WO2014013883A1 - 半導体装置および半導体装置の製造方法 - Google Patents

半導体装置および半導体装置の製造方法 Download PDF

Info

Publication number
WO2014013883A1
WO2014013883A1 PCT/JP2013/068382 JP2013068382W WO2014013883A1 WO 2014013883 A1 WO2014013883 A1 WO 2014013883A1 JP 2013068382 W JP2013068382 W JP 2013068382W WO 2014013883 A1 WO2014013883 A1 WO 2014013883A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor device
case
conductive pattern
stopper
cooling body
Prior art date
Application number
PCT/JP2013/068382
Other languages
English (en)
French (fr)
Inventor
康佑 小松
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to CN201380014834.1A priority Critical patent/CN104170078B/zh
Priority to JP2014525781A priority patent/JP5854140B2/ja
Priority to EP13820684.2A priority patent/EP2814055B1/en
Publication of WO2014013883A1 publication Critical patent/WO2014013883A1/ja
Priority to US14/482,326 priority patent/US9196566B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • H01L23/4006Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/565Moulds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • H01L23/4093Snap-on arrangements, e.g. clips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • H01L23/4006Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws
    • H01L2023/4037Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws characterised by thermal path or place of attachment of heatsink
    • H01L2023/405Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws characterised by thermal path or place of attachment of heatsink heatsink to package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • H01L23/4006Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws
    • H01L2023/4037Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws characterised by thermal path or place of attachment of heatsink
    • H01L2023/4062Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws characterised by thermal path or place of attachment of heatsink heatsink to or through board or cabinet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • H01L23/4006Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws
    • H01L2023/4075Mechanical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • H01L23/4006Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws
    • H01L2023/4075Mechanical elements
    • H01L2023/4087Mounting accessories, interposers, clamping or screwing parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/16Fillings or auxiliary members in containers or encapsulations, e.g. centering rings
    • H01L23/18Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device
    • H01L23/24Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device solid or gel at the normal operating temperature of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a low-cost semiconductor device that can be easily attached to a cooling body, and more particularly, to a semiconductor device that does not have a cooling base (for example, a copper base) that contacts the cooling body and a method for manufacturing the semiconductor device.
  • a cooling base for example, a copper base
  • an insulating substrate with a conductive pattern on which a semiconductor chip is mounted is fixed to a cooling base (for example, a copper base), and this cooling base is fixed to a cooling body (cooling fin).
  • This semiconductor device is said to be a copper baseless type, and the insulating substrate with a conductive pattern is composed of a single DCB (Direct Copper Bonding) substrate or an aluminum insulating substrate.
  • the package is a terminal case with a terminal attached to a resin case or a case molded by transfer molding, and the sealing resin is a gel (silicone gel) or an epoxy resin.
  • Non-Patent Document 1 Three typical examples of a conventional method of attaching a copper baseless semiconductor device to a cooling body will be described. 1) As shown in FIG. 18, a method of screwing clamps 52 (two places) projecting outside the case 51 main body of the semiconductor device 500 (Non-Patent Document 1).
  • Patent Document 1 a method of forming a hole 55 through which a screw is passed at both ends (two places) of the case 54 of the semiconductor device 600 and screwing.
  • Patent Document 2 a method of forming a hole 58 through which a screw is passed in the center of the case 57 of the semiconductor device 700 and screwing it.
  • reference numerals 53, 56, and 59 in the drawing denote insulating substrates with conductive patterns, respectively.
  • Non-Patent Document 1 when the warpage of the surface conductor 53a of the non-divided one insulating substrate 53 with the conductive pattern is investigated, as shown in FIG.
  • the warp is warped toward the front side of the insulating substrate 53 with the conductive pattern, and does not necessarily spread concentrically from the center of the semiconductor device.
  • the part where the warpage becomes remarkable may be located at a part 60 away from the center of the back surface conductor 53a.
  • reference numeral 61 in the figure denotes a contour line, and the vicinity of the portion 60 is recessed from other portions.
  • the portion 60 in which the warp becomes significant in this manner is separated from the center of the back surface conductor 53a, the adhesion between the back surface conductor 53a and the cooling body decreases when the semiconductor device 500 is attached to the cooling body.
  • the contact thermal resistance between the semiconductor device 500 and the cooling body increases.
  • a thermal compound may be applied to the contact surface between the semiconductor device 500 and the cooling body.
  • the amount of thermal compound applied increases, and the thermal resistance increases.
  • the screwing location is on the outer periphery of the cases 51 and 54, and this location becomes a dead space. As a result, the outer dimensions increase.
  • the insulating substrates with conductive patterns 53, 56, and 59 attached directly to the cooling body have a single structure, the shape of warping (the way of warping) is not constant and varies from one semiconductor device to another. In particular, in the semiconductor device 500, the warp of the insulating substrate 53 with the conductive pattern is significant.
  • the object of the present invention is to solve such problems, and can be easily attached in close contact with the cooling body without torque management, reducing the contact thermal resistance, reducing the outer dimensions, and reducing the manufacturing cost.
  • An object of the present invention is to provide a semiconductor device and a method for manufacturing the semiconductor device.
  • an insulating substrate with a conductive pattern in which a conductor is formed on the main surface of an insulating plate, and one of the insulating substrate with a conductive pattern A case in which a plurality of the insulating substrates with conductive patterns are exposed and a cooling body that is in contact with the one main surface of the exposed insulating substrates with conductive patterns is attached to the case.
  • a beam portion provided in a beam shape on the case so as to face the other main surface of the plurality of insulating substrates with conductive patterns stored therein, and a column shape provided in the center of the beam portion, the beam portion And a stopper for attaching a tip end to an attachment hole of the cooling body attached to the case so as to bend the case.
  • the sealing resin filled in the case in contact with the plurality of insulating substrates with conductive patterns and the beam portion It is good to have.
  • the sealing resin may be formed of a material having elasticity.
  • the plurality of insulating substrates with conductive patterns include the stopper having the tip attached to the cooling body. It is good to store in the said case so that it may surround.
  • the plurality of insulating substrates with conductive patterns have a side adjacent to the stopper higher than an outer peripheral part on the case side. It is good to be lifted to the beam part side.
  • the case, the beam portion, and the stopper are integrally formed of resin. It is good to be.
  • the stopper includes a support column and a hook portion of the tip end portion of the support column, and the hook unit It is preferable that a notch is formed from the bottom of the base to the support.
  • the plurality of insulating substrates with conductive patterns are formed by radially dividing one large insulating substrate with conductive patterns. It is good to be.
  • a screw may be formed at the tip of the stopper.
  • a plurality of insulating substrates with conductive patterns each having a conductor formed on the main surface of the insulating plate, surround the hole in the center of the jig, and the conductive pattern Placing one main surface side of the insulated substrate with the jig on the jig, and exposing one principal surface of the insulated substrate with the conductive pattern to house the plurality of insulated substrates with the conductive pattern, A case to which a cooling body that is in contact with the one main surface of the plurality of insulating substrates with conductive patterns is attached, and the other main surface of the insulating substrate with conductive patterns housed in the case.
  • the end where the tool is integrally molded The case, by aligning the tip of the fastener into the hole in the center of the jig, and a method of manufacturing a semiconductor device having a step of covering the plurality of the conductive pattern with an insulation substrate.
  • the terminal case covered with the plurality of insulating substrates with conductive patterns is filled with sealing resin,
  • the step of solidifying the insulating substrate with a conductive pattern and the sealing resin in contact with the beam portion may be further included.
  • the center of the beam portion is pressed against the jig, It is good to have the process of inserting the tip part of the stopper in the hole where the jig is inserted, and distorting the beam part.
  • the jig is used as the jig. It is good to have the process of isolate
  • a semiconductor device includes an insulating substrate with a conductive pattern, a case in which one main surface of the insulating substrate with a conductive pattern is exposed and stored, and a cooling body is attached to the one main surface; A beam portion provided in a beam shape on the case facing the other main surface of the patterned insulating substrate, and provided at the center of the beam portion, the tip of the column-shaped stopper is connected to the beam portion.
  • the case can be attached in close contact with the cooling body by filling the case with sealing resin in contact with the plurality of insulating substrates with conductive patterns and the beam portions.
  • the plurality of insulating substrates with conductive patterns should surround the stopper with the tip attached to the cooling body and be lifted to the beam side so that the side adjacent to the stopper is higher than the outer peripheral part of the case side. It can be easily attached to the cooling body with a single touch. This attachment eliminates the need for torque management required for screw tightening, and can provide a low-cost semiconductor device.
  • the attachment portion is located at the central portion of the case, the external dimensions can be made smaller than in the case where the attachment portion is provided on the conventional outer peripheral portion, and a small semiconductor device can be provided.
  • FIG. 4 is a process diagram sequentially illustrating a procedure for attaching the semiconductor device to the cooling body, following FIG.
  • FIG. 3 It is a manufacturing method of the semiconductor device concerning the 2nd example, and is a principal part manufacturing process sectional view shown in order of a process.
  • FIG. 6 is a manufacturing method of the semiconductor device according to the second embodiment, continuing from FIG. It is a principal part block diagram of the semiconductor device which concerns on 3rd Example, (a) is a top view, (b) is a sectional side view seen from the arrow A of (a), (c) is an insulating substrate with a conductive pattern. It is principal part sectional drawing. It is the figure which observed the curvature of the back surface conductor of the insulated substrate with a conductive pattern of FIG. It is process drawing which shows the procedure which attaches a semiconductor device to a cooling body.
  • FIG. 1 It is a manufacturing method of the semiconductor device concerning the 2nd example, and is a principal part manufacturing process sectional view shown in order of a process.
  • FIG. 6 is a manufacturing method of the semiconductor device according to the second embodiment, continuing from FIG. It is
  • FIG. 10 is a process diagram illustrating a procedure for attaching the semiconductor device to the cooling body, following FIG. 9; It is a manufacturing method of the semiconductor device concerning the 4th example, and is a principal part manufacturing process sectional view shown in order of a process.
  • FIG. 11 is a manufacturing process of the semiconductor device according to the fourth example, continued from FIG. 11, and is a fragmentary manufacturing process sectional view shown in the order of processes.
  • FIG. 13 is a manufacturing method of the semiconductor device according to the fourth example, following FIG. 12, and is a fragmentary manufacturing process sectional view shown in the order of processes.
  • FIG. 1A is a side view
  • FIG. 3 is a configuration diagram of a main part of a semiconductor device disclosed in Patent Document 1, in which FIG. (A) is a side view and FIG. (B) is a top view.
  • 4A and 4B are main part configuration diagrams of a semiconductor device disclosed in Patent Document 2, in which FIG. 5A is a side view, and FIG. It is a figure which shows the curvature of the back surface conductor of FIG.
  • FIG. 1A and 1B are main part configuration diagrams of a semiconductor device according to a first embodiment, in which FIG. 1A is a plan view, FIG. 1B is a side sectional view as viewed from an arrow A in FIG. It is principal part sectional drawing of an insulated substrate with a pattern.
  • the semiconductor device 100 includes a terminal case 1 in which a terminal 3 serving as an external lead-out terminal is fixedly attached to an outer frame 2 serving as a case, and a cross-shaped beam portion 4 having an elastic force (spring action) connected thereto.
  • the semiconductor device 100 includes an insulating substrate 5 with conductive patterns divided into four pieces, and a semiconductor chip 6 fixed to each insulating substrate 5 with conductive patterns.
  • the dimension of the insulating substrate 5 with a conductive pattern is, for example, 20 mm ⁇ 30 mm.
  • the semiconductor device 100 is fixed to the center of the beam portion 4 and protrudes downward from the insulating substrate 5 with the conductive pattern, and the sealing resin 8 having elasticity filled in the terminal case 1. Is provided.
  • the terminal case 1, the beam portion 4, and the stopper 7 are integrally formed of a resin made of the same material (for example, PBT: polybutylene terephthalate). Of course, each may be fixed with an adhesive. In order to give the beam portion 4 a spring action, the thickness is reduced to about 1 mm, for example. The width of the beam portion 4 is about several mm, for example, 4 mm.
  • the terminal 3 is a narrow connection conductor plate.
  • the tip 3a of the terminal 3 (external lead-out terminal) in the terminal case 1 is fixed to the semiconductor chip 6 or the insulating substrate 5 with the conductive pattern by solder (not shown). Further, the semiconductor chip 6 is fixed to the conductive pattern 5a (FIG. 1 (c)) of the insulating substrate 5 with the conductive pattern with solder (not shown). Further, as the elastic sealing resin 8 filled in the terminal case 1, a material having high adhesion to the terminal case 1 and the insulating substrate 5 with the conductive pattern is used. For example, a material such as a highly adhesive potting agent may be used. Specifically, for example, RTV rubber manufactured by Shin-Etsu Chemical Co., Ltd. is used.
  • the insulating substrate 5 with the conductive pattern and the inner wall of the terminal case 1 are not in tight contact but may be loosely contacted or have a gap. Such contact allows the insulating substrate 5 with the conductive pattern to move together with the viscosity of the sealing resin 8 when the semiconductor device 100 described later is attached to the cooling body 11.
  • the relationship between the insulating substrate 5 with the conductive pattern and the inner wall of the terminal case 1 and the relationship with the sealing resin 8 are the same in the second to sixth embodiments.
  • the back conductor 5b (FIG. 1C) of each insulating substrate 5 with a conductive pattern is flat with almost no warpage.
  • the case where the insulating substrate 5 with the conductive pattern is divided into four is shown, but it may be divided into two. That is, it may be divided into a plurality of lines extending radially from the center of the terminal case 1.
  • the insulating substrate 5 with a conductive pattern includes an insulating substrate 5c such as a ceramic plate, and a conductive pattern 5a that is a conductor formed on the front surface of the insulating substrate 5c.
  • the back conductor 5b is formed on the back surface.
  • the semiconductor chip 6 is soldered to the conductive pattern 5a, and the back surface conductor 5b is in pressure contact with a cooling body (not shown).
  • the stopper 7 is composed of a support column 7a and a hook portion 7b attached to the lower tip, and a notch 7d is formed in the longitudinal direction (upward) of the support column 7a from the bottom surface 7c of the hook portion 7b.
  • the notch 7d acts when the semiconductor device 100 is fixed to a cooling body (not shown) via the stopper 7.
  • the hook portion 7b has a cross-sectional area that increases upward. 1 shows an example in which the notch 7d is formed in one direction from the front side to the back side of the drawing, but the notch 7d is also cut in a direction passing through the central axis of the column 7a and perpendicular to the notch 7d. There may be. Furthermore, this notch may consist of a plurality of notches that cross the central axis of the column 7a. The structure of this notch is the same as in the second to fourth and sixth embodiments.
  • FIG. 2 is a plan view of a main part in which an insulating substrate with a conductive pattern is arranged in the terminal case of FIG. Here, the beam part 4 and the stopper 7 are not shown.
  • the insulating substrate 5 with the conductive pattern divided into four parts is arranged around the position where the stopper 7 is arranged as a center 9.
  • the dividing lines 10 that respectively divide the insulating substrate 5 with the conductive pattern divided into four extend radially from the position of the stopper 7 (here, a cross). That is, the divided insulating substrate 5 with the conductive pattern is arranged radially with the stopper 7 as the center.
  • 3 to 4 are process diagrams sequentially showing a procedure for attaching the semiconductor device to the cooling body.
  • the semiconductor device 100 is disposed on the cooling body 11.
  • the center of the hook portion 7 b of the semiconductor device 100 is aligned with the mounting hole 12 at the center of the cooling body 11.
  • the mounting hole 12 has a two-stage structure, with the upper stage being a hole 12a and the lower stage being a hole 12b having a diameter larger than that of the hole 12a.
  • the diameter of the hole 12a is equal to or larger than the maximum diameter AA of the hook portion 7b ⁇ the crack width dd of the notch 7d and smaller than the maximum diameter AA of the hook portion 7b.
  • the diameter of the hole 12b is equal to or greater than the maximum diameter AA of the hook portion 7b.
  • the structure of the holes 12a and 12b is the same as in the second to fourth and sixth embodiments.
  • a force 13 is applied to the apex 7e of the support 7a of the stopper 7, and the hook portion 7b at the tip of the stopper 7 is pushed into the hole 12a of the cooling body 11.
  • the notch 7d formed in the column 7a is narrowed, the diameter of the hook portion 7b is reduced, and the hook portion 7b can pass through the hole 12a of the cooling body 11.
  • the beam portion 4 is distorted downward, and the sealing resin 8 sandwiched between the beam portion 4 that is an elastic body and the insulating substrate 5 with the conductive pattern is compressed.
  • the notch 7d expands by spring action and returns to its original size.
  • the sealing resin 8 is compressed by the force 13, and the repulsive force 14 becomes a force that spreads in all directions like a hydrostatic pressure.
  • the bottom portion 12c of the eleven hole 12a is pressed upward by the repulsive force 15.
  • the repulsive force 15 of the beam portion 4 is transmitted to the cooling body 11 through the stopper 7, the cooling body 11 is pushed upward, and the insulating substrate 5 with a conductive pattern is pressed by the force 16.
  • the repulsive force 14 of the sealing resin 8 and the force 16 that lifts the cooling body 11 upward the insulating substrate 5 with the conductive pattern and the cooling body 11 are closely attached and fixed. Since the hook portion 7b is formed at the tip of the stopper 7 as described above, the hook portion 7b is inserted into the hole 12 of the cooling body 11 with one touch by simply applying the force 13 to the apex 7e of the stopper 7.
  • the apparatus 100 can be fixed in close contact with the cooling body 11 easily.
  • FIGS. 5 to 6 are cross-sectional views of the main part manufacturing process shown in the order of the processes, which are the method for manufacturing the semiconductor device according to the second embodiment.
  • the insulating substrate 5 with the conductive pattern is placed on the solder jig 21.
  • Solder (not shown) is applied on the insulating substrate 5 with conductive pattern (conductive pattern 5a).
  • the semiconductor chip 6 is placed on the applied solder.
  • solder (not shown) is applied to the semiconductor chip 6, and the terminal case 1 in which the beam portion 4 and the stopper 7 are integrally molded is covered from the semiconductor chip 6 and the terminal 3 (external lead terminal). Is disposed on the semiconductor chip 6. Thereafter, the temperature of the solder jig 21 is raised, the solder is melted, and then cooled to solidify the solder, so that the insulating substrate 5 with the conductive pattern and the semiconductor chip 6, and the semiconductor chip 6 and the terminal 3 (tip 3a) Solder each.
  • the terminal case 1 to which the terminal 3 (tip 3a) and the semiconductor chip 6, and the semiconductor chip 6 and the insulating substrate 5 with the conductive pattern are soldered is removed from the solder jig 21.
  • the sealing resin 8 is an elastic resin as described above, and is, for example, a highly adhesive potting agent.
  • the terminal case 1 in which the sealing resin 8 is cast and solidified is taken out from the resin casting jig 22.
  • the semiconductor device 100 since the entire exposed surface of the back conductor 5b of each of the insulating substrates 5 with conductive patterns divided into four is flat (see FIG. 1), the semiconductor device 100 is attached to the cooling body 11. In the contact surface between the semiconductor device 100 and the cooling body 11, the contact force in the vicinity of the stopper 7 tends to be large and the contact force in the outer peripheral portion tends to be small. A method for solving this problem and fixing with a substantially uniform contact force from the vicinity of the stopper 7 to the outer periphery will be described below.
  • FIG. 7A and 7B are configuration diagrams of a principal part of the semiconductor device according to the third embodiment, in which FIG. 7A is a plan view, FIG. 7B is a side sectional view as viewed from an arrow A in FIG. It is principal part sectional drawing of an attached insulated substrate.
  • the difference between the semiconductor device 200 and the semiconductor device 100 is that the insulating pattern-equipped insulating substrate 5 is arranged with the side adjacent to the stopper 7 being lifted.
  • the height H to be lifted is about 100 ⁇ m to 200 ⁇ m, and the upper surface of the sealing resin 8 is also lifted accordingly, so that the upper surface of the semiconductor device 200 is curved upwardly by about 100 ⁇ m to 200 ⁇ m.
  • FIG. 8 is a diagram observing the warpage of the back conductor of the insulating substrate with the conductive pattern of FIG. This warp is concave upward. From the figure, the contour line 23 of the warp is the lowest at the center (concave upward), and increases concentrically toward the outer periphery. As described above, since the warpage is uniformly generated from the center toward the outer periphery, when the semiconductor device 200 is attached to the cooling body 11, the adhesion (contact force) between the insulating substrate 5 with the conductive pattern and the cooling body 11 is improved. Can be increased.
  • FIG. 9 to 10 are process diagrams showing a procedure for attaching the semiconductor device to the cooling body.
  • the semiconductor device 200 is disposed on the cooling body 11.
  • the center of the hook portion 7 b of the semiconductor device 200 is aligned with the mounting hole 12 at the center of the cooling body 11.
  • the mounting hole 12 has a two-stage structure, with the upper stage being a hole 12a and the lower stage being a hole 12b having a diameter larger than that of the hole 12a.
  • a force 13 is applied to the apex 7e of the support 7a of the stopper 7 to push the hook portion 7b at the lower end of the stopper 7 into the hole 12a of the cooling body 11.
  • the notch 7d formed in the support column 7a is narrowed, the diameter of the hook portion 7b is reduced, and it can pass through the hole 12a of the cooling body 11.
  • the upper beam portion 4 is in the downward direction, and the back conductor 5b of the insulating substrate 5 with the strained conductive pattern is in contact with the cooling body 11 in the entire area.
  • the repulsive force 14 due to the spring action of the beam portion 4 is transmitted to the cooling body 11 via the hook portion 7b, and the cooling body 11 is lifted.
  • the insulating substrate 5 with the conductive pattern is pressed by the repulsive force 14 by the sealing resin 8. In this way, the semiconductor device 200 is closely attached and fixed to the cooling body 11.
  • the force 13 applied to the stopper 7 located at the center of the terminal case 1 is transmitted to the center of the cooling body 11, and the force 13 is transmitted to the outer peripheral portion of the cooling body 11. For this reason, the force at the central portion of the contact surface between the semiconductor device 200 and the cooling body 11 is large, and the force at the outer peripheral portion is small. Since the corner portion 5d (located in the vicinity of the stopper 7) of each conductive pattern-insulated substrate 5 having a large warp is located at the central portion to which the large force is applied, the force applied to the central portion is weakened, and the insulating substrate 5 with the conductive pattern is provided. A uniform force is applied to the entire area.
  • FIG. 11 to FIG. 13 are cross-sectional views of main part manufacturing steps shown in the order of steps in the method of manufacturing a semiconductor device according to the fourth embodiment.
  • FIG. 14 is a main part configuration diagram of a resin casting jig used in the manufacturing method, (a) is a plan view, and (b) is a cross-sectional view.
  • FIG. 14B also shows the terminal case 1 and the insulating substrate 5 with a conductive pattern for reference.
  • the insulating substrate 5 with the conductive pattern is placed on the solder jig 21.
  • Solder (not shown) is applied on the insulating substrate 5 with conductive pattern (conductive pattern 5a).
  • the semiconductor chip 6 is placed on the applied solder.
  • solder (not shown) is applied onto the semiconductor chip 6, and the terminal case 1 in which the beam portion 4 and the stopper 7 are integrally molded is covered from the semiconductor chip 6, and the tip 3a of the terminal 3 is covered with the semiconductor. It is arranged on the chip 6. Thereafter, the temperature of the solder jig 21 is raised, the solder is melted, and then cooled to solidify the solder, so that the insulating substrate 5 with the conductive pattern and the semiconductor chip 6, and the semiconductor chip 6 and the terminal 3 (tip 3a) Solder.
  • the terminal case 1 to which the terminal 3 (tip 3a) and the semiconductor chip 6, and the semiconductor chip 6 and the insulating substrate 5 with the conductive pattern are soldered is removed from the solder jig 21.
  • the terminal case 1 to which the terminal 3 (tip 3a) and the semiconductor chip 6 and the semiconductor chip 6 and the insulating substrate 5 with the conductive pattern are soldered is placed on the resin casting jig 24.
  • a hole 25 formed in the center of the resin casting jig 24 and into which the stopper 7 is inserted has the same structure as the mounting hole 12 formed in the cooling body 11.
  • the resin casting jig 24 has a structure that can be separated into two parts (first jig 24a and second jig 24b).
  • the beam portion 4 is allowed to drop downward by about 100 ⁇ m to 200 ⁇ m.
  • the hook portion 7b of the stopper 7 passes through the hole 25a, and the upper end portion 7f of the hook portion 7b comes into contact with the bottom portion 25c of the hole 25a of the resin casting jig 24.
  • FIG. 13F the force 26 (see FIG. 12) is removed, and the first jig 24a and the second jig 24b of the resin casting jig 24 shown in FIG.
  • the terminal case 1 solidified by casting is taken out from the resin casting jig 24.
  • the beam portion 4 returns to the original position by the spring action, and the stopper 7 is lifted.
  • the height H at which the corner 5d is lifted is about 100 ⁇ m to 200 ⁇ m (becomes floating).
  • FIG. 15 is a fragmentary cross-sectional view of the semiconductor device according to the fifth embodiment.
  • the difference between the semiconductor device 300 and the semiconductor device 200 (see FIG. 7) is that the stopper 7 is replaced with a screw 27.
  • a screw thread 28 is formed on the screw 27, and a cross 30 is cut on the head 29 of the screw 27, for example.
  • the screw 27 is supported by a screw support 31 having a through hole through which the screw 27 passes.
  • FIG. 16 is a cross-sectional view of the main part when the semiconductor device of FIG. 15 is attached to the cooling body.
  • the screw 27 is inserted into the screw receiving portion 11b of the cooling body 11a, and the beam portion 4 warps downward by turning the screw 27.
  • the sealing resin 8 is sandwiched and compressed between the beam portion 4 and the insulating substrate 5 with the conductive pattern, and presses the insulating substrate 5 with the conductive pattern.
  • This pressing force 32 becomes a pressing force when the semiconductor device 300 is attached to the cooling body 11a.
  • the screw 27 acts as a hook portion 7b by the screw thread 28 and the screw thread 11c of the screw receiving portion 11b meshing with each other.
  • the screw receiving portion 11b has a depth into which the screw 27 is screwed, and this depth is determined so that the repulsive force of the beam portion 4 becomes an appropriate force.
  • FIG. 17 is a fragmentary cross-sectional view of the semiconductor device according to the sixth embodiment.
  • the difference between the semiconductor device 400 and the semiconductor device 200 (see FIG. 7) is that a bonding wire 33 is used for a part of the terminal 3 of the terminal case 1.
  • the example in which the bonding wires 33 are used for the connection between the semiconductor chips 6 and the semiconductor chip 6 and the insulating substrate 5 with the conductive pattern (conductive pattern 5a) is shown. Since the stopper 7 of the semiconductor device 400 is the same as that of the second embodiment, the same effect as that of the second embodiment can be obtained.
  • a normal case corresponding to the outer frame 2 of the terminal case 1 is used, and the terminal 3 penetrating the terminal case 1 is moved from the upper side of the normal case (outer frame 2) to the outside. Sometimes it is taken out.
  • the hook portion 7 b at the tip of the stopper 7 has the two-stage holes 12 a and 12 b of the cooling body 11 by simply applying a force 13 to the apex 7 e of the stopper 7.
  • the semiconductor devices 100, 200, and 400 can be easily attached to the cooling body 11.
  • the screw 27 of the semiconductor device 300 like the hook portion 7b it can be easily attached to the cooling body 11.
  • the conventional screw tightening operation becomes unnecessary, and further, torque management becomes unnecessary, and the manufacturing cost of the semiconductor devices 100, 200, 400 can be reduced.
  • Examples 5 and 6 that the insulating substrate 5 with a conductive pattern and the cooling body 11 described in Examples 1 to 4 are closely fixed and the size of the semiconductor device can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

 トルク管理なしで簡単に冷却体に密着して取り付けられ、接触熱抵抗を小さくすることができて、外形寸法が小さく、製造コストが低減される。 端子ケース(1)と、これに接続するバネ作用のある梁部(4)と、分割された導電パターン付絶縁基板(5)と、端子ケース(1)の中央に位置する止め具(7)と、端子ケース(1)内に充填される弾力性の封止樹脂(8)とを有する半導体装置(100)は、冷却体との密着性を増大させて接触熱抵抗を小さくできる。導電パターン付絶縁基板(5)を複数に分割することで、冷却体に密着して取り付けることができる。また、止め具(7)の先端のフック部(7b)を冷却体の2段構造の孔に差し込むだけで簡単に冷却体に取り付けることができる。この取り付けには、ネジの締め付けで必要となるトルク管理が不要になり、低コストの半導体装置を提供することができる。

Description

半導体装置および半導体装置の製造方法
 この発明は、冷却体に簡単に取り付けられる低コストの半導体装置に関し、特に、冷却体に接する冷却ベース(例えば、銅ベース)を有さない半導体装置および半導体装置の製造方法に関する。
 通常の半導体装置においては、半導体チップが搭載される導電パターン付絶縁基板は冷却ベース(例えば、銅ベース)に固着されており、この冷却ベースは冷却体(冷却フィン)に固定される。
 近年、小容量の半導体装置においては、コストダウンと熱抵抗の低減を図るために、導電パターン付絶縁基板を冷却ベースを介さないで直接冷却体(冷却フィンなど)に固定する方法が採用される。
 この半導体装置は、銅ベースレスタイプと言われており、前記の導電パターン付絶縁基板は、1枚のDCB(Direct Copper Bonding)基板またはアルミ絶縁基板で構成されている。また、パッケージとしては端子が樹脂ケースに付いている端子ケースやトランスファモールドで成型したケースなどであり、封止樹脂としてはゲル(シリコーンゲル)またはエポキシ樹脂などである。
 従来の銅ベースレスの半導体装置を冷却体に取り付ける方法について代表的な3つの例について説明する。
 1)図18に示すように、半導体装置500のケース51本体の外側に張り出したクランプ52(2箇所)をネジ止めする方法(非特許文献1)。
 2)図19に示すように、半導体装置600のケース54両端(2箇所)にネジを通す孔55を形成してネジ止めする方法(特許文献1)。
 3)図20に示すように、半導体装置700のケース57の中央にネジを通す孔58を形成してネジ止めする方法(特許文献2)。
 尚、図中の符号で53,56,59はそれぞれ導電パターン付絶縁基板である。
特開2011-243839号公報 米国特許6979204号公報
Infineon, 「AN2006-08」, Apllication Note, V2.0, July 2008
 しかし、非特許文献1、特許文献1および特許文献2に記載の半導体装置500~700では、既述の通り、冷却体への取り付けは全てネジ止めで行われるため、ネジの締め付けトルク管理が必要となる。
 また、非特許文献1および特許文献1に記載の半導体装置500,600では冷却体へ取り付けるためのネジ部の面積がデッドスペースとなり、半導体装置500,600の外形寸法が大きくなる。
 また、非特許文献1に記載の半導体装置500において、分割していない1枚の導電パターン付絶縁基板53の裏面導電体53aの面の反りを調査してみると、図21に示すように、反りは導電パターン付絶縁基板53のおもて側に向かって反っており、半導体装置中央から同心円状に広がるとは限らない。この反りが顕著になる箇所は、裏面導電体53aの中央から離れた箇所60に位置することもある。
 尚、図中の符号で61は等高線を示し、箇所60付近が他の箇所より窪んでいる。
 このように反りが顕著になる箇所60が、裏面導電体53aの中央から離れると、半導体装置500を冷却体に取り付ける場合に、この裏面導電体53aと冷却体との間の密着性が低下して、半導体装置500と冷却体との間の接触熱抵抗が増大する。また、この接触熱抵抗の上昇を防ぐため、半導体装置500と冷却体との接触面にサーマルコンパウンドを塗布する場合がある。しかし、反りが大きい箇所ではサーマルコンパウンドの塗布量が多くなり、熱抵抗が大きくなってしまう。
 上記3件の文献に記載された半導体装置500~700においては、
 1)半導体装置500,600,700においては、顧客の組立工程で、ネジ止め作業が必要となり、そのためのネジの締め付けのためのトルク管理が必要となる。また、ネジ止めに時間が掛かる。
 つまり、半導体装置500,600,700では、冷却体への取り付けはいずれもネジ止めであり、ネジ止め作業が必要になり、組立工程でネジの締め付けのためのトルク管理が必要になる。その結果、製造コストが増大する。
 2)半導体装置500,600では、ネジ止め箇所がケース51,54の外周部にあり、この箇所はデッドスペースとなる。そのため外形寸法が大きくなる。
 3)冷却体に直接取り付けられる導電パターン付絶縁基板53,56,59は1枚構成であるため、反りの形状(反り方のこと)は一定しておらず半導体装置毎に変化する。特に、半導体装置500では導電パターン付絶縁基板53の反りが顕著である。
 4)3)項で説明したように、導電パターン付絶縁基板53,56の反りの形状が一定ではないため、反りの管理は困難である。そのため、半導体装置53,56を冷却体にネジにより締め付けて固定する場合に、反りが顕著な箇所の位置によって、半導体装置500,600と冷却体との密着性が低下することがある。
 この発明の目的は、このような課題を解決して、トルク管理なしで簡単に冷却体に密着して取り付けられ、接触熱抵抗を小さくすることができて、外形寸法が小さく、製造コストが低減された半導体装置および半導体装置の製造方法を提供することにある。
 上記目的を達成するために、請求の範囲第1項に記載の発明によれば、絶縁板の主面に導電体がそれぞれ形成された導電パターン付絶縁基板と、前記導電パターン付絶縁基板の一方の主面を表出して複数の前記導電パターン付絶縁基板を収納し、表出した複数の前記導電パターン付絶縁基板の前記一方の主面と接触する冷却体が取り付けられるケースと、前記ケースに収納された複数の前記導電パターン付絶縁基板の他方の主面と対向して前記ケースに梁状に設けられた梁部と、前記梁部の中央に設けられ、柱状であって、前記梁部を歪曲させるように前記ケースに取り付けられた前記冷却体の取り付け孔に先端部を取り付ける止め具と、を有する半導体装置とする。
 また、請求の範囲第2項に記載の発明によれば、第1項に記載の発明において、複数の前記導電パターン付絶縁基板および前記梁部に接して前記ケース内に充填された封止樹脂、を有するとよい。
 また、請求の範囲第3項に記載の発明によれば、第2項に記載の発明において、前記封止樹脂は、弾力性を有する材質で形成されているとよい。
 また、請求の範囲第4項に記載の発明によれば、第1項に記載の発明において、複数の前記導電パターン付絶縁基板は、前記冷却体に前記先端部が取り付けられた前記止め具を囲むように前記ケースに収納されているとよい。
 また、請求の範囲第5項に記載の発明によれば、第3項に記載の発明において、複数の前記導電パターン付絶縁基板は、前記止め具に隣接する側が前記ケース側の外周部より高くなるように前記梁部側に持ち上げられているとよい。
 また、請求の範囲第6項に記載の発明によれば、第1項または第2項に記載の発明において、前記ケースと、前記梁部と、前記止め具とが樹脂で一体成型されて形成されているとよい。
 また、請求の範囲第7項に記載の発明によれば、第1項に記載の発明において、前記止め具は、支柱と、前記支柱の前記先端部のフック部と、を備え、前記フック部の底部から前記支柱にかけて切り欠きが形成されているとよい。
 また、請求の範囲第8項に記載の発明によれば、第1項に記載の発明において、複数の前記導電パターン付絶縁基板は、一つの大きな導電パターン付絶縁基板を放射状に分割して形成されているとよい。
 また、請求の範囲第9項に記載の発明によれば、第1項に記載の発明において、前記止め具の前記先端部にネジが形成されているとよい。
 また、請求の範囲第10項に記載の発明によれば、絶縁板の主面に導電体がそれぞれ形成された複数の導電パターン付絶縁基板を治具の中央の孔を囲んで、前記導電パターン付絶縁基板の一方の主面側を前記治具上に載置する工程と、前記導電パターン付絶縁基板の一方の主面を表出して複数の前記導電パターン付絶縁基板を収納し、表出した複数の前記導電パターン付絶縁基板の前記一方の主面と接触する冷却体が取り付けられるケースと、前記ケースに収納された前記導電パターン付絶縁基板の他方の主面と対向して前記ケースに梁状に設けられた梁部と、前記梁部の中央に設けられ、柱状であって、前記梁部を歪曲させるように前記ケースに取り付けられた前記冷却体の取り付け孔に先端部を取り付ける止め具と、が一体成型された端子ケースを、前記止め具の前記先端部を前記治具の中央の前記孔に位置合わせて、複数の前記導電パターン付絶縁基板に被せる工程と、を有する半導体装置の製造方法とする。
 また、請求の範囲第11項に記載の発明によれば、第10項に記載の発明において、複数の前記導電パターン付絶縁基板に被せられた前記端子ケース内に封止樹脂を充填し、複数の前記導電パターン付絶縁基板および前記梁部に接する前記封止樹脂を固化する工程、をさらに有するとよい。
 また、請求の範囲第12項に記載の発明によれば、第11項に記載の発明において、前記封止樹脂を充填する前に、前記梁部の中央を前記治具に対して押圧し、前記止め具の前記先端部を前記治具の差し込まれる孔に差し込み、前記梁部を歪曲させる工程、を有するとよい。
 また、請求の範囲第13項に記載の発明によれば、第12項に記載の発明において、前記梁部を歪曲させて、前記封止樹脂を固化した後、前記治具を、前記治具の中央に配置される前記差し込まれる孔を通る切断線で2つに分離して、歪曲した前記梁部を元の位置に戻す工程、を有するとよい。
 この発明によれば、半導体装置は、導電パターン付絶縁基板と、導電パターン付絶縁基板の一方の主面を表出して収納して、当該一方の主面に冷却体が取り付けられるケースと、導電パターン付絶縁基板の他方の主面に対向してケースに梁状に設けられた梁部と、を有し、梁部の中央に設けられ、柱状である止め具の先端部を、梁部を歪曲させるようにケースに取り付けられた冷却体の取り付け孔に取り付けることで、冷却体との密着性を増大させて接触熱抵抗を小さくできる。
 複数の導電パターン付絶縁基板および梁部に接してケース内に封止樹脂を充填することで、冷却体に密着して取り付けることができる。
 また、複数の導電パターン付絶縁基板は、冷却体に先端部が取り付けられた止め具を囲み、止め具に隣接する側がケース側の外周部より高くなるように梁部側に持ち上げられていることで、ワンタッチで簡単に冷却体に取り付けることができる。この取り付けには、ネジの締め付けで必要となるトルク管理が不要になり、低コストの半導体装置を提供することができる。
 また、取り付け部分がケースの中央部に位置するため、従来の外周部に取り付け部がある場合より外形寸法を小さくできて小型の半導体装置を提供することができる。
 本発明の上記および他の目的、特徴および利点は本発明の例として好ましい実施の形態を表す添付の図面と関連した以下の説明により明らかになるであろう。
第1の実施例に係る半導体装置の要部構成図であり、(a)は平面図、(b)は(a)の矢印Aから見た側断面図、(c)は導電パターン付絶縁基板の要部断面図である。 図1の端子ケース内に導電パターン付絶縁基板を配置した要部平面図である。 冷却体に半導体装置を取り付ける手順を順に示す工程図である。 図3に続く、冷却体に半導体装置を取り付ける手順を順に示す工程図である。 第2実施例に係る半導体装置の製造方法であり、工程順に示した要部製造工程断面図である。 図5に続く、第2実施例に係る半導体装置の製造方法であり、工程順に示した要部製造工程断面図である。 第3実施例に係る半導体装置の要部構成図であり、(a)は平面図、(b)は(a)の矢印Aから見た側断面図、(c)は導電パターン付絶縁基板の要部断面図である。 図7の導電パターン付絶縁基板の裏面導電体の反りを観察した図である。 冷却体に半導体装置を取り付ける手順を示す工程図である。 図9に続く、冷却体に半導体装置を取り付ける手順を示す工程図である。 第4実施例に係る半導体装置の製造方法であり、工程順に示した要部製造工程断面図である。 図11に続く、第4実施例に係る半導体装置の製造方法であり、工程順に示した要部製造工程断面図である。 図12に続く、第4実施例に係る半導体装置の製造方法であり、工程順に示した要部製造工程断面図である。 製造方法で用いられる樹脂注型治具の要部構成図であり、(a)は平面図、(b)は断面図である。 第5実施例に係る半導体装置の要部断面図である。 図15の半導体装置を冷却体に取り付けたときの要部断面図である。 第6実施例に係る半導体装置の要部断面図である。 非特許文献1に示す半導体装置の要部構成図であり、同図(a)は側面図、同図(b)は上面図である。 特許文献1に示す半導体装置の要部構成図であり、同図(a)は側面図、同図(b)は上面図である。 特許文献2に示す半導体装置の要部構成図であり、同図(a)は側面図、同図(b)は上面図である。 図18の裏面導電体の反りを示す図である。
 実施の形態を以下の実施例で説明する。
<実施例1>
 図1は、第1の実施例に係る半導体装置の要部構成図であり、(a)は平面図、(b)は(a)の矢印Aから見た側断面図、(c)は導電パターン付絶縁基板の要部断面図である。
 この半導体装置100は、ケースとなる外枠2に外部導出端子となる端子3が貫通固着した端子ケース1と、これに接続する弾性力(バネ作用)を具備する十字状の梁部4とを備える。半導体装置100は、4枚に分割された導電パターン付絶縁基板5と、各導電パターン付絶縁基板5に固着された半導体チップ6とを備える。導電パターン付絶縁基板5の寸法は例えば20mm×30mmである。さらに、半導体装置100は、梁部4の中央に固定され、導電パターン付絶縁基板5の下方へ突出する止め具7と、端子ケース1内に充填される弾力性を具備する封止樹脂8とを備える。端子ケース1、梁部4および止め具7は同一材質(例えば、PBT:ポリブチレンテレフタレートなど)の樹脂で一体成型で形成される。勿論、それぞれを接着剤で固定しても構わない。梁部4はバネ作用を持たせるために、厚みを例えば1mm程度に薄くする。また、梁部4の幅は数mm程度、例えば4mmである。端子3は幅の狭い接続導体板である。
 端子ケース1内の端子3(外部導出端子)の先端3aは半導体チップ6や導電パターン付絶縁基板5に図示しない半田で固着される。また、半導体チップ6は図示しない半田で導電パターン付絶縁基板5の導電パターン5a(図1(c))に固着される。また、端子ケース1内に充填される弾力性のある封止樹脂8としては、端子ケース1および導電パターン付絶縁基板5との密着性の高い材料を用いる。例えば、高接着性ポッティング剤のような材料を用いるとよい。具体的には例えば信越化学工業株式会社製RTVゴムなどである。なお、導電パターン付絶縁基板5と端子ケース1の内壁とはきつく接しているものではなくゆるく接するかあるいは隙間を有していればよい。このような接触により、後に述べる半導体装置100を冷却体11に取り付ける際に導電パターン付絶縁基板5が封止樹脂8の粘性とあいまって可動できるようになっている。これら導電パターン付絶縁基板5と端子ケース1の内壁との関係および封止樹脂8との関係は後の実施例2~6においても同様である。
 また、各導電パターン付絶縁基板5の裏面導電体5b(図1(c))は反りが殆どなく平坦である。
 この実施例1では、導電パターン付絶縁基板5が4分割された場合を示したが、2分割でもよい。つまり、端子ケース1の中央から放射状に延びる線で複数に分割すればよい。また、導電パターン付絶縁基板5は、図1(c)に示すように、セラミック板などの絶縁基板5cと、この絶縁基板5cのおもて面に形成される導電体である導電パターン5aと、裏面に形成される裏面導電体5bとで構成される。既述の通り、導電パターン5aに半導体チップ6が半田付けされ、裏面導電体5bは図示しない冷却体に加圧接触する。
 また、止め具7は、支柱7aと、下方の先端に付いたフック部7bとで構成され、フック部7bの底面7cから支柱7aの長手方向(上方)に切り欠き7dが形成されている。この切り欠き7dは半導体装置100を図示しない冷却体に止め具7を介して固定するときに作用する。また、フック部7bは上方へ向かって断面積が大きくなっている。なお、切り欠き7dは図1では紙面手前から奥に向かい一方向に形成された例が示されているが、さらに支柱7aの中心軸を通りこの切り欠き7dに直角に交わる方向にも切り欠きがあってもよい。さらにこの切り欠きは、支柱7aの中心軸を通り交わる複数の切り欠きからなっていてもよい。この切り欠きの構成は実施例2~4,6についても同様である。
 図2は、図1の端子ケース内に導電パターン付絶縁基板を配置した要部平面図である。ここでは梁部4および止め具7は示されていない。4つに分割された導電パターン付絶縁基板5は、止め具7が配置される位置を中心9としてその周りに配置される。4つに分割された導電パターン付絶縁基板5をそれぞれ分ける分割線10は、止め具7の位置から放射状(ここでは十字)に伸びている。つまり、分割された導電パターン付絶縁基板5は止め具7を中心にして放射状に配置される。
 図3~図4は、冷却体に半導体装置を取り付ける手順を順に示す工程図である。
 図3(a)において、半導体装置100を冷却体11上に配置する。このとき半導体装置100のフック部7bの中央を冷却体11の中央の取り付け孔12に位置合わせする。この取り付け孔12は2段構造になっており上段が孔12a、下段が直径が孔12aよりも大きな孔12bになっている。孔12aの直径は、フック部7bの最大直径AA-切り欠き7dの割れ目の幅dd以上であって、フック部7bの最大直径AAより小さい。孔12bの直径は、フック部7bの最大直径AA以上である。この孔12a,12bの構成は実施例2~4,6についても同様である。
 図3(b)において、止め具7の支柱7aの頂点7eに力13を加えて、止め具7の先端のフック部7bを冷却体11の孔12aに押し込む。このとき支柱7aに形成された切り欠き7dは狭くなり、フック部7bの直径が縮径し、フック部7bは冷却体11の孔12aを通過できるようになる。また、このとき、梁部4は下方に歪み、弾性体である梁部4と導電パターン付絶縁基板5とに挟まれた封止樹脂8は圧縮される。
 図4(c)において、フック部7bが冷却体11の孔12aを通過した後、切り欠き7dがバネ作用で広がり元の大きさに戻る。力13によって封止樹脂8は圧縮され、その反発力14は静水圧のように四方八方に広がるような力になる。
 図4(d)において、止め具7の頂点7eに加えている力13を取り去ると、下方に歪んだ梁部4はバネ作用で上方に持ち上がり、梁部4および圧縮された封止樹脂8に元の状態に戻ろうとする力が反発力14,15として現れる。このとき、圧縮された封止樹脂8は元の状態まで戻らないため、封止樹脂8の反発力14は残存する。この反発力14は導電パターン付絶縁基板5を下方に押さえつける反発力14として働く、一方、止め具7の先端のフック部7bの上端部7fは梁部4が上方に引っ張られることで、冷却体11の孔12aの底部12cを反発力15で上方に押さえつける。梁部4の反発力15が止め具7を介して冷却体11に伝達され、冷却体11は上方に押し上げられ、力16で導電パターン付絶縁基板5を押さえつける。この封止樹脂8の反発力14と冷却体11の上方へ持ち上げる力16により、導電パターン付絶縁基板5と冷却体11とは密着し固定される。このように止め具7の先端にフック部7bを形成したために、止め具7の頂点7eに力13を単に加えるだけのワンタッチで、当該フック部7bが冷却体11の孔12に差し込まれ、半導体装置100を冷却体11に簡単に密着して固定させることができる。
 また、この半導体装置100を構成する導電パターン付絶縁基板5を分割することで、冷却体11との密着性が高まり、接触熱抵抗を小さくすることができる。また、半導体装置100では、止め具7が端子ケース1の平面視おける中央領域に配置されているため、非特許文献1や特許文献1の半導体装置と比べて外形寸法を小さくできる。さらに、半導体装置100では、止め具7にフック部7bを設けることで半導体装置100を冷却体11に簡単に密着して固定させることができるため、時間を要するネジ止め作業が不要となり、さらに、トルク管理が不要となり製造コストを低減することができる。
<実施例2>
 図5~図6は、第2実施例に係る半導体装置の製造方法であり、工程順に示した要部製造工程断面図である。
 図5(a)において、半田治具21上に導電パターン付絶縁基板5を載置する。導電パターン付絶縁基板5(導電パターン5a)上に図示しない半田を塗布する。塗布された半田上に半導体チップ6を載置する。
 図5(b)において、半導体チップ6上に図示しない半田を塗布し、梁部4と止め具7とが一体成型された端子ケース1を半導体チップ6上から被せ、端子3(外部導出端子)の先端3aを半導体チップ6上に配置する。その後で、半田治具21を昇温し、半田を溶融させ、その後、冷却して半田を固化させて、導電パターン付絶縁基板5および半導体チップ6、並びに半導体チップ6および端子3(先端3a)をそれぞれ半田付けする。
 図5(c)において、端子3(先端3a)および半導体チップ6、並びに半導体チップ6および導電パターン付絶縁基板5がそれぞれ半田付けされた端子ケース1を半田治具21から外す。
 図6(d)において、半田付けした後の端子ケース1を樹脂注型治具22に載置して封止樹脂8を注型し固化する。この封止樹脂8は既述の通り弾力性のある樹脂であり、例えば、高接着性ポッティング剤などである。
 図6(e)において、封止樹脂8が注型固化された端子ケース1を樹脂注型治具22から取り出す。
 半導体装置100では、4つに分割された導電パターン付絶縁基板5のそれぞれの裏面導電体5bの露出面全域が平坦であるので(図1参照)、半導体装置100を冷却体11に取り付けた場合、半導体装置100と冷却体11との接触面において、止め具7付近の接触力が大きく、外周部の接触力は小さくなる傾向にある。それを解消して止め具7付近から外周部までほぼ均一な接触力で固定できる方策について以下に説明する。
<実施例3>
 図7は、第3実施例に係る半導体装置の要部構成図であり、(a)は平面図、(b)は(a)の矢印Aから見た側断面図、(c)は導電パターン付絶縁基板の要部断面図である。
 半導体装置200と半導体装置100(図1参照)との違いは、導電パターン付絶縁基板5が止め具7に隣接する側が持ち上げられて配置される点である。持ち上げられる高さHは100μm~200μm程度であり、この分、封止樹脂8の上面も持ち上げられるので半導体装置200の上面は上方へ100μm~200μm程度凸状に湾曲する。
 図8は、図7の導電パターン付絶縁基板の裏面導電体の反りを観察した図である。この反りは上方に凹状になっている。図から反りの等高線23は中央が一番低く(上方に凹)、同心円状に外周部に向かって高くなっている。このように、反りが中央から外周に向かって均等に生じることで、半導体装置200を冷却体11に取り付けるときに、導電パターン付絶縁基板5と冷却体11の間の密着性(接触力)を高めることができる。
 図9~図10は、冷却体に半導体装置を取り付ける手順を示す工程図である。
 図9(a)において、半導体装置200を冷却体11上に配置する。このとき半導体装置200のフック部7bの中央を冷却体11の中央の取り付け孔12に位置合わせする。この取り付け孔12は2段構造になっており上段が孔12aで下段が直径が孔12aよりも大きな孔12bになっている。
 図9(b)において、止め具7の支柱7aの頂点7eに力13を加えて、止め具7の下方の先端のフック部7bを冷却体11の孔12aに押し込む。このとき支柱7aに形成された切り欠き7dは狭まり、フック部7bの直径が小さくなり、冷却体11の孔12aを通過できるようになる。また、このとき、上部の梁部4は下方に歪み導電パターン付絶縁基板5の裏面導電体5bは冷却体11に全域で接触する。
 図10(c)において、フック部7bが冷却体11の孔12aを通過した後、切り欠き7dが広がって、元に戻り、フック部7bは元の大きさに戻る。
 図10(d)において、止め具7の頂点7eに加えている力13を取り去ると、下に歪んだ梁部4はバネ作用で上に持ち上がり元の状態に戻る力15が働く。この力15は止め具7の先端のフック部7bに伝達され、フック部7bの上端部7fと冷却体11の孔12aの底部12cが密着する。梁部4のバネ作用による反発力14はフック部7bを介して冷却体11に伝達され、冷却体11は持ち上げられる。一方、封止樹脂8による反発力14で導電パターン付絶縁基板5が押さえ付けられる。こうして、半導体装置200は冷却体11に密着し固定される。
 半導体装置200の場合には、端子ケース1の中央に位置する止め具7に与えられる力13が冷却体11の中央に伝達され、その力13が冷却体11の外周部へ伝達される。そのため、半導体装置200と冷却体11との接触面における中央部の力が大きく、外周部の力が小さくなる。この大きな力が加わる中央部に反りの大きな各導電パターン付絶縁基板5の角部5d(止め具7近傍に位置する)が位置するので、中央部に加わる力が弱まり、導電パターン付絶縁基板5全域に均一な力が働くようになる。
 また、この半導体装置200を構成する導電パターン付絶縁基板5を分割し、且つ、止め具7付近の導電パターン付絶縁基板5を持ち上げることで、冷却体11との密着性を高めることができる。密着性が高まることで、半導体装置200と冷却体11との間の接触熱抵抗を小さくすることができる。また、半導体装置200では、止め具7が端子ケース1の平面視における中央領域に配置されるため、外形寸法を小さくできる。さらに、半導体装置200では、止め具7にフック部7bを設けることで半導体装置200を冷却体11に簡単に密着して固定させることができるため、時間を要するネジ止め作業が不要となり、さらに、トルク管理は不要となり製造コストを低減することができる。
<実施例4>
 図11~図13は、第4実施例に係る半導体装置の製造方法であり、工程順に示した要部製造工程断面図である。
 図14は、製造方法で用いられる樹脂注型治具の要部構成図であり、(a)は平面図、(b)は断面図である。図14(b)には端子ケース1や導電パターン付絶縁基板5なども参考までに示した。
 図11(a)において、半田治具21上に導電パターン付絶縁基板5を載置する。導電パターン付絶縁基板5(導電パターン5a)上に図示しない半田を塗布する。塗布された半田上に半導体チップ6を載置する。
 図11(b)において、半導体チップ6上に図示しない半田を塗布し、梁部4と止め具7が一体成型されている端子ケース1を半導体チップ6上から被せ、端子3の先端3aを半導体チップ6上に配置する。その後で、半田治具21を昇温し、半田を溶融させ、その後、冷却して半田を固化させて、導電パターン付絶縁基板5および半導体チップ6、並びに半導体チップ6および端子3(先端3a)を半田付けする。
 図11(c)において、端子3(先端3a)および半導体チップ6、並びに半導体チップ6および導電パターン付絶縁基板5がそれぞれ半田付けされた端子ケース1を半田治具21から外す。
 図12(d)において、端子3(先端3a)および半導体チップ6、並びに半導体チップ6および導電パターン付絶縁基板5がそれぞれ半田付けされた端子ケース1を樹脂注型治具24へ載置する。この樹脂注型治具24の中央に形成され止め具7が差し込まれる孔25は冷却体11に形成された取り付け孔12と同じ構造をしている。しかし、図14に示すように、樹脂注型治具24は左右(第1治具24aおよび第2治具24b)2つに分離できる構造となっている。
 その後、止め具7の支柱7aの頂点7eに力26を加えて下の方へ押す。これによって、梁部4は下方へ100μm~200μm程度落ち込むようにする。止め具7のフック部7bは孔25aを通り、樹脂注型治具24の孔25aの底部25cにフック部7bの上端部7fが接するようになる。
 図12(e)において、フック部7bが孔25aを通過した後、フック部7bは孔25bに入る。フック部7bは孔25bに入ることで、切り欠き7dが広がり、フック部7bは元の大きさに戻る。力26を加えた状態で、端子ケース1内に封止樹脂8を注型し、固化させる。
 図13(f)において、力26(図12参照)を除去し、図14に示す樹脂注型治具24の第1治具24aおよび第2治具24bを分離して、封止樹脂8が注型固化された端子ケース1を樹脂注型治具24から取り出す。このとき、力26が除去されているので、梁部4はバネ作用で元の位置にもどり、止め具7は持ち上げられる。梁部4のバネ作用により、分割された各導電パターン付絶縁基板5の止め具7に隣接する角部5dが端子ケース1側に周辺部より高くなるように持ち上げられる。角部5dが持ち上げられる高さHは100μm~200μm程度になる(浮いた状態になる)。
 このように、導電パターン付絶縁基板5の止め具7付近の角部5dを持ち上げることで、冷却体11との接触性を良好にすることができる。
<実施例5>
 図15は、第5実施例に係る半導体装置の要部断面図である。半導体装置300と半導体装置200(図7参照)との違いは止め具7をネジ27に代えた点である。ネジ27にはネジ山28が形成され、ネジ27の頭29には例えば十字30が切られている。また、ネジ27はネジ27が通る貫通孔があるネジ支柱31で支えられている。
 図16は、図15の半導体装置を冷却体に取り付けたときの要部断面図である。ネジ27は冷却体11aのネジ受け部11bに差し込まれ、ネジ27を回すことで、梁部4は下方に反る。このとき封止樹脂8は梁部4と導電パターン付絶縁基板5に挟まれて圧縮され、導電パターン付絶縁基板5を押さえ付ける。この押さえつける力32が半導体装置300を冷却体11aに取り付けるときの加圧力となる。ネジ27は、そのネジ山28とネジ受け部11bのネジ山11c同士が噛み合ってフック部7bの働きをする。ネジ受け部11bはネジ27がねじ込まれる深さであって、この深さは梁部4の反発力が適当な力となるよう決められる。
 半導体装置300と冷却体11aの固定は、ネジ27の締め付けトルクの力を利用するのではなく、端子ケース1に配置される梁部4の反発力を利用している。そのため、従来のようなネジ締めのためのトルク管理は必要としない。この場合も実施例1と同様の効果が得られる。
<実施例6>
 図17は、第6実施例に係る半導体装置の要部断面図である。半導体装置400と半導体装置200(図7参照)との違いは端子ケース1の端子3の一部にボンディングワイヤ33を用いた点である。ここでは半導体チップ6同士の接続、並びに半導体チップ6および導電パターン付絶縁基板5(導電パターン5a)にボンディングワイヤ33を用いた例を示した。この半導体装置400の止め具7は実施例2と同じであるので、実施例2と同様の効果が得られる。この実施例6で用いた端子ケース1の代わりに端子ケース1の外枠2に当たる通常のケースを用いて、端子ケース1を貫通する端子3を通常のケース(外枠2)の上方から外部へ取り出す場合もある。
 なお、このようなボンディングワイヤ33は、半導体装置200に限らず、半導体装置100,300にも適用することが可能である。
 上記実施例1~4をまとめるとつぎのようになる。
 端子ケース1と、これに接続するバネ作用のある梁部4と、複数に分割された導電パターン付絶縁基板5と、中央に配置される止め具7および端子ケース1内に充填される弾力性を具備する封止樹脂8とを用いて半導体装置100~400を製造することで、冷却体11,11aとの密着性を高めることができ、半導体装置100~400と冷却体11,11aとの間の接触熱抵抗を小さくすることができる。
 導電パターン付絶縁基板5を複数に分割することで、冷却体11,11aに密着して取り付けることができる。
 また、半導体装置100,200,400では、止め具7の頂点7eに力13を単に加えるだけのワンタッチで、止め具7の先端のフック部7bが冷却体11の2段構造の孔12a,12bに差し込まれ、半導体装置100,200,400を簡単に冷却体11に取り付けることができる。半導体装置300のネジ27をフック部7bのように用いることで、簡単に冷却体11に取り付けることができる。これらの取り付けに当たっては従来のネジ締め作業が不要となり、さらに、トルク管理が不要になり、半導体装置100,200,400の製造コストを低減することができる。
 また、実施例1~4で述べた導電パターン付絶縁基板5と冷却体11が密着固定することおよび半導体装置としての寸法を小さくできることは、実施例5、6についても同様である。
 上記については単に本発明の原理を示すものである。さらに、多数の変形、変更が当業者にとって可能であり、本発明は上記に示し、説明した正確な構成および応用例に限定されるものではなく、対応するすべての変形例および均等物は、添付の請求項およびその均等物による本発明の範囲とみなされる。
   1  端子ケース
   2  外枠
   3  端子
   4  梁部
   5  導電パターン付絶縁基板
   5a 導電パターン
   5b 裏面導電体
   5c 絶縁基板
   6  半導体チップ
   7  止め具
   7a 支柱
   7b フック部
   7c 底面
   7d 切り欠き
   7e 頂点
   8  封止樹脂
   9  中心
  10  分割線
  11,11a 冷却体
  12  取り付け孔
  12a,25a 小さな孔
  12b,25b 大きな孔
  13,16,26,32 力
  14,15 反発力
  21  半田治具
  22,24 樹脂注型治具
  23  等高線
  24a 第1治具
  24b 第2治具
  25  差し込まれる孔
  27  ネジ
  28  ネジ山
  29  頭
  30  十字
  31  ネジ支柱
  33  ボンディングワイヤ

Claims (13)

  1.  絶縁板の主面に導電体がそれぞれ形成された導電パターン付絶縁基板と、
     前記導電パターン付絶縁基板の一方の主面を表出して複数の前記導電パターン付絶縁基板を収納し、表出した複数の前記導電パターン付絶縁基板の前記一方の主面と接触する冷却体が取り付けられるケースと、
     前記ケースに収納された複数の前記導電パターン付絶縁基板の他方の主面と対向して前記ケースに梁状に設けられた梁部と、
     前記梁部の中央に設けられ、柱状であって、前記梁部を歪曲させるように前記ケースに取り付けられた前記冷却体の取り付け孔に先端部を取り付ける止め具と、
     を有することを特徴とする半導体装置。
  2.  複数の前記導電パターン付絶縁基板および前記梁部に接して前記ケース内に充填された封止樹脂、
     を有することを特徴とする請求の範囲第1項記載の半導体装置。
  3.  前記封止樹脂は、弾力性を有する材質で形成されている、
     ことを特徴とする請求の範囲第2項記載の半導体装置。
  4.  複数の前記導電パターン付絶縁基板は、前記冷却体に前記先端部が取り付けられた前記止め具を囲むように前記ケースに収納されている、
     ことを特徴とする請求の範囲第1項記載の半導体装置。
  5.  複数の前記導電パターン付絶縁基板は、前記止め具に隣接する側が前記ケース側の外周部より高くなるように前記梁部側に持ち上げられている、
     ことを特徴とする請求の範囲第3項記載の半導体装置。
  6.  前記ケースと、前記梁部と、前記止め具とが樹脂で一体成型されて形成されている、
     ことを特徴とする請求の範囲第1項記載の半導体装置。
  7.  前記止め具は、支柱と、前記支柱の前記先端部のフック部と、を備え、前記フック部の底部から前記支柱にかけて切り欠きが形成されている、
     ことを特徴とする請求の範囲第1項記載の半導体装置。
  8.  複数の前記導電パターン付絶縁基板は、一つの大きな導電パターン付絶縁基板を放射状に分割して形成されている、
     ことを特徴とする請求の範囲第1項記載の半導体装置。
  9.  前記止め具の前記先端部にネジが形成されている、
     ことを特徴とする請求の範囲第1項記載の半導体装置。
  10.  絶縁板の主面に導電体がそれぞれ形成された複数の導電パターン付絶縁基板を治具の中央の孔を囲んで、前記導電パターン付絶縁基板の一方の主面側を前記治具上に載置する工程と、
     前記導電パターン付絶縁基板の一方の主面を表出して複数の前記導電パターン付絶縁基板を収納し、表出した複数の前記導電パターン付絶縁基板の前記一方の主面と接触する冷却体が取り付けられるケースと、前記ケースに収納された前記導電パターン付絶縁基板の他方の主面と対向して前記ケースに梁状に設けられた梁部と、前記梁部の中央に設けられ、柱状であって、前記梁部を歪曲させるように前記ケースに取り付けられた前記冷却体の取り付け孔に先端部を取り付ける止め具と、が一体成型された端子ケースを、前記止め具の前記先端部を前記治具の中央の前記孔に位置合わせて、複数の前記導電パターン付絶縁基板に被せる工程と、
     を有することを特徴とする半導体装置の製造方法。
  11.  複数の前記導電パターン付絶縁基板に被せられた前記端子ケース内に封止樹脂を充填し、複数の前記導電パターン付絶縁基板および前記梁部に接する前記封止樹脂を固化する工程、
     をさらに有することを特徴とする請求の範囲第10項記載の半導体装置の製造方法。
  12.  前記封止樹脂を充填する前に、
     前記梁部の中央を前記治具に対して押圧し、前記止め具の前記先端部を前記治具の差し込まれる孔に差し込み、前記梁部を歪曲させる工程、
     を有することを特徴とする請求の範囲第11項記載の半導体装置の製造方法。
  13.  前記梁部を歪曲させて、前記封止樹脂を固化した後、
     前記治具を、前記治具の中央に配置される前記差し込まれる孔を通る切断線で2つに分離して、歪曲した前記梁部を元の位置に戻す工程、
     を有することを特徴とする請求の範囲第12項記載の半導体装置の製造方法。
PCT/JP2013/068382 2012-07-18 2013-07-04 半導体装置および半導体装置の製造方法 WO2014013883A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380014834.1A CN104170078B (zh) 2012-07-18 2013-07-04 半导体装置以及半导体装置的制造方法
JP2014525781A JP5854140B2 (ja) 2012-07-18 2013-07-04 半導体装置および半導体装置の製造方法
EP13820684.2A EP2814055B1 (en) 2012-07-18 2013-07-04 Semiconductor device and semiconductor device fabrication method
US14/482,326 US9196566B2 (en) 2012-07-18 2014-09-10 Semiconductor device and semiconductor device fabrication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-159795 2012-07-18
JP2012159795 2012-07-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/482,326 Continuation US9196566B2 (en) 2012-07-18 2014-09-10 Semiconductor device and semiconductor device fabrication method

Publications (1)

Publication Number Publication Date
WO2014013883A1 true WO2014013883A1 (ja) 2014-01-23

Family

ID=49948713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068382 WO2014013883A1 (ja) 2012-07-18 2013-07-04 半導体装置および半導体装置の製造方法

Country Status (5)

Country Link
US (1) US9196566B2 (ja)
EP (1) EP2814055B1 (ja)
JP (1) JP5854140B2 (ja)
CN (1) CN104170078B (ja)
WO (1) WO2014013883A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9196566B2 (en) 2012-07-18 2015-11-24 Fuji Electric Co., Ltd. Semiconductor device and semiconductor device fabrication method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112013007422T5 (de) 2013-09-10 2016-06-02 Mitsubishi Electric Corporation Halbleitervorrichtung und Halbleitermodul
US9318410B2 (en) * 2013-09-26 2016-04-19 Alcatel Lucent Cooling assembly using heatspreader
US20220189851A1 (en) * 2019-06-25 2022-06-16 Mitsubishi Electric Corporation Semiconductor device
US11444002B2 (en) * 2020-07-29 2022-09-13 Taiwan Semiconductor Manufacturing Company, Ltd. Package structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11243839A (ja) 1998-03-05 1999-09-14 Riken Vitamin Co Ltd ケーキ用品質安定化剤及びケーキ
JP2003243607A (ja) * 2002-02-14 2003-08-29 Mitsubishi Electric Corp 電力用半導体モジュール
JP2003303933A (ja) * 2002-04-12 2003-10-24 Toyota Motor Corp 半導体装置の製造方法
US6979204B2 (en) 2003-02-18 2005-12-27 Semikron Elektronik Gmbh & Co. Kg Pressure piece for use in a power semiconductor module

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4110549A (en) * 1974-11-30 1978-08-29 Robert Bosch Gmbh Environmentally protected electronic housing and heat sink structure, particularly for automotive use
US5483103A (en) * 1994-02-24 1996-01-09 Harris Corporation Means for clamping a semi-conductor to a support
KR20030058942A (ko) * 2001-04-09 2003-07-07 가부시키가이샤 스미토모 긴조쿠 엘렉트로 디바이스 방열형 bga 패키지 및 그 제조 방법
JP3938079B2 (ja) * 2003-03-20 2007-06-27 三菱マテリアル株式会社 パワーモジュール用基板の製造方法
DE10340297B4 (de) * 2003-09-02 2006-07-20 Semikron Elektronik Gmbh & Co. Kg Verbindugsanordnung zur Verbindung von aktiven und passiven elektrischen und elektronischen Bauelementen
US7808100B2 (en) * 2008-04-21 2010-10-05 Infineon Technologies Ag Power semiconductor module with pressure element and method for fabricating a power semiconductor module with a pressure element
DE102009002993B4 (de) * 2009-05-11 2012-10-04 Infineon Technologies Ag Leistungshalbleitermodul mit beabstandeten Schaltungsträgern
DE102009002992B4 (de) * 2009-05-11 2014-10-30 Infineon Technologies Ag Leistungshalbleitermodulanordnung mit eindeutig und verdrehsicher auf einem Kühlkörper montierbarem Leistungshalbleitermodul und Montageverfahren
DE102009026558B3 (de) * 2009-05-28 2010-12-02 Infineon Technologies Ag Leistungshalbleitermodul mit beweglich gelagerten Schaltungsträgern und Verfahren zur Herstellung eines solchen Leistungshalbleitermoduls
JP2011243839A (ja) 2010-05-20 2011-12-01 Mitsubishi Electric Corp 電力用半導体装置
EP2814055B1 (en) 2012-07-18 2020-12-30 Fuji Electric Co., Ltd. Semiconductor device and semiconductor device fabrication method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11243839A (ja) 1998-03-05 1999-09-14 Riken Vitamin Co Ltd ケーキ用品質安定化剤及びケーキ
JP2003243607A (ja) * 2002-02-14 2003-08-29 Mitsubishi Electric Corp 電力用半導体モジュール
JP2003303933A (ja) * 2002-04-12 2003-10-24 Toyota Motor Corp 半導体装置の製造方法
US6979204B2 (en) 2003-02-18 2005-12-27 Semikron Elektronik Gmbh & Co. Kg Pressure piece for use in a power semiconductor module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9196566B2 (en) 2012-07-18 2015-11-24 Fuji Electric Co., Ltd. Semiconductor device and semiconductor device fabrication method

Also Published As

Publication number Publication date
CN104170078B (zh) 2017-04-05
EP2814055A1 (en) 2014-12-17
JPWO2014013883A1 (ja) 2016-06-30
EP2814055A4 (en) 2015-10-14
US9196566B2 (en) 2015-11-24
US20140374898A1 (en) 2014-12-25
JP5854140B2 (ja) 2016-02-09
CN104170078A (zh) 2014-11-26
EP2814055B1 (en) 2020-12-30

Similar Documents

Publication Publication Date Title
US9806001B2 (en) Chip-scale packaging with protective heat spreader
JP5759413B2 (ja) 発光ダイオードパッケージ
JP5096782B2 (ja) 半導体装置
EP2005470B1 (en) Lead frame based, over-molded semiconductor package with integrated through hole technology (tht) heat spreader pin(s) and associated method of manufacturing
US7701054B2 (en) Power semiconductor module and method for its manufacture
JP5854140B2 (ja) 半導体装置および半導体装置の製造方法
US7531895B2 (en) Integrated circuit package and method of manufacture thereof
KR101255334B1 (ko) 저 열저항 파워 모듈 및 그 제조방법
US20080258279A1 (en) Leadframe for leadless package, structure and manufacturing method using the same
JP6048238B2 (ja) 電子装置
US20070147005A1 (en) Heat sink board and manufacturing method thereof
JP5096812B2 (ja) 複合リードフレームを用いた半導体装置
JP2009099709A (ja) 半導体装置
JP2008211168A (ja) 半導体装置および半導体モジュール
JP2015056540A (ja) 半導体装置及びその製造方法
TWI581375B (zh) 電子封裝件及其製法
JP2005223005A (ja) 半導体装置
JP5086229B2 (ja) 半導体装置の製造方法
JP4326385B2 (ja) 半導体装置
JP3831380B2 (ja) 半導体装置
JP4051379B2 (ja) 半導体装置の製造方法
KR101367067B1 (ko) 전력 모듈 패키지
KR100979998B1 (ko) 반도체 패키지 제조용 히트블럭
KR20080036345A (ko) 솔더 볼을 갖는 반도체 패키지
WO2011036840A1 (ja) 半導体装置、半導体実装体、および半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13820684

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013820684

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014525781

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE