer program for arbitrary processing. Is also possible.
  • the computer program can be stored using various types of non-transitory computer readable medium and supplied to the computer.
  • Non-transitory computer readable media include tangible storage media of various types.
  • non-transitory computer readable media are magnetic recording media (eg flexible disk, magnetic tape, hard disk drive), magneto-optical recording media (eg magneto-optical disk), CD-ROM (Read Only Memory), CD-R, CD-R / W, semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM (random access memory)) are included.
  • the programs may be supplied to the computer by various types of transitory computer readable media.
  • Examples of temporary computer readable media include electrical signals, light signals, and electromagnetic waves.
  • the temporary computer readable medium can provide the program to the computer via a wired communication path such as electric wire and optical fiber, or a wireless communication path.
  • the present invention relates to a storage device, a storage device control device, and a storage device control method and program that eliminate read errors by a retry function that changes the base point.
  • storage device 110 disk 111 track 112 sector 120 head 122 bearing 123 head arm 130 controller

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Digital Magnetic Recording (AREA)

Abstract

 ストレージ装置(100)は、データを記録可能な複数のトラック(111)を含むディスク(110)と、ディスク(110)からデータを読み出す際、原点から、データが記録されているトラック(111)上に駆動されるヘッド(120)と、ヘッド(120)を駆動する制御部(130)とを有する。制御部(130)は、データの読み出しにエラーが発生した際、ヘッド(120)を、原点以外の基点から、再度、データが記録されているトラック(111)上に駆動してデータを読み出すリトライを実行する。

Description

ストレージ装置、ストレージ装置の制御装置、ストレージ装置の制御方法及びプログラム
 本発明は、ストレージ装置、ストレージ装置の制御装置、ストレージ装置の制御方法及びプログラムに関し、例えば読み出しエラーを解消する技術に関する。
 従来から、磁気ディスク記憶装置(例えばハードディスク)や光学円盤記憶装置(例えばCD、DVD)等のストレージ装置が、文書、音楽、映像等のデータを格納するための手段として用いられている。
 これらのストレージ装置では、情報記録用円盤(以下、ディスク)上にデータを記録したり、記録されたデータを読み取ったりするために、ヘッドと呼ばれる部品が用いられる。ヘッドは、データの書き込み又は読み出しの際、ディスク上のトラック又はシリンダ(以下、トラック)と呼ばれる同心円又は螺旋状のデータ記録領域をトレースするよう、自動制御機能によって位置決めされる(図1)。
 図1及び図2を用いて、自動制御機能によるヘッドの位置決めの機序について説明する。
 トラックに記録されたデータを正確に読み取るため、自動制御機能は、ヘッドがトラックの中心(以下、センター)をトレースするよう、ヘッドを制御する。より具体的には、ディスクには、サーボデータや位置信号(以下、サーボデータ)と呼ばれる特殊な情報が予め記録されており(図1及び図2)、自動制御機能は、ヘッドがサーボデータを読み出して得られる出力に基づき、ヘッドの現在位置やヘッドの理想的な位置を演算する。例えば、図2の(b)に示すように、ヘッドがセンターから所定の距離(オフセット)だけ外れているとき、ヘッドがサーボデータPA及びPBを読み出すと、信号Va及びVbが出力される。ここで信号レベルがVa<Vbであれば、自動制御機能は、ヘッドの現在位置はPB側にオフセットしていると判定する。この場合、自動制御機能は、ヘッドをセンターに一致させるべく、ボイスコイルモータ(VCM)等の駆動装置を駆動させ、ヘッドをPA側に移動させる。自動制御機能は、かかる制御を継続的に繰り返すことにより、図2の(a)に示すように、ヘッドを、センターをトレースする位置に移動させる。なお、ヘッドがセンターをトレースしているとき、Va=Vbとなる。
 このように、自動制御機能は、ヘッドが常に理想的な位置に存在し続けるよう継続的に制御する。よって、ディスクに何らかの原因による偏りが存在するような場合においても、ヘッドは常に理想的な位置を維持することができるはずである。
 しかしながら、自動制御機能によっても、ヘッドが理想的な位置を維持できない場合がある。
 例えば、ヘッド支持機構(ヘッドアーム)の支点となる部分には、ヘッド位置の自動制御機能による位置決めの精度を向上させることを目的として、一般にボールベアリング等の摩擦力の小さな軸受けが使用される。
 ボールベアリングには、その性能を維持するための潤滑剤として、一定の粘度(ちょう度)を持つグリス等が使用されている。また、たとえ精密に作られたボールベアリングといえども、その内部に存在するボールの直径の寸法や、ボールのガイドとなるレースと呼ばれる溝の寸法等に、わずかな偏りが存在することは避けることができない。これらの影響によって、ボールベアリングには、非線形性の静止摩擦力や動摩擦力等の抵抗力が存在する。
 図3及び図4を用いて、軸受け部に発生する非線形の抵抗力について説明する。
 図3のグラフは、何らかの原因により偏りを持ったトラックがディスク上に存在している場合に、ヘッドが自動制御機能により、トラックの偏りにしたがって、トラックのセンターをトレースしようとした場合に必要となる駆動力を表したものである。静止しているヘッドを、正(上)或いは負(下)の方向に移動させようとしたときに、ボールベアリングの持つ非線形性の抵抗力、特に静止摩擦力の影響により、すなわちその抵抗力に打ち勝つことが出来ず、位置制御が不可能となる範囲が存在することを表している。図4のグラフは、その非線形の抵抗力の影響が、トラックの偏りのような微小な範囲だけで無く、トラック間の移動を伴う場合においてもヒステリシス(履歴現象)として現れることを示している。
 特に、最近のストレージ装置の記憶容量の増加によって、情報を記録しているディスク上のトラックの幅およびトラックとトラックの間隔(以下、トラック間隔)は微小となっており、この軸受け部の持つ抵抗力の非線形性は無視することができなくなる。
 図5を用いて、軸受け部の非線形な抵抗力が、ディスクへの情報の書き込み及び読み出しに与える影響について説明する。
 図5の左欄のグラフは、あるトラックへのデータの書き込み、又はそのトラックからのデータの読み込みを行う際の、ヘッドの動きを示している。また、図5の右欄のチャートは、そのトラックへ実際に書き込まれたデータの位置、及びそのトラックからデータを読み出そうとするヘッドの位置を示している。
 本来、書き込み又は読出しのいずれにおいても、ヘッドはトラックのセンター(図5の位置0)に位置することが理想である。しかしながら、軸受け部の抵抗力の影響により、ヘッドは必ずしも理想的な位置、すなわちトラックのセンター(位置0)に位置しない。例えば、ディスクへの情報の書き込み時においては、図5の左欄のグラフにおける軌跡Cに示すように、所定の基点(-6の位置)から移動を開始したヘッドは、書き込み対象であるトラックのセンター(位置0)から僅かにオフセットした地点に位置し、ここにデータを記録することがある(右欄のDc)。同様に、ディスクからの情報の読み出し時においても、ヘッドは読み出し対象であるトラックのセンター(位置0)から僅かにオフセットした地点に位置し、データを読み出すことがある。例えば、ヘッドが図5の左欄のグラフにおける軌跡a、B又はAに示すような移動をした場合は、そのヘッドは右欄においてHa、HB又はHAとして示す位置を読み出す。この場合、ヘッドがデータDcを読み出した結果得られる出力は、Va、VB又はVAとなる。ここで十分な出力が得られないと、データDcの読出し結果にはエラーが含まれやすくなる。
 この問題の原因は、自動制御機能が出力する制御信号によってヘッドに与えられる駆動力、すなわちヘッドを理想的な地点に移動させるための理論上の駆動力が、ヘッド支持機構の支点の持つ非線形な抵抗力より小さく、打ち勝つことが出来ない場合があることにある。そのため、自動制御機能による自律的なヘッド位置の修正及び制御の結果が、不完全なものとなってしまうのである。
 かかる原因等によりデータ読み出しエラーが発生した場合、ストレージ装置は一般につぎのような処理を行う。
 ストレージ装置においては、セクタと呼ばれるトラック上に存在するブロックを単位として、データの書き込み及び読み出しが行われる。そして、上記セクタにおいてデータの読み出し障害(エラー)が発生した場合は、そのセクタ単位で誤り検出訂正機能(例えばECC)を用いたエラー訂正を行う。ここでエラー訂正ができなかった場合は、そのセクタに対して再度のデータ読み出し処理(リトライ)を行う。
 ストレージ装置におけるリトライの具体的な方法は、例えば特許文献1に記載されている。特許文献1では、ヘッドを、情報を書き込むことのできる先頭部分を含むトラック位置(一般に、磁気ディスク記憶装置においては最外周、光学円盤記憶装置においては最内周。以下、原点)に一度戻し、再度所定のトラックに送りなおすこと、その際隣接するトラック側に一定量オフセットさせて読み出し処理を行うこと、ヘッドから読み出したアナログ信号をデジタル信号に変換するための処理回路の定数を変更すること等により、エラーの回復を図っている。しかし、軸受け部に非線形性の抵抗力が存在する場合、特許文献1記載の技術によりオフセット量を充分に制御することは困難である。
 この点、特許文献2には、所定の矩形波信号を駆動信号に重畳させることによって、静止摩擦力等の非線形性抵抗に対抗した駆動制御を行うことが記載されている。
特開2000-123498号公報 特開2002-209394号公報
 しかしながら、特許文献2記載の技術によっても、依然として、すべての読み出しエラーを完全に解消することは困難である。そのため、従来技術では読み出しが不可能とされるデータであっても、エラーを回復しデータの読み出しを可能とするための新たな手法が求められる。
 本発明は、このような問題点を解決するためになされたものであり、従来のリトライ機能では解消できないエラーを解消できるストレージ装置、ストレージ装置の制御装置、ストレージ装置の制御方法及びプログラムを提供することを目的とする。
 本発明に係るストレージ装置は、データを記録可能な複数のトラックを含むディスクと、前記ディスクから前記データを読み出す際、原点から、前記データが記録されているトラック上に駆動されるヘッドと、前記ヘッドを駆動する制御部とを有し、前記制御部は、前記データの読み出しにエラーが発生した際、前記ヘッドを、前記原点以外の基点から、再度、前記データが記録されているトラック上に駆動して前記データを読み出すリトライを実行するものである。
 本発明に係るストレージ装置の制御方法は、データを記録可能な複数のトラックを含むディスクから前記データを読み出す際、原点から前記データが記録されているトラック上にヘッドが駆動されるストレージ装置を制御する方法であって、前記データの読み出しにエラーが発生した際、前記ヘッドを、前記原点以外の基点から、再度、前記データが記録されているトラック上に駆動して前記データを読み出すリトライを実行するものである。
 本発明に係るプログラムは、コンピュータに、データを記録可能な複数のトラックを含むディスクから前記データを読み出す際、原点から前記データが記録されているトラック上にヘッドが駆動されるストレージ装置に対し、前記データの読み出しにエラーが発生した際、前記ヘッドを、前記原点以外の基点から、再度、前記データが記録されているトラック上に駆動して前記データを読み出すリトライを実行させる制御を実行させるものである。
 本発明に係るストレージ装置の制御装置は、データを記録可能な複数のトラックを含むディスクから前記データを読み出す際、原点から前記データが記録されているトラック上にヘッドが駆動されるストレージ装置と接続され、前記ストレージ装置に対し、前記データの読み出しにエラーが発生した際、前記ヘッドを、前記原点以外の基点から、再度、前記データが記録されているトラック上に駆動して前記データを読み出すリトライを実行させる制御を実行させるものである。
 本発明により、従来のリトライ機能では解消できないエラーを解消できるストレージ装置、ストレージ装置の制御装置、ストレージ装置の制御方法及びプログラムを提供することができる。
実施の形態1にかかるストレージ装置100の構成を示す図である。 本発明の課題を説明する図である。 本発明の課題を説明する図である。 本発明の課題を説明する図である。 本発明の課題を説明する図である。 従来のストレージ装置及び実施の形態1にかかるストレージ装置100におけるヘッドの動作を示す図である。 従来のストレージ装置の動作を示す図である。 実施の形態1にかかるストレージ装置100の動作を示す図である。
 以下、本発明を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。
<実施の形態1>
 はじめに、図1を用いて、本発明の実施の形態1にかかるストレージ装置100の基本構成について説明する。
 ストレージ装置100は、ディスク110、ヘッド120及び制御部130を含む。
 ディスク110は、同心円又は螺旋状のデータ記録領域であるトラック111を有する。典型的には、トラック111は、さらに複数のセクタ112に分割される。一般に、ディスク110へのデータの書き込み、及びディスク110からのデータの読出しは、セクタ112単位で実行される。
 ヘッド120は、ディスク110上にデータを記録したり、記録されたデータを読み取ったりするための構成部品である。ヘッド120は、ヘッド支持機構(ヘッドアーム)123によって支持される。ヘッドアーム123は、軸受122を軸として回転運動を行うことが可能であり、これによりヘッド120はディスク110の記録面上を移動する。ヘッドアーム123は、後述する制御部130から出力される制御信号に応じ、上記回転運動を行う。
 制御部130は、制御信号を出力することにより、ヘッドアーム123及びヘッド120を駆動する。制御部130は、典型的には、ヘッド120がデータを読み取って出力する信号を増幅及び復調するプリアンプ及び復調回路、上記信号等に基づいてヘッド120の駆動量を算出し、駆動に必要な制御信号を生成、出力する制御器、上記制御信号に基づいてボイスコイルモータ(VCM)を駆動することにより、ヘッドアーム123及びヘッド120を必要な量だけ移動させるVCM駆動回路を含む。
 制御部130は、ヘッド120を、データの書き込み又は読み出し対象のセクタ112が存在するトラック111上に駆動する制御を行う。具体的には、制御部130は、ヘッド120が読み出す、ディスク110の記録面上に予め記録された位置信号(サーボデータ)に基づき、ヘッド120の位置を修正する自動制御機能を備える。
 また、制御部130は、データ読み出しがエラーとなった場合、誤り検出訂正機能やリトライ機能により、データを回復する機能を有する。さらに、本実施の形態の制御部130は、後述のように、基点を変えたリトライ機能を備えるという特徴を有している。
 制御部130によるヘッド120の制御は、典型的には、制御部130内部の制御器が、図示しない記憶部等に格納された所定のプログラムを実行し、ヘッド120を駆動するための制御信号を生成することにより実現される。なお、これらの制御は、制御部130(典型的には復調回路及び制御器)と通信可能に接続されたホストコンピュータ等が所定のプログラムを実行することにより実現されても良い。あるいは、制御部130(典型的には復調回路及び制御器)と通信可能に接続された設備又は装置であって、ストレージ装置の未使用領域を含む全データの複製(クローン)の作成や、データの完全な消去を目的とする専用の設備又は装置が、所定のプログラムを実行することにより実現されても良い。このとき、ホストコンピュータ、専用の設備又は装置等は、制御信号の生成に必要な演算を行った後、制御器に上記制御信号を生成又は出力させても良く、自ら上記制御信号を生成又は出力しても良い。
 つぎに、本発明の特徴である、基点を変えたリトライ機能について説明する。
 まず、本実施の形態における基点を変えたリトライ機能の概要を、従来のストレージ装置において一般的に用いられている、従来のリトライ機能と比較しつつ説明する。
 従来のリトライ機能においては、一般に、原点を基点として、基点から、エラーの発生したセクタを含むトラックに再度ヘッドを移動させる。すなわち、複数回のリトライ動作を通じて、基点の位置は毎回同じである。しかし、このようなリトライ動作を繰り返し行ったとしても、エラーの発生頻度が大幅に改善されることは無い。発明者は、その理由が、以下に示すようなヘッドの位置制御特性にあることを発見した。
 ヘッドが最終的な位置に安定するまでの動き、すなわち基点から定められたトラックに到達するまでのヘッドの送り速度は、ヘッドを支える軸受機構が有する静止摩擦力等の非線形抵抗力との影響を受けたダンピング波形(過渡特性)として示される(図6)。
 図6に示すように、一般に、ストレージ機器のヘッドは、基点における静止状態から定められた最高速度に到達するまでの間、等加速度運動を行い、最高速度に到達すると等速運動となり、その後、負の等加速度運動によって減速し停止するような速度プロファイルを有するよう設計されている。一方、実際のヘッドの運動は、ヘッド機構の持つ運動系の慣性質量や電気及び機械的時定数の影響により、設計上の速度プロファイルに比較してうねり状の誤差を伴ったものとなる。
 従来のリトライ機能では、同じ基点からリトライを行うため、ヘッドの移動距離(図6のA、B又はC)も毎回ほぼ一定となる。この場合、リトライ時のヘッドの過渡特性(速度のうねり状の変化)も、毎回同じようなものとなる。
 一方、本実施の形態では、エラーの発生したセクタ112を含むトラック111へ向かってヘッドを移動させる基点を、従来のリトライ機能において用いられる基点以外の場所に設定する。すなわち、ヘッドの移動距離や、移動方向を変化させる。移動距離を変えることにより、ヘッドの速度が変化し、ダンピング波形も変化する(図6のA、B又はC)。また、移動方向を変えることにより、ヘッドの運動に与える非線形抵抗の影響が変化するため、ダンピング波形自体が変化するであろう。このように、基点に変化を与えることにより、従来のリトライ機能では得ることの出来ないヘッドの過渡特性を実現でき、ひいては従来のリトライ機能では実現できなかった地点にヘッドを位置させることが期待できる。結果として、ストレージ装置の持つ従来のリトライ機能では解消することの出来ないエラーを解消することができる。
 ここで、図7を用いて、従来のリトライ機能のみを用いた、従来のストレージ装置の動作について説明する。
 従来のストレージ装置(例えばハードディスクドライブ)では、データを読み出す際、ヘッドは、所定の原点から、読み出し対象のセクタ番号が存在するトラックに移動して読み出し動作を行う(S701)。ここで、原点とは、情報を書き込むことのできる先頭部分を含むトラックであり、典型的には最外周のトラックである。
 データの読み出しエラーが発生した場合、ストレージ装置は、誤り検出訂正機能(ECC)によるデータ修復を試行する(S702)。
 エラーがECCによっても訂正できないものである場合、ストレージ装置は、内部に備えるリトライ機能によってエラーの回復を試行する(S703)。例えば、特許文献1においては、オフトラックの量や、処理回路定数等を変更しつつ、複数回にわたってリトライを行う。
 リトライ機能によってもエラーから回復できない場合、ストレージ装置は、読み出し対象のデータが存在するはずのセクタについて、不良セクタ処理を行う(S704)。
 不良セクタ処理とは、ストレージ装置が、当該装置の本体内に事前に準備された、ユーザがアクセスすることが出来ない専用のデータ記録領域に、当該セクタが不良であること、及びその代替としてアクセスすべきセクタ番号を指定する内容の記録を作成し、当該セクタへのその後のヘッドアクセスを防止する処理をいう。これにより、当該セクタ上に存在していた情報を読み出すことは不可能となり、情報の読み出しとしては失敗(エラー)となるが、ストレージ装置の機能を維持することが可能になる。但し、不良セクタ処理には、そのストレージ装置毎に定められた限界となる処理回数が存在する。不良セクタ処理がその限界となる処理回数に達した場合、その後は不良セクタ処理を実行することが不可能となるため、ストレージ装置の機能を維持することができなくなる。
 ここで、不良セクタ処理の実行に失敗した場合、例えば不良セクタ処理が既に限界となる処理回数に達しており不良セクタ処理を実行できなかった場合は、ストレージ装置は、データ読み出し処理を中断又は終了する。
 一方、リトライ機能によりエラーが回復した場合、又は不良セクタ処理が成功した場合、ストレージ装置は、次のデータの読み出し動作に移行する。
 つづいて、図8を用いて、本実施の形態における基点を変えたリトライ機能の動作について説明する。
 ストレージ装置100の制御部130は、ヘッドを、所定の原点から、読み出し対象のセクタ番号が存在するトラック111に移動させて読み出し動作を行う(S801)。ここで、原点とは、情報を書き込むことのできる先頭部分を含むトラック111であり、典型的には最外周のトラック111である。データの読み出しエラーが発生した場合、制御部130は以下の動作を行う。
 制御部130は、誤り検出訂正機能(ECC)によるデータ修復を試行する(S802)。
 エラーがECCによっても訂正できないものである場合、ストレージ装置は、従来のリトライ機能によるエラーの回復を試行する(S803)。例えば、特許文献1に記載されているように、オフトラックの量や、処理回路定数等を変更しつつ、複数回にわたってリトライを行ってもよい。従来のリトライ機能によってもエラーから回復できない場合、制御部130は以下の動作を行う。
 なお、上述のS802乃至S803にかかる処理は、必ずしも実施する必要はなく、適宜省略、変更しても良い。
 制御部130は、基点を変更したリトライ動作を行う(S804)。
 例えば、制御部130は、データ書き込み可能な最終部分を含むトラック111(以下、終点)と、読み出しエラーの発生したトラック111との間の任意の位置を基点とし、この基点から読み出し対象トラック111、すなわち読み出しエラーの発生したトラック111へヘッド送り動作を行うことが出来る。なお、読出しエラーの発生したトラック111が複数存在する場合、制御部130は、基点から原点に向かって、順次、読み出しエラーとなったトラック111からのデータの回復を試行してゆくと効率が良い。
 これにより、通常どおり原点から読み出し位置にヘッドを移動させた場合にヘッドに作用する非線形抵抗力(プラス方向とする)を、逆方向(マイナス方向とする)に作用させることが出来る。結果として、ヘッドと、読み出し対象のデータの書き込み位置との距離が接近し、エラーの解消が期待できる。
 あるいは、制御部130は、終点を基点として設定してもよい。
 この場合も、通常どおり原点から読み出し位置にヘッドを移動させた場合にヘッドに作用する非線形抵抗力(プラス方向とする)を、逆方向(マイナス方向とする)に作用させることが出来る。結果として、ヘッドと、読み出し対象のデータの書き込み位置との距離が接近し、エラーの解消が期待できる。
 あるいは、制御部130は、原点とエラーの発生したトラック111の間の任意の位置を基点として設定することが出来る。ここで、基点は、原点とエラーの発生したトラック111又はセクタ112のm/nの位置(但し、mは1以上でnを越えない整数、nは2以上の任意の整数とする)であっても良い。また、基点は1箇所であっても、複数であっても良い。さらに、基点は、任意の間隔を持った複数の位置に設定されても良い。基点が複数設定された場合、制御部130は、これらの基点毎に、ヘッド送り動作と再読み込み動作を順次実行する。
 これにより、通常のデータ読み出しのように1トラック毎にヘッドを移動させる運動と、従来のリトライ動作にように原点からヘッドを移動させる運動との中間的な、かつ複数の過渡特性によるヘッドの運動を得ることができる。結果として、ヘッドと、読み出し対象のデータの書き込み位置との距離が接近する確度が高まり、エラーの解消が期待できる。
 あるいは、制御部130は、終点とエラーの発生したトラック111の間の任意の位置を基点として設定することが出来る。ここで、基点は、終点とエラーの発生したトラック111又はセクタ112の間のm/nの位置(但し、mは1以上でnを越えない整数、nは2以上の任意の整数とする)であっても良い。また、基点は1箇所であっても、複数であっても良い。さらに、基点は、任意の間隔を持った複数の位置に設定されても良い。基点が複数設定された場合、制御部130は、これらの基点毎に、ヘッド送り動作と再読み込み動作を順次実行する。
 これにより、通常どおり原点から読み出し位置にヘッドを移動させた場合にヘッドに作用する非線形抵抗力(プラス方向とする)を、逆方向(マイナス方向とする)に作用させることが出来る。さらに、通常のデータ読み出しのように1トラック毎にヘッドを移動させる運動と、従来のリトライ動作にように原点からヘッドを移動させる運動との中間的な、かつ複数の過渡特性によるヘッドの運動を得ることができる。結果として、ヘッドと、読み出し対象のデータの書き込み位置との距離が接近する確度が高まり、エラーの解消が期待できる。
 上述の一連の処理によってもエラーから回復できない場合、読み出し対象のデータが存在するはずのセクタ112について、不良セクタ処理を行う(S805)。
 不良セクタ処理とは、ストレージ装置が、当該装置の本体内に事前に準備された、ユーザがアクセスすることが出来ない専用のデータ記録領域に、当該セクタが不良であること、及びその代替としてアクセスすべきセクタ番号を指定する内容の記録を作成し、当該セクタへのその後のヘッドアクセスを防止する処理をいう。これにより、当該セクタ上に存在していた情報を読み出すことは不可能となり、情報の読み出しとしては失敗(エラー)となるが、ストレージ装置の機能を維持することが可能になる。但し、不良セクタ処理には、そのストレージ装置毎に定められた限界となる処理回数が存在する。不良セクタ処理がその限界となる処理回数に達した場合、その後は不良セクタ処理を実行することが不可能となるため、ストレージ装置の機能を維持することができなくなる。
 ここで、不良セクタ処理の実行に失敗した場合、例えば不良セクタ処理が既に限界となる処理回数に達しており不良セクタ処理を実行できなかった場合は、ストレージ装置は、データ読み出し処理を中断又は終了する。
 一方、上述の一連の処理のいずれかによりエラーが回復した場合、又は不良セクタ処理が成功した場合、ストレージ装置は、次のデータの読み出し動作に移行する。
 本実施の形態によれば、制御部130が、リトライ動作において、ディスク110上の原点以外の基点から、読み取り対象のトラック111に向けて、ヘッド120を駆動する。これにより、ヘッド120の移動速度の過渡特性を変化させ、ヘッド120と、読み出し対象のデータの書き込み位置との距離が接近する確度を高めること、すなわちエラーの解消の確度を高めることが出来る。
<その他の実施の形態>
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 例えば、上述の実施の形態は、図1に示すような扇状に旋回する腕状のヘッドアーム123を有するストレージ装置100を前提として説明したが、本発明は必ずしもこれに限定されるものではない。本発明は、ヘッド送り動作に対し非線形な抵抗力が働くヘッド送り機構を有する様々なストレージ装置に適用が可能である。例えば、ねじの原理を利用したリードスクリュー型等、ヘッド送り機構の一部に回転機構とその軸受け機構等を有し、その機構に起因する摩擦力が存在し、図6に示すような加速、減速を伴うヘッド送り機構を備えているストレージ装置に、本発明を適用可能である。
 また、上述の実施の形態では、主にハードディスクドライブと呼ばれる磁気ディスク記憶装置に内蔵された制御部130が、ヘッド120の駆動制御を行う例を説明したが、本発明は必ずしもこれに限定されるものではない。例えば、本発明は、CD-Rに代表される読み書き可能な光学円盤記憶装置などのストレージ装置にも適用可能である。このようなストレージ装置において、本発明に係る基点を変更するリトライ機能を、従来から備えているリトライ機能に付加、又は置き換えて使用することにより、エラーの解消や発生頻度の軽減ができる。
 また、本発明は、例えばストレージ装置の未使用領域を含む全データの複製(クローン)の作成や、データの完全な消去を目的とする設備、装置、ソフトウェア又はホストコンピュータに組み込むことにより、利用可能である。これらの設備、装置、又はソフトウェアにおいては、一般に、従来のリトライ機能によって読み出しエラーが解消できなければ、その時点で停止してしまうか、エラーが発生する部分を飛ばし、エラーが無くなった場所から、情報の複製や消去を継続するように作られている(不良セクタスキップ)。これにより発生する情報の欠損や残存を、本発明は解消又は軽減することができる。
 さらに、本発明が含まれるストレージ装置、設備、装置、ソフトウェア又はホストコンピュータに学習機能、すなわち本発明の処理に係る情報を記録し、処理のために再利用する機能を備えている場合、以下のような処理を追加することとしてもよい。すなわち、上述の実施の形態において示した、基点を変更したリトライ動作の複数の実行例(S804)について、それぞれエラーが解消できた回数や確率、又は実行時間等を記録しておき、これらに基づく優先度を上記実行例にそれぞれ設定し、優先度の高い実行例を優先的に用いるよう構成することができる。また、上記ストレージ装置等において、一定の回数又は頻度等を超えて継続的に読み取りエラーが発生した場合に、上記優先度の高い実行例を採用することもできる。これにより、より効果的に短時間でエラーの回復を実現することができる。
 さらに、上述の実施の形態において示した、基点を変更したリトライ動作の複数の実行例(S804)については、これらのいずれか1つの実行例を用いてエラーの回復を試行することとしても良く、あるいは複数の実行例を任意の順序で組み合わせて試行することとしても良い。
 さらに、上述の実施の形態においては、制御部130が、データが記録されているトラック、原点又は基点となるトラック111を指定し、そのトラック111へヘッド120を駆動する構成を示した。しかしながら、制御部130や、ストレージ装置100を制御可能な上記設備、装置、又はソフトウェア等が、ヘッド120が移動すべきトラック111を直接指定する機能を有さない場合等にあっては、制御部130や上記設備、装置、又はソフトウェア等は、データが記録されているセクタ112や、原点又は基点となるべきセクタ112を指定することにより、間接的にトラック111を特定するよう構成しても良い。
 また、上述の実施の形態では、本発明を主にハードウェアの構成として説明したが、これに限定されるものではなく、任意の処理を、CPU(Central Processing Unit)にコンピュータプログラムを実行させることにより実現することも可能である。この場合、コンピュータプログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、CD-ROM(Read Only Memory)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(random access memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。
 本発明は、基点を変更するリトライ機能により、読み出しエラーを解消するストレージ装置、ストレージ装置の制御装置、ストレージ装置の制御方法及びプログラムに関する。
 100 ストレージ装置
 110 ディスク
 111 トラック
 112 セクタ
 120 ヘッド
 122 軸受
 123 ヘッドアーム
 130 制御部

Claims (10)

  1.  データを記録可能な複数のトラックを含むディスクと、
     前記ディスクから前記データを読み出す際、原点から、前記データが記録されているトラック上に駆動されるヘッドと、
     前記ヘッドを駆動する制御部とを有し、
     前記制御部は、
     前記データの読み出しにエラーが発生した際、前記ヘッドを、前記原点以外の基点から、再度、前記データが記録されているトラック上に駆動して前記データを読み出すリトライを実行する
     ストレージ装置。
  2.  前記原点は、前記ディスクに含まれる前記トラックのうち、データ書き込み可能な先頭部分を含む前記トラックである
     請求項1記載のストレージ装置。
  3.  前記基点は、前記ディスクに含まれる前記トラックのうち、データ書き込み可能な最終部分を含む前記トラックと、前記読み出しエラーの発生した前記トラックとの間に設定される
     請求項1又は2記載のストレージ装置。
  4.  前記基点は、前記ディスクに含まれる前記トラックのうち、データ書き込み可能な最終部分を含む前記トラックである
     請求項1又は2記載のストレージ装置。
  5.  前記基点は、前記原点と、前記読み出しエラーの発生した前記トラックとの間に複数設定され、
     前記制御部は、前記複数の基点のうち1以上の前記基点から、前記リトライを複数回実行する
     請求項1又は2記載のストレージ装置。
  6.  前記基点は、前記ディスクに含まれる前記トラックのうち、データ書き込み可能な最終部分を含む前記トラックと、前記読み出しエラーの発生した前記トラックとの間に複数設定され、
     前記制御部は、前記複数の基点のうち1以上の前記基点から、前記リトライを複数回実行する
     請求項1又は2記載のストレージ装置。
  7.  前記トラックは、前記データを記録可能な複数のセクタを含み、
     前記制御部は、前記データが記録されているトラック、前記原点、及び前記基点のうち少なくともいずれか1つを、前記セクタを指定することにより特定する
     請求項1乃至6いずれか1項記載のストレージ装置。
  8.  データを記録可能な複数のトラックを含むディスクから前記データを読み出す際、原点から前記データが記録されているトラック上にヘッドが駆動されるストレージ装置を制御する方法であって、
     前記データの読み出しにエラーが発生した際、前記ヘッドを、前記原点以外の基点から、再度、前記データが記録されているトラック上に駆動して前記データを読み出すリトライを実行する
     ストレージ装置の制御方法。
  9.  コンピュータに、
     データを記録可能な複数のトラックを含むディスクから前記データを読み出す際、原点から前記データが記録されているトラック上にヘッドが駆動されるストレージ装置に対し、
     前記データの読み出しにエラーが発生した際、前記ヘッドを、前記原点以外の基点から、再度、前記データが記録されているトラック上に駆動して前記データを読み出すリトライを実行させる制御を実行させる
     プログラム。
  10.  データを記録可能な複数のトラックを含むディスクから前記データを読み出す際、原点から前記データが記録されているトラック上にヘッドが駆動されるストレージ装置と接続され、
     前記ストレージ装置に対し、
     前記データの読み出しにエラーが発生した際、前記ヘッドを、前記原点以外の基点から、再度、前記データが記録されているトラック上に駆動して前記データを読み出すリトライを実行させる制御を実行させる
     ストレージ装置の制御装置。
PCT/JP2012/004795 2012-07-27 2012-07-27 ストレージ装置、ストレージ装置の制御装置、ストレージ装置の制御方法及びプログラム WO2014016874A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013544889A JPWO2014016874A1 (ja) 2012-07-27 2012-07-27 ストレージ装置、ストレージ装置の制御装置、ストレージ装置の制御方法及びプログラム
PCT/JP2012/004795 WO2014016874A1 (ja) 2012-07-27 2012-07-27 ストレージ装置、ストレージ装置の制御装置、ストレージ装置の制御方法及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/004795 WO2014016874A1 (ja) 2012-07-27 2012-07-27 ストレージ装置、ストレージ装置の制御装置、ストレージ装置の制御方法及びプログラム

Publications (1)

Publication Number Publication Date
WO2014016874A1 true WO2014016874A1 (ja) 2014-01-30

Family

ID=49996711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004795 WO2014016874A1 (ja) 2012-07-27 2012-07-27 ストレージ装置、ストレージ装置の制御装置、ストレージ装置の制御方法及びプログラム

Country Status (2)

Country Link
JP (1) JPWO2014016874A1 (ja)
WO (1) WO2014016874A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001338476A (ja) * 2000-05-26 2001-12-07 Matsushita Electric Ind Co Ltd 媒体交換型磁気記録再生装置
JP2002163869A (ja) * 2000-11-24 2002-06-07 Ricoh Co Ltd 情報再生装置
JP2002183972A (ja) * 2000-12-19 2002-06-28 Ricoh Co Ltd 情報再生装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02149980A (ja) * 1988-11-30 1990-06-08 Toshiba Corp 磁気ディスク制御装置
JPH0393073A (ja) * 1989-09-05 1991-04-18 Fujitsu Ltd 波形補正装置及びそれを使用するリードエラー時のリトライ方法
JPH0696535A (ja) * 1992-09-14 1994-04-08 Toshiba Corp 磁気ディスク装置のヘッド位置決め制御装置
JP2002209394A (ja) * 2001-01-12 2002-07-26 Sony Corp ボイスコイルモータを用いたサーボ系の非線形制御方法及び装置
US20070174664A1 (en) * 2006-01-04 2007-07-26 Ess Data Recovery, Inc. Data recovery application
JP2010277660A (ja) * 2009-05-29 2010-12-09 Hitachi Global Storage Technologies Netherlands Bv ディスク・ドライブ及びそのエラー回復処理の方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001338476A (ja) * 2000-05-26 2001-12-07 Matsushita Electric Ind Co Ltd 媒体交換型磁気記録再生装置
JP2002163869A (ja) * 2000-11-24 2002-06-07 Ricoh Co Ltd 情報再生装置
JP2002183972A (ja) * 2000-12-19 2002-06-28 Ricoh Co Ltd 情報再生装置

Also Published As

Publication number Publication date
JPWO2014016874A1 (ja) 2016-07-07

Similar Documents

Publication Publication Date Title
US8694841B1 (en) Methods and devices for preventing potential media errors from growing thermal asperities
US7595955B2 (en) Disk drive device and method for error recovery procedure therefor
JP2006147139A (ja) ハードディスクドライブのレファレンスサーボ信号の記録方法及び温度補償方法
US11960760B2 (en) Seek scheduling in a split actuator drive
JP2014032736A (ja) 位置情報のデータ特性を利用するトラック追従の実行
US7518821B2 (en) Hard disk drive
US9691418B1 (en) Adaptive write fault thresholds
US9269393B1 (en) Electronic system with data refresh mechanism and method of operation thereof
JP2007193876A (ja) 記録ディスク・ドライブ及びその欠陥領域管理方法
US7486469B1 (en) Minimizing a mechanical mode excitation utilizing a generated seek trajectory
US7627778B2 (en) Prediction-based data reassignment
US11036436B2 (en) Seek scheduling in a split actuator drive
JP2010146626A (ja) 記憶装置、記憶装置制御方法およびヘッドスライダ
WO2014016874A1 (ja) ストレージ装置、ストレージ装置の制御装置、ストレージ装置の制御方法及びプログラム
US20230061685A1 (en) Split actuator drive that limits slew rate of aggressor vcm to reduce victim disturbances
US8125729B2 (en) Disk drive and error-recovery processing method
EP1585126B1 (en) Data read retry with read timing adjustment for eccentricity of a disc in a data storage device
US20110141611A1 (en) Method and apparatus for measuring disk runout in a disk drive
US8315008B2 (en) Magnetic disk device and head position control method
JP4805678B2 (ja) 磁気ディスク装置
JP2006185478A (ja) 磁気ディスク装置及び記録再生方法
JP2014110062A (ja) ディスク記憶装置及びサーボ制御方法
US11574650B1 (en) Gain scheduled controller to handle unpredictable disturbances during spiral write
JP4739027B2 (ja) データ記憶装置及びその欠陥領域管理方法
JP2007335016A (ja) ヘッドスラップ検出装置、記憶装置、ヘッドスラップ検出方法、およびヘッドスラップ検出プログラム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013544889

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12881583

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12881583

Country of ref document: EP

Kind code of ref document: A1