WO2014015597A1 - 一种生产硼化锆并同步产出冰晶石的方法 - Google Patents
一种生产硼化锆并同步产出冰晶石的方法 Download PDFInfo
- Publication number
- WO2014015597A1 WO2014015597A1 PCT/CN2012/085288 CN2012085288W WO2014015597A1 WO 2014015597 A1 WO2014015597 A1 WO 2014015597A1 CN 2012085288 W CN2012085288 W CN 2012085288W WO 2014015597 A1 WO2014015597 A1 WO 2014015597A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cryolite
- zirconium boride
- fluoroborate
- fluorozirconate
- producing
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B35/00—Boron; Compounds thereof
- C01B35/02—Boron; Borides
- C01B35/04—Metal borides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F7/00—Compounds of aluminium
- C01F7/48—Halides, with or without other cations besides aluminium
- C01F7/50—Fluorides
- C01F7/54—Double compounds containing both aluminium and alkali metals or alkaline-earth metals
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C3/00—Electrolytic production, recovery or refining of metals by electrolysis of melts
- C25C3/06—Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
- C25C3/18—Electrolytes
Definitions
- the present invention relates to a process for the preparation of metal boride, and more particularly to a process for the preparation of zirconium boride and the simultaneous production of cryolite.
- the aluminum electrolysis industry still adopts the traditional Ha l l-Heroul t method.
- the electrolyte has always been based on cryolite-alumina.
- the current prebaked anode electrolyzer mainly uses carbon cathode.
- the carbon cathode does not wet the aluminum liquid and is subject to long-term corrosion of the cryolite.
- Zirconium boride has good wettability to aluminum liquid and is resistant to cryolite corrosion, so zirconium boride is very suitable for carbon cathode surface coating. Since transition metal boride such as zirconium boride is expensive, it is currently difficult to achieve its wide application in carbon cathode surface coatings.
- the existing industrial production methods of zirconium boride mainly include the following three types:
- reaction temperature can be reduced to 1650-1750 ° C;
- ZrCl 4 +BC l 3 +5H 2 ZrB 2 +10HCl;
- the deposition temperature is 8000-1000 °C, and abrasive grade and electronic grade products can be obtained.
- the inventors have conducted a large number of explorations on the selection of electrolytes and preparation methods, especially in the preparation of zirconium boride and its production raw materials, and unexpectedly found that
- the reaction of fluorozirconate and fluoroborate with aluminum can form zirconium boride, solve the problem of preparation of zirconium boride, and simultaneously synthesize the low molecular weight sodium cryolite as the electrolyte of the aluminum electrolysis system. Reduce the electrolysis temperature of the aluminum electrolysis industry, thereby reducing power consumption and reducing overall production costs.
- the present invention provides a method of producing zirconium boride and simultaneously producing cryolite, comprising the steps of:
- Step A placing aluminum in the reactor, heating to 700 to 850 ° C, and adding fluorozirconate and fluoroborate to the reactor;
- Step B After stirring for 4 to 6 hours, the upper molten liquid is withdrawn to obtain cryolite; the lower layer is zirconium boride.
- the ratio of the amount of the fluoroborate to the fluorozirconate is 2:1.
- the fluorozirconate is potassium fluorozirconate
- the fluoroborate is potassium fluoroborate
- the fluorozirconate is sodium fluorozirconate and the fluoroborate is sodium fluoroborate.
- the cryolite obtained in the step B is potassium cryolite, and the potassium cryolite
- the molecular formula is mKF ⁇ A1F 3 , m is 1.2.
- the sulphate has a molecular formula of nKF ⁇ A1F 3 and n is 1.2.
- the chemical reaction formula involved in the present invention is:
- the low molecular weight cryolite (f KF . AIF3 and NaF ⁇ A1F 3 ) provided by the invention is used in the aluminum electrolysis industry, and the solubility of the alumina is improved, thereby lowering the electrolysis temperature and reducing the electric energy consumption. Increased electrolytic efficiency and reduced overall production costs.
- the beneficial effects of the present invention are: Providing a novel preparation method of zirconium boride, which adopts the simple equipment and method, has short preparation period and high reaction efficiency, and is obtained.
- Zirconium boride has the advantages of large specific surface area, large contact angle and controllable aluminum content, and the simultaneous production of low molecular weight cryolite is used in the aluminum electrolysis industry. It has suitable conductivity, improves the solubility of alumina, and thus reduces electrolysis. The temperature, the electric energy consumption is reduced, the electrolysis efficiency is improved, and the comprehensive production cost is lowered.
- the preparation method of the low molecular ratio ordinary cryolite provided by the invention has mild reaction conditions, easy control, simple process flow, complete reaction and good product quality.
- KF - A1F 3 ) is used in the aluminum electrolysis industry, and the electrolyte system is composed of potassium cryolite and alumina, using the electrolyte composed of the potassium cryolite (f KF .A1F 3 ) provided by the present invention,
- the working range of the electrolysis temperature can be controlled between 900-960 °C.
- the prepared sodium cryolite NaF ⁇ AIF3) is used in the aluminum electrolysis industry, and the electrolyte system is composed of sodium cryolite and alumina, and the electrolyte composed of the sodium cryolite NaF.AIF3) provided by the present invention has an electrolysis temperature working range. Control at 900-960 ° C between.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Electrolytic Production Of Metals (AREA)
Abstract
提供一种生产硼化锆并同步产出冰晶石的方法,包括如下步骤:A. 将铝置于反应器中,升温至700〜850°C,往反应器中加入氟锆酸盐和氟硼酸盐;B. 搅拌4〜6小时后,将上层熔融液体抽出,得到冰晶石,下层为硼化锆。该方法简单,制备周期短,反应效率高,得到的硼化锆比表面积大、接触角多,铝含量可控;同步生产的低分子比冰晶石可用于铝电解工业,降低能耗,提高电解效率,降低了综合成本。
Description
一种生产硼化锆并同步产出冰晶石的方法 技术领域
本发明涉及生产金属硼化物的制备方法,尤其涉及一种硼化锆的 制备并同步产出冰晶石的方法。
背景技术
目前铝电解工业仍采用传统的 Ha l l-Heroul t法, 电解质一直以 冰晶石-氧化铝为基本体系, 现行的预焙阳极电解槽主要采用碳素阴 极。碳素阴极对铝液不润湿, 且会受到冰晶石的长期腐蚀, 为延长电 解槽的使用寿命, 往往需要在碳素阴极表面涂覆惰性涂层。硼化锆对 铝液具有良好的润湿性, 且耐冰晶石的腐蚀, 因此硼化锆非常适用于 碳素阴极表面涂层。 由于硼化锆等过渡金属硼化物价格昂贵, 目前难 以实现其在碳素阴极表面涂层中的广泛应用。
现有的硼化锆工业生产方法主要包括以下三种:
1. 金属锆和单质硼在高温下直接反应: Zr+2B=ZrB2 ;
2. 碳化硼法:二氧化锆和碳化硼在 C存在下,在碳管内直接反应:
2Zr02+B4C+3C=2ZrB2 +4C0 , 如果碳管内为 气氛, 反应温度为
1800-1900°C ;如果碳管为真空,则反应温度可以降至 1650-1750°C ;
( 3 )气相沉积法: 以 ZrC l4和 8( 13为原料, 在 H2参与下, 进行如下 反应:
ZrCl4+BC l3+5H2=ZrB2+10HCl ; 沉积温度为 8000- 1000 °C, 可以制 得磨料级和电子级产品。
目前由于单质硼的工业生产得率不高 (往往低于 90% ) 且生产成
本高, 单质硼的价格昂贵导致了硼化锆的价格昂贵, 从而限制了硼化 锆的大规模工业生产。 发明内容
为解决现有技术中存在的问题,发明人在电解质的选择以及制备 方法方面进行了大量的探索,尤其在硼化锆及其生产原料的制备方面 进行了大量的探索, 预料不到地发现, 以氟锆酸盐和氟硼酸盐为原料 与铝反应即可生成硼化锆, 解决了硼化锆制备的问题, 并且同步所生 产的低分子比钠冰晶石作为铝电解体系的电解质,可降低铝电解工业 的电解温度, 从而降低电能消耗, 降低综合生产成本。
本发明提供一种生产硼化锆并同步产生冰晶石的方法,包括如下 步骤:
步骤 A: 将铝置于反应器中, 升温至 700至 850°C, 往反应器中 再加入氟锆酸盐和氟硼酸盐;
步骤 B: 搅拌 4至 6h后,将上层熔融的液体抽出,得到冰晶石; 下层为硼化锆。
优选的, 所述氟硼酸盐与氟锆酸盐的物质的量比为 2 : 1。
优选的, 所述氟锆酸盐采用氟锆酸钾, 所述氟硼酸盐采用氟硼酸 钾。
优选的, 所述氟锆酸盐采用氟锆酸钠, 所述氟硼酸盐采用氟硼酸 钠。
优选的, 所述步骤 B中得到的冰晶石为钾冰晶石, 所述钾冰晶石
的分子式为 mKF · A1F 3 , m为 1. 2。 优选的, 所述步骤 B中得到的冰晶石为钠冰晶石, 所述钠冰晶石 的分子式为 nKF · A1F 3 , n为 1. 2。 本发明中所涉及的化学反应式为:
10 10 6
― A l+K2ZrF6+2KBF4=ZrB2+— (7 KF · A1F3 )
3 3 5
采用上述技术方案, 本发明提供的低分子比冰晶石 (f KF . AIF3 和 NaF · A1F3 ) 用于铝电解工业, 氧化铝的溶解性能得到改善, 从 而降低了电解温度, 降低了电能消耗, 提高了电解效率, 降低了综合 生产成本。
与现有技术相比, 本发明的有益效果是: 提供了一种硼化锆的全 新制备方法, 该方法所采用的设备和方法简单, 制备周期短且具有反 应效率高的特点, 且得到的硼化锆比表面积大、接触角多和铝含量可 控等优点, 且同步生产的低分子比冰晶石用于铝电解工业, 具有合适 的电导率, 提高了氧化铝的溶解度, 从而降低了电解温度, 降低电能 消耗, 提高了电解效率, 降低了综合生产成本; 本发明提供的低分子 比普通的冰晶石的制备方法反应条件温和,容易控制,工艺流程简单, 反应完全, 产物质量好。
具体实施方式
下面通过具体实施例对本发明做进一步详细说明。
实施例 1
称取 1吨铝置于反应器中,抽真空后通入氩气保护,升温至 750°C, 按反应比例往反应器中缓慢加入干燥的氟硼酸钾与氟锆酸钾混合物, 氟硼酸钾与氟锆酸钾的摩尔比为 2: 1, 快速搅拌 5h后, 生成硼化锆 和钾冰晶石 ( KF * A1F3), 打开反应器盖, 用虹吸泵抽出上层熔融 的液态钾冰晶石。 将制得的钾冰晶石 (| KF - A1F3) 用于铝电解工业, 电解质体系 是由钾冰晶石和氧化铝组成,使用本发明提供的钾冰晶石(f KF .A1F3) 组成的电解质, 电解温度的工作范围可控制在 900-960°C之间。 实施例 2
称取 1吨铝置于反应器中,抽真空后通入氩气保护,升温至 750°C, 按反应比例往反应器中缓慢加入干燥的氟硼酸钠与氟锆酸钠混合物, 氟硼酸钠与氟锆酸钠的摩尔比为 2: 1, 快速搅拌 5h后, 生成硼化锆 和钠冰晶石 ( NaF * AlF3), 打开反应器盖, 用虹吸泵抽出上层熔融 的液态钠冰晶石。 将制得的钠冰晶石 NaF · AIF3) 用于铝电解工业, 电解质体 系是由钠冰晶石和氧化铝组成, 使用本发明提供的钠冰晶石 NaF .AIF3)组成的电解质, 电解温度的工作范围可控制在 900-960°C
之间。
以上内容是结合具体的优选实施方式对本发明所作的进一步详 细说明, 不能认定本发明的具体实施只局限于这些说明。对于本发明 所属技术领域的普通技术人员来说, 在不脱离本发明构思的前提下, 还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。
Claims
1.一种生产硼化锆并同步产出冰晶石的方法, 其特征在于, 包括 如下步骤:
步骤 A: 将铝置于反应器中, 升温至 700至 850°C, 往反应器中 再加入氟锆酸盐和氟硼酸盐;
步骤 B: 搅拌 4至 6小时后, 将上层熔融的液体抽出, 得到冰晶 石; 下层为硼化锆。
2.如权利要求 1所述的方法, 其特征在于, 所述氟硼酸盐与氟锆 酸盐的摩尔比为 2: 1。
3.如权利要求 2所述的方法, 其特征在于, 所述氟锆酸盐采用氟 锆酸钾, 所述氟硼酸盐采用氟硼酸钾。
4.如权利要求 2所述的方法, 其特征在于, 所述氟锆酸盐采用氟 锆酸钠, 所述氟硼酸盐采用氟硼酸钠。
5.如权利要求 3所述的方法, 其特征在于, 所述步骤 B中得到的 冰晶石为钾冰晶石,所述钾冰晶石的分子式为 mKF -A1F3, m为 1.2。
6.如权利要求 4所述的方法, 其特征在于, 所述步骤 B中得到的 冰晶石为钠冰晶石,所述钠冰晶石的分子式为 nKF -A1F3, n为 1.2。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/416,677 US9902622B2 (en) | 2012-07-25 | 2012-11-26 | Method for preparing zirconium boride and synchronously preparing cryolite |
EP12881822.6A EP2878577B1 (en) | 2012-07-25 | 2012-11-26 | Method for producing zirconium boride and for simultaneously producing cryolite |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210259228.3 | 2012-07-25 | ||
CN2012102592283A CN102745704A (zh) | 2012-07-25 | 2012-07-25 | 一种生产硼化锆并同步产出冰晶石的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014015597A1 true WO2014015597A1 (zh) | 2014-01-30 |
Family
ID=47026280
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/085288 WO2014015597A1 (zh) | 2012-07-25 | 2012-11-26 | 一种生产硼化锆并同步产出冰晶石的方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9902622B2 (zh) |
EP (1) | EP2878577B1 (zh) |
CN (1) | CN102745704A (zh) |
WO (1) | WO2014015597A1 (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102747253A (zh) * | 2012-07-25 | 2012-10-24 | 深圳市新星轻合金材料股份有限公司 | 一种生产铝锆硼合金并同步产生冰晶石的方法 |
CN102732914A (zh) * | 2012-07-25 | 2012-10-17 | 深圳市新星轻合金材料股份有限公司 | 铝电解过程中的电解质及其补充体系的制备方法 |
CN102745704A (zh) * | 2012-07-25 | 2012-10-24 | 深圳市新星轻合金材料股份有限公司 | 一种生产硼化锆并同步产出冰晶石的方法 |
CN103864085B (zh) * | 2014-03-26 | 2017-12-19 | 山东理工大学 | 棒状硼化锆粉体的制备方法 |
CN103922360B (zh) * | 2014-03-26 | 2017-11-10 | 山东理工大学 | 低温制备棒状硼化锆粉体的工艺 |
CN104087974B (zh) * | 2014-07-25 | 2015-10-28 | 深圳市新星轻合金材料股份有限公司 | 一种箱式铝电解用硼化锆惰性阳极、制备方法及铝电解系统 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB802071A (en) * | 1957-04-15 | 1958-10-01 | Kawecki Chemical Company | Improvements in aluminium-base alloys |
EP0556367B1 (en) * | 1991-09-09 | 1997-07-23 | LONDON & SCANDINAVIAN METALLURGICAL CO LIMITED | Process for making a castable aluminium-based composite alloy |
CN101948978A (zh) * | 2010-10-12 | 2011-01-19 | 江苏大学 | 一种Al2O3纳米颗粒增强铝基复合材料的制备方法 |
CN102344149A (zh) * | 2011-06-16 | 2012-02-08 | 兰州理工大学 | 一种ZrB2粉体材料的制备方法 |
CN102583422A (zh) * | 2012-03-07 | 2012-07-18 | 深圳市新星轻合金材料股份有限公司 | 以钾基钛硼氟盐混合物为中间原料生产硼化钛并同步产出钾冰晶石的循环制备方法 |
CN102732914A (zh) * | 2012-07-25 | 2012-10-17 | 深圳市新星轻合金材料股份有限公司 | 铝电解过程中的电解质及其补充体系的制备方法 |
CN102745703A (zh) * | 2012-07-25 | 2012-10-24 | 深圳市新星轻合金材料股份有限公司 | 铝电解用惰性阳极材料或惰性阴极涂层材料的制备工艺 |
CN102747253A (zh) * | 2012-07-25 | 2012-10-24 | 深圳市新星轻合金材料股份有限公司 | 一种生产铝锆硼合金并同步产生冰晶石的方法 |
CN102745704A (zh) * | 2012-07-25 | 2012-10-24 | 深圳市新星轻合金材料股份有限公司 | 一种生产硼化锆并同步产出冰晶石的方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3769185A (en) * | 1972-12-18 | 1973-10-30 | Secretary | Electrolytic preparation of zirconium and hafnium diborides using a molten, cryolite-base electrolyte |
US4812425A (en) * | 1986-06-06 | 1989-03-14 | Eltech Systems Corporation | Purifying refractory metal borides |
CN102583421B (zh) * | 2012-03-07 | 2013-01-23 | 深圳市新星轻合金材料股份有限公司 | 以钠基钛硼氟盐混合物为中间原料生产硼化钛并同步产出钠冰晶石的循环制备方法 |
-
2012
- 2012-07-25 CN CN2012102592283A patent/CN102745704A/zh active Pending
- 2012-11-26 EP EP12881822.6A patent/EP2878577B1/en not_active Not-in-force
- 2012-11-26 US US14/416,677 patent/US9902622B2/en not_active Expired - Fee Related
- 2012-11-26 WO PCT/CN2012/085288 patent/WO2014015597A1/zh active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB802071A (en) * | 1957-04-15 | 1958-10-01 | Kawecki Chemical Company | Improvements in aluminium-base alloys |
EP0556367B1 (en) * | 1991-09-09 | 1997-07-23 | LONDON & SCANDINAVIAN METALLURGICAL CO LIMITED | Process for making a castable aluminium-based composite alloy |
CN101948978A (zh) * | 2010-10-12 | 2011-01-19 | 江苏大学 | 一种Al2O3纳米颗粒增强铝基复合材料的制备方法 |
CN102344149A (zh) * | 2011-06-16 | 2012-02-08 | 兰州理工大学 | 一种ZrB2粉体材料的制备方法 |
CN102583422A (zh) * | 2012-03-07 | 2012-07-18 | 深圳市新星轻合金材料股份有限公司 | 以钾基钛硼氟盐混合物为中间原料生产硼化钛并同步产出钾冰晶石的循环制备方法 |
CN102732914A (zh) * | 2012-07-25 | 2012-10-17 | 深圳市新星轻合金材料股份有限公司 | 铝电解过程中的电解质及其补充体系的制备方法 |
CN102745703A (zh) * | 2012-07-25 | 2012-10-24 | 深圳市新星轻合金材料股份有限公司 | 铝电解用惰性阳极材料或惰性阴极涂层材料的制备工艺 |
CN102747253A (zh) * | 2012-07-25 | 2012-10-24 | 深圳市新星轻合金材料股份有限公司 | 一种生产铝锆硼合金并同步产生冰晶石的方法 |
CN102745704A (zh) * | 2012-07-25 | 2012-10-24 | 深圳市新星轻合金材料股份有限公司 | 一种生产硼化锆并同步产出冰晶石的方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2878577A4 (en) | 2015-07-08 |
EP2878577A1 (en) | 2015-06-03 |
US9902622B2 (en) | 2018-02-27 |
CN102745704A (zh) | 2012-10-24 |
EP2878577B1 (en) | 2017-04-05 |
US20150183645A1 (en) | 2015-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014015597A1 (zh) | 一种生产硼化锆并同步产出冰晶石的方法 | |
US8641996B2 (en) | Cyclic preparation method for producing titanium boride from intermediate feedstock potassium-based titanium-boron-fluorine salt mixture and producing potassium cryolite as byproduct | |
CN102583421B (zh) | 以钠基钛硼氟盐混合物为中间原料生产硼化钛并同步产出钠冰晶石的循环制备方法 | |
US9546095B2 (en) | Preparation process of transition metal boride and uses thereof | |
WO2012159591A1 (zh) | 用于铝电解工业的钾冰晶石及其制备方法 | |
CN102745703A (zh) | 铝电解用惰性阳极材料或惰性阴极涂层材料的制备工艺 | |
WO2012159590A1 (zh) | 铝电解过程中的电解质补充体系及其制备方法 | |
US10309021B2 (en) | Method for preparing an electrolyte and an electrolyte replenishment system during aluminum electrolysis process | |
WO2014015596A1 (zh) | 一种生产铝锆硼合金并同步产生冰晶石的方法 | |
CN102703932B (zh) | 铝电解过程中的电解质补充体系及其制备方法 | |
CN107587168A (zh) | 熔盐电解制备金属钛的方法 | |
CN109797318B (zh) | 一种制备Al3Ti增强铝基材料的方法 | |
WO2013174066A1 (zh) | 用于铝电解工业的钠冰晶石及其制备方法 | |
CN111118548B (zh) | 一种复合离子液体电解质体系低温恒流电解制取铝的方法 | |
CN102660757B (zh) | 铝电解用惰性阳极材料或惰性阴极涂层材料的制备工艺 | |
CN102936672A (zh) | 一种用于轧机的轧辊材料及其制备方法 | |
CN103276410B (zh) | 采用TiAlC基金属陶瓷作为电解时惰性阳极的方法 | |
CN111321427B (zh) | 利用离子液体电解质低温低压电解铝的方法 | |
CN105018970A (zh) | 一种氟化物熔盐体系中热电还原制备金属钒的方法 | |
CN102747250B (zh) | 一种用于轧机的轧辊材料及其制备方法 | |
CN108950603A (zh) | 一种提高电解质溶解度的电解铝方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12881822 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14416677 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2012881822 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012881822 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |