WO2014015667A1 - 一种空间矢量脉宽调制方法及装置 - Google Patents

一种空间矢量脉宽调制方法及装置 Download PDF

Info

Publication number
WO2014015667A1
WO2014015667A1 PCT/CN2013/071025 CN2013071025W WO2014015667A1 WO 2014015667 A1 WO2014015667 A1 WO 2014015667A1 CN 2013071025 W CN2013071025 W CN 2013071025W WO 2014015667 A1 WO2014015667 A1 WO 2014015667A1
Authority
WO
WIPO (PCT)
Prior art keywords
vector
action time
inverter
harmonic
space vector
Prior art date
Application number
PCT/CN2013/071025
Other languages
English (en)
French (fr)
Inventor
张镇
刘云峰
刘小琴
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP13752801.4A priority Critical patent/EP2713498A4/en
Publication of WO2014015667A1 publication Critical patent/WO2014015667A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • H02M7/53876Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output based on synthesising a desired voltage vector via the selection of appropriate fundamental voltage vectors, and corresponding dwelling times
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/123Suppression of common mode voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters

Definitions

  • the invention relates to a pulse width modulation technology, in particular to a space vector pulse width modulation method and device. Background technique
  • SVPWM Space Vector Pulse Width Modulation
  • a frequency converter having a feedback active low pass filter capable of filtering out a common mode voltage is disclosed.
  • This method of suppressing the common mode voltage by using a circuit such as a feedback active low-pass filter device adds hardware to the circuit, making the circuit structure more complicated and large, and not flexible enough. Therefore, in practical applications, a common mode voltage suppression method based on control strategy improvement is usually adopted.
  • This software implementation is simple, flexible, and requires no additional hardware.
  • the SVPWM common-mode voltage suppression method based on the improved control strategy it is common to select a redundant small vector with a small or zero common-mode voltage among the 27 basic vectors to synthesize the target voltage vector, so that the converter outputs the common mode. Voltage is suppressed or eliminated Except.
  • this method although better common-mode voltage characteristics can be obtained, since only part of the basic vector is selected, the DC bus voltage utilization rate is lowered, and various harmonic contents are increased, which affects the effect of pulse width modulation. . Summary of the invention
  • the technical problem to be solved by the embodiments of the present invention is to provide a space vector pulse width modulation method and apparatus, which can not only reduce the common mode component of the output but also reduce the DC bus voltage utilization and increase the output harmonic content.
  • a first aspect of the present application provides a space vector pulse width modulation method, including:
  • Interaction time of the space vector calculation synthesis inverter output voltage space vector comprising: a first space vector acting duration of action of the second space vector T time [tau] 2 and reaction time of the third space vector ⁇ 3, wherein the The first space vector includes a first redundant small vector and a second redundant small vector that are mutually redundant;
  • the implementation of the equivalent injection of a harmonic component in the output of the inverter is: adding a harmonic component to the modulated wave.
  • the inverter is a three-phase three-level inverter
  • the second space vector is a zero space vector
  • the action time T a and the second redundant small vector of the first redundant small vector are configured.
  • the action time T b - the preferred method is:
  • the calculation formula of the instantaneous common mode voltage component of the inverter output is corrected, and the corrected formula of the instantaneous common mode voltage component of the inverter output is:
  • V ⁇ vpwm ⁇ , ⁇ + N 2 (1 - + N ⁇ V dc
  • svpwm is the instantaneous common mode voltage component of the inverter output
  • is a coordination factor
  • N 2 is a total of the second redundant small vector a mode contribution parameter
  • N 3 is a common mode contribution parameter of the third space vector
  • V dc is a DC bus voltage
  • V ⁇ pwm bmcos(n0) ⁇ V dc T
  • n is the harmonic order
  • m is the modulation ratio
  • b is the ratio of the harmonic component to the fundamental
  • V de is the DC bus voltage
  • the number of harmonics injected into the output of the inverter is preferably a third harmonic.
  • a second aspect of the present application provides a space vector pulse width modulation apparatus, including:
  • a harmonic injection module for equivalently injecting a harmonic component in the output of the inverter
  • a calculation module configured to calculate an action time of each space vector of the synthesized inverter output voltage space vector, comprising: an action time T of the first space vector; an action time ⁇ 2 of the second space vector; and an action time ⁇ of the third space vector 3 , wherein the first space vector includes a first redundant small vector and a second redundant small vector that are mutually redundant;
  • a configuration module configured to configure a working time of the first redundant small vector! And an action time T b of the second redundant small vector to cancel the instantaneous common mode voltage component of the inverter output and the instantaneous common mode voltage component of the harmonic component equivalently injected into the inverter output,
  • the action time T a of the first redundant small vector and the action time T b of the second redundant small vector satisfy: + two ⁇ ;
  • a pulse generating module configured to perform, according to the action time of each space vector sent by the calculation module, the action time T a of the first redundant small vector sent by the configuration module, and the role of the second redundant small vector
  • the time T b generates a pulse width modulation control signal.
  • one implementation of equivalently injecting a harmonic component in the output of the inverter is: adding a harmonic component to the modulated wave.
  • the inverter is a three-phase three-level inverter
  • the second space vector is a zero space vector
  • the configuration module includes:
  • a correction unit configured to correct a calculation formula of the instantaneous common mode voltage component of the inverter output, and the calculated formula of the instantaneous common mode voltage component of the inverter output after the correction is:
  • V ⁇ vpwm ⁇ , ⁇ + N 2 (1 - + N ⁇ V dc
  • svpwm is the instantaneous common mode voltage component of the inverter output
  • is a coordination factor
  • N 2 is a total of the second redundant small vector a mode contribution parameter
  • N 3 is a common mode contribution parameter of the third space vector
  • V dc is a DC bus voltage
  • a coordination factor calculation unit configured to calculate a transient common mode voltage component of the modified inverter output according to the correction unit, and the instantaneous common mode voltage component of the inverter output
  • the principle that the instantaneous common mode voltage components of the harmonics cancel each other out to calculate the value of the coordination factor is specifically:
  • V ⁇ pwm bm cos(W) ⁇ V dc T
  • n is the harmonic order
  • m is the modulation ratio
  • b is the ratio of the harmonic component to the fundamental
  • V de is the DC bus voltage
  • a configuration execution unit configured to configure an action time T a of the first redundant small vector and an action time T of the second redundant small vector according to the value of the coordination factor ⁇ calculated by the coordination factor calculation unit b , specifically: ⁇ ⁇ , TfT U- A
  • the number of harmonics injected into the output of the inverter is preferably a third harmonic.
  • the instantaneous common mode voltage component outputted by the inverter and the instantaneous common mode voltage component equivalently injected into the harmonic component of the inverter are mutually offset by configuring the action time of the redundant small vector, thereby eliminating the inverse
  • the instantaneous common-mode voltage component of the converter output can effectively reduce the common-mode component in the inverter output and improve the bus voltage utilization, thereby improving system efficiency.
  • FIG. 1 is a flowchart of a space vector pulse width modulation method according to Embodiment 1 of the present invention
  • FIG. 2 is a flow chart of a three-phase three-level inverter space vector pulse width modulation method according to Embodiment 2 of the present invention
  • Figure 1 is a flowchart of a space vector pulse width modulation method according to Embodiment 1 of the present invention
  • FIG. 2 is a flow chart of a three-phase three-level inverter space vector pulse width modulation method according to Embodiment 2 of the present invention
  • FIG. 3 is a schematic diagram of an ⁇ - ⁇ mapping plane of a three-level vector space
  • FIG. 4 is a schematic structural diagram of a space vector pulse width modulation apparatus according to Embodiment 3 of the present invention
  • FIG. 5 is a schematic diagram showing the internal structure of a configuration module in Embodiment 3 of FIG. 4 in a three-phase three-level inverter. detailed description
  • FIG. 1 it is a flowchart of a space vector pulse width modulation method according to Embodiment 1 of the present invention, which includes:
  • S100 equivalently injecting a harmonic component in the output of the inverter. It can be implemented by: adding a harmonic component to the modulated wave.
  • the first redundant small vector and the second redundant small vector which are mutually redundant for the differential mode signal have the same effect, and for the common mode signal, the action time of the first redundant small vector is configured! And the action time T b of the second redundant small vector can change the size of the output common mode signal.
  • PWM Pluse Width Modulation
  • the instantaneous common mode voltage component outputted by the inverter and the instantaneous common mode voltage component equivalently injected into the harmonic component of the inverter are mutually offset by configuring the action time of the redundant small vector, thereby eliminating the inverter.
  • the instantaneous common-mode voltage component of the output can not only reduce the common-mode component of the output, but also cause the DC bus voltage utilization to decrease and the harmonic content to increase.
  • FIG. 2 it is a flowchart of a three-phase three-level inverter space vector pulse width modulation method according to Embodiment 2 of the present invention, which includes: S200, the third harmonic is added to the modulated wave.
  • the harmonic order of the harmonic component equivalently injected into the inverter output is the third harmonic.
  • PWM interrupt trigger SVPWM modulation starts, take the reference output voltage space vector V*.
  • the space vector pulse width modulation method of this embodiment can be implemented by a single chip microcomputer or DSP (Digital Signal Processing), and when a control cycle is reached, the PWM interrupt triggers the start of SVPWM modulation.
  • the space vector is divided into six sectors by counterclockwise rotation from the ⁇ -axis, and each sector is divided into cells of six triangles.
  • the basic vectors corresponding to the three-level converter 27 group switching states are shown in Fig. 3.
  • Fig. 3 the correspondence between different switching state combinations and basic vectors is indicated, where ⁇ , 0, ⁇
  • the switch states of the three-phase output are positive, zero, and negative, respectively.
  • the entire three-level space basic vector contains 6 long vectors ( ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , ⁇ ), 6 mediums ( ⁇ , ⁇ , ⁇ , NOP, ⁇ , ⁇ ), 12 redundant small vectors ( ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , OOP, ⁇ 0, POP, ⁇ ), 3 zero vectors ( ⁇ , 000, ⁇ ⁇ ).
  • 6 long vectors and the 6 medium vectors and their mapping vectors on the ⁇ - ⁇ mapping plane are corresponding relations, so these basic vectors can be represented by corresponding mapping basic vectors.
  • a mapping redundant small vector corresponds to two redundant small vectors, for example, ⁇ and ⁇ appear as a mapped redundant small vector on the a- ⁇ mapping plane.
  • the three vector vectors of the synthesized reference output voltage space vector V* are selected by the nearest three vector method, that is, the three space vectors of the synthesized reference output voltage space vector V* should be selected as V*
  • the initial redundant small vector is ONN or POO; when V* is in interval 2, the initial redundant small vector is OON or PPO.
  • the vector of synthesizing V* includes:
  • the vector ⁇ ( ⁇ ) action time is 1 ⁇
  • 000 action time is T 2
  • ONN action time is T 3
  • the formula for calculating T ⁇ 2 and ⁇ 3 is:
  • V poo(ONN) ⁇ + V ⁇ ⁇ 2 + V ⁇ T 3 * ⁇
  • the correction factor is introduced to coordinate the instantaneous inverter output common mode voltage component V c.
  • is the coordination factor
  • N 2 is the common mode contribution parameter of the second redundant small vector
  • N 3 is the common mode contribution parameter of the third space vector
  • V dc is the DC bus voltage.
  • the common mode contribution parameter is the influence of different space vectors on the output common mode signal, which is 1/6 in the three-phase three-level inverter, N 2 is -1/3, and N 3 is -1/6.
  • the instantaneous common-mode voltage component of the inverter output can be varied to cancel out the specific harmonics of the equivalent injection.
  • the waveform formula can be expressed as:
  • the first redundant small vector action time! And the action time T b of the second redundant small vector satisfies: +1 ⁇ , according to the ⁇ value, the ⁇ action time ⁇ ⁇ action time TfT ( 1- ⁇ ) can be obtained.
  • the space vector pulse width modulation method of the embodiment of the present invention is applicable to a three-phase I-type three-level inverter, a three-phase T-type three-level inverter, and the method of the present invention is also applicable to three-phase Two-level inverter, three-phase multi-level inverter.
  • the space vector is selected, and the instantaneous common-mode voltage component of the inverter output is calculated, and the steps are adjusted according to the specific application, but the specific methods are Without departing from the idea of the invention.
  • This embodiment illustrates a specific embodiment of the present invention by taking a specific application of the present invention in a three-phase three-level inverter as an example.
  • the idea of the present invention can also be applied to a three-phase two-level inverter and three-phase multi-electricity.
  • Flat inverter In the three-phase three-level inverter, the inverter output is instantaneously configured by configuring the action time of the redundant small vector.
  • This embodiment can effectively reduce the common mode component in the inverter output, improve the bus voltage utilization rate, thereby improving the system efficiency, and the control method is single and flexible, without adding additional hardware circuits.
  • FIG. 4 is a schematic structural diagram of a space vector pulse width modulation apparatus according to Embodiment 3 of the present invention, where the apparatus includes:
  • the harmonic injection module 300 is configured to inject a harmonic component equivalently in the output of the inverter.
  • the implementation can be: Adding a harmonic component to the modulated wave.
  • the calculation module 301 is configured to calculate an action time of each space vector of the synthesized inverter output voltage space vector, including: an action time T of the first space vector, an action time of the second space vector, and an action time ⁇ of the third space vector 3 , wherein the first space vector includes a first redundant small vector and a second redundant small vector that are mutually redundant.
  • the inverter output voltage space vector is synthesized by three space vectors, and the inverter output is in the three-phase multi-level inverter
  • the voltage space vector is synthesized by more than three space vectors.
  • the working process of the calculation module refers to the second embodiment steps S202 and S203, which are not repeated here.
  • the configuration module 302 is configured to configure the action time T a of the first redundant small vector and the action time T b of the second redundant small vector to make the instantaneous common mode voltage component of the inverter output and the equivalent injection into the inverter
  • the instantaneous common-mode voltage components of the harmonic components of the output cancel each other out, thereby eliminating the instantaneous common-mode voltage component of the inverter output, and the action time of the first redundant small vector!
  • the action time T b of the second redundant small vector satisfies: Ta+T ⁇ T
  • the first redundant small vector and the second redundant small vector which are mutually redundant for the differential mode signal have the same effect, and for the common mode signal, the action time of the first redundant small vector is configured!
  • the action time T b of the second redundant small vector can change the size of the output common mode signal.
  • the working process of the configuration module 302 refers to the second step S204, S205, S206, and S207, which are not repeated here.
  • the pulse generation module 303 is configured to: according to the action time of each space vector sent by the calculation module, and the action time of the first redundant small vector sent by the configuration module! And a pulse width modulation control signal is generated with the action time T b of the second redundant small vector.
  • FIG. 5 shows the specific structure of the configuration module when the device is applied to a three-phase I-type three-level inverter, including:
  • the correction unit 3021 is configured to correct a calculation formula of the instantaneous common mode voltage component of the inverter output, and the calculated formula of the instantaneous common mode voltage component of the modified inverter output is:
  • V ⁇ vpwm NAV dc + N 2 (1 - ⁇ ) ⁇ ⁇ ⁇ ⁇ £ + N,T,V dc
  • is the coordination factor, which is the common mode contribution parameter of the first redundant small vector
  • ⁇ 2 is the common mode contribution parameter of the second redundant small vector
  • ⁇ 3 is the common mode contribution parameter of the third space vector
  • V dc is the DC bus voltage
  • the coordination factor calculation unit 3022 is configured to calculate a transient common mode voltage component of the inverter output according to the correction unit 3021 and an instantaneous common mode voltage component of the inverter output
  • the value of the coordination factor is calculated by the principle that the instantaneous common mode voltage components of the harmonics cancel each other out, specifically:
  • spwm of the harmonic component equivalently injected into the inverter output is calculated as:
  • V ⁇ pwm bmcos(n0) ⁇ V dc T
  • n is the harmonic order
  • m is the modulation ratio
  • b is the ratio of the harmonic component to the fundamental
  • V de is the DC bus voltage
  • the harmonic order is the 3rd harmonic, and the V com
  • the harmonic order of the harmonic component equivalently injected into the output of the inverter is the third harmonic.
  • the specific implementation method is to add a harmonic component to the modulated wave, specifically:
  • the waveform formula can be expressed as:
  • V a [m cos ⁇ -bm co ⁇ W) ⁇ V dc
  • TV b [m co S (0 - ⁇ )-bm cos(3 ⁇ )]
  • V dc [mcos(0- ⁇ )- Bmcos(30)] ⁇ V dc T
  • V dc the DC bus voltage
  • m the modulation ratio, the value range is 0-1.1547
  • b the scale factor, which represents the ratio of the harmonic component signal to the fundamental. It can be seen from the three-phase cosine curve formula that bmcos (360 is the common phase of V a , V b , V c three phases, so the common mode component of the harmonic component signal
  • the configuration execution unit 3023 is configured to configure the action time of the first redundant small vector according to the value of the coordination factor ⁇ calculated by the coordination factor calculation unit 3022! And the action time T b of the second redundant small vector, specifically: ⁇ ⁇ , ⁇ ⁇ - ⁇ ⁇
  • the instantaneous common mode voltage component outputted by the inverter and the instantaneous common mode voltage component equivalently injected into the harmonic component of the inverter are mutually offset by configuring the action time of the redundant small vector, thereby eliminating the inverse
  • the instantaneous common-mode voltage component of the converter output can effectively reduce the common-mode component in the inverter output and improve the bus voltage utilization, thereby improving system efficiency.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

一种空间矢量脉宽调制方法及装置。该方法包括:在逆变器输出中等效注入一谐波分量,配置冗余小矢量的作用时间从而使逆变器输出的瞬时共模电压分量与等效注入到逆变器输出的谐波分量的瞬时共模电压分量相互抵消,从而消除逆变器输出的瞬时共模电压分量。根据上述方法还提供了与之相应的一种空间矢量脉宽调制装置。可以有效减小逆变器输出电压中的共模电压分量,并保持直流母线电压的高利用率,提高系统效率。

Description

一种空间矢量脉宽调制方法及装置
本申请要求于 2012 年 07 月 26 日提交中国专利局、 申请号为 201210261448.X, 发明名称为 "一种空间矢量脉宽调制方法及装置" 的中国专 利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及脉宽调制技术, 尤其涉及一种空间矢量脉宽调制方法及装置。 背景技术
空间矢量脉宽调制 ( Space Vector Pulse Width Modulation, 筒称 SVPWM ) 技术是以三相对称正弦波电压供电时三相对称电动机定子理想磁链圓为参考 标准, 用变换器不同的开关模式所产生的实际磁通去逼近基准圓磁通, 由它们 比较的结果决定变换器的开关, 形成 PWM波形。 传统的 SVPWM技术主要将输入的差模信号作为调制对象, 其输出 PWM 共模电压并未作为控制对象,较高的共模电压在变频器、光伏或其他对共模电 压要求较高的领域会引起对地漏电流增加、 电磁干扰严重等不良影响。 在公开号为 CN2794029的专利中, 公开了一种带有能滤除共模电压的反 馈有源低通滤波装置的变频器。这种采用反馈有源低通滤波装置等电路方式来 抑制共模电压的方法, 在电路中增加了硬件, 使得电路结构更加复杂庞大, 且 不够灵活。 因此, 在实际应用中, 通常采用基于控制策略改进的共模电压抑制方法, 这种软件实现方式筒单、灵活、无需额外硬件。在基于控制策略改进的 SVPWM 共模电压抑制方法中, 常见的是在 27个基本矢量中选择共模电压较小或为零 的冗余小矢量来合成目标电压矢量,使得变流器输出共模电压得到抑制或者消 除。 在这种方法中, 虽然能够获得较好的共模电压特性, 但是由于只选择部分 基本矢量, 导致直流母线电压利用率降低, 且各种谐波含量有所增加, 影响了 脉宽调制的效果。 发明内容
本发明实施例所要解决的技术问题在于,提供一种空间矢量脉宽调制方法 及装置,不仅可以减小输出的共模分量而且不会导致直流母线电压利用率降低 和输出谐波含量增加。
本申请第一方面提供了一种空间矢量脉宽调制方法, 包括:
在逆变器输出中等效注入一谐波分量;
计算合成逆变器输出电压空间矢量的各空间矢量的作用时间, 包括: 第一 空间矢量的作用时间 T 第二空间矢量的作用时间 τ2及第三空间矢量的作用 时间 τ3, 其中, 所述第一空间矢量包括互为冗余的第一冗余小矢量及第二冗 余小矢量;
配置所述第一冗余小矢量的作用时间 Ta和所述第二冗余小矢量的作用时 间 Tb, 以使逆变器输出的瞬时共模电压分量与等效注入到逆变器输出的谐波 分量的瞬时共模电压分量相互抵消, 所述第一冗余小矢量的作用时间 Ta和所 述第二冗余小矢量的作用时间 Tb满足: Ta+Tbι ;
根据所述各空间矢量的作用时间、 所述第一冗余小矢量的作用时间 ! 和 所述第二冗余小矢量的作用时间 Tb生成脉宽调制控制信号。
在第一种可能的实施方式中, 所述在逆变器输出中等效注入一谐波分量 的一种实现方式为: 在调制波中加入一谐波分量。
结合第一方面的第一种可能的实施方式,在第二种可能的实施方式中, 所 述逆变器为三相三电平逆变器, 所述第二空间矢量为零空间矢量, 所述配置所 述第一冗余小矢量的作用时间 Ta和所述第二冗余小矢量的作用时间 Tb—种优 选的方法为:
修正所述逆变器输出的瞬时共模电压分量的计算公式,修正后的所述逆变 器输出的瞬时共模电压分量的计算公式为:
V→vpwm = Ν,λΤ^ + N2 (1 - + N^Vdc
其中 vcm|svpwm为所述逆变器输出的瞬时共模电压分量, λ为协调因子, 为所述第一冗余小矢量的共模贡献参数, N2为所述第二冗余小矢量的共模 贡献参数, N3为所述第三空间矢量的共模贡献参数, Vdc为直流母线电压; 根据所述使逆变器输出的瞬时共模电压分量与所述谐波的瞬时共模电压 分量相互 4氏消的原则计算所述协调因子的值, 具体为:
所述等效注入到逆变器输出的谐波分量的瞬时共模电压分量 v∞m|spwm的 计算公式为:
V→pwm = bmcos(n0)^VdcT 其中 n为谐波次数, m为调制比, b为谐波分量与基波的比例, Vde为直 流母线电压, 根据 Vcom|Svpwm +Vcom|spwm=0计算出所述协调因子 λ的值;
根据所述协调因子 λ的值配置所述第一冗余小矢量的作用时间 Ta和所述 第二冗余小矢量的作用时间 Tb, 具体为: T T A , ^=1\* ( 1-入)。
结合第一方面的第一种及第二种可能的实施方式,在第三种可能的实施方 式中, 所述注入到逆变器输出的谐波次数优选为 3次谐波。
本申请第二方面提供一种空间矢量脉宽调制装置, 包括:
谐波注入模块, 用于在逆变器输出中等效注入一谐波分量; 计算模块,用于计算合成逆变器输出电压空间矢量的各空间矢量的作用时 间, 包括: 第一空间矢量的作用时间 T 第二空间矢量的作用时间 τ2及第三 空间矢量的作用时间 τ3, 其中, 所述第一空间矢量包括互为冗余的第一冗余 小矢量及第二冗余小矢量;
配置模块, 用于配置所述第一冗余小矢量的作用时间 ! 和所述第二冗余 小矢量的作用时间 Tb, 以使逆变器输出的瞬时共模电压分量与等效注入到逆 变器输出的谐波分量的瞬时共模电压分量相互抵消,所述第一冗余小矢量的作 用时间 Ta和所述第二冗余小矢量的作用时间 Tb满足: ! + 二^;
脉沖生成模块, 用于根据计算模块送来的所述各空间矢量的作用时间、 配 置模块送来的所述第一冗余小矢量的作用时间 Ta和所述第二冗余小矢量的作 用时间 Tb生成脉宽调制控制信号。
在第一种可能的实施方式中, 所述谐波注入模块中,在逆变器输出中等效 注入一谐波分量的一种实现方式为: 在调制波中加入一谐波分量。
结合第二方面的第一种可能的实施方式,在第二种可能的实施方式中, 所 述逆变器为三相三电平逆变器, 所述第二空间矢量为零空间矢量, 所述配置模 块包括:
修正单元, 用于修正所述逆变器输出的瞬时共模电压分量的计算公式,修 正后的所述逆变器输出的瞬时共模电压分量的计算公式为:
V→vpwm = Ν,λΤ^ + N2(1 - + N^Vdc
其中 Vcm|svpwm为所述逆变器输出的瞬时共模电压分量, λ为协调因子, 为所述第一冗余小矢量的共模贡献参数, N2为所述第二冗余小矢量的共模 贡献参数, N3为所述第三空间矢量的共模贡献参数, Vdc为直流母线电压; 协调因子计算单元,用于根据所述修正单元的所述修正后的所述逆变器输 出的瞬时共模电压分量的计算公式和所述使逆变器输出的瞬时共模电压分量 与所述谐波的瞬时共模电压分量相互抵消的原则计算所述协调因子的值,具体 为:
所述等效注入到逆变器输出的谐波分量的瞬时共模电压分量 V∞m|spwm的 计算公式为:
V→pwm = bm cos(W)^VdcT 其中 n为谐波次数, m为调制比, b为谐波分量与基波的比例, Vde为直 流母线电压, 根据 Vcom|Svpwm +Vcom|spwm=0计算出所述协调因子 λ的值;
配置执行单元,用于根据所述协调因子计算单元计算出的所述协调因子 λ 的值配置所述第一冗余小矢量的作用时间 Ta和所述第二冗余小矢量的作用时 间 Tb, 具体为: Τ^Τ^ λ , TfT U- A
结合第二方面的第一种及第二种可能的实施方式,在第三种可能的实施方 式中, 所述注入到逆变器输出的谐波次数优选为 3次谐波。
本发明实施例通过配置冗余小矢量的作用时间使逆变器输出的瞬时共模 电压分量与等效注入到逆变器输出的谐波分量的瞬时共模电压分量相互抵消, 进而消除了逆变器输出的瞬时共模电压分量,可以有效地减小逆变器输出中的 共模分量, 并提高了母线电压利用率, 从而提高了系统效率。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作筒单地介绍,显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲,在不付 出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1是本发明实施例一提供的一种空间矢量脉宽调制方法的流程图; 图 2 是本发明实施例二提供的一种三相三电平逆变器空间矢量脉宽调制 方法的流程图;
图 3是三电平矢量空间的 α - β映射平面的示意图;
图 4是本发明实施例三提供的一种空间矢量脉宽调制装置的结构示意图; 图 5是三相三电平逆变器中图 4所示实施例三中的配置模块的内部结构示 意图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明中的实施例, 本领域普通技术人员在没有作出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
请参见图 1 , 是本发明实施例一提供的一种空间矢量脉宽调制方法的流程 图, 包括:
S100、在逆变器输出中等效注入一谐波分量。 其实现方式可以为: 在调制 波中加入一谐波分量。
S101、计算合成逆变器输出电压空间矢量的各空间矢量的作用时间,包括: 第一空间矢量的作用时间 T 第二空间矢量的作用时间 τ2及第三空间矢量的 作用时间 τ3, 其中, 第一空间矢量包括互为冗余的第一冗余小矢量及第二冗 余小矢量。 其中,在三相三电平逆变器和三相两电平逆变器中,逆变器输出电压空间 矢量由三个空间矢量合成,在三相多电平逆变器中逆变器输出电压空间矢量由 三个以上空间矢量合成。
5102、 配置第一冗余小矢量的作用时间 ! 和第二冗余小矢量的作用时间 Tb,以使逆变器输出的瞬时共模电压分量与等效注入到逆变器输出的谐波分量 的瞬时共模电压分量相互抵消, 第一冗余小矢量的作用时间 Ta和第二冗余小 矢量的作用时间 Tb满足: Ta+Tb =Ti。
其中,对差模信号来说互为冗余的第一冗余小矢量及第二冗余小矢量的作 用效果相同, 而对于共模信号, 配置第一冗余小矢量的作用时间 ! 和第二冗 余小矢量的作用时间 Tb可以改变输出共模信号的大小。
5103、 根据各空间矢量的作用时间、 第一冗余小矢量的作用时间 Ta和第 二冗余小矢量的作用时间 Tb生成脉宽调制控制信号。
其中, 各空间矢量的作用时间、 第一冗余小矢量的作用时间 ! 和第二冗 余小矢量的作用时间 Tb分别除以脉沖周期可以得到各开关管 SVPWM脉宽调 制驱动信号的占空比, 控制芯片可以据此输出 PWM(Pluse Width Modulation , 脉沖宽度调制)控制信号。
本发明实施例通过配置冗余小矢量的作用时间使逆变器输出的瞬时共模 电压分量与等效注入到逆变器输出的谐波分量的瞬时共模电压分量相互抵消, 从而消除逆变器输出的瞬时共模电压分量,不仅可以减小输出的共模分量而且 不会导致直流母线电压利用率降低和谐波含量增加。
请参见图 2, 是本发明实施例二提供的一种三相三电平逆变器空间矢量脉 宽调制方法的流程图, 包括: S200、调制波中加入 3次谐波。等效注入到逆变器输出的谐波分量优选的 谐波次数为 3次谐波。调制波加入谐波分量后的余弦曲线为: Va=mcose-bmcos ( ηθ ), 其中, η为谐波次数; Vdc为直流母线电压; m为调制比, 取值范围为 0-1.1547; b为比例因子, 表示谐波分量信号与基波的比例。 本实施例中采用 3 次谐波, 则余弦曲线为: Va=mcose-bmcos ( 3Θ )。
S201、 PWM中断触发 SVPWM调制开始, 取参考输出电压空间矢量 V*。 本实施例的空间矢量脉宽调制方法可以由单片机或 DSP(Digital Signal Processing , 数字信号处理)编程实现, 当一个控制周期到时 PWM 中断触发 SVPWM调制开始。
S202、 选取合成参考输出电压空间矢量 V*的三个空间矢量。
如图 3所示三电平矢量空间的 α - β映射平面的示意图, 空间矢量从 α轴 起逆时针旋转划分为 6个扇区,每个扇区又划分为 6个三角形的小区间。在 α - β映射平面上, 三电平变换器 27组开关状态所对应的基本矢量如图 3所示, 图 3中标出了不同开关状态组合和基本矢量的对应关系, 其中 Ρ、 0、 Ν分别 表示三相输出的开关状态为正、 零、 负。 整个三电平空间基本矢量包含 6个长 矢量(ΡΝ 、 ΡΡΝ、 ΝΡΝ、 ΝΡΡ、 ΝΝΡ、 ΡΝΡ )、 6个中矢量(ΡΟΝ、 ΟΡΝ、 ΝΡΟ、 NOP , ΟΝΡ、 ΡΝΟ )、 12 个冗余小矢量 (ΡΟΟ、 Ο丽、 ΡΡΟ、 ΟΟΝ、 ΟΡΟ、 ΝΟΝ、 ΟΡΡ、 ΝΟΟ、 OOP , 丽 0、 POP , ΟΝΟ )、 3 个零矢量(ΡΡΡ、 000、 Ν Ν )。 其中, 6个长矢量和 6个中矢量与其在 α - β映射平面上的映射矢量是 ——对应的关系, 因此可以用相应的映射基本矢量来表示这些基本矢量。 而一 个映射冗余小矢量对应于两个冗余小矢量, 例如 ΟΝΝ和 ΡΟΟ在 a - β映射平 面上表现为一个映射冗余小矢量。 为了减少逆变器输出电压的谐波,采用最近三矢量方法选择合成参考输出 电压空间矢量 V*的三个空间矢量, 即合成参考输出电压空间矢量 V*的三个空 间矢量应选择 V*所在区域的三角形的 3个顶点上的矢量。 以第一扇区为例, V*在区间 1或 2中, 选取与其相邻的 3个顶点的空间矢量进行合成, 其中, 区 间 1与 1的区别在于选取的起始冗余小矢量不同, 当 V*在区间 1时, 起始冗 余小矢量为 ONN或 POO;当 V*在区间 2时,起始冗余小矢量为 OON或 PPO。
5203、 计算合成 V*的第一空间矢量的作用时间 T 第二空间矢量的作用 时间 T2及第三空间矢量的作用时间 T3, 其中, 第一空间矢量包括互为冗余的 第一冗余小矢量及第二冗余小矢量。
其中, 根据步骤 S202 , 当 V*在第一扇区时, 合成 V*的矢量包括:
POO(ON )、 ON (PPO), 000(PPP、 Ν )。 若 V*在区间 1时, 则第一空间 矢量的第一冗余小矢量为 ΡΟΟ, 第二冗余小矢量为 ΟΝΝ; 若 V*在区间 2时, 第一空间矢量的第一冗余小矢量为 ΟΟΝ, 第二冗余小矢量为 ΡΡΟ。
以区间 1为例,矢量 ΡΟΟ(ΟΝΝ)作用时间为 1\ , 000作用时间为 T2, ONN 作用时间为 T3, 计算 T Τ2、 Τ3的公式为:
→ → → →
V poo(ONN) Τγ + V οοο Τ2 + V οοΝ T3 = * Τ
Ί + Τ2 + Τ3 = Τ
5204、 引入协调因子修正逆变器输出的瞬时共模电压分量 Vcm|svpwm的计 算公式。
修正后的逆变器输出的瞬时共模电压分量的计算公式为: Vc→vpwm = N Vdc + N2(1 - λ)ψάε + N,T,Vdc 其中 ¼ ^,为逆变器输出的瞬时共模电压分量, λ为协调因子, 为 第一冗余小矢量的共模贡献参数, N2为第二冗余小矢量的共模贡献参数, N3 为第三空间矢量的共模贡献参数, Vdc为直流母线电压。 其中, 共模贡献参数 为不同的空间矢量对输出共模信号的影响, 在三相三电平逆变器中 为 1/6, N2为 -1/3 , N3为 -1/6, 因此上述修正后的逆变器输出的瞬时共模电压分量的计 算公式为: vc→vpwm = λτ^ + (- ) (卜 + (- 通过配置 λ的值,调整冗余小矢量的比例关系可以改变逆变器输出的瞬时 共模电压分量值, 使之与等效注入的特定谐波相互抵消。
5205、 计算等效注入到逆变器输出的谐波分量的瞬时共模电压分量 Vcom I spwm。
根据步骤 S200三相余弦曲线(每相相角差 120度 )波形公式可以表示为:
Figure imgf000012_0001
其从三相余弦曲线波形公式中可以看出, b cos ( 3 )是 Va、 Vb、 Vc三相 共有的, 因此谐波分量信号的共模分量^ H = b C0S(3e) ^r。 在实际应用 中, 优选采用三次谐波, 因为若加的谐波次数太低, 会导致直流母线电压的利 用率降低, 若加的谐波次数太高, 会导致共模电压增大。
5206、根据逆变器输出的瞬时共模电压分量与所述谐波的瞬时共模电压分 量相互抵消计算协调因子 λ的值。 令 V∞m|spwm+V∞m|svpwm=0可计算出一个 λ的值, 使得逆变器输出的瞬时共 模电压分量值与等效注入的特定谐波相互抵消。 即由 VdcT = 0
Figure imgf000013_0001
得出:
丄 T3 _b c〇s(36 丄 Γ
6 2
^ =
2 1
5207、 根据协调因子的值配置第一冗余小矢量的作用时间 Ta和第二冗余 小矢量的作用时间 Tb, 具体为: Κ λ, Τ^ ΐ-λ λ
第一冗余小矢量的作用时间 ! 和第二冗余小矢量的作用时间 Tb满足: +1^= ,根据 λ值即可得出 ΡΟΟ作用时间 Τ^Τ^λ ΟΝ 作用时间 TfT ( 1-λ )。
5208、 根据各空间矢量的作用时间、 第一冗余小矢量的作用时间 Ta和第 二冗余小矢量的作用时间 Tb生成脉宽调制控制信号。具体方法参考步骤 S103 本发明实施例的空间矢量脉宽调制方法适用于三相 I型三电平逆变器,三 相 T型三电平逆变器,本发明的方法也可适用于三相两电平逆变器,三相多电 平逆变器。 在三相两电平逆变器和三相多电平逆变器的应用中选取空间矢量, 计算逆变器输出的瞬时共模电压分量等步骤根据具体的应用做相应调整,但具 体方法都不脱离本发明的思想。
本实施例以本发明在三相三电平逆变器中的具体应用为例说明本发明的 具体实施方式,本发明的思想也可应用于三相两电平逆变器和三相多电平逆变 器。在三相三电平逆变器中通过配置冗余小矢量的作用时间使逆变器输出的瞬 时共模电压分量与等效注入到逆变器输出的三次谐波分量的瞬时共模电压分 量相互抵消, 进而消除了逆变器输出的瞬时共模电压分量。本实施例可以有效 地减小逆变器输出中的共模分量, 并提高了母线电压利用率,从而提高了系统 效率, 而且控制方法筒单、 灵活, 无需增加额外的硬件电路。
请参考图 4, 图 4是本发明实施例三提供的一种空间矢量脉宽调制装置的 结构示意图, 该装置包括:
谐波注入模块 300, 用于在逆变器输出中等效注入一谐波分量。 其实现方 式可以为: 在调制波中加入一谐波分量。
计算模块 301 , 用于计算合成逆变器输出电压空间矢量的各空间矢量的作 用时间, 包括: 第一空间矢量的作用时间 T 第二空间矢量的作用时间 1½及 第三空间矢量的作用时间 τ3, 其中, 第一空间矢量包括互为冗余的第一冗余 小矢量及第二冗余小矢量。
其中,在三相三电平逆变器和三相两电平逆变器中,逆变器输出电压空间 矢量由三个空间矢量合成,在三相多电平逆变器中逆变器输出电压空间矢量由 三个以上空间矢量合成。
在三相三电平逆变器中的应用中, 计算模块工作过程参考实施例二步骤 S202、 S203在此不再——赘述。
配置模块 302,用于配置第一冗余小矢量的作用时间 Ta和第二冗余小矢量 的作用时间 Tb, 以使逆变器输出的瞬时共模电压分量与等效注入到逆变器输 出的谐波分量的瞬时共模电压分量相互抵消,从而消除逆变器输出的瞬时共模 电压分量, 第一冗余小矢量的作用时间! 和第二冗余小矢量的作用时间 Tb满 足: Ta+T^T 其中,对差模信号来说互为冗余的第一冗余小矢量及第二冗余小矢量的作 用效果相同, 而对于共模信号, 配置第一冗余小矢量的作用时间 ! 和第二冗 余小矢量的作用时间 Tb可以改变输出共模信号的大小。
在三相三电平逆变器中的应用中,配置模块 302工作过程参考实施例二步 骤 S204、 S205、 S206、 S207在此不再——赘述。
脉沖生成模块 303 , 用于根据计算模块送来的各空间矢量的作用时间、 配 置模块送来的第一冗余小矢量的作用时间! 和第二冗余小矢量的作用时间 Tb 生成脉宽调制控制信号。
其中, 各空间矢量的作用时间、 第一冗余小矢量的作用时间 ! 和第二冗 余小矢量的作用时间 Tb分别除以脉沖周期可以得到各开关管 SVPWM脉宽调 制驱动信号占空比, 控制芯片可以据此输出 PWM控制信号。
本装置适用于三相 I型三电平逆变器、 三相 T型三电平逆变器、 三相两电 平逆变器和三相多电平逆变器。 图 5给出了本装置应用于三相 I型三电平逆变 器时配置模块的具体结构示意图, 包括:
修正单元 3021 , 用于修正逆变器输出的瞬时共模电压分量的计算公式, 修正后的逆变器输出的瞬时共模电压分量的计算公式为:
V→vpwm = NAVdc + N2(1 - λ)Τχνά£ + N,T,Vdc
其中 ¼ ^,为逆变器输出的瞬时共模电压分量, λ为协调因子, 为 第一冗余小矢量的共模贡献参数, Ν2为第二冗余小矢量的共模贡献参数, Ν3 为第三空间矢量的共模贡献参数, Vdc为直流母线电压。
协调因子计算单元 3022, 用于根据修正单元 3021修正后的所述逆变器输 出的瞬时共模电压分量的计算公式和使逆变器输出的瞬时共模电压分量与所 述谐波的瞬时共模电压分量相互抵消的原则计算协调因子的值, 具体为: 等效注入到逆变器输出的谐波分量的瞬时共模电压分量 v∞m|spwm的计算 公式为:
V→pwm =bmcos(n0)^VdcT 其中 n为谐波次数, m为调制比, b为谐波分量与基波的比例, Vde为直 流母线电压, 根据 Vcom|Svpwm +Vcom|spwm=0计算出所述协调因子 λ的值。
其中谐波次数为 3次谐波, V com|spwm推导过程为:
等效注入到逆变器输出的谐波分量优选的谐波次数为 3次谐波,具体实现 方式为在调制波中加入一谐波分量, 具体为: 调制波余弦曲线为: Va=mcose-bmcos (3Θ), 则三相余弦曲线(每相相角差 120度) 波形公式可以 表示为:
Va = [m cos θ-bm co^W)\^VdcT Vb = [m coS(0 -^)-bm cos(3^)] VdcT Vc = [mcos(0-→)-bmcos(30)]^VdcT 其中, Vdc为直流母线电压; m为调制比, 取值范围为 0-1.1547; b为比例 因子,表示谐波分量信号与基波的比例。从三相余弦曲线波形公式中可以看出, bmcos ( 360 是 Va、 Vb、 Vc三相共有的, 因此谐波分量信号的共模分量
V→pwm = bm cos(3^)- X VdcT , 则根据: VdcT = 0
Figure imgf000016_0001
可推导出:
Figure imgf000017_0001
配置执行单元 3023 , 用于根据协调因子计算单元 3022计算出的协调因子 λ的值配置第一冗余小矢量的作用时间! 和第二冗余小矢量的作用时间 Tb, 具体为: Τ^Τ^ λ , Τ^ ΐ- λ λ
本发明实施例通过配置冗余小矢量的作用时间使逆变器输出的瞬时共模 电压分量与等效注入到逆变器输出的谐波分量的瞬时共模电压分量相互抵消, 进而消除了逆变器输出的瞬时共模电压分量,可以有效地减小逆变器输出中的 共模分量, 并提高了母线电压利用率, 从而提高了系统效率。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程, 是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算 机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。 其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory, ROM )或随机存储记忆体(Random Access Memory, RAM )等。
以上所揭露的仅为本发明一种较佳实施例而已,当然不能以此来限定本发 明之权利范围,本领域普通技术人员可以理解实现上述实施例的全部或部分流 程, 并依本发明权利要求所作的等同变化, 仍属于发明所涵盖的范围。

Claims

权 利 要 求
1、 一种空间矢量脉宽调制方法, 其特征在于, 包括:
在逆变器输出中等效注入一谐波分量;
计算合成逆变器输出电压空间矢量的各空间矢量的作用时间, 包括: 第一 空间矢量的作用时间 Ί\、 第二空间矢量的作用时间 Τ2及第三空间矢量的作用 时间 Τ3, 其中, 所述第一空间矢量包括互为冗余的第一冗余小矢量及第二冗 余小矢量;
配置所述第一冗余小矢量的作用时间 Ta和所述第二冗余小矢量的作用时 间 Tb, 以使逆变器输出的瞬时共模电压分量与等效注入到逆变器输出的谐波 分量的瞬时共模电压分量相互抵消, 所述第一冗余小矢量的作用时间 Ta和所 述第二冗余小矢量的作用时间 Tb满足: 1 1 =1 ;
根据所述各空间矢量的作用时间、 所述第一冗余小矢量的作用时间 ! 和 所述第二冗余小矢量的作用时间 Tb生成脉宽调制控制信号。
2、 根据权利要求 1所述的方法, 其特征在于, 所述在逆变器输出中等效 注入一谐波分量的实现方式为: 在调制波中加入一谐波分量。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 所述逆变器为三相三 电平逆变器;
所述第二空间矢量为零空间矢量,所述配置所述第一冗余小矢量的作用时 间 Ta和所述第二冗余小矢量的作用时间 Tb方法为:
修正所述逆变器输出的瞬时共模电压分量的计算公式,修正后的所述逆变 器输出的瞬时共模电压分量的计算公式为: 。― = Ν,λτ ^ + Ν2(\- λ)τγάε + N3T3vdc
其中 vcmlsvpwm为所述逆变器输出的瞬时共模电压分量, λ为协调因子, 为所述第一冗余小矢量的共模贡献参数, N2为所述第二冗余小矢量的共模 贡献参数, N3为所述第三空间矢量的共模贡献参数, Vdc为直流母线电压; 根据所述使逆变器输出的瞬时共模电压分量与所述谐波的瞬时共模电压 分量相互 4氏消的原则计算所述协调因子的值, 具体为:
所述等效注入到逆变器输出的谐波分量的瞬时共模电压分量 V∞mlspwm的 计算公式为:
1
co→wm = bmcos(n0)-VdcT 其中 n为谐波次数, m为调制比, b为谐波分量与基波的比例, Vdc为直 流母线电压, 根据 Vcom,svpwm +V∞mlspwm=0计算出所述协调因子 λ的值;
根据所述协调因子 λ的值配置所述第一冗余小矢量的作用时间 Ta和所述 第二冗余小矢量的作用时间 Tb, 具体为: 1 1 *人, 1 =1 * ( 1-入)。
4、 根据权利要求 1至 3任一项所述的方法, 其特征在于, 所述等效注入 到逆变器输出的谐波为 3次谐波。
5、 一种空间矢量脉宽调制装置, 其特征在于, 包括:
谐波注入模块, 用于在逆变器输出中等效注入一谐波分量;
计算模块,用于计算合成逆变器输出电压空间矢量的各空间矢量的作用时 间, 包括: 第一空间矢量的作用时间 T 第二空间矢量的作用时间 T2及第三 工≥间矢量的作用时间 Τ3, 其中, 所述第一空间矢量包括互为冗余的第一冗余 J、矢量及第二冗余小矢量;
配置模块, 用于接收计算模块的第一空间矢量的作用时间 Ί , 并配置所 述第一冗余小矢量的作用时间 Ta和所述第二冗余小矢量的作用时间 Tb, 以使 逆变器输出的瞬时共模电压分量与谐波注入模块中等效注入到逆变器输出的 谐波分量的瞬时共模电压分量相互抵消, 所述第一冗余小矢量的作用时间 Ta 和所述第二冗余小矢量的作用时间 Tb满足: 1 1^ =1;
脉沖生成模块, 用于根据计算模块送来的所述各空间矢量的作用时间、 配 置模块送来的所述第一冗余小矢量的作用时间 Ta和所述第二冗余小矢量的作 用时间 Tb生成脉宽调制控制信号。
6、 根据权利要求 5所述的装置, 其特征在于, 所述谐波注入模块中, 在 逆变器输出中等效注入一谐波分量的实现方式为: 在调制波中加入一谐波分 量。
7、 根据权利要求 5或 6所述的装置, 其特征在于, 所述逆变器为三相三 电平逆变器, 所述第二空间矢量为零空间矢量, 所述配置模块包括:
修正单元, 用于修正所述逆变器输出的瞬时共模电压分量的计算公式,修 正后的所述逆变器输出的瞬时共模电压分量的计算公式为:
。― = Ν,λτ ^ + N2 (1 - λ)τγάε + N3T3vdc
其中 vcmlsvpwm为所述逆变器输出的瞬时共模电压分量, λ为协调因子, 为所述第一冗余小矢量的共模贡献参数, N2为所述第二冗余小矢量的共模 贡献参数, N3为所述第三空间矢量的共模贡献参数, Vdc为直流母线电压; 协调因子计算单元,用于根据所述修正后的所述逆变器输出的瞬时共模电 压分量的计算公式和所述使逆变器输出的瞬时共模电压分量与所述谐波的瞬 时共模电压分量相互抵消的原则计算所述协调因子的值, 具体为:
所述等效注入到逆变器输出的谐波分量的瞬时共模电压分量 v∞mlspwm的 计算公式为:
1
co→wm =bmcos(30)-VdcT 其中 n为谐波次数, m为调制比, b为谐波分量与基波的比例, Vdc为直 流母线电压, 根据 Vcom,svpwm +V∞mlspwm=0计算出所述协调因子 λ的值;
配置执行单元,用于根据所述协调因子计算单元计算出的所述协调因子 λ 的值配置所述第一冗余小矢量的作用时间 Ta和所述第二冗余小矢量的作用时 间 Tb, 具体为: 1 1 *入, 1 1 * (1-入)。
8、 根据权利要求 5至 7任一项所述的装置, 其特征在于, 所述等效注入 到逆变器输出的谐波为 3次谐波。
PCT/CN2013/071025 2012-07-26 2013-01-28 一种空间矢量脉宽调制方法及装置 WO2014015667A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13752801.4A EP2713498A4 (en) 2012-07-26 2013-01-28 METHOD AND APPARATUS FOR SPACE VECTOR PULSE WIDTH MODULATION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210261448.X 2012-07-26
CN201210261448.XA CN102780410B (zh) 2012-07-26 2012-07-26 一种空间矢量脉宽调制方法及装置

Publications (1)

Publication Number Publication Date
WO2014015667A1 true WO2014015667A1 (zh) 2014-01-30

Family

ID=47125201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/071025 WO2014015667A1 (zh) 2012-07-26 2013-01-28 一种空间矢量脉宽调制方法及装置

Country Status (3)

Country Link
EP (1) EP2713498A4 (zh)
CN (1) CN102780410B (zh)
WO (1) WO2014015667A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113556053A (zh) * 2021-07-21 2021-10-26 华为技术有限公司 三相多电平逆变器的控制方法以及逆变器系统
CN114977870A (zh) * 2022-06-16 2022-08-30 安徽理工大学 一种适用于t型三电平的不连续调制载波实现统一算法
CN115549539A (zh) * 2022-10-31 2022-12-30 佛山市尼博微电子有限公司 一种用于优化电机电磁性能的方法及系统

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102780410B (zh) * 2012-07-26 2014-11-19 华为技术有限公司 一种空间矢量脉宽调制方法及装置
CN104967346B (zh) * 2015-03-13 2017-08-25 北京京仪绿能电力系统工程有限公司 一种三电平光伏并网逆变器共模电压的空间矢量抑制方法
CN104883087B (zh) * 2015-05-04 2017-09-22 长安大学 一种多电平逆变器通用脉宽调制方法
CN107689735B (zh) * 2016-08-05 2020-01-31 台达电子企业管理(上海)有限公司 功率变换系统及其共模电压抑制方法
CN108039850B (zh) * 2017-11-29 2020-09-01 上海电力学院 一种实现多相变流器svpwm控制的通用方法
CN108306335B (zh) * 2018-03-02 2020-07-07 阳光电源股份有限公司 光伏发电系统、逆变器及其并网运行控制方法和装置
US11848600B2 (en) 2019-02-14 2023-12-19 Mitsubishi Electric Corporation Power conversion device with control circuit to adjust a common mode voltage of combined output voltages
CN113541520B (zh) * 2021-07-20 2023-10-31 东北大学 基于svpwm的谐振直流环节三相逆变器的调制方法
DE102022119971A1 (de) * 2022-08-09 2024-02-15 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Balancieren einer Mittelpunktspannung eines 3-Level-Inverters
CN115498910B (zh) * 2022-09-26 2023-05-30 锦浪科技股份有限公司 一种组串式光伏系统的漏电流抑制方法
CN116846234B (zh) * 2023-08-31 2023-11-10 深圳市恒运昌真空技术有限公司 一种射频电源供能的二级变换器的控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101359881A (zh) * 2008-09-26 2009-02-04 清华大学 一种基于瞬时最小共模电压叠加的脉宽调制方法
CN101917132A (zh) * 2010-07-02 2010-12-15 上海正泰电源系统有限公司 三相三线三电平逆变器新矢量调制方法
US7881081B1 (en) * 2010-04-16 2011-02-01 Rockwell Automation Technologies, Inc. Systems and methods for reducing AC drive common-mode currents
CN102570873A (zh) * 2010-12-29 2012-07-11 中船重工电机科技股份有限公司 一种用于电压空间矢量脉宽调制技术中的死区补偿方法
CN102780410A (zh) * 2012-07-26 2012-11-14 华为技术有限公司 一种空间矢量脉宽调制方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5706186A (en) * 1996-09-23 1998-01-06 Allen-Bradley Company, Inc. Hybrid pulse width modulation method and apparatus
JP3623626B2 (ja) * 1997-01-20 2005-02-23 日本インバータ株式会社 三相電圧型電流制御インバータ
JP3690341B2 (ja) * 2001-12-04 2005-08-31 ダイキン工業株式会社 ブラシレスdcモータ駆動方法およびその装置
CN101783607B (zh) * 2010-02-09 2014-04-30 中国石油大学(华东) 基于零序电压冲量周期平衡的电压空间矢量脉宽调制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101359881A (zh) * 2008-09-26 2009-02-04 清华大学 一种基于瞬时最小共模电压叠加的脉宽调制方法
US7881081B1 (en) * 2010-04-16 2011-02-01 Rockwell Automation Technologies, Inc. Systems and methods for reducing AC drive common-mode currents
CN101917132A (zh) * 2010-07-02 2010-12-15 上海正泰电源系统有限公司 三相三线三电平逆变器新矢量调制方法
CN102570873A (zh) * 2010-12-29 2012-07-11 中船重工电机科技股份有限公司 一种用于电压空间矢量脉宽调制技术中的死区补偿方法
CN102780410A (zh) * 2012-07-26 2012-11-14 华为技术有限公司 一种空间矢量脉宽调制方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2713498A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113556053A (zh) * 2021-07-21 2021-10-26 华为技术有限公司 三相多电平逆变器的控制方法以及逆变器系统
CN113556053B (zh) * 2021-07-21 2022-10-28 华为数字能源技术有限公司 三相多电平逆变器的控制方法以及逆变器系统
CN114977870A (zh) * 2022-06-16 2022-08-30 安徽理工大学 一种适用于t型三电平的不连续调制载波实现统一算法
CN115549539A (zh) * 2022-10-31 2022-12-30 佛山市尼博微电子有限公司 一种用于优化电机电磁性能的方法及系统

Also Published As

Publication number Publication date
EP2713498A1 (en) 2014-04-02
CN102780410B (zh) 2014-11-19
EP2713498A4 (en) 2015-04-22
CN102780410A (zh) 2012-11-14

Similar Documents

Publication Publication Date Title
WO2014015667A1 (zh) 一种空间矢量脉宽调制方法及装置
JP5794274B2 (ja) マトリクスコンバータ
JP6695598B2 (ja) インバータ制御装置
JP5304891B2 (ja) 電力変換装置の制御方法
CN107834947B (zh) 一种抑制零序电流的方法
US10608571B2 (en) Open-winding motor drive topology and modulation method thereof
JP2013255317A (ja) 3レベルインバータの制御装置
CN113271027B (zh) 一种二极管钳位的三电平逆变器高性能同步过调制算法
CN104270023B (zh) 一种多电平逆变器的谐波优化调制方法
US11146181B2 (en) Control method and apparatus for common-mode modulated wave of single-phase five-level inverter
CN104253556A (zh) 一种五电平逆变器七段式svpwm调制方法
Hoshino et al. Output voltage correction for a voltage source type inverter of an induction motor drive
JP2014027764A (ja) 交流電動機の駆動システム及び電動機車両
CN109067224B (zh) 一种二维坐标系下三相空间矢量快速调制方法
CN108448581A (zh) 一种并联电流源逆变器并网电流特定谐波控制的方法
JP2016201882A (ja) 回転角度算出装置
CN108322074B (zh) 一种基于十二边形空间电压矢量的级联二电平逆变器svpwm调制方法
CN112803823B (zh) 脉冲宽度调制方法、逆变器和控制器
CN110224651B (zh) 一种抑制二次谐波转矩的缺相控制方法
CN214281274U (zh) 一种三相正弦波电流信号的驱动装置
Zhao et al. A compensation method of dead-time and forward voltage drop for inverter operating at low frequency
CN111245271B (zh) 一种h桥五电平有源中点钳位逆变器及死区效应抑制方法
JP2012095412A (ja) 回転機の制御装置
CN103888008A (zh) 基于特定谐波消除和波形叠加的多电平逆变器调制方法
CN108448580A (zh) 并联电流源型光伏逆变器并网电流指定谐波控制的方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2013752801

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13752801

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE