WO2014015710A1 - 干式真空泵单元及具有该干式真空泵单元的干式真空泵 - Google Patents

干式真空泵单元及具有该干式真空泵单元的干式真空泵 Download PDF

Info

Publication number
WO2014015710A1
WO2014015710A1 PCT/CN2013/076646 CN2013076646W WO2014015710A1 WO 2014015710 A1 WO2014015710 A1 WO 2014015710A1 CN 2013076646 W CN2013076646 W CN 2013076646W WO 2014015710 A1 WO2014015710 A1 WO 2014015710A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum pump
dry vacuum
unit
rotor shaft
shaft
Prior art date
Application number
PCT/CN2013/076646
Other languages
English (en)
French (fr)
Inventor
李昌龙
王光玉
刘坤
张晓玉
Original Assignee
中国科学院沈阳科学仪器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院沈阳科学仪器股份有限公司 filed Critical 中国科学院沈阳科学仪器股份有限公司
Publication of WO2014015710A1 publication Critical patent/WO2014015710A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C25/00Adaptations of pumps for special use of pumps for elastic fluids
    • F04C25/02Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/123Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with radially or approximately radially from the rotor body extending tooth-like elements, co-operating with recesses in the other rotor, e.g. one tooth
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/126Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with radially from the rotor body extending elements, not necessarily co-operating with corresponding recesses in the other rotor, e.g. lobes, Roots type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/70Use of multiplicity of similar components; Modular construction

Definitions

  • Dry vacuum pump unit and dry vacuum pump having the same
  • the present invention is in the field of vacuum pumps, and more particularly to a dry vacuum pump unit and a dry vacuum pump having the dry vacuum pump unit. Background technique
  • dry pump The world's first dry vacuum pump (referred to as dry pump or oilless pump) that was actually used in industry was born in 1984. It is based on the "Roots + Claw" vacuum pump pumping principle, multi-stage Roots rotor and claw type. A multi-stage dry pump consisting of a series of rotors. At that time, the Japanese semiconductor industry developed rapidly, and a large number of dry pumps were urgently needed. A dry vacuum pump suitable for semiconductor industry applications was developed. The emergence of such dry vacuum pumps has made a significant contribution to the reform of the semiconductor industry in two aspects of propelling volumetric pumping. These two aspects are: (1) clean suction and increased load lockout of the system; (2) continuous pumping during the production of by-products such as large amounts of particulate matter, condensate and corrosive substances.
  • Vacuum companies such as Germany, the United Kingdom, France and the United States have also appeared in this type of dry vacuum pumps, and some have achieved automatic control to meet the needs of semiconductor and chemical industry development.
  • Edwards introduced a multi-stage dry pump with a combination of a three-stage claw rotor and a first-stage Roots rotor. The first time, the pump realized the lowest operating cost and maintenance cost from the atmosphere to 1
  • the "clean" pumping or "oil-free” pumping between Pa provides a good foreline vacuum pump for other dry pumps that cannot directly vent the atmosphere, such as molecular pumps, ion pumps, cryopumps, etc.
  • the dry pump does not need lubrication in the pump chamber, and allows the presence of condensable gases and particles, so that a good clean vacuum environment can be obtained, which satisfies etching, deposition, and Annealing, pharmaceutical and other requirements for a variety of demanding vacuum pumping processes.
  • the gap due to the existence of the gap, there is a phenomenon of reverse gas flow in the dry pump.
  • the selection of the gap will seriously affect the absolute vacuum, compression ratio, volumetric efficiency, and heat jam of the dry pump. It is one of the most important parameters for dry pump design.
  • the design theory of dry pump needs to be improved, especially including the improvement of profile, the reduction of processing cost, the determination of gap, the calculation of leakage, and the thermodynamic analysis in pump.
  • Dry pumps provide pre-stage vacuum for medium and high vacuum pumps such as molecular pumps, cryopumps, sputter ion pumps, and Roots pumps. These pumps are often connected to form a dry pump unit to provide a clean medium to high vacuum for a variety of process applications.
  • the dry pump family has added claw-type dry pumps, diaphragm dry pumps, multi-stage reciprocating dry pumps, vortex dry pumps, multi-stage Roots dry pumps, screw dry pumps and other members. It is widely used in various industries such as chemical industry, metallurgy, nuclear industry, biopharmaceutical, freeze drying, aerospace, special gas production, semiconductor industry, electronics industry and so on.
  • the gases that need to be processed by vacuum pumps in the semiconductor industry are relatively more complex, and some gases contain very fine powders, are corrosive, or may form deposits on the inner walls of the pump.
  • the vacuum pump used in semiconductors must be able to operate at a specific temperature range. It is also very important that the vacuum pump has been in continuous operation for 24 hours and 24 hours, and how to perform normal scheduled maintenance. Under Extending the life of the equipment is an issue that must be considered. Vacuum technology needs to be well integrated with various applications to meet the stringent requirements of the semiconductor manufacturing industry for process equipment in terms of reliable operation, extended equipment mean time between failures, reduced maintenance and reduced costs.
  • Gases and by-products of CVD and epitaxy include substances that are self-igniting, flammable, corrosive, condensable, and toxic, such as SiH 4 , PH 3 , F 2 , NF 3 , SF 6 , NH 3 , HF, HCl, etc., dry pumps operating under this process must have high reliability and corrosion resistance; usually require absolute safety and no leakage in the pumping process, and these gases usually have higher temperatures and enter Excessive cooling is not allowed before the vacuum pump; this requires that the suction pump chamber of the dry pump needs to be maintained between 80 ° C and 260 ° C, and 7 ⁇ 24 hours of continuous continuous operation for 2 to 5 years.
  • the metal etching process uses corrosive gases, including Cl 2 , BC1 3 and global greenhouse gas PFC.
  • the dielectric etch process also requires the use of PFCs and corrosive gases, such as HBr; this process typically produces some by-products, such as gaseous A1C1 3 , which typically condense in the pump when the temperature is below 70 °C. Therefore, the vacuum pump is stuck.
  • the vacuum pump is required to process some small particles and dust.
  • the nitrogen dust can be used to prevent the dust and the reaction product from being deposited in the pump cavity, but at the same time, the reliability of the vacuum pump is higher.
  • Ion implantation is very sensitive to particle contamination. A particle on the surface of the silicon wafer can block the ion beam, resulting in an incorrect implant. The high current implanter produces more particles due to the erosion of the ion beam.
  • Commonly used ion implantation doping gases are highly toxic, such as As3 ⁇ 4, PH 3 , BF 3 , etc., the concentration of these gases in air exceeds 50 ⁇ 300 ppbv (1 ppbv refers to one billionth of volume), Can pose a threat to human health and safety.
  • Another type of dry pump for the petrochemical industry including vacuum distillation and solvent extraction for efficient solvent recovery; pharmaceutical industry: recovery of pharmaceutical liquids and pharmaceutical intermediates; provision of clean and sterile conditions for the production of artificial organs, recovery of gas disinfectants; nuclear reactors And the nuclear industry vacuum is obtained; fatty acid production, eliminating water pollution, removing obstructions in the ejector; concentration of spices and flavors.
  • the operation and maintenance costs of vacuum pumps also account for a considerable proportion. Taking the energy consumption of a vacuum pump as an example, the energy consumption of a vacuum pump accounts for about 20% or more in the entire IC production line.
  • the dry vacuum pump can usually be operated continuously for 2 years or more without the need for regular regular maintenance such as oil change of the wet vacuum pump. It takes only about 5 years to replace the filter and oil.
  • the turbomolecular pump can run continuously for 5 years without maintenance because it Our magnetic suspension bearings do not actually have any friction, only a small amount of vibration and loss.
  • the new anti-corrosion and high-temperature resistant materials prevent condensation of gaseous by-products inside the vacuum pump and work in highly corrosive environments where metal etching occurs.
  • the rotor has many types, such as claw type, roots type, screw type, scroll type, etc., and all the parts except the rotor of the whole vacuum pump include motor, transmission system and lubrication.
  • the system, sealing system, suction and exhaust pump chamber, cooling system, etc. are similar in structure, material and form.
  • the change of a certain rotor structure means a new design and manufacture.
  • the vacuum pumps of different types of rotors complement each other. Both cost and cycle require a high price. In a sense, this bottleneck limits the replacement and long-term development of dry vacuum pumps.
  • the requirements for the sub-regional pumping speed, compression ratio, pumping capacity, and power consumption of the multi-stage dry vacuum pump are not the same. If the user environment requires a quick pumping capacity and a rapid pressure drop at the beginning; some user environments require the vacuum pump to be insensitive to the vacuum environment repeatedly exposed to the atmosphere, and the vacuum pumping capability is strong; some user environments require a vacuum pump The ultimate vacuum achieved is high; some user environments require strong dust resistance and high reliability; some user environments require low noise and vibration, and so on. Future vacuum pump products should provide customers with vacuum pump products that meet customer requirements in a short design and manufacturing cycle, depending on the user's environment and customization requirements, while taking into account cost requirements.
  • the object of the present invention is to provide a A dry vacuum pump unit and a dry vacuum pump having the dry vacuum pump unit.
  • the invention comprises a pump body, a first cover plate, an active rotor shaft and a driven rotor shaft, wherein the first cover plate is mounted on one side of the pump body, and the active rotor shaft and the driven rotor shaft are rotatably mounted in the pump body, and the active
  • the rotor shaft and the rotor on the driven rotor shaft mesh with each other, and an intake port and an exhaust port that communicate with the pump body are respectively disposed on the first cover plate and the pump body.
  • the first cover plate is mounted on a side of the intake of the pump body, and the pump body has a space for accommodating the rotor on the active rotor shaft and the driven rotor shaft, and the air inlet on the first cover plate And the exhaust port on the pump body is respectively connected to the space;
  • the active rotor shaft and the driven rotor shaft are respectively mounted on the pump body through bearings, and the two ends of the active rotor shaft and the driven rotor shaft are respectively pump body and a first cover plate is provided for connecting with the main and driven rotor shafts of the adjacent dry vacuum pump unit;
  • the bottom of the pump body extends downward to form a mounting bayonet for easy installation;
  • the active rotor shaft and The rotor of the driven rotor shaft may be one of a Roots type, a claw type or a screw type; when the rotor shape is a Roots type, it may be two leaves, three leaves, four leaves or five leaves; when the rotor shape is a claw type It can be single
  • a dry vacuum pump includes a mounting rail and a dry vacuum pump unit respectively mounted on the mounting rail, a motor unit, a transmission unit, and a sealing unit provided with a pump suction port, wherein the dry vacuum pump unit is at least one Between the sealing unit and the transmission unit, the motor unit is connected to the transmission unit, and the active rotor shaft and the driven rotor shaft in the dry vacuum pump unit are driven by the transmission unit to complete the inhalation and exhaust process; or the drying
  • the vacuum pump unit is located between the motor unit and the transmission unit, and the input and output ends of the dry vacuum pump unit are respectively connected to the motor unit and the transmission unit, and the sealing unit is located on the other side of the transmission unit; Located between the sealing unit and the transmission unit, the transmission unit is provided with a pump exhaust port, and when the dry vacuum pump unit is located between the motor unit and the transmission unit, the motor unit is provided with a pump exhaust port;
  • the motor unit comprises a motor, a coupling and a second cover, wherein the second cover is mounted on the transmission unit, the motor is fixed on the second cover, and the output shaft of the motor passes through the coupling and the transmission unit
  • the drive shaft is connected;
  • the transmission unit includes a gear box, a drive gear, a driven gear, a driven shaft and a drive shaft, wherein the gear box is mounted on the mounting rail and connected to the motor unit, the drive shaft and the driven shaft Rotating and installing in the gear box respectively, the driving gear and the driven gear are respectively connected to the driving shaft and the driven shaft, and mesh with each other, one end of the driving shaft is connected with the motor unit, and the other end is active in the dry vacuum pump unit.
  • the rotor shaft is connected, the driven shaft is connected with the driven rotor shaft in the dry vacuum pump unit; the pump exhaust port is connected to the dry vacuum pump unit; the sealing unit includes the pump body sealing plate and the support a bearing, wherein the pump body sealing plate is mounted on the mounting rail and connected to the dry vacuum pump unit, and the side of the pump body sealing plate connected to the dry vacuum pump unit is provided with a supporting dry vacuum pump Active bearings supporting the rotor shaft and the driven shaft of the rotor, the opening communicating with a pump unit of the dry vacuum pump in the suction port of the pump body sealing plate;
  • the shape of the rotor in the dry vacuum pump unit may be one or more of a Roots type, a claw type or a screw type, and the rotors of the same dry vacuum pump unit mesh with each other have the same shape; when the dry vacuum pump unit is more Each dry vacuum pump unit can be arbitrarily combined and replaced.
  • the present invention employs a multi-unit dry vacuum pump formed by a standardized and modular design concept, and has many excellent advantages. Specifically:
  • the dry vacuum pump of multiple dry vacuum display units can quickly modify and expand the existing vacuum pump.
  • the addition, subtraction and replacement of different dry vacuum pump units can be used without changing the structure of the main structure.
  • the dry vacuum pump of several dry vacuum display units can quickly realize the development of different vacuum pumps.
  • any new type of rotor profile and rotor shape only the new vacuum pump unit can be operated without changing any other structure.
  • the research and development, improving the performance of the vacuum pump and expanding the use environment of the vacuum pump have enabled the development of a new type of vacuum pump, which has greatly reduced the cost, cycle and risk of the development process.
  • the dry vacuum pump of a plurality of dry vacuum display units can be mass-produced and assembled; the standardized design of different dry vacuum pump units greatly simplifies the process types and production steps in the part processing and assembly process. The difficulty of assembly is also greatly reduced, making it easier to divide the specific division of labor, facilitating the organization of modern large-scale parts processing and assembly.
  • the dry vacuum pump of multiple dry vacuum display units facilitates product transportation and on-site installation and commissioning, modular and standardized design, making the transportation process quick and convenient; through the fixed tooling, the factory-tested vacuum pump unit packaging Simple, easy to transport, the damage rate, transportation difficulty and transportation cost during transportation are also greatly reduced, and because the assembly difficulty of the product is reduced, after reaching the manufacturer, it can even be installed and debugged by the manufacturer after simple training.
  • the dry vacuum pump of multiple dry vacuum indicator units is convenient for maintenance and repair and user maintenance; the customer only needs to reserve some spare vacuum pump unit. Once the vacuum pump fails, the customer only needs to refer to the manual to replace the damaged unit. The manufacturer only Need to repair the damaged vacuum pump unit. The damaged vacuum pump unit can be returned to the factory for maintenance. The manufacturer conducts key research and development according to the repair rate of each vacuum pump unit, which improves the efficiency of maintenance and product upgrade and saves the development cycle.
  • the dry vacuum pump of multiple dry vacuum display units has good expandability; various vacuum pump units have good interchangeability, and customers only need to change the pumping performance requirements of purchased vacuum pumps.
  • the customer's demand for the performance of the purchased vacuum pump can be satisfied. This greatly improves the use value of the vacuum pump for the vacuum pump product that the customer has purchased, saves materials, cost and energy, and prolongs the service life.
  • FIG. 1 is a schematic perspective view showing the dry vacuum pump unit of the present invention
  • Figure 2A is a front elevational view showing the structure of a dry vacuum pump unit of the present invention.
  • Figure 2B is a cross-sectional view taken along line A - A of Figure 2A;
  • FIG. 3 is a schematic perspective structural view of a first embodiment of a dry vacuum pump unit according to the present invention.
  • Figure 4 is a cross-sectional view showing a first embodiment of the dry vacuum pump unit of the present invention.
  • Figure 5 is a perspective view showing the structure of the second embodiment of the dry vacuum pump unit of the present invention
  • Figure 6 is a cross-sectional view showing a second embodiment of the dry vacuum pump unit of the present invention
  • FIG. 7 is a schematic perspective structural view of a third embodiment of a dry vacuum pump unit according to the present invention.
  • Figure 8 is a cross-sectional view showing a third embodiment of the dry vacuum pump unit of the present invention.
  • FIG. 9 is a schematic perspective structural view of a fourth embodiment of a dry vacuum pump unit according to the present invention.
  • Figure 10 is a cross-sectional view showing a fourth embodiment of the dry vacuum pump unit of the present invention.
  • Figure 11 is a perspective view showing the structure of the dry vacuum pump unit of the fifth embodiment of the present invention.
  • Figure 12 is a cross-sectional view showing a fifth embodiment of the dry vacuum pump unit of the present invention.
  • FIG. 13 is a schematic perspective structural view of a sixth embodiment of a dry vacuum pump unit according to the present invention.
  • Figure 14 is a cross-sectional view showing the sixth embodiment of the dry vacuum pump unit of the present invention.
  • Figure 15 is a perspective view showing the structure of the seventh embodiment of the dry vacuum pump unit of the present invention.
  • Figure 16 is a cross-sectional view showing the seventh embodiment of the dry vacuum pump unit of the present invention.
  • Figure 17 is a perspective view showing the three-dimensional structure of the motor unit in the dry vacuum pump of the present invention.
  • Figure 18 is a front elevational view showing the structure of a motor unit in a dry vacuum pump of the present invention.
  • Figure 19 is a perspective view showing the structure of the transmission unit in the dry vacuum pump of the present invention.
  • Figure 20 is a schematic perspective view showing the internal structure of the transmission unit in the dry vacuum pump of the present invention.
  • 21 is a schematic perspective view showing the sealing unit of the dry vacuum pump of the present invention.
  • Figure 22 is a front elevational view showing the structure of a sealing unit in the dry vacuum pump of the present invention.
  • Figure 23 is a perspective view showing the structure of a single-stage combined dry vacuum pump of the present invention.
  • Figure 24 is a front view showing the structure of a single-stage combined dry vacuum pump of the present invention.
  • Figure 25 is a schematic diagram showing the internal three-dimensional structure of a single-stage two-blade Roots type combined dry vacuum pump
  • Figure 26 is a schematic view showing the internal three-dimensional structure of a single-stage three-blade Roots type combined dry vacuum pump
  • Figure 28 is a schematic diagram of the internal three-dimensional structure of the single-stage two-leaf claw type combined dry vacuum pump
  • Figure 29 is the internal three-dimensional structure of the single-stage three-leaf claw type combined dry vacuum pump Schematic diagram of the structure
  • Figure 30 is a schematic diagram of the internal three-dimensional structure of a single-stage screw type combined dry vacuum pump;
  • Figure 31 is a perspective view showing the structure of a two-stage combined dry vacuum pump of the present invention.
  • Figure 32A is a front view showing the structure of a two-stage Roots-screw composite type combined dry vacuum pump;
  • Figure 32B is a cross-sectional view taken along line A-A of Figure 32A;
  • Figure 32C is a cross-sectional view taken along line B-B of Figure 32A;
  • Figure 33 is a schematic perspective view showing the internal structure of a two-stage Roots-screw composite combined dry vacuum pump
  • Figure 34A is a front view showing the structure of a two-stage non-equidistant screw type combined dry vacuum pump
  • Figure 34B is a cross-sectional view taken along line A-A of Figure 34A;
  • Figure 35 is a schematic perspective view showing the internal structure of a two-stage non-equidistant screw type combined dry vacuum pump
  • Figure 36 is a perspective view showing the three-stage combined dry vacuum pump of the present invention
  • 37A is a front view showing the structure of a three-stage two-blade Roots type combined dry vacuum pump
  • Figure 37B is a cross-sectional view taken along line A - A of Figure 37A;
  • 37C is a cross-sectional view taken along line B-B of FIG. 37A;
  • Figure 37D is a cross-sectional view taken along line C-C of Figure 37A;
  • Figure 38 is a schematic perspective view showing the internal structure of a three-stage double-blade Roots type combined dry vacuum pump
  • Figure 39A is a front view showing the structure of a three-stage multi-leaf Roots type combined dry vacuum pump
  • Figure 39B is a cross-sectional view taken along line A - A of Figure 39A;
  • Figure 39C is a cross-sectional view taken along line B-B of Figure 39A;
  • Figure 39D is a cross-sectional view taken along line C-C of Figure 39A;
  • Figure 40 is a schematic perspective view showing the internal three-dimensional structure of a three-stage multi-blade Roots type combined dry vacuum pump
  • 41A is a front view showing the structure of a three-stage multi-lobed claw type combined dry vacuum pump
  • Figure 41B is a cross-sectional view taken along line A-A of Figure 41A;
  • Figure 41C is a cross-sectional view taken along line B-B of Figure 41A;
  • Figure 41D is a cross-sectional view taken along line C-C of Figure 41A;
  • Figure 42 is a schematic perspective view showing the internal three-dimensional structure of a three-stage multi-lobed claw type combined dry vacuum pump
  • Figure 43A is a front view showing the structure of a three-stage Roots-claw-screw type combined dry type real pump;
  • Figure 43B is a cross-sectional view taken along line A-A of Figure 43A;
  • Figure 43C is a cross-sectional view taken along line B-B of Figure 43A;
  • Figure 43D is a cross-sectional view taken along line C-C of Figure 43A;
  • 44 is an internal three-dimensional structure diagram of a three-stage Roots-claw-screw type combined dry type real-life pump.
  • 45 is an internal three-dimensional structure diagram of a four-stage Roots-screw composite type combined dry vacuum pump according to the present invention. Main view of the structure of the Luotz-screw composite combined dry vacuum pump;
  • Figure 46B is a cross-sectional view taken along line A-A of Figure 46A;
  • Figure 46C is a cross-sectional view taken along line B-B of Figure 46A;
  • Figure 46D is a cross-sectional view taken along line C-C of Figure 46A;
  • Figure 47A is a front view showing the structure of a four-stage multi-lobed claw type combined dry vacuum pump
  • Figure 47B is a cross-sectional view taken along line A - A of Figure 47A;
  • Figure 47C is a cross-sectional view taken along line BB of Figure 47A;
  • Figure 48 is a schematic perspective view showing the internal three-dimensional structure of a four-stage multi-lobed claw type combined dry vacuum pump
  • Figure 49 is a perspective view showing the three-stage combined dry vacuum pump of the present invention.
  • Figure 50A is a front view showing the structure of a five-stage multi-leaf Roots type combined dry vacuum pump
  • Figure 50B is a cross-sectional view taken along line A - A of Figure 50A;
  • Figure 50C is a cross-sectional view taken along line BB of Figure 50A;
  • Figure 50D is a cross-sectional view taken along line C-C of Figure 50A;
  • Figure 51 is a schematic perspective view showing the internal three-dimensional structure of a five-stage multi-leaf Roots type combined dry vacuum pump
  • Figure 52A is a front view showing the structure of a five-stage multi-lobed claw type combined dry vacuum pump
  • Figure 52B is a cross-sectional view taken along line A - A of Figure 52A;
  • Figure 52C is a cross-sectional view taken along line BB of Figure 52A;
  • Figure 52D is a cross-sectional view taken along line C-C of Figure 52A;
  • Figure 53 is a schematic perspective view showing the internal three-dimensional structure of a five-stage multi-lobed claw type combined dry vacuum pump
  • 1 is a dry vacuum pump unit
  • 101 is a bearing cover
  • 102 is a bearing
  • 103 is a first cover
  • 104 is a pump body
  • 105 is a first screw
  • 106 is an active rotor shaft
  • 107 is a driven rotor shaft.
  • 108 is the suction port
  • 109 is the second screw
  • 110 is the first positioning pin
  • 111 is the exhaust port
  • 112 is the mounting bayonet
  • 2 is a motor unit, 201 is a motor, 202 is a coupling, and 203 is a second cover;
  • 3 is the transmission unit, 301 is the positioning screw, 302 is the second positioning pin, 303 is the gear box, 304 is the pump exhaust port, 305 is the driving gear, 306 is the driven gear, 307 is the driven shaft, 308 is the driving shaft ;
  • 4 is a sealing unit, 401 is a pump body sealing plate, 402 is a pump suction port, and 403 is a supporting bearing;
  • 5 is the installation rail
  • 6 is the first stage dry vacuum pump unit
  • 7 is the second stage dry vacuum pump unit
  • 8 is the third stage dry vacuum pump unit
  • 9 is the fourth stage dry vacuum pump unit
  • 10 is the fifth stage Dry vacuum pump unit.
  • the dry vacuum pump unit of the present invention comprises a pump body 104, a first cover plate 103, an active rotor shaft 106 and a driven rotor shaft 107, wherein the first cover plate 103 is located in the pump body.
  • One side of the air inlet 104 is fixedly connected by the second screw 109; both side edges of the pump body 104 and the edge of the first cover plate 103 are provided with a plurality of positioning pin holes, and the first positioning pin 110 can be used with the other
  • the dry vacuum pump unit is simple and quick to assemble.
  • the active rotor shaft 106 and the driven rotor shaft 107 are rotatably mounted in the pump body 104.
  • the active rotor shaft 106 and the driven rotor shaft 107 are rotatably mounted on the pump body 104 through the bearing 102, respectively.
  • the bearing 102 is provided on the outer side of the bearing 102.
  • the first screw 105 is fixed to the bearing 102; the active rotor shaft 106 and the driven rotor shaft 107 are respectively mounted with intermeshing rotors, and the pump body 104 is provided with a receiving active rotor shaft 106 and a driven rotor shaft 107.
  • the first cover 103 is provided with an air inlet 108 communicating with the inner space of the pump body 104.
  • the side of the pump body 104 remote from the first cover 103 is provided with an exhaust port 111 communicating with the inner space.
  • Both ends of the active rotor shaft 106 and the driven rotor shaft 107 are respectively passed through the pump body 104 and the first cover plate 103 for connection with the main and driven rotor shafts of the adjacent dry vacuum pump unit.
  • the bottom of the pump body 104 extends downwardly to form a mounting card P 112 that is easily mounted on the track.
  • the active rotor shaft 106 and the driven rotor shaft 107 of the present invention have the same rotor shape, and may be one of a Roots type, a claw type or a screw type; when the rotor shape is a Roots type, it may be two leaves, three leaves, Four-leaf or five-leaf; when the shape of the rotor is claw-shaped, it can be single-leaf, two-leaf, three-leaf, four-leaf or five-leaf; when the rotor shape is screw-type, it can be single-head, double-head or multi-head screw.
  • the screws can be equidistant or non-equidistant.
  • the invention can adopt different rotor shapes to form different dry vacuum pump units, and the plurality of dry vacuum pump units can adopt the same interface and connection size, and the active rotor shaft of the adjacent dry vacuum pump unit is connected with the active rotor shaft and driven.
  • the rotor shaft is connected with the driven rotor shaft, and the pump body is connected with the pump body to form a sealed pump chamber.
  • the series connection is performed according to actual requirements, and a dry vacuum pump having various pumping curves is quickly formed to be suitable for different user environments.
  • Embodiment 1 The rotor shape is a two-leaf Roots type
  • the rotor on the active rotor shaft 106 and the rotor on the driven rotor shaft 107 are both two-leaf Roots rotors, and the rotor and driven rotor shafts 107 on the active rotor shaft 106.
  • the upper rotors mesh with each other; the pumped gas is sucked into the pump body 104 by the suction port 108 on the first cover plate 103, and is exhausted by the exhaust port 111 on the pump body 104.
  • Embodiment 2 (The rotor shape is a three-leaf Roots type)
  • the difference between this embodiment and the first embodiment is that the rotors on the active rotor shaft 106 and the rotor on the driven rotor shaft 107 are all three-lobed Roots rotors.
  • Embodiment 3 (The rotor shape is a five-leaf Roots type)
  • the difference between this embodiment and the first embodiment is that the rotor on the active rotor shaft 106 and The shape of the rotor on the driven rotor shaft 107 is a five-leaf Roots rotor.
  • Embodiment 4 (The shape of the rotor is a single-leaf claw type)
  • the rotors on the active rotor shaft 106 and the rotor on the driven rotor shaft 107 in this embodiment are all single-lobe-claw rotors, and the rotor and driven rotor shafts 107 on the active rotor shaft 106.
  • the upper rotors are in mesh with each other; the pumped gas is sucked into the pump body 104 by the suction port 108 on the first cover plate 103, and is discharged from the exhaust port 111 on the pump body 104.
  • Example 5 (rotor shape is double-leaf claw type)
  • the difference between this embodiment and the fourth embodiment is that the rotors on the active rotor shaft 106 and the rotors on the driven rotor shaft 107 are both double-lobed-type rotors.
  • Embodiment 6 (The rotor shape is a three-leaf claw type)
  • the difference between this embodiment and the fourth embodiment is that the rotors on the active rotor shaft 106 and the rotor on the driven rotor shaft 107 are both double-lobed-type rotors.
  • Example 7 (rotor shape is screw type)
  • the rotor on the active rotor shaft 106 and the rotor on the driven rotor shaft 107 in this embodiment are both screw-type rotors, and the screws can be equidistant or non-equidistant (this embodiment is equal to
  • the rotor on the active rotor shaft 106 and the rotor on the driven rotor shaft 107 are in mesh with each other; the pumped gas is sucked into the pump body 104 by the suction port 108 on the first cover plate 103, by the pump body 104.
  • the exhaust port 111 is discharged.
  • the dry vacuum pump units of the above first to seventh embodiments have the same outer shape, and the rotor shapes are different, and can be applied to the corresponding occasions according to needs and characteristics.
  • the dry vacuum pump of the present invention comprises a mounting rail 5 and a dry vacuum pump unit 1, a motor unit 2, a transmission unit 3 and a sealing unit 4 provided with a pump suction port, respectively, which are mounted on the mounting rail 5, wherein the dry vacuum pump
  • the unit 1 is at least one.
  • the dry vacuum pump unit 1 is plural, it can be arbitrarily combined and replaced, and can be arbitrarily added or deleted. In use, it can be required according to the set vacuum degree, pumping rate and other performance parameters at any time. , Design a multi-unit dry vacuum pump with different unit numbers.
  • the dry vacuum pump unit 1 can be located between the sealing unit 4 and the transmission unit 3.
  • the sealing unit 4 is provided with a pump suction port
  • the transmission unit 3 is provided with a pump exhaust port
  • the motor unit 2 is connected with the transmission unit 3.
  • the active rotor shaft 106 and the driven rotor shaft 107 in the dry vacuum pump unit 1 are driven by the transmission unit 3 to complete the suction and exhaust processes.
  • the dry vacuum pump unit 1 is located between the motor unit 2 and the transmission unit 3, the sealing unit 4 is provided with a pump suction port, and the motor unit 2 is provided with a pump exhaust port, the input of the dry vacuum pump unit 1,
  • the output ends are respectively connected to the motor unit 2 and the transmission unit 3, and the sealing unit 4 is located on the other side of the transmission unit 3.
  • the dry vacuum pump unit 1 is disposed between the sealing unit 4 and the transmission unit 3, and the motor unit 2 is connected to the transmission unit 3.
  • the motor unit 2 includes a motor 201, a coupling 202, and a second cover 203.
  • the second cover 203 is fixed to the transmission unit 3, and the second cover 203 is opened.
  • a circular hole through which the motor output shaft passes, the motor 201 is fixed on the second cover plate 203, and the output shaft of the motor 201 passes through the circular hole in the second cover plate 203, passes through the coupling 202 and the transmission unit 3
  • the active axes are connected.
  • the power of the motor 201 can be frequency-adjusted according to the actual number of dry vacuum pump units and power usage, and has wide applicability and good compatibility; between the motor unit 2 and the dry vacuum pump unit 1 and the transmission unit 3 Standard interface and connection method.
  • the transmission unit 3 mainly provides motion for the dry vacuum pump unit 1 and the motor unit 2.
  • the force transmission and positioning support includes a gear box 303, a driving gear 305, a driven gear 306, a driven shaft 307 and a driving shaft 308.
  • the top of the gear box 303 is provided with a pump exhaust port 304, and the bottom portion extends downward to form a convenient a mounting bayonet 112 mounted on the mounting rail 5; one side of the gear box 303 is connected to the pump body 104 in the dry vacuum pump unit 1 through the second positioning pin 302, and the other side is fixed to the second cover plate 203;
  • the shaft 308 and the driven shaft 307 are respectively rotatably mounted in the gear box 303, and the driving gear 305 and the driven gear 306 are respectively connected to the driving shaft 308 and the driven shaft 307, and are engaged with each other, and are positioned by the positioning screws 301;
  • One end of the shaft 308 is connected to the output shaft of the motor 201 in the motor unit 2 through the coupling 202, and the other end is connected to the active rotor shaft 106 in the dry vacuum pump unit 1.
  • the plurality of vacuum pump units 1 are plural, and each dry type The active rotor shafts in the vacuum pump unit 1 are connected in series in sequence; the driven shaft 307 is connected to the driven rotor shaft 107 in the dry vacuum pump unit 1, and if there are a plurality of dry vacuum pump units 1, each dry vacuum pump The rotor shaft 1 driven element connected in series in this order.
  • Gearbox 303 can be in various forms such as water or air.
  • the transmission unit 3 has a standard interface and connection between the dry vacuum pump unit 1 and the motor unit 2.
  • the output shaft of the motor 201 in the motor unit 2 is directly connected to the active rotor shaft 106 of the dry vacuum pump unit 1 via the coupling 202, and then the transmission
  • the drive shaft 308 in the unit 3 is connected; the driven shaft 307 in the transmission unit 3 is connected to the driven rotor shaft 107 in the dry vacuum pump unit 1.
  • the sealing unit 4 mainly provides bearing support and shielding for the other end of the dry vacuum pump unit 1 opposite to the transmission unit 3, including a pump body sealing plate 401 and a supporting bearing 403, wherein the pump body sealing plate
  • the 401 is fixed to the first cover plate 103 of the dry vacuum pump unit 1 by screws, and the pump body sealing plate 401 has a pump suction port 402 at the top thereof, and the bottom portion extends downward to form a mounting card for mounting on the mounting rail 5.
  • Port 112; the pump body sealing plate 401 is an internal hollow structure, and the pump suction port 402 on the inner side (the side connected to the dry vacuum pump unit 1) is located at the position of the suction port on the first cover plate 103 in the dry vacuum pump unit 1.
  • the inner side of the pump body sealing plate 401 is provided with a support bearing 403 for supporting the active rotor shaft 106 and the driven rotor shaft 107 in the dry vacuum pump unit 1, and the bearing of the active rotor shaft 106 and the other end of the driven rotor shaft 107. Then used for positioning.
  • the shape of the rotor of the dry vacuum pump unit 1 of the dry vacuum pump of the present invention may be one or more of a Roots type, a claw type or a screw type, and the rotors of the same dry vacuum pump unit 1 mesh with each other have the same shape;
  • each dry vacuum pump unit 1 has a standard interface and good interchangeability, and can be arbitrarily combined and replaced.
  • Dry vacuum pump unit 1 Motor unit 2 and transmission unit 3
  • the assembly of a multi-unit vacuum pump can be carried out with a simple connection.
  • the dry vacuum pump units are assembled, through the connection between the active rotor shaft and the active rotor shaft, the connection between the driven rotor shaft and the driven rotor shaft, and the connection between the pump body and the pump body.
  • the standard interfaces are connected together to form a sealed pump chamber that is combined with the motor unit and the drive unit to form a multi-unit dry vacuum pump.
  • the dry vacuum pump of the present invention can be horizontal or vertical, and the dry vacuum pump can be installed with a shielded outer cover.
  • the driving gear 305 and the driven gear in the gear box 303 are driven by the motor 201.
  • the dry vacuum pump is a single-stage combined dry vacuum pump, which is described in the first embodiment.
  • the dry vacuum pump unit has a two-leaf Roots type.
  • the dry vacuum pump is a single-stage combined dry vacuum pump including the dry vacuum pump unit described in the first embodiment, and the rotor is a three-lobe type.
  • the dry vacuum pump is a single-stage combined dry vacuum pump including the dry vacuum pump unit described in the first embodiment, and the rotor is a five-lobed root type.
  • the dry vacuum pump is a single-stage combined dry vacuum pump including the dry vacuum pump unit described in the first embodiment, and the rotor is a double-leaf claw type.
  • the dry vacuum pump is a single-stage combined dry vacuum pump including the dry vacuum pump unit described in the first embodiment, and the rotor is a three-lobed type.
  • the dry vacuum pump is a single-stage combined dry vacuum pump including the dry vacuum pump unit described in the first embodiment, and the rotor is of a screw type.
  • FIG. 31 it is a two-stage combined dry vacuum pump having a first-stage dry vacuum pump unit 6 and a second-stage dry vacuum pump unit 7, wherein the first-stage dry vacuum pump unit 6 is connected to the sealing unit 4, The second stage dry vacuum pump unit 7 is connected to the transmission unit 3.
  • the dry vacuum pump is a two-stage Roots-screw composite type combined dry vacuum pump having a two-stage dry vacuum pump unit, and the rotor shape of the first-stage dry vacuum pump unit 6 is The type of rotor of the second stage dry vacuum pump unit 7 is a screw type, and the two rotor shapes have different characteristics and applications.
  • the dry vacuum pump is a two-stage non-equidistant screw type combined dry vacuum pump, which has two dry vacuum pump units, a first stage dry vacuum pump unit 6 and a second stage dry type.
  • the rotor shape of the vacuum pump unit 7 is screw type, but the pitch is not equal.
  • the rotor pitch of the first stage dry vacuum pump unit 6 near the pump suction port 402 is larger than the second stage dry vacuum pump near the pump exhaust port 304.
  • the rotor pitch of unit 7 allows for a larger compression ratio.
  • FIG. 36 it is a three-stage combined dry vacuum pump having a first-stage dry vacuum pump unit 6, a second-stage dry vacuum pump unit 7, and a third-stage dry vacuum pump unit 8 connected in series, wherein the first stage The dry vacuum pump unit 6 is connected to the sealing unit 4, and the third stage dry vacuum pump unit 8 is connected to the transmission unit 3.
  • the dry vacuum pump is a three-stage two-blade Roots type combined dry vacuum pump having a three-stage dry vacuum pump unit, a first-stage dry vacuum pump unit 6, and a second-stage dry type.
  • the rotors of the vacuum pump unit 7 and the third-stage dry vacuum pump unit 8 are of the double-leaf Roots type, have the same cross-sectional structure, and have the same rotor profile, and have different rotor thicknesses.
  • the dry vacuum pump is a three-stage multi-blade Roots type combined dry vacuum pump having a three-stage dry vacuum pump unit, and the rotor of the first-stage dry vacuum pump unit 6 has a double-leaf shape.
  • the dry vacuum pump is a three-stage multi-lobed claw type combined dry vacuum pump having a three-stage dry vacuum pump unit, and the rotor of the first-stage dry vacuum pump unit 6 has a single-leaf claw shape.
  • the rotor of the second stage dry vacuum pump unit 7 has a double-lobed claw shape, and the rotor of the third-stage dry vacuum pump unit 8 has a three-lobed claw shape.
  • the dry vacuum pump is a three-stage Roots-claw-screw type combined dry vacuum pump having a three-stage dry vacuum pump unit and a rotor of the first-stage dry vacuum pump unit 6.
  • Shape is double leaf The Roots type
  • the second stage dry vacuum pump unit 7 has a rotor shape of a single blade type
  • the third stage dry vacuum pump unit 8 has a rotor shape of a screw type.
  • the dry vacuum pump is a four-stage Roots-screw composite type combined dry vacuum pump, and has a first-stage dry vacuum pump unit 6 and a second-stage dry vacuum pump unit 7 connected in series. a third-stage dry vacuum pump unit 8 and a fourth-stage dry vacuum pump unit 9, wherein the first-stage dry vacuum pump unit 6 is connected to the sealing unit 4, and the third-stage dry vacuum pump unit 8 is connected to the transmission unit 3;
  • the thickness of the dry vacuum pump unit 9 is thicker than that of the other three stages of the dry vacuum pump unit, and the thickness of the first stage dry vacuum pump unit 6 is thicker than the thickness of the second and third stage dry vacuum pump units 7, 8.
  • the rotor of the first stage dry vacuum pump unit 6 has a two-leaf Roots type, and the rotors of the second and third stage dry vacuum pump units 7 and 8 have the same shape as the Roots type, but the thickness is thinner than the first stage dry type.
  • the Roots rotor of the vacuum pump unit 6 and the rotor of the fourth stage dry vacuum pump unit 9 have a screw shape.
  • the dry vacuum pump is a four-stage multi-lobed claw type combined dry vacuum pump having a four-stage dry vacuum pump unit, and rotor shapes of the first and second stage dry vacuum pump units 6, 7.
  • the rotor shapes of the third and fourth-stage dry vacuum pump units 8, 9 are three-lobed claw type.
  • Fig. 49 it is a five-stage combined dry vacuum pump, which has a first-stage dry vacuum pump unit 6, a second-stage dry vacuum pump unit 7, a third-stage dry vacuum pump unit 8, and a fourth-stage dry connection.
  • the dry vacuum pump is a five-stage multi-blade Roots type combined dry vacuum pump having a five-stage dry vacuum pump unit, and the rotor of the first-stage dry vacuum pump unit 6 has two blades.
  • the Rotz type, the second and third stage dry vacuum pump units 7, 8 have the rotor shape of the three-leaf Roots type and the same thickness.
  • the rotor shape of the fourth and fifth stage dry vacuum pump units 9, 10 is Wuye Roots. type.
  • the dry vacuum pump is a five-stage multi-lobed claw type combined dry vacuum pump having a five-stage dry vacuum pump unit
  • the first-stage dry vacuum pump unit 6 has a rotor shape of a single-blade claw.
  • the rotor types of the second and third-stage dry vacuum pump units 7, 8 are both double-lobed and have the same thickness.
  • the rotor shapes of the fourth and fifth-stage dry vacuum pump units 9, 10 are three-lobed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

一种干式真空泵单元及具有该干式真空泵单元的干式真空泵,干式真空泵单元包括泵体、第一盖板及主、从动转子轴,第一盖板安装在泵体的一侧,主、从动转子轴转动安装于泵体内,主、从动转子轴上的转子相互啮合,在第一盖板及泵体上分别开有与泵体内相连通的吸气口及排气口;干式真空泵包括干式真空泵单元、电机单元、传动单元和封板单元,各单元模块彼此独立,且具有相同的接口,模块与模块之间通过连接件进行连接。简化了真空泵的装配和安装过程,方便真空泵的运输、用户使用、维修保养,便于真空系统的快速连接,提高真空泵应用场合的灵活性及使用的可拓展性,利于干式真空泵的规模化投产。

Description

干式真空泵单元及具有该干式真空泵单元的干式真空泵 技术领域
本发明属于真空泵领域,具体地说是一种干式真空泵单元及具有该干式真空泵单 元的干式真空泵。 背景技术
世界上第一台真正应用于工业的干式真空泵 (简称干泵或无油泵) 产生于 1984 年, 它是基于 "罗茨 +爪型"真空泵抽气原理、 将多级罗茨转子与爪型转子串联组成 的多级干式泵。 当时日本半导体工业发展迅速, 急需大量的干泵, 开始研制出了一种 适于半导体工业应用的干式真空泵。这种干式真空泵的出现,在半导体工业中在推进 容积抽气的两个方面的改革中做出了巨大的贡献。 这两个方面是: (1 )系统的清洁抽 气和增负荷闭锁; (2)能够在产生大量的颗粒物、凝结物和腐蚀性物质等副产品的生 产过程中连续抽气。
德国、 英国、 法国和美国等真空企业也相继出现了各具特点的这种干式真空泵, 有的还实现自动化控制, 满足了半导体和化学工业发展的需要。 英国爱德华公司于 80 年代中期推出了三级爪型转子与一级罗茨转子组合的多级干式泵, 该泵的出现, 第一次以最低的运行成本和维护费用实现了从大气至 1 Pa之间的 "清洁 "抽气或"无 油"抽气, 为其他不能直接对大气排气的干泵, 如分子泵、 离子泵、 低温泵等提供了 良好的前级真空泵。
干泵由于其转子与转子、转子与泵体之间存在间隙, 故泵腔内勿需润滑, 并允许 可凝性气体和颗粒等存在, 可以获得良好的清洁真空环境, 满足刻蚀、 沉积、 退火、 制药等各种苛刻的真空抽气工艺的要求。但由于间隙的存在,干泵内存在气体逆向返 流现象。 间隙的选取会严重影响干泵的极限真空度、 压缩比、 容积效率、 发热卡死等 指标,是干泵设计最重要的参数之一。干泵设计理论亟待提高,尤其包括型线的改善、 加工成本的降低、 间隙的确定、 泄漏量的计算、 泵内的热力学分析等。
干泵为分子泵、 低温泵、溅射离子泵、 罗茨泵等中高真空泵提供前级真空, 经常 与这些泵连接起来组成干泵机组, 为多种工艺场合提供清洁的中高真空。经过二十多 年的发展, 干泵的家族增添了爪型干泵、 膜片干泵、 多级往复干泵、 涡旋干泵、 多级 罗茨干泵、 螺杆干泵等多个成员, 大量应用于化工、 冶金、 核工业、 生物制药、 冷冻 干燥、 航空航天、 特殊气体生产、 半导体工业、 电子行业等各种行业。
近年来, 随着半导体电子、 光伏、 液晶显示、 半导体照明、 太阳能光伏等新兴战 略行业的大规模兴起,各行业对真空泵的需求进一步提升,全球干泵制造业发展很迅 速。 国内外对于干式真空泵的需求越来越大、要求也越来越高, 真空泵制造行业面临 着巨大的挑战和机遇。 原有的多种类干式真空泵, 由于存在不同的优缺点, 均有各自 的应用限制。
半导体行业用真空泵需要处理的气体相对来说更为复杂,有些气体会含有非常细 小的粉末、 带有腐蚀性、 或者可能在泵的内壁形成沉积。 半导体所用的真空泵除了耐 用外,还必须能在特定的温度范围内运作自如; 此外非常重要的一点就是由于真空泵 一直处于 7天 24小时不间断地连续运转中, 如何在无法进行正常定期保养的情况下 延长设备的使用寿命是必需考虑的问题。需要将真空技术与各种应用很好地融合在一 起, 使其真空设备在可靠运行、 延长设备的平均故障间隔时间、减少维护工作并降低 成本等方面满足半导体制造业对工艺设备的严格要求。
以 IC生产线的几种典型工艺为例, 通常真空泵抽出的气体直接进入到废气处理 系统进行安全处理:
( 1 ) CVD和外延工艺
CVD 和外延工艺的气体和副产物包括具有自燃性、 易燃性、 腐蚀性、 可凝性和 有毒的物质, 如SiH4,PH3,F2,NF3,SF6,NH3,HF,HCl等, 工作在这种工艺下的干泵, 必须具备很高的可靠性和耐腐蚀性; 通常在抽气工艺中要求绝对安全不外泄, 而且这 些气体通常具有较高的温度, 且进入真空泵前不允许过度冷却; 这就要求干泵的吸气 泵腔需要保持在 80°C〜260°C之间, 而且 7 X 24小时的不间断的连续运转 2〜5年。
(2) 化合物半导体 CVD工艺
由于对新型发光二极管 (LEDs) 需求的增长, 化合物半导体 (CS) 的制造正在 经历飞速增长。 CS工艺中需要用到很多毒性很强的物质, 因而处理过程是不可或缺 的, 且又要求成本低廉。 这就要求真空泵静密封和动密封性能优异, 否则气体与润滑 油或润滑脂等反应, 或者外泄, 都将带来灾难性的后果。
(3 ) 刻蚀工艺
金属刻蚀工艺使用的都是腐蚀性气体, 包括 Cl2、 BC13和全球温室气体 PFC。 电 介质刻蚀工艺也需要使用到 PFCs和腐蚀性气体, 比如 HBr; 这种工艺通常会产生一 些副产物, 如气态 A1C13, 当温度低于 70°C时, 通常会在泵体内产生凝华现象, 从而 使真空泵发生卡死现象。而且要求真空泵可以处理一些小颗粒和粉尘,通常可以用氮 气吹洗的方法防止微尘及反应生成物淀积在泵腔流道内,但同时也对真空泵的可靠性 提出更高的要求。
(4) 离子注入
离子注入对颗粒玷污非常敏感。硅片表面上的一个颗粒能够阻碍离子束,产生不 正确的注入, 大电流注入机由于离子束的侵蚀会产生更多颗粒。常用的离子注入掺杂 气体都是有剧毒的,如 As¾, PH3, BF3等,这些气体在空气中的浓度超过 50〜300 ppbv ( 1 ppbv指体积含量十亿分之一), 便能对人体健康安全造成威胁。
另一类用于石化行业的干泵, 应用领域包括真空蒸馏及溶剂萃取高效回收溶剂; 医药工业: 回收药液及药物中间体; 为人造器官生产提供清洁无菌条件, 回收气体消 毒剂; 核反应堆及核工业真空获得; 脂肪酸生产, 消除水污染, 清除喷射器中的阻塞 物; 香料、 香精浓缩。
这些工艺要求运行中不会产生废水废油,在泵的进口或出口均配有冷凝器, 可大 量抽除可凝蒸汽,在汽液混合两相流工况下泵也不会阻塞, 既可冷却转子又可回收凝 液再用, 减少浪费、 有利环保; 根据要求, 泵可制成耐腐蚀型和全封闭型, 以抽除腐 蚀性气体或有毒气体。
真空泵的运转和维护费用也占到相当大的比重。以真空泵的能耗为例,在整个 IC 生产线中, 真空泵的能耗大约占到 20%左右, 甚至更多。干式真空泵通常可以持续运 转 2 年或更久, 而不需要进行类似湿式真空泵的换油等经常性的定期维护, 只需 5 年左右更换一次过滤网和机油。涡轮分子泵可以连续运转 5年而不需要维护, 因为它 们的磁悬浮轴承实际上没有任何摩擦, 只有很小的振动和损耗。 新型抗腐蚀、 耐高温 材料的应用可以防止气体副产物在真空泵内部的凝结,并能在金属刻蚀的高腐蚀性环 境中工作。通过对真空泵的智能监测系统与网络的结合, 能够及时探测到真空泵的异 常并立刻作出反应。
面对半导体行业的高速发展,如何保证真空泵能够应对各种苛刻的工艺流程? 如 何将平均故障间隔时间 (MTBF )最大化? 这些有时互相矛盾的要求都是半导体真空 设备满足行业发展所面临的挑战。 工艺和技术的创新对真空设备提出了更高的要求, 真空泵生产厂家所面临的最主要的挑战是如何平衡客户对低成本的要求和适用于苛 刻工艺要求的高可靠性真空泵。
新兴产业的发展对真空泵的设计研发、 生产加工、制造装配、 维修维护提出了更 高的要求,原有的非标准化和小规模的制造方式产生了生产和管理成本高、互换性低、 开发成本高等一系列问题。本申请正是为了解决此类问题而提出的利用开发和制造标 准化的干泵单元, 并进行简单组合而形成适合特定场合需要的各种干式真空泵。
以容积式真空泵为例, 其转子形式种类很多, 有爪型、 罗茨型、 螺杆型、 涡旋型 等多种形式,而整台真空泵除转子外,其他所有零件包括电机、传动系统、润滑系统、 密封系统、吸排气泵腔、冷却系统等, 主体结构、材料和形式都相仿。但在实际研发、 设计、 制造、 装配和维修等各个方面, 对某个转子结构形式的变化, 都意味着一次全 新的设计和制造,各种不同形式转子的真空泵相互之间的优势互补,在成本和周期上, 都需要付出高昂的代价。从某种意义上讲, 这个瓶颈限制了干式真空泵的更新换代和 长远发展。
从机械产品发展的未来来看, 标准化和模块化是机械产品发展的一个重要趋势。 就功能来看, 爪型真空泵、 多级罗茨泵、 螺杆泵、 涡旋泵等不同形式的干泵, 都工作 在中低真空区域, 实现直排大气而获得清洁真空环境。就组成部分来看, 都是由电机 部分、 传动部分、 吸排气部分、 密封部分、 润滑部分、 冷却部分等多个部分组成, 具 有统一进行标准化和模块化的基础。现阶段的技术分散和非标化的发展特征, 限制了 干式真空泵的规模化应用。
从干式真空泵应用的用户环境来说, 对多级干式真空泵的分区域抽速、 压缩比、 抽气能力、 功耗等要求不尽相同。 如有的用户环境要求一开始具有较快的抽气能力、 压力下降快; 有的用户环境要求真空泵对真空环境反复曝大气的工况不敏感、真空抽 气能力强; 有的用户环境要求真空泵达到的极限真空高; 有的用户环境要求抗粉尘能 力强、 可靠性高; 有的用户环境要求噪音和振动低, 等等。 未来的真空泵产品, 应该 根据用户环境和定制要求,在很短的设计和制造周期内, 为客户提供符合客户要求的 真空泵产品, 同时应兼顾成本的要求。
从产品的扩展性来看,现有的真空泵产品可扩展性很差,产品一旦设计定型和制 造装配, 便无法进行任何扩展, 这与当前和未来的真空泵应用无法相适应。 更进一步 来看, 在真空泵的制造厂家内部, 一旦转子和泵腔等核心零件毛坯铸造出来, 便很难 进行其他改造, 无法进行有效的扩展和转型, 只能进行一些折中的设计和应用。
从真空泵行业的应用来看, 当前的真空泵产品生产和制造,在很大程度上仍很难 脱离 "作坊式"生产的痕迹, 无法达到一些发达的机械产品行业如汽车、 机床等行业 发展的程度, 尽管在应用市场急剧跃升的今天, 无法获得大规模的发展应用, 亟待新 技术、 新工艺的出现, 以进行真空泵产品的提升和更新换代。 发明内容
为了解决现有干式真空泵在研发设计、制造装配、维修维护等环节上存在的限制 干式真空泵规模化发展、可扩展性和根据用户环境要求可定制特点的问题,本发明的 目的在于提供一种干式真空泵单元及具有该干式真空泵单元的干式真空泵。
本发明的目的是通过以下技术方案来实现的:
本发明包括泵体、第一盖板、 主动转子轴及从动转子轴, 其中第一盖板安装在泵 体的一侧,所述主动转子轴及从动转子轴转动安装于泵体内, 主动转子轴及从动转子 轴上的转子相互啮合,在所述第一盖板及泵体上分别开有与泵体内相连通的吸气口及 排气口。
其中: 所述第一盖板安装在泵体进气的一侧,所述泵体内留有容置主动转子轴及 从动转子轴上转子的空间,所述第一盖板上的吸气口及泵体上的排气口分别与该空间 连通; 所述主动转子轴及从动转子轴分别通过轴承转动安装在泵体上, 主动转子轴及 从动转子轴的两端分别由泵体及第一盖板穿出,用于与相邻干式真空泵单元的主、从 动转子轴相连接; 所述泵体的底部向下延伸、形成便于安装的安装卡口; 所述主动转 子轴及从动转子轴的转子可为罗茨型、爪型或螺杆型其中的一种; 当转子形状为罗茨 型, 可为两叶、 三叶、 四叶或五叶; 当转子形状为爪型, 可为单叶、 两叶、 三叶、 四 叶或五叶; 当转子形状为螺杆型, 可为单头、 双头或多头螺杆, 螺杆可为等距或非等 距; 每个干式真空泵单元的第一盖板及泵体上均设有定位销孔, 多个所述干式真空泵 单元通过第一定位销串联连接, 快速形成具有不同抽气曲线的干式真空泵。
一种干式真空泵, 包括安装轨道及分别安装在该安装轨道上的干式真空泵单元、 电机单元、 传动单元和设有泵吸气口的封板单元, 其中干式真空泵单元至少为一个、 位于封板单元与传动单元之间,所述电机单元与传动单元连接、通过传动单元带动干 式真空泵单元中的主动转子轴及从动转子轴转动, 完成吸气与排气过程; 或所述干式 真空泵单元位于电机单元与传动单元之间,所述干式真空泵单元的输入、输出端分别 与电机单元、传动单元相连, 所述封板单元位于传动单元的另一侧; 当干式真空泵单 元位于封板单元与传动单元之间,传动单元上设有泵排气口, 当干式真空泵单元位于 电机单元与传动单元之间, 电机单元则设有泵排气口;
所述电机单元包括电机、 联轴器及第二盖板, 其中第二盖板安装在传动单元上, 所述电机固定在该第二盖板上, 电机的输出轴通过联轴器与传动单元中的主动轴相 连; 所述传动单元包括齿轮箱、 主动齿轮、 从动齿轮、 从动轴及主动轴, 其中齿轮箱 安装在安装轨道上、与电机单元相连,所述主动轴及从动轴分别转动安装在该齿轮箱 内, 主动齿轮及从动齿轮分别连接于主动轴及从动轴上、相互啮合, 所述主动轴的一 端与电机单元相连, 另一端与干式真空泵单元中的主动转子轴连接, 从动轴与干式真 空泵单元中的从动转子轴连接; 在齿轮箱上开有与干式真空泵单元连通的泵排气口; 所述封板单元包括泵体封板及支撑轴承,其中泵体封板安装在安装轨道上、与干 式真空泵单元相连,该泵体封板与干式真空泵单元连接的一侧设有支撑干式真空泵单 元中主动转子轴及从动转子轴的支撑轴承,在所述泵体封板上开有与干式真空泵单元 连通的泵吸气口; 所述干式真空泵单元中的转子形状可为罗茨型、爪型或螺杆型其中的一种或多种 混合,同一干式真空泵单元中相互啮合的转子形状相同;当干式真空泵单元为多个时, 各干式真空泵单元可任意组合与替换。
本发明的优点与积极效果为:
本发明采用标准化和模块化的设计思想形成的多单元干式真空泵,具有许多卓越 的优点。 具体为:
首先, 多个干式真空示单元的干式真空泵, 可以进行现有真空泵的快速改型和功 能拓展, 不同干式真空泵单元的增添、减除以及更换组合方式, 可以在不改变主体结 构的基础上, 对局部结构改变, 极为方便的进行现有真空泵的改型。
其次, 多个干式真空示单元的干式真空泵可以快速实现不同真空泵的研发; 对于 任何一种新型的转子型线和转子形状, 可以在不改变其他任何结构的情况下, 只进行 新型真空泵单元的研发, 提高真空泵的性能、拓展真空泵的使用环境, 便实现了新型 真空泵的研发, 使得研发过程的成本、 周期和风险大大降低。
再者, 多个干式真空示单元的干式真空泵可以进行大规模化的生产制造和装配; 不同干式真空泵单元的标准化设计,使得零件加工和装配过程中的工艺种类和生产环 节大大简化, 装配难度也大大降低, 更加便于进行具体分工的划分, 便于进行现代大 规模零件加工和装配的组织。
而且, 多个干式真空示单元的干式真空泵便于进行产品运输和现场安装调试,模 块化和标准化的设计, 使得运输过程变得快捷、 便利; 通过固定工装, 经过出厂测试 后的真空泵单元包装简单, 运输方便, 运输过程中的品损坏率、运输难度和运输成本 也大大降低, 而且由于产品装配难度降低, 到达厂家后, 甚至可以经简单培训后, 由 厂家自行安装和调试。
再次, 多个干式真空示单元的干式真空泵便于维修维修和用户保养; 客户只需储 备一些备用真空泵单元,一旦真空泵出现故障, 只需由客户参照说明书自行更换损坏 单元即可, 生产厂家只需要维修损坏的真空泵单元即可。损坏的真空泵单元可以返厂 维修,厂家根据各真空泵单元的返修率进行重点研发,提高了维修和产品升级的效率, 节省研发周期。
再者, 多个干式真空示单元的干式真空泵具有良好的扩展性; 各种不同的真空泵 单元, 具有良好的互换性, 客户如果需要改变已购置真空泵的抽气性能要求, 只需要 增减或者更换真空泵单元,就可以满足客户对已购置真空泵的性能的需求, 这对于客 户已购入的真空泵产品, 大大提高了真空泵的使用价值, 节省了材料、 成本和能源, 延长了使用寿命。 附图说明
图 1本发明干式真空泵单元的立体结构示意图;
图 2A为本发明干式真空泵单元的结构主视图;
图 2B为图 2A的 A— A剖视图;
图 3为本发明干式真空泵单元实施例一的立体结构示意图;
图 4为本发明干式真空泵单元实施例一的剖面图;
图 5为本发明干式真空泵单元实施例二的立体结构示意图; 图 6为本发明干式真空泵单元实施例二的剖面图;
图 7为本发明干式真空泵单元实施例三的立体结构示意图;
图 8为本发明干式真空泵单元实施例三的剖面图;
图 9为本发明干式真空泵单元实施例四的立体结构示意图;
图 10为本发明干式真空泵单元实施例四的剖面图;
图 11为本发明干式真空泵单元实施例五的立体结构示意图;
图 12为本发明干式真空泵单元实施例五的剖面图;
图 13为本发明干式真空泵单元实施例六的立体结构示意图;
图 14为本发明干式真空泵单元实施例六的剖面图;
图 15为本发明干式真空泵单元实施例七的立体结构示意图;
图 16为本发明干式真空泵单元实施例七的剖面图;
图 17为本发明干式真空泵中电机单元的立体结构示意图;
图 18为本发明干式真空泵中电机单元的结构主视图;
图 19为本发明干式真空泵中传动单元的立体结构示意图;
图 20为本发明干式真空泵中传动单元内部立体结构示意图;
图 21为本发明干式真空泵中封板单元的立体结构示意图;
图 22为本发明干式真空泵中封板单元的结构主视图;
图 23为本发明单级组合式干式真空泵的立体结构示意图;
图 24为本发明单级组合式干式真空泵的结构主视图;
图 25为单级两叶罗茨型组合式干式真空泵的内部立体结构示意图; 图 26为单级三叶罗茨型组合式干式真空泵的内部立体结构示意图; 图 27为单级五叶罗茨型组合式干式真空泵的内部立体结构示意图; 图 28为单级双叶爪型组合式干式真空泵的内部立体结构示意图; 图 29为单级三叶爪型组合式干式真空泵的内部立体结构示意图; 图 30为单级螺杆型组合式干式真空泵的内部立体结构示意图;
图 31为本发明双级组合式干式真空泵的立体结构示意图;
图 32A为双级罗茨一螺杆复合型组合式干式真空泵的结构主视图; 图 32B为图 32A中的 A— A剖视图;
图 32C为图 32A中的 B— B剖视图;
图 33为双级罗茨一螺杆复合型组合式干式真空泵的内部立体结构示意图; 图 34A为双级非等距螺杆型组合式干式真空泵的结构主视图;
图 34B为图 34A的 A— A剖视图;
图 35为双级非等距螺杆型组合式干式真空泵的内部立体结构示意图; 图 36为本发明三级组合式干式真空泵的立体结构示意图;
图 37A为三级双叶罗茨型组合式干式真空泵的结构主视图;
图 37B为图 37A的 A— A剖视图;
图 37C为图 37A的 B— B剖视图;
图 37D为图 37A的 C一 C剖视图;
图 38为三级双叶罗茨型组合式干式真空泵的内部立体结构示意图; 图 39A为三级多叶罗茨型组合式干式真空泵的结构主视图; 图 39B为图 39A的 A— A剖视图;
图 39C为图 39A的 B— B剖视图;
图 39D为图 39A的 C一 C剖视图;
图 40为三级多叶罗茨型组合式干式真空泵的内部立体结构示意图;
图 41A为三级多叶爪型组合式干式真空泵的结构主视图;
图 41B为图 41 A的 A— A剖视图;
图 41C为图 41 A的 B— B剖视图;
图 41D为图 41 A的 C一 C剖视图;
图 42为三级多叶爪型组合式干式真空泵的内部立体结构示意图;
图 43A为三级罗茨一爪型一螺杆复合型组合式干式真实泵的结构主视图; 图 43B为图 43 A的 A— A剖视图;
图 43C为图 43 A的 B— B剖视图;
图 43D为图 43 A的 C一 C剖视图;
图 44 为三级罗茨一爪型一螺杆复合型组合式干式真实泵的内部立体结构示意 图 45 为本发明四级罗茨一螺杆复合型组合式干式真空泵的内部立体结构示意 图 46A为四级罗茨一螺杆复合型组合式干式真空泵的结构主视图;
图 46B为图 46A的 A— A剖视图;
图 46C为图 46A的 B— B剖视图;
图 46D为图 46A的 C一 C剖视图;
图 47A为四级多叶爪型组合式干式真空泵的结构主视图;
图 47B为图 47A的 A— A剖视图;
图 47C为图 47A的 B— B剖视图;
图 48为四级多叶爪型组合式干式真空泵的内部立体结构示意图;
图 49为本发明五级组合式干式真空泵的立体结构示意图;
图 50A为五级多叶罗茨型组合式干式真空泵的结构主视图;
图 50B为图 50A的 A— A剖视图;
图 50C为图 50A的 B— B剖视图;
图 50D为图 50A的 C一 C剖视图;
图 51为五级多叶罗茨型组合式干式真空泵的内部立体结构示意图;
图 52A为五级多叶爪型组合式干式真空泵的结构主视图;
图 52B为图 52A的 A— A剖视图;
图 52C为图 52A的 B— B剖视图;
图 52D为图 52A的 C一 C剖视图;
图 53为五级多叶爪型组合式干式真空泵的内部立体结构示意图;
其中: 1为干式真空泵单元, 101为轴承盖板, 102为轴承, 103为第一盖板, 104 为泵体, 105为第一螺钉, 106为主动转子轴, 107为从动转子轴, 108为吸气口, 109 为第二螺钉, 110为第一定位销, 111为排气口, 112为安装卡口;
2为电机单元, 201为电机, 202为联轴器, 203为第二盖板; 3为传动单元, 301为定位螺钉, 302为第二定位销, 303为齿轮箱, 304为泵排 气口, 305为主动齿轮, 306为从动齿轮, 307为从动轴, 308为主动轴;
4为封板单元, 401为泵体封板, 402为泵吸气口, 403为支撑轴承;
5为安装轨道, 6为第一级干式真空泵单元, 7为第二级干式真空泵单元, 8为第 三级干式真空泵单元, 9为第四级干式真空泵单元, 10为第五级干式真空泵单元。 具体实施方式
下面结合附图对本发明作进一步详述。
如图 1、 图 2A及图 2B所示, 本发明的干式真空泵单元包括泵体 104、 第一盖板 103、 主动转子轴 106及从动转子轴 107, 其中第一盖板 103位于泵体 104进气的一 侧,通过第二螺钉 109固接在一起; 泵体 104的两侧边缘及第一盖板 103的边缘均设 有多个定位销孔, 通过第一定位销 110可与其他干式真空泵单元简单快速拼装。主动 转子轴 106及从动转子轴 107转动安装于泵体 104内,主动转子轴 106及从动转子轴 107分别通过轴承 102转动安装在泵体 104上; 轴承 102的外侧设有轴承盖板 101, 并通过第一螺钉 105与轴承 102固接;主动转子轴 106及从动转子轴 107上分别安装 有相互啮合的转子,泵体 104内留有容置主动转子轴 106及从动转子轴 107上转子的 空间。 第一盖板 103上开有与泵体 104内部空间相连通的吸气口 108, 泵体 104远离 第一盖板 103的一侧开有与内部空间相连通的排气口 111。 主动转子轴 106及从动转 子轴 107的两端分别由泵体 104及第一盖板 103穿出,用于与相邻干式真空泵单元的 主、 从动转子轴相连接。 泵体 104的底部向下延伸、 形成便于安装在轨道上的安装卡 P 112。
本发明主动转子轴 106及从动转子轴 107的转子形状相同, 可为罗茨型、爪型或 螺杆型其中的一种; 当转子形状为罗茨型时, 可为两叶、 三叶、 四叶或五叶; 当转子 形状为爪型时, 可为单叶、 两叶、 三叶、 四叶或五叶; 当转子形状为螺杆型时, 可为 单头、 双头或多头螺杆, 螺杆可为等距或非等距。
本发明可采用不同的转子形状形成不同的干式真空泵单元,多个干式真空泵单元 可采用相同的接口和连接尺寸,通过相邻干式真空泵单元的主动转子轴与主动转子轴 连接、 从动转子轴与从动转子轴连接, 泵体与泵体连接, 形成密封的泵腔, 根据实际 要求进行串联连接, 快速形成具有各种不同抽气曲线的干式真空泵, 以适用于不同用 户环境。
实施例一 (转子形状为两叶罗茨型)
如图 3、 图 4所示, 本实施中主动转子轴 106上的转子及从动转子轴 107上的转 子形状均为两叶罗茨转子,主动转子轴 106上的转子与从动转子轴 107上的转子相互 啮合; 被抽气体由第一盖板 103上的吸气口 108吸入到泵体 104内, 由泵体 104上的 排气口 111排出。
实施例二 (转子形状为三叶罗茨型)
如图 5、 图 6所示, 本实施例与实施例一的区别在于主动转子轴 106上的转子及 从动转子轴 107上的转子形状均为三叶罗茨转子。
实施例三 (转子形状为五叶罗茨型)
如图 7、 图 8所示, 本实施例与实施例一的区别在于主动转子轴 106上的转子及 从动转子轴 107上的转子形状均为五叶罗茨转子。
实施例四 (转子形状为单叶爪型)
如图 9、 图 10所示, 本实施例主动转子轴 106上的转子及从动转子轴 107上的 转子形状均为单叶爪型转子,主动转子轴 106上的转子与从动转子轴 107上的转子相 互啮合; 被抽气体由第一盖板 103上的吸气口 108吸入到泵体 104 内, 由泵体 104 上的排气口 111排出。
实施例五 (转子形状为双叶爪型)
如图 11、 图 12所示, 本实施例与实施例四的区别在于主动转子轴 106上的转子 及从动转子轴 107上的转子形状均为双叶爪型转子。
实施例六 (转子形状为三叶爪型)
如图 13、 图 14所示, 本实施例与实施例四的区别在于主动转子轴 106上的转子 及从动转子轴 107上的转子形状均为双叶爪型转子。
实施例七 (转子形状为螺杆型)
如图 15、 图 16所示, 本实施例主动转子轴 106上的转子及从动转子轴 107上的 转子形状均为螺杆型转子, 螺杆可为等距或非等距 (本实施例为等距); 主动转子轴 106上的转子与从动转子轴 107上的转子相互啮合; 被抽气体由第一盖板 103上的吸 气口 108吸入到泵体 104内, 由泵体 104上的排气口 111排出。
上述实施例一〜七的干式真空泵单元具有相同的外形,转子形状不同, 可根据需 要及自身特点应用在相应的场合。
本发明的干式真空泵包括安装轨道 5及分别安装在该安装轨道 5上的干式真空泵 单元 1、 电机单元 2、 传动单元 3和设有泵吸气口的封板单元 4, 其中干式真空泵单 元 1至少为一个, 当干式真空泵单元 1为多个时, 可以任意组合和替换, 而且可以任 意添加或删除; 在使用时, 可随时根据设定的真空度、 抽气速率等性能参数需要, 设 计出不同单元数目的多单元干式真空泵。
干式真空泵单元 1可位于封板单元 4与传动单元 3之间,封板单元 4上设有泵吸 气口, 传动单元 3上设有泵排气口, 电机单元 2与传动单元 3连接, 通过传动单元 3 带动干式真空泵单元 1中的主动转子轴 106及从动转子轴 107转动,完成吸气与排气 过程。 或者, 干式真空泵单元 1位于电机单元 2与传动单元 3之间, 封板单元 4上设 有泵吸气口, 电机单元 2上则设有泵排气口, 干式真空泵单元 1的输入、输出端分别 与电机单元 2、 传动单元 3相连, 封板单元 4位于传动单元 3的另一侧。 本实施例采 用干式真空泵单元 1位于封板单元 4与传动单元 3之间、 电机单元 2与传动单元 3 连接的结构。
如图 17、 图 18所示, 电机单元 2包括电机 201、 联轴器 202及第二盖板 203, 其中第二盖板 203用于与传动单元 3固接,第二盖板 203上开有供电机输出轴穿过的 圆孔, 电机 201固定在该第二盖板 203上, 电机 201的输出轴由第二盖板 203上的圆 孔穿过、通过联轴器 202与传动单元 3中的主动轴相连。 电机 201的功率可根据实际 接入的干式真空泵单元数目和功率使用情况进行变频调节,具有广泛的适用性和良好 的兼容性; 电机单元 2与干式真空泵单元 1、 传动单元 3之间具有标准接口和连接方 式。
如图 19、 图 20所示, 传动单元 3主要为干式真空泵单元 1和电机单元 2提供动 力传输和定位支撑, 包括齿轮箱 303、 主动齿轮 305、 从动齿轮 306、 从动轴 307及 主动轴 308, 其中齿轮箱 303的顶部开有泵排气口 304, 底部向下延伸、 形成便于安 装在安装轨道 5上的安装卡口 112; 齿轮箱 303的一侧通过第二定位销 302与干式真 空泵单元 1中的泵体 104连接, 另一侧与第二盖板 203固接; 主动轴 308及从动轴 307分别转动安装在该齿轮箱 303内, 主动齿轮 305及从动齿轮 306分别键连接于主 动轴 308及从动轴 307上、相互啮合, 并通过定位螺钉 301定位; 主动轴 308的一端 通过联轴器 202与电机单元 2中电机 201的输出轴相连, 另一端与干式真空泵单元 1 中的主动转子轴 106连接,若干式真空泵单元 1为多个, 则各干式真空泵单元 1中的 主动转子轴依次串联连接; 从动轴 307则与干式真空泵单元 1 中的从动转子轴 107 连接, 同样, 干式真空泵单元 1若为多个, 则各干式真空泵单元 1中的从动转子轴依 次串联连接。齿轮箱 303可为水冷或者风冷等多种形式。传动单元 3与干式真空泵单 元 1、 电机单元 2之间具有标准接口和连接方式。
如果干式真空泵单元 1位于电机单元 2与传动单元 3之间,则电机单元 2中电机 201的输出轴通过联轴器 202直接与干式真空泵单元 1的主动转子轴 106连接, 然后 再与传动单元 3中的主动轴 308连接;传动单元 3中的从动轴 307则与干式真空泵单 元 1中的从动转子轴 107连接。
如图 21、 图 22所示, 封板单元 4主要为干式真空泵单元 1与传动单元 3相对的 另一端提供轴承支撑和屏蔽, 包括泵体封板 401及支撑轴承 403, 其中泵体封板 401 通过螺钉与干式真空泵单元 1中的第一盖板 103固接,泵体封板 401的顶部开有泵吸 气口 402, 底部向下延伸、 形成便于安装在安装轨道 5上的安装卡口 112; 泵体封板 401为内部中空结构, 内侧 (与干式真空泵单元 1相连的一侧) 的泵吸气口 402位置 与干式真空泵单元 1中第一盖板 103上的吸气口 108相对应;该泵体封板 401的内侧 设有支撑干式真空泵单元 1中主动转子轴 106及从动转子轴 107的支撑轴承 403, 主 动转子轴 106及从动转子轴 107另一端的轴承则用于定位。
本发明干式真空泵中干式真空泵单元 1的转子形状可为罗茨型、爪型或螺杆型其 中的一种或多种混合, 同一干式真空泵单元 1中相互啮合的转子形状相同; 当干式真 空泵单元 1为多个时,各干式真空泵单元 1具有标准接口和良好的互换性, 可任意组 合与替换。
干式真空泵单元 1、 电机单元 2和传动单元 3通过简单连接, 即可进行多单元真 空泵的装配。装配时, 将各干式真空泵单元之间进行拼装, 通过主动转子轴与主动转 子轴之间连接、从动转子轴与从动转子轴之间连接、泵体与泵体之间连接的密封和标 准接口连接在一起, 形成密封的泵腔, 再与电机单元和传动单元组合在一起, 形成多 单元干式真空泵。本发明干式真空泵可为卧式或立式, 干式真空泵安装了后, 外面可 安装屏蔽外罩。
干式真空泵工作时,通过电机 201带动齿轮箱 303中的主动齿轮 305与从动齿轮
306旋转啮合, 从而带动与主、 从动齿轮 305、 306连接的主动轴 308、 从动轴 307 旋转, 各干式真空泵单元 1中的转子通过连接在一起的中心轴的传动进行啮合转动, 从而完成吸气和排气过程。
如图 23、 图 24所示, 为单级组合式干式真空泵, 只有一级干式真空泵单元 1。 如图 25所示, 干式真空泵为单级组合式干式真空泵, 包括一级实施例一中描述 的干式真空泵单元, 转子为两叶罗茨型。
如图 26所示, 干式真空泵为单级组合式干式真空泵 包括一级实施例二中描述 的干式真空泵单元, 转子为三叶罗茨型。
如图 27所示, 干式真空泵为单级组合式干式真空泵 包括一级实施例三中描述 的干式真空泵单元, 转子为五叶罗茨型。
如图 28所示, 干式真空泵为单级组合式干式真空泵 包括一级实施例五中描述 的干式真空泵单元, 转子为双叶爪型。
如图 29所示, 干式真空泵为单级组合式干式真空泵 包括一级实施例六中描述 的干式真空泵单元, 转子为三叶爪型。
如图 30所示, 干式真空泵为单级组合式干式真空泵 包括一级实施例七中描述 的干式真空泵单元, 转子为螺杆型。
如图 31所示, 为双级组合式干式真空泵, 具有第一级干式真空泵单元 6及第二 级干式真空泵单元 7, 其中第一级干式真空泵单元 6与封板单元 4连接, 第二级干式 真空泵单元 7与传动单元 3连接。
如图 32A〜32C及图 33所示, 干式真空泵为双级罗茨一螺杆复合型组合式干式 真空泵, 有两级干式真空泵单元, 第一级干式真空泵单元 6的转子形状为罗茨型, 第 二级干式真空泵单元 7的转子形状为螺杆型,两种转子形状具有不同的特点和应用场 合。
如图 34A〜34B及图 35所示, 干式真空泵为双级非等距螺杆型组合式干式真空 泵, 有两有干式真空泵单元, 第一级干式真空泵单元 6及第二级干式真空泵单元 7 的转子形状虽均为螺杆型,但螺距不相等,靠近泵吸气口 402的第一级干式真空泵单 元 6的转子螺距要大于靠近泵排气口 304的第二级干式真空泵单元 7的转子螺距,这 种设置可以获得更大的压缩比。
如图 36所示, 为三级组合式干式真空泵, 具有串联连接的第一级干式真空泵单 元 6、 第二级干式真空泵单元 7及第三级干式真空泵单元 8, 其中第一级干式真空泵 单元 6与封板单元 4连接, 第三级干式真空泵单元 8与传动单元 3连接。
如图 37A〜37D及图 38所示,干式真空泵为三级双叶罗茨型组合式干式真空泵, 有三级干式真空泵单元, 第一级干式真空泵单元 6、 第二级干式真空泵单元 7及第三 级干式真空泵单元 8的转子形状均为双叶罗茨型, 截面结构相同, 转子型线也相同, 具有不同转子厚度。
如图 39A〜39D及图 40所示,干式真空泵为三级多叶罗茨型组合式干式真空泵, 有三级干式真空泵单元,第一级干式真空泵单元 6的转子形状为双叶罗茨型,第二级 干式真空泵单元 7的转子形状为三叶罗茨型,第三级干式真空泵单元 8的转子形状为 五叶罗茨型。
如图 41A〜41D及图 42所示, 干式真空泵为三级多叶爪型组合式干式真空泵, 有三级干式真空泵单元,第一级干式真空泵单元 6的转子形状为单叶爪型,第二级干 式真空泵单元 7的转子形状为双叶爪型,第三级干式真空泵单元 8的转子形状为三叶 爪型。
如图 43A〜43D及图 44所示, 干式真空泵为三级罗茨一爪型一螺杆复合型组合 式干式真空泵,有三级干式真空泵单元,第一级干式真空泵单元 6的转子形状为双叶 罗茨型, 第二级干式真空泵单元 7的转子形状为单叶爪型, 第三级干式真空泵单元 8 的转子形状为螺杆型。
如图 45及 46A〜46D所示, 干式真空泵为四级罗茨一螺杆复合型组合式干式真 空泵, 具有串联连接的第一级干式真空泵单元 6、 第二级干式真空泵单元 7、 第三级 干式真空泵单元 8及第四级干式真空泵单元 9, 其中第一级干式真空泵单元 6与封板 单元 4连接, 第三级干式真空泵单元 8与传动单元 3连接; 第四级干式真空泵单元 9 的厚度要厚于另外三级的干式真空泵单元,而第一级干式真空泵单元 6的厚度则要厚 于第二、 三级干式真空泵单元 7、 8的厚度; 第一级干式真空泵单元 6的转子形状为 两叶罗茨型, 第二、 三级干式真空泵单元 7、 8的转子形状相同均为罗茨型, 但厚度 要薄于第一级干式真空泵单元 6的罗茨转子,第四级干式真空泵单元 9的转子形状为 螺杆型。
如图 47A〜47D及图 48所示, 干式真空泵为四级多叶爪型组合式干式真空泵, 有四级干式真空泵单元, 第一、 二级干式真空泵单元 6、 7的转子形状为两叶爪型, 第三、 四级干式真空泵单元 8、 9的转子形状为三叶爪型。
如图 49所示, 为五级组合式干式真空泵, 具有串联连接的第一级干式真空泵单 元 6、第二级干式真空泵单元 7、第三级干式真空泵单元 8、第四级干式真空泵单元 9 及第五级干式真空泵单元 10, 其中第一级干式真空泵单元 6与封板单元 4连接, 第 三级干式真空泵单元 8与传动单元 3连接。
如图 50A〜50D及图 51所示,干式真空泵为五级多叶罗茨型组合式干式真空泵, 有五级干式真空泵单元, 第一级干式真空泵单元 6的转子形状为两叶罗茨型, 第二、 三级干式真空泵单元 7、 8的转子形状均为三叶罗茨型、 厚度相同, 第四、 五级干式 真空泵单元 9、 10的转子形状为五叶罗茨型。
如图 52A〜52D及图 53所示, 干式真空泵为五级多叶爪型组合式干式真空泵, 有五级干式真空泵单元, 第一级干式真空泵单元 6的转子形状为单叶爪型, 第二、三 级干式真空泵单元 7、 8的转子形状均为双叶爪型、 厚度相同, 第四、 五级干式真空 泵单元 9、 10的转子形状为三叶爪型。

Claims

权 利 要 求 书
1. 一种干式真空泵单元, 其特征在于: 包括泵体 (104)、 第一盖板 (103)、 主 动转子轴 (106) 及从动转子轴 (107), 其中第一盖板 (103) 安装在泵体 (104) 的 一侧, 所述主动转子轴 (106) 及从动转子轴 (107) 转动安装于泵体 (104) 内, 主 动转子轴 (106) 及从动转子轴 (107) 上的转子相互啮合, 在所述第一盖板 (103) 及泵体 (104) 上分别开有与泵体 (104) 内相连通的吸气口 (108)及排气口 (111)。
2. 按权利要求 1所述的干式真空泵单元, 其特征在于: 所述第一盖板(103)安 装在泵体 (104) 进气的一侧, 所述泵体 (104) 内留有容置主动转子轴 (106) 及从 动转子轴(107)上转子的空间,所述第一盖板(103)上的吸气口(108)及泵体(104) 上的排气口 (111)分别与该空间连通; 所述主动转子轴 (106)及从动转子轴 (107) 分别通过轴承 (102) 转动安装在泵体 (104) 上, 主动转子轴 (106) 及从动转子轴 (107) 的两端分别由泵体 (104) 及第一盖板 (103) 穿出, 用于与相邻干式真空泵 单元的主、 从动转子轴相连接。
3. 按权利要求 1所述的干式真空泵单元, 其特征在于: 所述泵体(104) 的底部 向下延伸、 形成便于安装的安装卡口 (112)。
4. 按权利要求 1所述的干式真空泵单元, 其特征在于: 所述主动转子轴 (106) 及从动转子轴 (107) 的转子可为罗茨型、 爪型或螺杆型其中的一种; 当转子形状为 罗茨型, 可为两叶、三叶、 四叶或五叶; 当转子形状为爪型, 可为单叶、 两叶、三叶、 四叶或五叶; 当转子形状为螺杆型, 可为单头、 双头或多头螺杆, 螺杆可为等距或非 等距。
5. 按权利要求 1至 4任一权利要求所述的干式真空泵单元, 其特征在于: 每个 干式真空泵单元的第一盖板(103)及泵体(104)上均设有定位销孔, 多个所述干式 真空泵单元通过第一定位销 (110) 串联连接, 快速形成具有不同抽气曲线的干式真 空泵。
6. 一种具有按权利要求 1所述干式真空泵单元的干式真空泵, 其特征在于: 包 括安装轨道(5)及分别安装在该安装轨道(5)上的干式真空泵单元(1)、 电机单元
(2)、 传动单元(3)和设有泵吸气口的封板单元(4), 其中干式真空泵单元(1)至 少为一个、 位于封板单元 (4) 与传动单元 (3) 之间, 所述电机单元 (2) 与传动单 元 (3) 连接、 通过传动单元 (3) 带动干式真空泵单元 (1) 中的主动转子轴 (106) 及从动转子轴 (107)转动, 完成吸气与排气过程; 或所述干式真空泵单元(1)位于 电机单元 (2) 与传动单元 (3) 之间, 所述干式真空泵单元 (1) 的输入、 输出端分 别与电机单元 (2)、 传动单元 (3) 相连, 所述封板单元 (4) 位于传动单元 (3) 的 另一侧; 当干式真空泵单元 (1) 位于封板单元 (4) 与传动单元 (3) 之间, 传动单 元(3)上设有泵排气口, 当干式真空泵单元(1)位于电机单元(2)与传动单元(3) 之间, 电机单元 (2) 则设有泵排气口。
7. 按权利要求 6所述的干式真空泵, 其特征在于: 所述电机单元(2)包括电机 (201)、联轴器(202)及第二盖板(203), 其中第二盖板(203)安装在传动单元(3) 上, 所述电机 (201) 固定在该第二盖板 (203) 上, 电机 (201) 的输出轴通过联轴 器 (202) 与传动单元 (3) 中的主动轴相连。
8. 按权利要求 6所述的干式真空泵, 其特征在于: 所述传动单元(3)包括齿轮 箱 (303)、 主动齿轮 (305)、 从动齿轮 (306)、 从动轴 (307) 及主动轴 (308), 其 中齿轮箱(303)安装在安装轨道(5)上、 与电机单元(2)相连, 所述主动轴(308) 及从动轴 (307) 分别转动安装在该齿轮箱 (303) 内, 主动齿轮 (305) 及从动齿轮 (306)分别连接于主动轴(308)及从动轴(307)上、相互啮合, 所述主动轴(308) 的一端与电机单元 (2) 相连, 另一端与干式真空泵单元 (1) 中的主动转子轴连接, 从动轴 (307) 与干式真空泵单元 (1) 中的从动转子轴连接; 在齿轮箱 (303) 上开 有与干式真空泵单元 (1) 连通的泵排气口 (304)。
9. 按权利要求 6所述的干式真空泵, 其特征在于: 所述封板单元(4)包括泵体 封板 (401) 及支撑轴承 (403), 其中泵体封板 (401) 安装在安装轨道 (5) 上、 与 干式真空泵单元 (1) 相连, 该泵体封板 (401) 与干式真空泵单元 (1) 连接的一侧 设有支撑干式真空泵单元 (1) 中主动转子轴及从动转子轴的支撑轴承 (403), 在所 述泵体封板 (401) 上开有与干式真空泵单元 (1) 连通的泵吸气口 (402)。
10. 按权利要求 6所述的干式真空泵, 其特征在于: 所述干式真空泵单元 (1) 中的转子形状可为罗茨型、爪型或螺杆型其中的一种或多种混合, 同一干式真空泵单 元(1) 中相互啮合的转子形状相同; 当干式真空泵单元(1) 为多个时, 各干式真空 泵单元 (1) 可任意组合与替换。
PCT/CN2013/076646 2012-07-24 2013-06-03 干式真空泵单元及具有该干式真空泵单元的干式真空泵 WO2014015710A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210258278.X 2012-07-24
CN201210258278.XA CN102828952B (zh) 2012-07-24 2012-07-24 干式真空泵单元及具有该干式真空泵单元的干式真空泵

Publications (1)

Publication Number Publication Date
WO2014015710A1 true WO2014015710A1 (zh) 2014-01-30

Family

ID=47332206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/076646 WO2014015710A1 (zh) 2012-07-24 2013-06-03 干式真空泵单元及具有该干式真空泵单元的干式真空泵

Country Status (2)

Country Link
CN (1) CN102828952B (zh)
WO (1) WO2014015710A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107882966A (zh) * 2017-12-27 2018-04-06 洛阳明创矿山冶金设备有限公司 一种可提高减速机效率的辅助装置
EP3322898A1 (en) * 2015-07-14 2018-05-23 3p Prinz S.r.l. A pump of the interchangeable type
CN113417852A (zh) * 2021-08-11 2021-09-21 四川莱斯特真空科技有限公司 干式真空泵

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102828952B (zh) * 2012-07-24 2015-04-08 中国科学院沈阳科学仪器股份有限公司 干式真空泵单元及具有该干式真空泵单元的干式真空泵
CN104632604B (zh) * 2013-11-15 2017-03-15 中国科学院沈阳科学仪器股份有限公司 干式真空泵抽气工艺模拟测试方法及测试系统
DE202014005279U1 (de) * 2014-06-26 2015-10-05 Oerlikon Leybold Vacuum Gmbh Vakuumpumpen-System
KR101641887B1 (ko) * 2016-01-15 2016-07-25 이영수 스크류 로터와 그루브를 구비한 건식진공펌프
CN108325264A (zh) * 2018-03-15 2018-07-27 北京华洁环境科技有限公司 一种车载式快速泥水分离环保处理系统
CN109441810A (zh) * 2018-12-10 2019-03-08 江阴爱尔姆真空设备有限公司 一种无油干式螺杆真空泵
CN109931263A (zh) * 2019-03-08 2019-06-25 西安航天动力研究所 一种干式屏蔽真空泵
CN110500275B (zh) 2019-09-23 2021-03-16 兑通真空技术(上海)有限公司 一种三轴多级罗茨泵的泵壳体结构
CN110594156B (zh) 2019-09-23 2021-05-25 兑通真空技术(上海)有限公司 一种三轴多级罗茨泵的驱动结构
CN210629269U (zh) 2019-09-23 2020-05-26 兑通真空技术(上海)有限公司 一种罗茨泵的电机连接传动结构
CN110685912A (zh) 2019-10-10 2020-01-14 兑通真空技术(上海)有限公司 一种多轴多级罗茨泵转子连接的结构
CN114607609A (zh) * 2020-12-04 2022-06-10 中国科学院沈阳科学仪器股份有限公司 一种新组合形式的干式真空泵
CN116477350B (zh) * 2023-06-16 2023-08-18 中国科学院沈阳科学仪器股份有限公司 一种真空机械手

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5417551A (en) * 1992-01-31 1995-05-23 Matsushita Electric Industrial Co., Ltd. Housing arrangement for a synchronous plural motor fluid rotary apparatus
EP1024290A1 (en) * 1999-01-29 2000-08-02 The BOC Group plc Vacuum pump systems
CN2809273Y (zh) * 2003-11-27 2006-08-23 爱信精机株式会社 多级干式真空泵
CN101382137A (zh) * 2007-09-07 2009-03-11 中国科学院沈阳科学仪器研制中心有限公司 一种直排大气的多级罗茨干式真空泵
CN101985939A (zh) * 2010-11-30 2011-03-16 东北大学 一种具有轴端动密封结构的干式真空泵
CN102828952A (zh) * 2012-07-24 2012-12-19 中国科学院沈阳科学仪器股份有限公司 干式真空泵单元及具有该干式真空泵单元的干式真空泵

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202326246U (zh) * 2011-11-11 2012-07-11 中国科学院沈阳科学仪器研制中心有限公司 一种罗茨和爪式转子组合多级干式真空泵

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5417551A (en) * 1992-01-31 1995-05-23 Matsushita Electric Industrial Co., Ltd. Housing arrangement for a synchronous plural motor fluid rotary apparatus
EP1024290A1 (en) * 1999-01-29 2000-08-02 The BOC Group plc Vacuum pump systems
CN2809273Y (zh) * 2003-11-27 2006-08-23 爱信精机株式会社 多级干式真空泵
CN101382137A (zh) * 2007-09-07 2009-03-11 中国科学院沈阳科学仪器研制中心有限公司 一种直排大气的多级罗茨干式真空泵
CN101985939A (zh) * 2010-11-30 2011-03-16 东北大学 一种具有轴端动密封结构的干式真空泵
CN102828952A (zh) * 2012-07-24 2012-12-19 中国科学院沈阳科学仪器股份有限公司 干式真空泵单元及具有该干式真空泵单元的干式真空泵

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3322898A1 (en) * 2015-07-14 2018-05-23 3p Prinz S.r.l. A pump of the interchangeable type
CN107882966A (zh) * 2017-12-27 2018-04-06 洛阳明创矿山冶金设备有限公司 一种可提高减速机效率的辅助装置
CN113417852A (zh) * 2021-08-11 2021-09-21 四川莱斯特真空科技有限公司 干式真空泵

Also Published As

Publication number Publication date
CN102828952B (zh) 2015-04-08
CN102828952A (zh) 2012-12-19

Similar Documents

Publication Publication Date Title
WO2014015710A1 (zh) 干式真空泵单元及具有该干式真空泵单元的干式真空泵
WO2017031807A1 (zh) 一种多驱动腔非共轴真空泵
CN102889212B (zh) 旋片高效节能环保真空泵
CN205383080U (zh) 一种多驱动腔非共轴真空泵
US20200032799A1 (en) Improvements in rotary claw pumps
CN103104491A (zh) 一种罗茨和爪式转子组合多级干式真空泵
US20210088044A1 (en) Driving Structure of Three-Axis Multi-Stage Roots Pump
CN114320917A (zh) 一种直排式罗茨泵
CN101818735B (zh) 高速多级透平真空泵及其抽真空方法
CN102926995B (zh) 双转子爪式强流泵
CN202073786U (zh) 一种适用于砖瓦真空挤出机的旋片式真空泵
CN219366316U (zh) 一种多级罗茨真空泵
CN101382137A (zh) 一种直排大气的多级罗茨干式真空泵
CN202326246U (zh) 一种罗茨和爪式转子组合多级干式真空泵
CN201074591Y (zh) 一种直排大气的多级罗茨干式真空泵
CN216477849U (zh) 卧式双螺杆真空泵和真空气体净化装置
JP2003129957A (ja) 真空排気方法および真空排気装置
CN2503232Y (zh) 耐高压多级爪式转子真空泵
CN102155408B (zh) 一种适用于砖瓦真空挤出机的旋片式真空泵
RU2327061C1 (ru) Способ повышения коэффициента полезного действия компрессора
CN103541897B (zh) 箱外支撑旋转活塞泵
CN210686304U (zh) 一种双头对称等螺距螺杆真空泵
CN202914313U (zh) 双转子爪式强流泵
CN211874808U (zh) 一种内涵道轴流式流体压缩机
CN216198984U (zh) 一种干式无油两级真空泵

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13823291

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13823291

Country of ref document: EP

Kind code of ref document: A1