WO2014010167A1 - 車輪位置検出装置およびそれを備えたタイヤ空気圧検出装置 - Google Patents

車輪位置検出装置およびそれを備えたタイヤ空気圧検出装置 Download PDF

Info

Publication number
WO2014010167A1
WO2014010167A1 PCT/JP2013/003661 JP2013003661W WO2014010167A1 WO 2014010167 A1 WO2014010167 A1 WO 2014010167A1 JP 2013003661 W JP2013003661 W JP 2013003661W WO 2014010167 A1 WO2014010167 A1 WO 2014010167A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
transmitter
wheel
angle
vehicle speed
Prior art date
Application number
PCT/JP2013/003661
Other languages
English (en)
French (fr)
Inventor
則昭 岡田
雅士 森
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2014010167A1 publication Critical patent/WO2014010167A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0415Automatically identifying wheel mounted units, e.g. after replacement or exchange of wheels
    • B60C23/0416Automatically identifying wheel mounted units, e.g. after replacement or exchange of wheels allocating a corresponding wheel position on vehicle, e.g. front/left or rear/right
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0486Signalling devices actuated by tyre pressure mounted on the wheel or tyre comprising additional sensors in the wheel or tyre mounted monitoring device, e.g. movement sensors, microphones or earth magnetic field sensors
    • B60C23/0488Movement sensor, e.g. for sensing angular speed, acceleration or centripetal force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0486Signalling devices actuated by tyre pressure mounted on the wheel or tyre comprising additional sensors in the wheel or tyre mounted monitoring device, e.g. movement sensors, microphones or earth magnetic field sensors
    • B60C23/0489Signalling devices actuated by tyre pressure mounted on the wheel or tyre comprising additional sensors in the wheel or tyre mounted monitoring device, e.g. movement sensors, microphones or earth magnetic field sensors for detecting the actual angular position of the monitoring device while the wheel is turning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L17/00Devices or apparatus for measuring tyre pressure or the pressure in other inflated bodies

Definitions

  • the present disclosure relates to a wheel position detection device that detects in which position of a vehicle a target wheel is mounted, and a tire air pressure detection device including the wheel position detection device.
  • tire pressure detecting devices there is a direct type as one of tire pressure detecting devices.
  • a transmitter equipped with a sensor such as a pressure sensor is directly attached to a wheel side to which a tire is attached.
  • an antenna and a receiver are provided on the vehicle body side. When a detection signal from the sensor is transmitted from the transmitter, the detection signal is received by the receiver via the antenna, and tire pressure is detected. Done.
  • the wheel position is specified by monitoring the change of these relative angles.
  • a change in the relative angle between the rotational position of the wheel detected on the wheel side and the rotational position of the wheel detected on the vehicle body side is monitored based on the deviation of a predetermined number of data, and there is a variation with respect to the initial value.
  • the wheel position is specified by determining that the allowable value is exceeded.
  • a radio signal is transmitted when the wheel reaches a predetermined rotational position.
  • Null there is a place where it is difficult for the radio signal to reach the vehicle body side like so-called Null
  • the rotation position where the radio signal is transmitted is Null
  • the radio signal does not reach the vehicle body side no matter how many times the radio signal is transmitted. is there. In such a case, it may take time to detect the wheel position, or the detection may not be performed.
  • Patent Document 1 it is proposed to transmit radio signals at two or more different angles in order to prevent radio signals from being transmitted every time at the null position. Further, in Patent Document 2, it is proposed to change the transmission angle every time and transmit a radio signal.
  • the present disclosure provides a wheel position detection device and a wheel position detection that can reliably identify a wheel position without including angle information while allowing a transmission frame from a transmitter to be reliably received.
  • An object of the present invention is to provide a tire air pressure detection device including the device.
  • the wheel position detection device is applied to a vehicle in which a plurality of wheels including tires are attached to a vehicle body, and includes a transmitter and a receiver.
  • the transmitter includes a first control unit that is provided on each of the plurality of wheels and generates and transmits a frame including unique identification information.
  • the receiver is provided on the vehicle body side, and receives the frame transmitted from the transmitter via a receiving antenna, whereby the transmitter that has transmitted the frame is attached to any of the plurality of wheels.
  • a second control unit that detects the wheel position and stores the plurality of wheels and the identification information of the transmitter provided in each of the plurality of wheels in association with each other.
  • the transmitter has an acceleration sensor that outputs a detection signal corresponding to an acceleration including a gravitational acceleration component that changes with rotation of a wheel to which the transmitter is attached.
  • the first control unit detects a vehicle speed based on a detection signal of the acceleration sensor, sets a delay time corresponding to the vehicle speed, and is centered on a central axis of a wheel to which the transmitter is attached; and An arbitrary position in the circumferential direction of the wheel is set to an angle of 0 degree, and the angle of the transmitter is detected based on the gravitational acceleration component included in the detection signal of the acceleration sensor, and the angle is determined from the predetermined reference angle and the delay time.
  • the frame is transmitted repeatedly at different transmission angles according to the vehicle speed by setting the time when it has passed as the transmission timing.
  • the second control unit stores a relationship between the vehicle speed and the delay time in advance, and outputs a detection signal corresponding to the passage of gear teeth rotated in conjunction with the plurality of wheels.
  • the gear information indicating the tooth position of the gear and the vehicle speed are acquired based on the detection signal of the sensor, and the delay set by the transmitter is determined from the relationship between the acquired vehicle speed and the stored vehicle speed and the delay time.
  • the time is estimated, and the wheel to which the transmitter to which the frame is transmitted is attached is specified based on the tooth position at the reception timing of the frame and the delay time.
  • the wheel position detection device can reliably identify the wheel position without including the angle information, while reliably receiving the transmission frame from the transmitter.
  • a wheel position detection device is applied to a vehicle in which a plurality of wheels including tires are attached to a vehicle body, and includes a transmitter and a receiver.
  • the transmitter includes a first control unit that is provided on each of the plurality of wheels and generates and transmits a frame including unique identification information.
  • the receiver is provided on the vehicle body side, and receives the frame transmitted from the transmitter via a receiving antenna, whereby the transmitter that has transmitted the frame is attached to any of the plurality of wheels.
  • a second control unit that detects the wheel position and stores the plurality of wheels and the identification information of the transmitter provided in each of the plurality of wheels in association with each other.
  • the transmitter has an acceleration sensor that outputs a detection signal corresponding to an acceleration including a gravitational acceleration component that changes with rotation of a wheel to which the transmitter is attached.
  • the first control unit detects a vehicle speed based on a detection signal of the acceleration sensor, sets a delay angle corresponding to the vehicle speed, and is centered on a central axis of a wheel to which the transmitter is attached; and An arbitrary position in the circumferential direction of the wheel is set to an angle of 0 degree, and the angle of the transmitter is detected based on the gravitational acceleration component included in the detection signal of the acceleration sensor, and the angle is set to the delay angle from a predetermined reference angle.
  • the frame is transmitted repeatedly at different transmission angles depending on the vehicle speed, with the shifted angle as the transmission angle.
  • the second control unit stores a relationship between the vehicle speed and the delay angle in advance, and outputs a detection signal according to the passage of gear teeth that are rotated in conjunction with the plurality of wheels.
  • the gear information indicating the tooth position of the gear and the vehicle speed are acquired based on the detection signal of the sensor, and the delay set by the transmitter is determined from the relationship between the acquired vehicle speed and the stored vehicle speed and the delay angle.
  • An angle is estimated, and a wheel on which a transmitter to which the frame is transmitted is attached is specified based on the tooth position and the delay angle at the reception timing of the frame.
  • the wheel position detection device can reliably identify the wheel position without including the angle information, while reliably receiving the transmission frame from the transmitter.
  • a tire air pressure detection device includes one of the wheel position detection devices.
  • the transmitter includes a sensing unit that outputs a detection signal corresponding to an air pressure of the tire included in each of the plurality of wheels, and relates to a tire air pressure obtained by signal-processing the detection signal of the sensing unit by the first control unit. After storing the information in a frame, the frame is transmitted to the receiver.
  • the receiver detects the air pressure of the tire provided in each of the plurality of wheels from the information related to the tire air pressure in the second control unit.
  • FIG. 1 is a diagram illustrating an overall configuration of a tire air pressure detection device to which a wheel position detection device according to a first embodiment of the present disclosure is applied.
  • FIG. 2A is a block diagram illustrating a configuration of the transmitter.
  • FIG. 2B is a block diagram showing a configuration of the TPMS-ECU.
  • FIG. 3A is a diagram illustrating a relationship between the angle of the transmitter and the value of the gravitational acceleration component.
  • FIG. 3B shows the angle of the transmitter at each wheel.
  • FIG. 4 is a timing chart for explaining wheel position detection.
  • FIG. 5 is an image diagram showing changes in gear information.
  • FIG. 1 is a diagram illustrating an overall configuration of a tire air pressure detection device to which a wheel position detection device according to a first embodiment of the present disclosure is applied.
  • FIG. 2A is a block diagram illustrating a configuration of the transmitter.
  • FIG. 2B is a block diagram showing a configuration of the TPMS-ECU.
  • FIG. 6A is a diagram for explaining the wheel position determination logic.
  • FIG. 6B is a diagram for explaining the wheel position determination logic.
  • FIG. 6C is a diagram for explaining the wheel position determination logic.
  • FIG. 7A is a diagram showing an evaluation result of wheel positions in a frame including ID1 as identification information.
  • FIG. 7B is a diagram showing the evaluation result of the wheel position in a frame including ID2 as identification information.
  • FIG. 7C is a diagram showing the evaluation result of the wheel position in the frame including ID3 as identification information.
  • FIG. 7D is a diagram illustrating an evaluation result of wheel positions in a frame including ID4 as identification information.
  • FIG. 8 is a chart showing the relationship between the vehicle speed and the delay time.
  • FIG. 8 is a chart showing the relationship between the vehicle speed and the delay time.
  • FIG. 9 is a diagram illustrating an example of the relationship between the transmitter angle and the reference angle.
  • FIG. 10 is a diagram showing the relationship between the value of the gravitational acceleration component of the detection signal of the acceleration sensor and the transmission timing set by providing a delay time from the reference angle.
  • FIG. 11 is a diagram illustrating an example of the relationship between the transmitter angle and the reference angle.
  • FIG. 12 is a diagram showing the relationship between the value of the gravitational acceleration component of the detection signal of the acceleration sensor running at a constant speed and the transmission timing set by providing a delay time from the reference angle.
  • FIG. 1 corresponds to the front of the vehicle 1 and the downward direction of the paper corresponds to the rear of the vehicle 1.
  • the tire pressure detecting device is attached to a vehicle 1 and includes a transmitter 2, a tire pressure detecting ECU (hereinafter referred to as TPMS-ECU) 3 and a meter 4 that serve as a receiver. It is prepared for.
  • the wheel position detection device uses the transmitter 2 and TPMS-ECU 3 provided in the tire air pressure detection device, and is provided corresponding to each wheel 5 (5a to 5d) from a brake control ECU (hereinafter referred to as a brake ECU) 10.
  • the wheel position is specified by acquiring gear information obtained from the detection signals of the wheel speed sensors 11a to 11d.
  • the transmitter 2 is attached to each of the wheels 5a to 5d.
  • the transmitter 2 detects the air pressure of the tires attached to the wheels 5a to 5d, and displays information on the tire air pressure indicating the detection result in the frame.
  • the TPMS-ECU 3 is attached to the vehicle body 6 side of the vehicle 1 and receives the frame transmitted from the transmitter 2 and performs various processes and calculations based on the reception timing and the detection signal stored in the frame. By doing so, wheel position detection and tire air pressure detection are performed.
  • the transmitter 2 creates a frame by, for example, frequency shift keying (FSK), and the TPMS-ECU 3 demodulates the frame to read data in the frame, and detects wheel position and tire pressure.
  • FSK frequency shift keying
  • the transmitter 2 includes a sensing unit 21, an acceleration sensor 22, a microcomputer 23, a transmission circuit 24, and a transmission antenna 25, and is based on power supply from a battery (not shown). Each part is driven.
  • the sensing unit 21 includes a diaphragm type pressure sensor 21a and a temperature sensor 21b, for example, and outputs a detection signal corresponding to the tire pressure and a detection signal corresponding to the temperature.
  • the acceleration sensor 22 is used to detect the position of the sensor itself at the wheels 5a to 5d to which the transmitter 2 is attached, that is, to detect the position of the transmitter 2 and the vehicle speed.
  • the acceleration sensor 22 according to the present embodiment detects, for example, acceleration corresponding to accelerations in both directions perpendicular to the radial direction of each wheel 5a to 5d, that is, the circumferential direction, among the accelerations acting on the wheels 5a to 5d when the wheels 5a to 5d rotate. Output a signal.
  • the microcomputer 23 is a well-known one having a control unit (first control unit) and the like, and executes predetermined processing according to a program stored in a memory in the control unit.
  • Individual ID information including identification information unique to the transmitter for identifying each transmitter 2 and identification information unique to the vehicle for identifying the host vehicle is stored in the memory in the control unit.
  • the microcomputer 23 receives the detection signal related to the tire pressure from the sensing unit 21, processes the signal and processes it as necessary, and stores the information related to the tire pressure in the frame together with the ID information of each transmitter 2. .
  • the microcomputer 23 monitors the detection signal of the acceleration sensor 22 to detect the position of the transmitter 2 on the wheels 5a to 5d to which the transmitters 2 are attached and to detect the vehicle speed.
  • the microcomputer 23 transmits the frame (data transmission) from the transmission antenna 25 to the TPMS-ECU 3 via the transmission circuit 24 based on the position detection result of the transmitter 2 and the vehicle speed detection result. )I do.
  • the microcomputer 23 starts frame transmission on condition that the vehicle 1 is running, and the angle of the transmitter 2 to which the acceleration sensor 22 is attached is determined based on the detection signal of the acceleration sensor 22. Frame transmission is performed with a timing at which a predetermined delay is further provided as a transmission timing from the timing at which the reference angle is reached. The microcomputer 23 repeats this frame transmission at the timing when the transmission timing is reached.
  • the fact that the vehicle is running is determined based on the vehicle speed detection result, and the angle of the transmitter 2 is determined based on the position detection result of the transmitter 2 based on the detection signal of the acceleration sensor 22. . That is, the microcomputer 23 detects the vehicle speed using the detection signal of the acceleration sensor 22, and determines that the vehicle 1 is running when the vehicle speed becomes a predetermined speed (for example, 3 km / h) or more.
  • the output of the acceleration sensor 22 includes acceleration based on centrifugal force (centrifugal acceleration).
  • the vehicle speed can be calculated by integrating the centrifugal acceleration and multiplying the coefficient. For this reason, the microcomputer 23 calculates the centrifugal acceleration by removing the gravitational acceleration component from the output of the acceleration sensor 22, and calculates the vehicle speed based on the centrifugal acceleration.
  • the acceleration sensor 22 Since the acceleration sensor 22 outputs detection signals corresponding to the rotations of the wheels 5a to 5d, the gravitational acceleration component is included in the detection signals during traveling, and the amplitude corresponding to the wheel rotation is increased. Signal.
  • the amplitude of the detection signal is the maximum negative amplitude when the transmitter 2 is located at the upper position around the central axis of the wheels 5a to 5d, and when the transmitter 2 is located at the horizontal position. When it is at zero or a lower position, the maximum amplitude is positive. For this reason, based on this amplitude, the position of the transmitter 2 to which the acceleration sensor 22 is attached can be detected, and the angle of the transmitter 2 can be detected. For example, as shown in FIG.
  • the angle of the transmitter 2 when the transmitter 2 is located at the upper position around the central axis of each of the wheels 5a to 5d can be grasped.
  • the angle of the transmitter 2 is associated with the value of the gravitational acceleration component, so that the angle of the transmitter 2 can be detected based on the value of the gravitational acceleration component.
  • the reference angle is set at the same time when the vehicle speed reaches the predetermined speed or when the angle of the transmitter 2 reaches the predetermined angle after the vehicle speed reaches the predetermined speed. Then, the frame transmission from each transmitter 2 can be performed with the timing at which a predetermined delay is further provided from the timing at which the reference angle is reached as the transmission start timing. After that, frame transmission can be repeatedly performed at the transmission timing.
  • the transmission timing may be every one amplitude period of the value of the gravitational acceleration component. However, in consideration of the battery life, frame transmission is not always performed every period, for example, every predetermined period (for example, 15 seconds). It is preferable to transmit frames at a rate of once per frame.
  • the transmission circuit 24 functions as an output unit that transmits a frame transmitted from the microcomputer 23 to the TPMS-ECU 3 through the transmission antenna 25.
  • frame transmission for example, radio waves in the RF band are used.
  • the transmitter 2 configured in this way is attached to an air injection valve in each of the wheels 5a to 5d, for example, and is arranged so that the sensing unit 21 is exposed inside the tire. Then, the corresponding tire pressure is detected, and as described above, when the vehicle speed exceeds a predetermined speed, the transmitter 2 repeatedly transmits frames through the transmission antenna 25 provided in each transmitter 2 at the transmission timing. . After that, it is possible to transmit the frame at the transmission timing set as described above, but it is better to increase the transmission interval in consideration of the battery life.
  • the wheel position determination mode is switched to the periodic transmission mode, and frame transmission is performed at a longer fixed period (for example, every minute), so that the TPMS-ECU 3 side A signal related to the tire pressure is periodically transmitted to.
  • the transmission timing of each transmitter 2 can be shifted, and reception by the TPMS-ECU 3 side due to radio wave interference from a plurality of transmitters 2 is possible. It can be prevented from disappearing.
  • the TPMS-ECU 3 includes a receiving antenna 31, a receiving circuit 32, a microcomputer 33, and the like.
  • the TPMS-ECU 3 acquires the gear information from the brake ECU 10 through an in-vehicle LAN such as CAN as will be described later, and the teeth indicated by the number of teeth (or the number of teeth) of the gears rotated together with the wheels 5a to 5d. Get the position.
  • the receiving antenna 31 is for receiving a frame sent from each transmitter 2.
  • the receiving antenna 31 is fixed to the vehicle body 6 and may be an internal antenna disposed in the main body of the TPMS-ECU 3, or may be an external antenna in which wiring is extended from the main body.
  • the receiving circuit 32 functions as an input unit that receives a transmission frame from each transmitter 2 received by the receiving antenna 31 and sends the frame to the microcomputer 33.
  • the receiving circuit 32 transmits the received signal to the microcomputer 33.
  • the microcomputer 33 corresponds to a second control unit, and executes wheel position detection processing according to a program stored in a memory in the microcomputer 33. Specifically, the microcomputer 33 performs wheel position detection based on the relationship between the information acquired from the brake ECU 10 and the reception timing at which the transmission frame from each transmitter 2 is received. From the brake ECU 10, the microcomputer 33 acquires gear information of the wheel speed sensors 11a to 11d provided corresponding to the wheels 5a to 5d at every predetermined period (for example, 10 ms).
  • Gear information is information indicating the tooth positions of gears (gears) that are rotated together with the wheels 5a to 5d.
  • the wheel speed sensors 11a to 11d are constituted by, for example, electromagnetic pickup sensors arranged to face the gear teeth, and change the detection signal as the gear teeth pass. Since these types of wheel speed sensors 11a to 11d output square pulse waves corresponding to the passage of teeth as detection signals, the rising and falling of the square pulse waves pass through the tooth edge of the gear. Will be expressed. Therefore, the brake ECU 10 counts the number of teeth of the gear, that is, the number of passing edges, from the number of rising and falling edges of the detection signals of the wheel speed sensors 11a to 11d, and the tooth edge at that time is counted every predetermined period. The number is transmitted to the microcomputer 33 as gear information indicating the tooth position. Thereby, in the microcomputer 33, it is possible to grasp which tooth of the gear has passed.
  • the number of tooth edges is reset every time the gear rotates once. For example, when the number of teeth provided on the gear is 48 teeth, the number of edges is counted as a total of 96 from 0 to 95, and when the count value reaches 95, it is returned to 0 and counted again.
  • the number of tooth edges of the gear is transmitted from the brake ECU 10 to the microcomputer 33 as gear information.
  • the number of teeth may be a count value of the number of passing teeth.
  • the number of edges or teeth passed during the predetermined period is transmitted to the microcomputer 33, and the microcomputer 33 adds the number of edges or teeth passed during the predetermined period to the previous number of edges or teeth. You may make it count the number of edges or the number of teeth in the period. That is, it is only necessary that the microcomputer 33 can finally acquire the number of edges or the number of teeth in the cycle as gear information.
  • the brake ECU 10 resets the number of gear teeth (or the number of teeth) every time the power is turned off, but again starts measuring at the same time when the power is turned on or when the vehicle speed reaches the predetermined vehicle speed. ing. As described above, even when the power is turned off, the same tooth is represented by the same number of edges (or the number of teeth) while the power is turned off.
  • the microcomputer 33 When the microcomputer 33 receives a frame transmitted from each transmitter 2, the microcomputer 33 measures the reception timing, and the number of gear edges at the frame reception timing (or the number of teeth) from the acquired number of gear edges (or the number of teeth) ( Alternatively, the wheel position is detected based on the number of teeth). In this way, wheel position detection is performed to identify which wheel 5a to 5d each transmitter 2 is attached to based on the reception timing and the tooth position indicated by the gear information. A specific method for detecting the wheel position will be described in detail later.
  • the microcomputer 33 stores the ID information of each transmitter 2 in association with the position of each wheel 5a to 5d to which each transmitter 2 is attached based on the result of wheel position detection. After that, based on the ID information and tire pressure data stored in the transmission frame from each transmitter 2, the tire pressure of each wheel 5a to 5d is detected, and an electrical signal corresponding to the tire pressure is sent to CAN or the like. Is output to the meter 4 through the in-vehicle LAN. For example, the microcomputer 33 detects a decrease in tire air pressure by comparing the tire air pressure with a predetermined threshold Th, and outputs a signal to that effect to the meter 4 when a decrease in tire air pressure is detected. As a result, the meter 4 is informed that the tire air pressure of any of the four wheels 5a to 5d has decreased.
  • the meter 4 functions as an alarm unit, and as shown in FIG. 1, is arranged at a place where the driver can visually recognize, and is configured by a meter display or the like installed in an instrument panel in the vehicle 1, for example. .
  • a signal indicating that the tire air pressure has decreased is sent from the microcomputer 33 in the TPMS-ECU 3, the meter 4 displays a decrease in tire air pressure while identifying the wheels 5a to 5d. Informs that the tire pressure of the specific wheel has decreased.
  • the microcomputer 23 On the transmitter 2 side, the microcomputer 23 detects the vehicle speed and the angle of the transmitter 2 of the wheels 5a to 5d by monitoring the detection signal of the acceleration sensor 22 every predetermined sampling period based on the power supply from the battery. ing. Then, when the vehicle speed reaches a predetermined speed, the microcomputer 23 repeatedly performs frame transmission with a transmission timing when the angle of the transmitter 2 reaches a predetermined transmission angle.
  • the gear information of the wheel speed sensors 11a to 11d provided corresponding to the wheels 5a to 5d is acquired from the brake ECU 10 at predetermined intervals (for example, 10 ms). Then, the TPMS-ECU 3 measures the reception timing when the frame transmitted from each transmitter 2 is received, and when the frame reception timing is selected from the number of gear edges (or the number of teeth). Get the number of gear edges (or the number of teeth).
  • the reception timing of the frame transmitted from each transmitter 2 does not always coincide with the cycle of acquiring gear information from the brake ECU 10.
  • the number of gear edges (or the number of teeth) indicated by the gear information acquired in the cycle closest to the frame reception timing from the cycle in which the gear information is acquired from the brake ECU 10 is set to the gear timing at the frame reception timing. It can be used as the number of edges (or the number of teeth).
  • the cycle closest to the reception timing may be either the cycle immediately before or just after the reception timing. Further, when the frame reception timing is obtained by using the number of gear edges (or the number of teeth) indicated by the gear information acquired in the period immediately before and after the frame reception timing from the period in which the gear information is acquired from the brake ECU 10.
  • the number of edges (or the number of teeth) of the gear may be calculated.
  • the intermediate value of the number of gear edges (or the number of teeth) indicated by the gear information acquired immediately before and after the frame reception timing is used as the number of gear edges (or the number of teeth) at the frame reception timing. Can be used.
  • the operation of obtaining the number of gear edges (or the number of teeth) at the reception timing of the frame is repeated every time the frame is received, and the number of gear edges (or the number of gear edges at the received frame reception timing)
  • the wheel position is detected based on the number of teeth. Specifically, the variation in the number of gear edges (or the number of teeth) at the frame reception timing is within a predetermined range set based on the number of gear edges (or the number of teeth) at the previous reception timing.
  • the wheel position is detected by determining whether or not there is.
  • the frame is transmitted from the transmitter 2 at the timing when the angle of the transmitter 2 becomes the transmission angle. For this reason, when the transmission angle is the same angle, the tooth position indicated by the number of gear edges (or the number of teeth) at the frame reception timing almost coincides with the previous time. Accordingly, the variation in the number of gear edges (or the number of teeth) at the frame reception timing is small and falls within a predetermined range. This is true even when multiple frames are received, and the variation in the number of gear edges (or the number of teeth) at the reception timing of each frame is within a predetermined range determined at the first frame reception timing. It will fit. On the other hand, for a wheel different from the wheel that received the frame, the tooth position indicated by the number of edges (or the number of teeth) of the gear at the reception timing of the frame transmitted from the transmitter 2 of the other wheel varies.
  • the number of edges of the gears 12a to 12d was 0 at the beginning when the ignition switch (IG) was turned on.
  • the tooth position at the reception timing gradually varies.
  • the wheel position can be detected by determining whether or not the variation is within a predetermined range.
  • the variation allowable width which is an allowable width as the variation in the number of edges (or the number of teeth) of the gear, is a value corresponding to a range of 180 degrees centered on the first reception angle (range of the first reception angle ⁇ 90 degrees).
  • the number of edges is a range of ⁇ 24 edges centered on the number of edges at the first reception
  • the number of teeth is a range of ⁇ 12 teeth centered on the number of teeth at the first reception. In this case, as shown in FIG.
  • the wheel is It may coincide with the wheel where the frame was sent. In this case, the determination result is TRUE.
  • the variation allowable width is determined around the second reception angle that is the angle of the transmitter 2 at the time of the second frame reception, and is equivalent to 180 degrees ( ⁇ 90 degrees) around the second reception angle. Value. For this reason, a variation allowable width of 180 degrees ( ⁇ 90 degrees) centered on the first reception angle, which is the previous variation allowable width, and a 180 degree ( ⁇ 90 degrees) variation allowable width centered on the second reception angle.
  • the overlapping portion becomes a new variation allowable width (edge number range is 12 to 48). A new variation allowable width can be narrowed in the overlapping range.
  • the wheel is It does not match the wheel where the frame was sent. For this reason, the determination result is FALSE. At this time, even if it is within the range of allowable variation determined by the first frame reception, if it is outside the range of allowable variation determined by the first and second frame reception, it is determined as FALSE. Yes. In this way, it is possible to specify which of the wheels 5a to 5d the transmitter 2 that has transmitted the received frame is attached to.
  • the number of gear edges (or the number of teeth) is acquired at every reception timing of the frame, and the corresponding wheel (left front wheel) is obtained.
  • a transmitter that transmits the frame out of the range is transmitted. 2 is excluded from the attached wheel candidates. And the wheel which was not excluded until the last is registered as a wheel with which the transmitter 2 with which the flame
  • the right front wheel FR, the right rear wheel RR, and the left rear wheel RL are excluded from the candidates in this order, and the remaining left front wheel FL is finally attached to the transmitter 2 to which the frame is transmitted. Register as a wheel.
  • the microcomputer 33 stores the ID information of each transmitter 2 that has transmitted the frame in association with the position of the wheel to which it is attached. Thereby, wheel position detection can be performed.
  • the transmission angle is varied by detecting the vehicle speed with the transmitter 2 and setting the transmission timing according to the vehicle speed. Specifically, when the transmitter 2 determines that the vehicle is running, the angle of the transmitter 2 is determined by using the angle of the transmitter 2 at the moment when the vehicle speed reaches a predetermined speed or a predetermined angle of the transmitter 2 as a reference angle. Is detected to have become the reference angle. A delay time corresponding to the vehicle speed is provided from the timing at which the reference angle is reached, and frame transmission is performed with the timing delayed by the delay time as the transmission timing.
  • the delay time can be set larger as the vehicle speed increases, or the delay time can be decreased as the vehicle speed increases.
  • the former for example, as shown in FIG. 8, in a vehicle speed range of 0 km / h or more and less than 50 km / h, 10 ms, in a vehicle speed range of 50 km / h or more and less than 100 km / h, in a vehicle speed range of 100 ms / h or more.
  • the delay time can be 30 ms.
  • the angle of the transmitter 2 that performs frame transmission can be changed.
  • the reference angle is when the angle of the transmitter 2 is 0 degrees as shown in FIG. 9, after the reference angle is recognized, frame transmission is performed with a certain delay time according to the vehicle speed.
  • frame transmission can be performed at an angle where the amplitude of the gravitational acceleration component of the detection signal of the acceleration sensor 22 is shifted from the position of the negative maximum amplitude by the delay time.
  • the transmission angle at which frame transmission is performed can be changed according to the vehicle speed, even if some of them coincide with the position of Null, Null can be avoided in other cases, and transmission can be performed more reliably.
  • the frame can reach the TPMS-ECU 3.
  • the TPMS-ECU 3 corrects the tooth position to the tooth position when the reception timing is advanced by the delay time, so that the frame is transmitted at the reference angle.
  • the tooth position is calculated when In other words, the TPMS-ECU 3 detects the wheel position by confirming whether the number of gear edges (or the number of teeth) at the reception timing of the transmitted frame is included in the range of allowable variation. Yes. For this reason, when frame transmission is performed at a plurality of different transmission angles, the number of gear edges (or the number of teeth) at the reception timing of a frame transmitted at different transmission angles is set to that transmitted at the same transmission angle. It will be necessary to correct.
  • the TPMS-ECU 3 acquires the gear information of the wheel speed sensors 11a to 11d every predetermined period (for example, 10 ms), the TPMS-ECU 3 can also acquire the vehicle speed based on the gear information. Further, since the brake ECU 10 originally calculates the vehicle speed for the ABS control or the like, the TPMS-ECU 3 can also acquire the vehicle speed information from the brake ECU 10.
  • the TPMS-ECU 3 since the TPMS-ECU 3 also knows the vehicle speed, if the TPMS-ECU 3 stores the relationship between the vehicle speed and the delay time in advance, the delay time can be estimated from the vehicle speed when the frame is received. Therefore, even if the information about the delay time, in other words, the angle information is not included in the frame, the delay time is grasped by the TPMS-ECU 3, and the tooth position when the frame transmission is accurately performed at the reference angle is calculated. can do.
  • the number of gear edges (or the number of teeth) at the reception timing of each frame is corrected by the shift of the transmission angle, and the number of gear edges when the transmission angle is not shifted (or The number of teeth). For example, if the number of gear teeth is 48 and the vehicle speed is 40 km / h and the tire rotation is 200 ms and the delay time is 10 ms, the number of edges corresponding to the delay time is 96 ⁇ . 10 / 200 ⁇ 5. Similarly, the number of teeth corresponding to the delay time is ⁇ 10 / 200 ⁇ 2.
  • the TPMS-ECU 3 corrects the number of edges (or the number of teeth) corresponding to the delay time from the number of edges (or the number of teeth) of the gear at the reception timing, thereby the number of edges (or the number of teeth) at the reference angle. Can be calculated. Then, it is possible to detect the wheel position based on whether or not the corrected number of edges (or the number of teeth) is included in the range of the variation allowable width.
  • the TPMS-ECU 3 receives a frame transmitted when the vehicle speed reaches a predetermined speed, and stores gear information at the reception timing. However, the TPMS-ECU 3 stores the gear information at a predetermined travel stop determination time (for example, 3 km / h) or less. Then, the gear information up to that point is discarded. When the vehicle starts running again, the wheel position is newly detected as described above.
  • the tire air pressure is detected. Specifically, when tire pressure is detected, frames are transmitted from each transmitter 2 at regular intervals, and every time a frame is transmitted from each transmitter 2, four frames of frames are transmitted by the TPMS-ECU 3. Received. Then, the TPMS-ECU 3 identifies which frame is sent from the transmitter 2 attached to the wheels 5a to 5d based on the ID information stored in each frame, and determines each frame from information related to tire pressure. The tire pressure of the wheels 5a to 5d is detected. As a result, a decrease in tire air pressure of each of the wheels 5a to 5d can be detected, and it is possible to identify which tire air pressure of the wheels 5a to 5d is decreasing.
  • the fact is notified to the meter 4 so that the meter 4 displays a display indicating the decrease in tire air pressure while identifying the wheels 5a to 5d, and the tire air pressure of the specific wheel is indicated to the driver. Announcing a drop in
  • the delay time from the reference angle is set according to the vehicle speed, and the frame is transmitted when the delay time elapses after the angle of the transmitter 2 reaches the reference angle. Yes.
  • the transmission angle at which frame transmission is performed can be changed according to the vehicle speed, so even if some of them coincide with the position of Null, Null can be avoided in other cases, and transmission can be performed more reliably.
  • the frame can reach the TPMS-ECU 3. Even if the same delay time is set in the same speed range, if the vehicle speed is different, the tire rotation angle that rotates during the same delay time is different, so that it can be said that the Null position hardly continues.
  • the vehicle speed can also be acquired on the TPMS-ECU 3 side.
  • the TPMS-ECU 3 can grasp the delay time without including information on the delay time in the frame, in other words, the angle information, and the tooth position when the frame transmission is accurately performed at the reference angle. Can be calculated. Therefore, it is possible to provide a wheel position detection device that can reliably identify the wheel position without including angle information in the frame while reliably receiving the transmission frame from the transmitter 2.
  • gear information indicating the tooth positions of the gears 12a to 12d is acquired based on detection signals of the wheel speed sensors 11a to 11d that detect the passage of the teeth of the gears 12a to 12d that are rotated in conjunction with the wheels 5a to 5d. is doing.
  • the variation allowable width is set based on the tooth position at the reception timing of the frame, and the wheel position is determined based on whether the tooth position at the subsequent frame reception timing is within the range of the variation allowable width. I have identified. That is, if the tooth position at the reception timing of the frame is outside the range of allowable variation, it is excluded from the wheel candidates attached to the transmitter 2 to which the frame is transmitted, and the remaining wheels are removed from the frame. It is registered as a wheel to which the transmitted transmitter 2 is attached. For this reason, it is possible to specify the wheel position even if a large amount of data is not available.
  • a portion that overlaps the variation allowable width based on the tooth position at the frame reception timing and the variation allowable width set at the reception timing of the previous frame is set as a new variation allowable width. For this reason, a new variation allowable width
  • variety can be narrowed in these overlapping ranges. Therefore, it is possible to provide a wheel position detection device that can specify the wheel position accurately in a shorter time.
  • the vehicle transmission condition is the frame transmission condition that the vehicle speed is equal to or higher than the predetermined speed, or the position of the transmitter 2 is detected at each wheel 5a to 5d using the acceleration sensor 22, the vehicle 1 starts to travel.
  • the wheel position can only be detected from the wheel, the wheel position can be detected immediately after traveling. Furthermore, it is possible to detect the wheel position without the need for a trigger machine or the like, as in the case where the wheel position is detected based on the reception intensity of the signal output from the trigger machine.
  • the tire air pressure detection device of the present embodiment is obtained by changing the frame transmission delay time setting method in the wheel position detection function with respect to the first embodiment. Since other aspects are the same as those in the first embodiment, only portions different from those in the first embodiment will be described.
  • one delay time corresponding to each vehicle speed is set.
  • two delay times corresponding to each vehicle speed are set and applied alternately according to the number of transmissions.
  • the delay time is 10 ms and 40 ms, 10 ms when the number of transmissions is an odd number, and 40 ms when the number of transmissions is an even number.
  • the delay time is 20 ms and 50 ms, 20 ms when the number of transmissions is an odd number, and 50 ms when the number is an even number.
  • the delay time is 30 ms and 60 ms, 30 ms when the number of transmissions is odd, and 60 ms when the transmission is even.
  • the delay time is changed between the odd number and the even number.
  • the delay time from the reference angle can be changed according to the vehicle speed and the number of transmissions as shown in FIG.
  • the frame when the vehicle continues to travel in the same vehicle speed range, if the transmission angle at which a frame is transmitted with a delay time coincides with Null, the frame may not reach the TPMS-ECU 3 continuously. There is sex. However, according to the present embodiment, for example, even if the frame transmitted at the odd number does not reach the TPMS-ECU 3, the frame transmitted at the even number can arrive. Therefore, when the vehicle continues to travel in the same vehicle speed range, the frame can reach the TPMS-ECU 3 more reliably, and the wheel position can be detected more reliably.
  • the transmission angle is shifted from the reference angle by providing a delay time as the delay corresponding to the vehicle speed.
  • the transmission is performed by setting the delay angle corresponding to the vehicle speed and shifting the delay angle from the reference angle.
  • Frame transmission may be performed at an angle.
  • the delay angle can be set larger as the vehicle speed increases, or the delay angle can be set smaller as the vehicle speed increases.
  • the delay angle can be changed in accordance with the number of frame transmissions, and for example, the delay time can be made different between when the number of frame transmissions is odd and when it is even.
  • a case has been described in which two delay times in the same vehicle speed range are set by dividing the number of transmissions into an odd number or an even number, but the number may be larger than two.
  • different delay times may be set in order for each number of transmissions, and when the number of transmissions reaches the number of delay times, rotation may be performed so that different delay times are set in order again.
  • a different delay time may be set according to the number of transmissions.
  • the angle at which the frame transmission is performed is a position where the angle is 0 degrees when the acceleration sensor 22 is positioned at the upper position with the central axis of each wheel 5a to 5d as the center.
  • this is merely an example, and an arbitrary position in the circumferential direction of the wheel may be set to 0 degrees.
  • the tooth position which is the number of edges or the number of teeth, is corrected by the TPMS-ECU 3 in accordance with the delay time.
  • the tolerance for variation may be shifted in accordance with the delay time.
  • a tolerance range used for determination at the time of second frame reception is a range obtained by adding an angle corresponding to the difference between the first and second delay times to a range of 90 degrees centered on the first reception angle; To do.
  • the variation allowable width may be corrected by an angle corresponding to the difference in delay time of each time.
  • the variation allowable width is changed at each frame reception timing so that the variation allowable width is gradually narrowed.
  • the variation allowable width set around the tooth position is constant. .
  • the variation allowable width set around this tooth position can also be changed.
  • the variation in the tooth position may increase as the vehicle speed increases. For this reason, it is possible to set a more accurate variation allowable width by increasing the variation allowable width as the vehicle speed increases.
  • the longer the sampling period when the acceleration sensor 22 performs acceleration detection the lower the detection accuracy of the timing when the angle of the transmitter 2 becomes a predetermined angle, so by changing the variation allowable width accordingly, A more accurate variation tolerance can be set. In that case, since the transmitter 2 knows the sampling period and the like, the frame transmitted by the transmitter 2 can be transmitted including data for determining the variation allowable width.
  • the TPMS-ECU 3 acquires the gear information from the brake ECU 10.
  • the TPMS-ECU 3 only needs to be able to acquire the number of tooth edges or the number of teeth of the gear as the gear information. For this reason, it may be acquired from another ECU, or the detection signals of the wheel speed sensors 11a to 11d may be input, and the number of teeth or the number of teeth of the gear may be acquired from the detection signals.
  • the case where the TPMS-ECU 3 and the brake ECU 10 are configured as separate ECUs has been described, but there may be a case where they are configured as a single ECU in which these are integrated.
  • the ECU directly inputs the detection signals of the wheel speed sensors 11a to 11d, and acquires the number of teeth or the number of teeth of the gear from the detection signals.
  • the number of teeth or the number of teeth of the gear can always be obtained, unlike the case where these pieces of information are obtained every predetermined period, based on the gear information exactly at the reception timing of the frame. Wheel position detection can be performed.
  • the wheel position detection device provided for the vehicle 1 provided with the four wheels 5a to 5d has been described.
  • the present disclosure is similarly applied to a vehicle having a larger number of wheels. be able to.
  • variety is set based on a tooth position, and wheel position specification is performed based on whether it is out of the range. . Then, by setting a portion where the previous variation allowable width and the current variation allowable width overlap as a new variation allowable width, the variation allowable width is narrowed.
  • the wheel position can be specified in a shorter period of time, but the frame can be reliably received by the TPMS-ECU 3 by changing the transmission angle in accordance with the vehicle speed without reducing the variation allowable width. it can. From this, it is possible to specify the wheel position more accurately and more reliably in a shorter time than in the case where repeated frame reception is not possible.
  • the wheel position specification is performed using the tolerance width of the tooth position
  • the transmission is performed even when the wheel position specification is performed based on the standard deviation of the tooth position at the time of multiple frame transmissions. By shifting the angle for each frame transmission, the same effect as described above can be obtained.
  • the wheel speed sensors 11a to 11d can detect the passage of gear teeth that are rotated in conjunction with the rotation of the wheels 5a to 5d. For this reason, as a gear, what is necessary is just the structure from which the magnetic resistance differs in which the part located in between the tooth
  • the outer edge portion is made uneven so that the outer peripheral surface is not only a general structure composed of a convex portion that becomes a conductor and a space that becomes a nonconductor, but, for example, the outer peripheral surface becomes a conductor and a nonconductor
  • a rotor switch made of an insulator is also included (see, for example, Japanese Patent Laid-Open No. 10-048233).

Abstract

 車輪位置検出装置において、送信機(2)の第1制御部(23)は、車速に応じて基準角度のディレイ時間を設定し、前記送信機(2)の角度が前記基準角度から前記ディレイ時間経過したときにフレーム送信を行う。受信機(3)の第2制御部(33)は、予め前記車速と前記ディレイ時間との関係を記憶しており、前記フレームの受信タイミングのときの歯位置と前記ディレイ時間に基づいて、前記フレームが送信された送信機(2)の取り付けられた車輪(5a~5d)を特定する。

Description

車輪位置検出装置およびそれを備えたタイヤ空気圧検出装置 関連出願の相互参照
 本開示は、2012年7月13日に出願された日本出願番号2012-157633号に基づくもので、ここにその記載内容を援用する。
 本開示は、対象車輪が車両のどの位置に搭載されている車輪かを検出する車輪位置検出装置および車輪位置検出装置を備えたタイヤ空気圧検出装置に関するものである。
 従来より、タイヤ空気圧検出装置の1つとして、ダイレクト式のものがある。このタイプのタイヤ空気圧検出装置では、タイヤが取り付けられた車輪側に、圧力センサ等のセンサが備えられた送信機が直接取り付けられている。また、車体側には、アンテナおよび受信機が備えられており、センサからの検出信号が送信機から送信されると、アンテナを介して受信機にその検出信号が受信され、タイヤ空気圧の検出が行われる。
 このようなダイレクト式のタイヤ空気圧検出装置では、送信されてきたデータが自車両のものであるかどうか及び送信機がどの車輪に取り付けられたものかを判別できるようにする必要がある。このため、送信機が送信するデータ中に、自車両か他車両かを判別するため及び送信機が取り付けられた車輪を判別するためのID情報を個々に付与している。
 また、送信データに含まれるID情報から送信機の位置を特定するためには、各送信機のID情報を各車輪の位置と関連づけて受信機側に予め登録しておく必要がある。このため、タイヤのローテーション時には、送信機のID情報と車輪の位置関係を受信機に登録し直す必要がある。この登録を自動的に行えるようにする技術が提案されている。
 具体的には、車輪側の送信機に備えた加速度センサの加速度検知信号に基づいて車輪が所定の回転位置になったことを検出すると共に車体側でも送信機からの無線信号を受信したときの車輪の回転位置を検出する。そして、これらの相対角度の変化を監視することで車輪位置を特定している。この方法では、所定数のデータの偏差に基づいて車輪側で検出された車輪の回転位置と車体側で検出された車輪の回転位置の相対角度の変化を監視し、初期値に対してバラツキが許容値を超えていることを判定することで車輪位置を特定している。
 上記の方法では、車輪が所定の回転位置になったときに無線信号を送信するようにしている。しかしながら、いわゆるNullのように無線信号が車体側に届き難い場所があり、無線信号が送信される回転位置がNullであると、何度無線信号を送信しても車体側に届かないという問題がある。このような場合、車輪位置検出に時間が掛かったり、検出が行えなくなることがある。
 そこで、特許文献1において、Nullの位置で毎回無線信号の送信が行われてしまうことを防止するために、異なる2ポイント以上の角度で無線信号の送信を行うようにすることが提案されている。また、特許文献2において、送信角度を毎回変更して無線信号を送信することが提案されている。
米国特許出願公開第2012/0112899号明細書 独国特許出願公開第10 2009 059788号明細書
 しかしながら、特許文献1のように異なる2ポイント以上の角度で無線信号の送信を行うようにする場合、送信角度を示す回転角度情報を送信データに含まなければならない。また、特許文献2のように送信角度を毎回変更して無線信号を送信する場合にも、送信データに角度情報を含む必要がある。このため、データ量が多くなって送信データが長くなるため、電池寿命の低下を招く可能性がある。
 本開示は上記点に鑑みて、確実に送信機からの送信フレームを受信できるようにしつつ、角度情報を含まなくても確実に車輪位置の特定が行えるようにした車輪位置検出装置および車輪位置検出装置を備えたタイヤ空気圧検出装置を提供することを目的とする。
 本開示の一態様に係る車輪位置検出装置は、車体に対してタイヤを備えた複数の車輪が取り付けられた車両に適用され、送信機と受信機とを備える。前記送信機は、前記複数の車輪それぞれに設けられ、固有の識別情報を含めたフレームを作成して送信する第1制御部を有する。前記受信機は、前記車体側に設けられ、受信アンテナを介して前記送信機から送信されたフレームを受信することで、前記フレームを送信してきた前記送信機が前記複数の車輪のいずれに取り付けられたものであるかを特定し、前記複数の車輪と該複数の車輪それぞれに設けられた前記送信機の識別情報とを対応づけて記憶する車輪位置検出を行う第2制御部を有する。
 前記送信機は、該送信機が取り付けられた車輪の回転に伴って変化する重力加速度成分を含む加速度に応じた検出信号を出力する加速度センサを有する。
 前記第1制御部は、前記加速度センサの検出信号に基づいて車速を検出して該車速に対応するディレイ時間を設定すると共に、該送信機が取り付けられた車輪の中心軸を中心とし、かつ、該車輪の周方向の任意の位置を角度0度として、前記加速度センサの検出信号に含まれる重力加速度成分に基づいて前記送信機の角度を検出し、該角度が所定の基準角度から前記ディレイ時間経過したときを送信タイミングとすることで前記車速に応じて異なる送信角度で繰り返し前記フレームを送信する。
 前記第2制御部は、予め前記車速と前記ディレイ時間との関係を記憶していると共に、前記複数の車輪と連動して回転させられる歯車の歯の通過に応じた検出信号を出力する車輪速度センサの検出信号に基づいて、前記歯車の歯位置を示す歯車情報および車速を取得し、取得した車速と記憶してある前記車速と前記ディレイ時間との関係より前記送信機で設定された前記ディレイ時間を推定し、前記フレームの受信タイミングのときの前記歯位置と前記ディレイ時間に基づいて前記フレームが送信された送信機の取り付けられた車輪を特定する。
 前記車輪位置検出装置は、確実に送信機からの送信フレームを受信できるようにしつつ、角度情報を含まなくても確実に車輪位置の特定を行うことができる。
 本開示の別の態様に係る車輪位置検出装置は、車体に対してタイヤを備えた複数の車輪が取り付けられた車両に適用され、送信機と受信機とを備える。前記送信機は、前記複数の車輪それぞれに設けられ、固有の識別情報を含めたフレームを作成すると共に送信する第1制御部を有する。前記受信機は、前記車体側に設けられ、受信アンテナを介して前記送信機から送信されたフレームを受信することで、前記フレームを送信してきた前記送信機が前記複数の車輪のいずれに取り付けられたものであるかを特定し、前記複数の車輪と該複数の車輪それぞれに設けられた前記送信機の識別情報とを対応づけて記憶する車輪位置検出を行う第2制御部を有する。
 前記送信機は、該送信機が取り付けられた車輪の回転に伴って変化する重力加速度成分を含む加速度に応じた検出信号を出力する加速度センサを有する。
 前記第1制御部は、前記加速度センサの検出信号に基づいて車速を検出して該車速に対応するディレイ角度を設定すると共に、該送信機が取り付けられた車輪の中心軸を中心とし、かつ、該車輪の周方向の任意の位置を角度0度として、前記加速度センサの検出信号に含まれる重力加速度成分に基づいて前記送信機の角度を検出し、該角度が所定の基準角度から前記ディレイ角度ずれた角度を送信角度として、前記車速に応じて異なる送信角度で繰り返し前記フレームを送信する。
 前記第2制御部は、予め前記車速と前記ディレイ角度との関係を記憶していると共に、前記複数の車輪と連動して回転させられる歯車の歯の通過に応じた検出信号を出力する車輪速度センサの検出信号に基づいて、前記歯車の歯位置を示す歯車情報および車速を取得し、取得した車速と記憶してある前記車速と前記ディレイ角度との関係より前記送信機で設定された前記ディレイ角度を推定し、前記フレームの受信タイミングのときの前記歯位置と前記ディレイ角度に基づいて前記フレームが送信された送信機の取り付けられた車輪を特定する。
 前記車輪位置検出装置は、確実に送信機からの送信フレームを受信できるようにしつつ、角度情報を含まなくても確実に車輪位置の特定を行うことができる。
 本開示の別の態様に係るタイヤ空気圧検出装置は、前記車輪位置検出装置のどちらかを含む。前記送信機は、前記複数の車輪それぞれに備えられた前記タイヤの空気圧に応じた検出信号を出力するセンシング部を備え、前記第1制御部によって前記センシング部の検出信号を信号処理したタイヤ空気圧に関する情報をフレームに格納したのち、当該フレームを前記受信機に送信する。前記受信機は、前記第2制御部にて、該タイヤ空気圧に関する情報より、前記複数の車輪それぞれに備えられた前記タイヤの空気圧を検出する。
 本開示における上記あるいは他の目的、構成、利点は、下記の図面を参照しながら、以下の詳細説明から、より明白となる。図面において、
図1は、本開示の第1実施形態における車輪位置検出装置が適用されるタイヤ空気圧検出装置の全体構成を示す図である。 図2Aは、送信機の構成を示すブロック図である。 図2Bは、TPMS-ECUの構成を示すブロック図である。 図3Aは、送信機の角度と重力加速度成分の値との関係を示した図である。 図3Bは、各車輪での送信機の角度を示した図である。 図4は、車輪位置検出を説明するためのタイミングチャートである。 図5は、歯車情報の変化を示したイメージ図である。 図6Aは、車輪位置確定ロジックを説明するための図である。 図6Bは、車輪位置確定ロジックを説明するための図である。 図6Cは、車輪位置確定ロジックを説明するための図である。 図7Aは、識別情報としてID1が含まれたフレームにおける車輪位置の評価結果を示した図である。 図7Bは、識別情報としてID2が含まれたフレームにおける車輪位置の評価結果を示した図である。 図7Cは、識別情報としてID3が含まれたフレームにおける車輪位置の評価結果を示した図である。 図7Dは、識別情報としてID4が含まれたフレームにおける車輪位置の評価結果を示した図である。 図8は、車速とディレイ時間との関係を示した図表である。 図9は、送信機の角度と基準角度との関係の一例を示した図である。 図10は、加速度センサの検出信号の重力加速度成分の値と基準角度からディレイ時間を設けて設定される送信タイミングとの関係を示した図である。 図11は、送信機の角度と基準角度との関係の一例を示した図である。 図12は、一定速度で走行中の加速度センサの検出信号の重力加速度成分の値と基準角度からディレイ時間を設けて設定される送信タイミングとの関係を示した図である。
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。
 (第1実施形態)
 本開示の第1実施形態について図を参照して説明する。まず、図1を参照して、本開示の第1実施形態にかかる車輪位置検出装置が適用されるタイヤ空気圧検出装置の全体構成について説明する。なお、図1の紙面上方向が車両1の前方、紙面下方向が車両1の後方に一致する。
 図1に示すように、タイヤ空気圧検出装置は、車両1に取り付けられるもので、送信機2、受信機の役割を果たすタイヤ空気圧検出装置用ECU(以下、TPMS-ECUという)3およびメータ4を備えて構成されている。車輪位置検出装置は、タイヤ空気圧検出装置に備えられる送信機2およびTPMS-ECU3を用いると共に、ブレーキ制御用ECU(以下、ブレーキECUという)10から各車輪5(5a~5d)に対応して備えられた車輪速度センサ11a~11dの検出信号より得られる歯車情報を取得することで、車輪位置の特定を行っている。
 図1に示すように、送信機2は、各車輪5a~5dに取り付けられるもので、車輪5a~5dに取り付けられたタイヤの空気圧を検出すると共に、その検出結果を示すタイヤ空気圧に関する情報をフレーム内に格納して送信する。TPMS-ECU3は、車両1における車体6側に取り付けられるもので、送信機2から送信されたフレームを受信すると共に、受信タイミングやフレーム中に格納された検出信号に基づいて各種処理や演算等を行うことで車輪位置検出およびタイヤ空気圧検出を行う。送信機2は、例えば周波数偏移変調(FSK)によりフレームを作成し、TPMS-ECU3は、そのフレームを復調することでフレーム内のデータを読取り、車輪位置検出およびタイヤ空気圧検出を行っている。これら送信機2およびTPMS-ECU3の詳細構成について図2Aおよび図2Bを参照して説明する。
 図2Aに示すように、送信機2は、センシング部21、加速度センサ22、マイクロコンピュータ23、送信回路24および送信アンテナ25を備えた構成となっており、図示しない電池からの電力供給に基づいて各部が駆動される。
 センシング部21は、例えばダイアフラム式の圧力センサ21aや温度センサ21bを備えた構成とされ、タイヤ空気圧に応じた検出信号や温度に応じた検出信号を出力する。加速度センサ22は、送信機2が取り付けられた車輪5a~5dでのセンサ自身の位置検出、つまり送信機2の位置検出や車速検出を行うために用いられる。本実施形態の加速度センサ22は、例えば、車輪5a~5dの回転時に車輪5a~5dに働く加速度のうち、各車輪5a~5dの径方向、つまり周方向に垂直な両方向の加速度に応じた検出信号を出力する。
 マイクロコンピュータ23は、制御部(第1制御部)などを備えた周知のもので、制御部内のメモリに記憶されたプログラムに従って、所定の処理を実行する。制御部内のメモリには、各送信機2を特定するための送信機固有の識別情報と自車両を特定するための車両固有の識別情報とを含む個別のID情報が格納されている。
 マイクロコンピュータ23は、センシング部21からのタイヤ空気圧に関する検出信号を受け取り、それを信号処理すると共に必要に応じて加工し、そのタイヤ空気圧に関する情報を各送信機2のID情報と共にフレーム内に格納する。また、マイクロコンピュータ23は、加速度センサ22の検出信号をモニタし、各送信機2が取り付けられた車輪5a~5dでの送信機2の位置検出を行ったり、車速検出を行っている。そして、マイクロコンピュータ23は、フレームを作成すると、送信機2の位置検出の結果や車速検出の結果に基づいて、送信回路24を介して送信アンテナ25よりTPMS-ECU3に向けてフレーム送信(データ送信)を行う。
 具体的には、マイクロコンピュータ23は、車両1が走行中であることを条件としてフレーム送信を開始し、加速度センサ22の検出信号に基づいて加速度センサ22が取り付けられた送信機2の角度が所定の基準角度になったタイミングから更に所定のディレイを設けたタイミングを送信タイミングとしてフレーム送信を行う。そして、マイクロコンピュータ23は、このフレーム送信を送信タイミングに至ったときにタイミングで繰り返し行っている。
 走行中であることについては、車速検出の結果に基づいて判定しており、送信機2の角度については加速度センサ22の検出信号に基づく送信機2の位置検出の結果に基づいて判定している。すなわち、マイクロコンピュータ23では、加速度センサ22の検出信号を利用して車速検出を行い、車速が所定速度(例えば3km/h)以上になると車両1が走行中であると判定している。加速度センサ22の出力には遠心力に基づく加速度(遠心加速度)が含まれる。この遠心加速度を積分して係数を掛けることにより、車速を演算することが可能となる。このため、マイクロコンピュータ23では、加速度センサ22の出力から重力加速度成分を取り除いて遠心加速度を演算し、その遠心加速度に基づいて車速の演算を行っている。
 また、加速度センサ22によって各車輪5a~5dの回転に応じた検出信号を出力させていることから、走行時には、その検出信号に重力加速度成分が含まれることになり、車輪回転に応じた振幅を有する信号となる。例えば、図3Aに示すように、検出信号の振幅は、送信機2が車輪5a~5dの中心軸を中心として上方位置に位置しているときには負の最大振幅、水平位置に位置しているときにはゼロ、下方位置に位置しているときには正の最大振幅となる。このため、この振幅に基づいて加速度センサ22が取り付けられた送信機2の位置検出を行え、送信機2の角度を検出できる。例えば、図3Bに示すように、各車輪5a~5dの中心軸を中心として、送信機2が上方位置に位置しているときを0度としたときの送信機2の角度を把握できる。そして、図3Aに示すように、送信機2の角度と重力加速度成分の値とが対応付けられるため、重力加速度成分の値に基づいて送信機2の角度を検出できる。
 したがって、車速が所定速度に達すると同時もしくは車速が所定速度に達したのち送信機2の角度が所定の角度になったときを基準角度として設定する。そして、その基準角度になったタイミングから更に所定のディレイを設けたタイミングを送信開始タイミングとして、各送信機2からのフレーム送信を行うことができる。その後、送信タイミングになると繰り返しフレーム送信を行うことができる。なお、送信タイミングについては、重力加速度成分の値の振幅周期1周期毎としても良いが、電池寿命を考慮して、その周期毎に常にフレーム送信を行わず、例えば所定周期(例えば15秒間)毎に1回の割合でフレーム送信を行うようにすると好ましい。
 送信回路24は、送信アンテナ25を通じて、マイクロコンピュータ23から送られてきたフレームをTPMS-ECU3に向けて送信する出力部としての機能を果たす。フレーム送信には、例えばRF帯の電波を用いている。
 このように構成される送信機2は、例えば、各車輪5a~5dのホイールにおけるエア注入バルブに取り付けられ、センシング部21がタイヤの内側に露出するように配置される。そして、該当するタイヤ空気圧を検出し、上記したように、送信機2は、車速が所定速度を超えると、送信タイミングのときに繰り返し各送信機2に備えられた送信アンテナ25を通じてフレーム送信を行う。その後も、上記のように設定された送信タイミングでフレーム送信を行うようにすることもできるが、電池寿命を考慮して送信間隔を長くした方が良い。このため、車輪位置特定に必要と想定される時間が経過すると車輪位置確定モードから定期送信モードに切り替わり、より長い一定周期毎(例えば1分毎)にフレーム送信を行うことで、TPMS-ECU3側にタイヤ空気圧に関する信号を定期送信する。このとき、例えば送信機2毎にランダムディレイを設けることで、各送信機2の送信タイミングがずれるようにすることができ、複数の送信機2からの電波の混信によってTPMS-ECU3側で受信できなくなることを防止することができる。
 また、図2Bに示すように、TPMS-ECU3は、受信アンテナ31、受信回路32およびマイクロコンピュータ33などを備えた構成とされている。TPMS-ECU3は、CANなどの車内LANを通じて、後述するようにブレーキECU10から歯車情報を取得することで各車輪5a~5dと共に回転させられる歯車の歯のエッジ数(もしくは歯数)で示される歯位置を取得している。
 受信アンテナ31は、各送信機2から送られてくるフレームを受信するためのものである。受信アンテナ31は、車体6に固定されており、TPMS-ECU3の本体内に配置された内部アンテナでも良いし、本体から配線を引き伸ばした外部アンテナとされていても良い。
 受信回路32は、受信アンテナ31によって受信された各送信機2からの送信フレームを入力し、そのフレームをマイクロコンピュータ33に送る入力部としての機能を果たす。受信回路32は、受信アンテナ31を通じて信号(フレーム)を受信すると、その受信した信号をマイクロコンピュータ33に伝えている。
 マイクロコンピュータ33は、第2制御部に相当するもので、マイクロコンピュータ33内のメモリに記憶されたプログラムに従って車輪位置検出処理を実行する。具体的には、マイクロコンピュータ33は、ブレーキECU10から取得する情報と、各送信機2からの送信フレームを受信した受信タイミングとの関係に基づいて車輪位置検出を行っている。ブレーキECU10からは、マイクロコンピュータ33は、各車輪5a~5dに対応して備えられた車輪速度センサ11a~11dの歯車情報を所定周期(例えば10ms)毎に取得している。
 歯車情報とは、各車輪5a~5dと共に回転させられる歯車(ギア)の歯位置を示す情報である。車輪速度センサ11a~11dは、例えば歯車の歯に対向して配置される電磁ピックアップ式センサによって構成され、歯車の歯の通過に伴って検出信号を変化させる。このようなタイプの車輪速度センサ11a~11dでは、検出信号として歯の通過に対応する方形パルス波を出力していることから、その方形パルス波の立上りおよび立下りが歯車の歯のエッジの通過を表すことになる。したがって、ブレーキECU10では、車輪速度センサ11a~11dの検出信号の立上りおよび立下りの数から歯車の歯のエッジ数、つまりエッジの通過数をカウントし、所定周期毎に、そのときの歯のエッジ数を、歯位置を示す歯車情報としてマイクロコンピュータ33に伝えている。これにより、マイクロコンピュータ33では、歯車のどの歯が通過したタイミングであるかを把握することが可能になっている。
 歯のエッジ数は、歯車が1回転する毎にリセットされる。例えば、歯車に備えられた歯の数が48歯である場合、エッジ数は0~95の合計96個でカウントされ、カウント値が95に至ると再び0に戻ってカウントされる。
 なお、ここではブレーキECU10から歯車情報として歯車の歯のエッジ数をマイクロコンピュータ33に伝えるようにしたが、歯の通過数のカウント値である歯数であっても良い。また、所定周期の間に通過したエッジ数もしくは歯数をマイクロコンピュータ33に伝え、マイクロコンピュータ33で前回までのエッジ数もしくは歯数に所定周期の間に通過したエッジ数もしくは歯数を加算させ、その周期でのエッジ数もしくは歯数をカウントさせるようにしても良い。つまり、マイクロコンピュータ33で最終的に歯車情報としてその周期でのエッジ数もしくは歯数が取得できれば良い。また、ブレーキECU10では、歯車の歯のエッジ数(もしくは歯数)を電源オフのたびにリセットすることになるが、電源オンすると同時もしくは電源オンしてから所定車速になったときから再び計測している。このように、電源オフのたびにリセットされたとしても、電源オフ中には同じ歯が同じエッジ数(もしくは歯数)で表されることになる。
 マイクロコンピュータ33は、各送信機2から送信されたフレームを受信するとその受信タイミングを計測し、取得した歯車のエッジ数(もしくは歯数)の中からフレームの受信タイミングのときの歯車のエッジ数(もしくは歯数)に基づいて車輪位置検出を行う。このように、受信タイミングと歯車情報が示す歯位置に基づいて、各送信機2がどの車輪5a~5dに取り付けられたものかを特定する車輪位置検出を行っている。この車輪位置検出の具体的な方法については後で詳細に説明する。
 また、マイクロコンピュータ33は、車輪位置検出の結果に基づいて、各送信機2のID情報と各送信機2が取り付けられている各車輪5a~5dの位置とを関連づけて記憶する。そして、その後は各送信機2からの送信フレーム内に格納されたID情報およびタイヤ空気圧に関するデータに基づいて、各車輪5a~5dのタイヤ空気圧検出を行い、タイヤ空気圧に応じた電気信号をCANなどの車内LANを通じてメータ4に出力する。例えば、マイクロコンピュータ33は、タイヤ空気圧を所定のしきい値Thと比較することでタイヤ空気圧の低下を検知し、タイヤ空気圧の低下を検知するとその旨の信号をメータ4に出力する。これにより、4つの車輪5a~5dのいずれかのタイヤ空気圧が低下したことがメータ4に伝えられる。
 メータ4は、警報部として機能するものであり、図1に示されるように、ドライバが視認可能な場所に配置され、例えば車両1におけるインストルメントパネル内に設置されるメータディスプレイ等によって構成される。このメータ4は、例えばTPMS-ECU3におけるマイクロコンピュータ33からタイヤ空気圧が低下した旨を示す信号が送られてくると、車輪5a~5dを特定しつつタイヤ空気圧の低下を示す表示を行うことでドライバに特定車輪のタイヤ空気圧の低下を報知する。
 続いて、本実施形態のタイヤ空気圧検出装置の作動について説明する。以下、タイヤ空気圧検出装置の作動について説明するが、タイヤ空気圧検出装置で行われる車輪位置検出とタイヤ空気圧検出とに分けて説明する。
 まず、車輪位置検出について説明する。最初に、参考として、Nullを考慮に入れない場合の車輪位置検出の方法について、説明する。Nullを考慮に入れない場合として、送信機2の角度が所定の送信角度になるとフレーム送信を行い、それを受信機3が受信することで車輪位置検出を行う場合について説明する。
 送信機2側では、マイクロコンピュータ23が電池からの電力供給に基づいて所定のサンプリング周期毎に加速度センサ22の検出信号をモニタすることで車速および車輪5a~5dの送信機2の角度を検出している。そして、マイクロコンピュータ23は、車速が所定速度に達すると、送信機2の角度が所定の送信角度になったときを送信タイミングとして、繰り返しフレーム送信を行う。
 すなわち、加速度センサ22の検出信号の重力加速度成分を抽出すると、図3Aに示すようなsin波となる。このsin波に基づいて送信機2の角度が分かる。このため、sin波に基づいて送信機2の角度が送信角度になったことを検出し、フレーム送信を行う。
 一方、TPMS-ECU3側では、ブレーキECU10から各車輪5a~5dに対応して備えられた車輪速度センサ11a~11dの歯車情報を所定周期(例えば10ms)毎に取得している。そして、TPMS-ECU3は、各送信機2から送信されたフレームを受信したときにその受信タイミングを計測し、取得している歯車のエッジ数(もしくは歯数)の中からフレームの受信タイミングのときの歯車のエッジ数(もしくは歯数)を取得する。
 このとき、各送信機2から送信されたフレームの受信タイミングとブレーキECU10から歯車情報を取得している周期とが一致するとは限らない。このため、ブレーキECU10から歯車情報を取得した周期の中からフレームの受信タイミングに最も近い周期に取得した歯車情報が示す歯車のエッジ数(もしくは歯数)を、フレームの受信タイミングのときの歯車のエッジ数(もしくは歯数)として用いることができる。ここでいう受信タイミングに最も近い周期とは、受信タイミングの直前または直後の周期のいずれであっても良い。また、ブレーキECU10から歯車情報を取得した周期の中からフレームの受信タイミングの直前および直後の周期に取得した歯車情報が示す歯車のエッジ数(もしくは歯数)を用いて、フレームの受信タイミングのときの歯車のエッジ数(もしくは歯数)を演算しても良い。例えば、フレームの受信タイミングの直前および直後の周期に取得した歯車情報が示す歯車のエッジ数(もしくは歯数)の中間値を、フレームの受信タイミングのときの歯車のエッジ数(もしくは歯数)として用いることができる。
 そして、このようなフレームの受信タイミングのときの歯車のエッジ数(もしくは歯数)を取得する動作がフレームを受信する毎に繰り返され、取得したフレームの受信タイミングのときの歯車のエッジ数(もしくは歯数)に基づいて車輪位置検出を行う。具体的には、フレームの受信タイミングのときの歯車のエッジ数(もしくは歯数)のバラツキが前回の受信タイミングのときの歯車のエッジ数(もしくは歯数)に基づいて設定される所定範囲内であるか否かを判定することにより、車輪位置検出を行う。
 フレームを受信した車輪については、送信機2の角度が送信角度になるタイミングで送信機2からフレーム送信が行われている。このため、送信角度が同じ角度であるとした場合には、フレームの受信タイミングのときの歯車のエッジ数(もしくは歯数)で示される歯位置が前回のときとほぼ一致する。したがって、フレームの受信タイミングのときの歯車のエッジ数(もしくは歯数)のバラツキが小さく、所定範囲内に収まることになる。このことは、複数回フレームを受信した場合でも成り立ち、各フレームの受信タイミングのときの歯車のエッジ数(もしくは歯数)のバラツキは、1回目のフレーム受信タイミングのときに決められる所定範囲内に収まる。一方、フレームを受信した車輪とは異なる車輪については、他の車輪の送信機2から送信されたフレームの受信タイミングのときの歯車のエッジ数(もしくは歯数)で示される歯位置がばらつく。
 すなわち、車輪速度センサ11a~11dの歯車の回転は各車輪5a~5dと連動しているため、フレームを受信した車輪については、フレームの受信タイミングのときの歯車のエッジ数(もしくは歯数)で示される歯位置がほぼ一致する。しかし、道路状況や旋回もしくは車線変更などによって各車輪5a~5dの回転状態が変動するため、車輪5a~5dの回転状態が完全に同じになることはあり得ない。このため、フレームを受信した車輪とは異なる車輪については、フレームの受信タイミングのときの歯車のエッジ数(もしくは歯数)で示される歯位置がばらつくのである。
 したがって、図5に示したように、フレームを受信した車輪とは異なる車輪については、イグニッションスイッチ(IG)がオンした当初に歯車12a~12dのエッジ数が0であった状態から、走行開始後に徐々に受信タイミングのときの歯位置にバラツキが生じる。このバラツキが所定範囲内であるか否かを判定することにより、車輪位置検出を行うことができる。
 例えば、図6Aに示すように、1回目のフレーム送信時の送信機2の位置が1回目受信角度であったとする。また、歯車のエッジ数(もしくは歯数)のバラツキとして許容できる幅であるバラツキ許容幅が1回目受信角度を中心とした180度の範囲(1回目受信角度±90度の範囲)相当の値であるとする。エッジ数であれば1回目受信時のエッジ数を中心とした±24のエッジ数範囲、歯数であれば1回目受信時の歯数を中心とした±12の歯数範囲であるとする。この場合において、図6Bに示すように、2回目のフレーム受信時の歯車のエッジ数(もしくは歯数)が1回目のフレーム受信によって決められたバラツキ許容幅の範囲内であれば、その車輪はフレーム送信が行われた車輪と一致している可能性がある。この場合には、判定結果がTRUEとなる。
 ただし、この場合にも2回目のフレーム受信時の送信機2の角度である2回目受信角度を中心としてバラツキ許容幅が決まり、2回目受信角度を中心とした180度(±90度)相当の値となる。このため、前回のバラツキ許容幅となる1回目受信角度を中心とした180度(±90度)のバラツキ許容幅と、2回目受信角度を中心とした180度(±90度)のバラツキ許容幅の重なる部分が新たなバラツキ許容幅(エッジ数範囲が12~48)となる。その重複範囲に新たなバラツキ許容幅を狭めることができる。
 したがって、図6Cに示すように、3回目のフレーム受信時の歯車のエッジ数(もしくは歯数)が1、2回目のフレーム受信によって決められたバラツキ許容幅の範囲外であれば、その車輪はフレーム送信が行われた車輪と一致していない。このため、判定結果がFALSEとなる。このとき、たとえ1回目のフレーム受信によって決められたバラツキ許容幅の範囲内であっても、1、2回目のフレーム受信によって決められたバラツキ許容幅の範囲外であれば、FALSEと判定している。このようにして、受信したフレームを送信した送信機2が車輪5a~5dのいずれに取り付けられたものであるかを特定することが可能となる。
 すなわち、図7Aに示すように、識別情報としてID1が含まれたフレームについては、そのフレームの受信タイミングの毎に歯車のエッジ数(もしくは歯数)を取得し、それを対応する車輪(左前輪FL、右前輪FR、左後輪RL、右後輪RR)毎に記憶する。そして、フレームを受信するたびに、取得した歯車のエッジ数(もしくは歯数)がバラツキ許容幅の範囲内であるか否かを判定し、その範囲から外れた車輪をフレームが送信された送信機2の取り付けられた車輪候補から除外していく。そして、最後まで除外されなかった車輪をフレームが送信された送信機2の取り付けられた車輪として登録する。ID1が含まれたフレームの場合、右前輪FR、右後輪RR、左後輪RLの順に候補から除外され、最終的に残った左前輪FLをフレームが送信された送信機2の取り付けられた車輪として登録する。
 そして、図7B~図7Dに示すように、識別情報としてID2~ID4が含まれたフレームについてもID1が含まれたフレームと同様の処理を行う。これにより、各フレームが送信された送信機2の取り付けられた車輪を特定することができ、送信機2が取り付けられた4輪すべてを特定することが可能となる。
 このようにして、各フレームが車輪5a~5dのいずれに取り付けられたものであるかを特定する。そして、マイクロコンピュータ33は、フレームを送信してきた各送信機2のID情報を、それが取り付けられた車輪の位置と関連付けて記憶する。これにより、車輪位置検出を行うことができる。
 ただし、上記のような方法によって送信機2が取り付けられた4輪すべてを特定できれば良いが、Nullのように送信されたフレームがTPMS-ECU3に届き難い場所とフレーム送信が行われる送信機2の角度である送信角度が一致する可能性がある。その場合、送信角度を常に同じ角度にしたのでは、毎回フレームがTPMS-ECU3に受信できなくなることがあり得る。
 そこで、Nullを回避できるように、フレーム送信毎にフレームの送信角度を変更することが考えられる。しかし、フレーム送信毎にフレームの送信角度を変更したとしても、再びNullの位置となる角度となったときに、TPMS-ECU3で受信できなくなる。変更する角度にもよるが、例えば毎回180度ずつ送信角度をずらす場合には、送信角度とNullの位置とが一致した場合、2回に1回の割合でTPMS-ECU3で受信できなくなる可能性がある。車輪位置検出が実行される度にフレーム送信が開始される送信角度が同じ角度に設定される場合、所定の割合で送信角度とNullの位置とが一致することになってしまい何度車輪位置検出を行っても上記した問題が発生することになる。
 このため、本実施形態では、送信機2で車速を検出し、車速に応じて送信タイミングを設定するようにすることで、送信角度を異ならせるようにしている。具体的には、送信機2は、走行中と判定すると、車速が所定速度に達した瞬間の送信機2の角度もしくは予め決められた送信機2の角度を基準角度として、送信機2の角度が基準角度になったことを検出する。そして、基準角度となったタイミングから車速に応じたディレイ時間を設け、そのディレイ時間だけ遅らせたタイミングを送信タイミングとしてフレーム送信を行う。
 例えば、車速が大きいほどディレイ時間を大きく設定したり、車速が大きいほどディレイ時間を小さくしたりできる。前者の場合、例えば図8に示すように、0km/h以上かつ50km/h未満の車速域では10ms、50km/h以上かつ100km/h未満の車速域では20ms、100km/h以上の車速域では30msのディレイ時間とすることができる。
 このように、車速に応じて基準角度からのディレイ時間を設定することで、フレーム送信が行われる送信機2の角度を変更することができる。例えば、図9に示したように送信機2の角度が0度のときを基準角度とすると、その基準角度を認識したのち車速に応じて一定のディレイ時間を設けてフレーム送信が行われる。これにより、図10に示すように、加速度センサ22の検出信号の重力加速度成分の振幅が負の最大振幅の位置からディレイ時間分ずれた角度でフレーム送信が行われるようにできる。このように、フレーム送信が行われる送信角度を車速に応じて変更できるため、そのうちの一部がNullの位置と一致したとしても、それ以外ではNullを回避することができ、より確実に送信されたフレームがTPMS-ECU3に届くようにすることができる。
 一方、TPMS-ECU3では、フレームの受信タイミングにおける歯位置を検出したのち、その歯位置を受信タイミングがディレイ時間分だけ早くなったとした場合の歯位置に補正することで、基準角度でフレーム送信された場合の歯位置を演算する。すなわち、TPMS-ECU3では、送信されたフレームの受信タイミングでの歯車のエッジ数(もしくは歯数)がバラツキ許容幅の範囲内に含まれるか否かを確認することで、車輪位置検出を行っている。このため、複数の異なる送信角度でフレーム送信が行われているときには、異なる送信角度で送信されたフレームの受信タイミングでの歯車のエッジ数(もしくは歯数)を同じ送信角度で送信されたものに補正することが必要になる。
 このとき、TPMS-ECU3において、ディレイ時間が把握できなければ上記補正を行うことができない。しかしながら、TPMS-ECU3は車輪速度センサ11a~11dの歯車情報を所定周期(例えば10ms)毎に取得しているため、歯車情報に基づいてTPMS-ECU3でも車速を取得することができる。また、ブレーキECU10ではABS制御などのために元々車速を演算していることから、TPMS-ECU3がブレーキECU10から車速情報を取得することもできる。
 したがって、TPMS-ECU3でも車速を把握していることから、TPMS-ECU3に予め車速とディレイ時間との関係を記憶させておけば、フレームを受信したときの車速からディレイ時間を推定できる。このため、ディレイ時間に関する情報、換言すれば角度情報をフレームに含めなくても、TPMS-ECU3でディレイ時間を把握して、正確に基準角度でフレーム送信が行われたとした場合の歯位置を演算することができる。
 具体的には、各フレームの受信タイミングでの歯車のエッジ数(もしくは歯数)を送信角度がずらされた分だけ補正し、送信角度がずらされていないとしたときの歯車のエッジ数(もしくは歯数)にする。例えば、歯車の歯数が48とされている場合において、車速が40km/hのときにタイヤ1回転が200msであり、ディレイ時間が10msであったとすると、ディレイ時間に対応するエッジ数が96×10/200≒5となる。同様に、ディレイ時間に対応する歯数が×10/200≒2となる。したがって、TPMS-ECU3は、受信タイミングでの歯車のエッジ数(もしくは歯数)からディレイ時間に対応するエッジ数(もしくは歯数)を補正することで、基準角度でのエッジ数(もしくは歯数)を演算することができる。そして、補正後のエッジ数(もしくは歯数)がバラツキ許容幅の範囲内に含まれるか否かに基づいて車輪位置検出を行うことができる。
 なお、TPMS-ECU3では、車速が所定速度になったときに送信されたフレームを受信し、その受信タイミングにおける歯車情報を記憶しているが、所定の走行停止判定時速(例えば3km/h)以下になると、それまでの歯車情報を破棄している。そして、再び走行開始したときに、新たに上記のようにして車輪位置検出を行うようにしている。
 このようにして車輪位置検出が行われると、その後は、タイヤ空気圧検出が行われる。具体的には、タイヤ空気圧検出の際には、一定周期毎に各送信機2からフレームが送信され、各送信機2からフレームが送信されるたびに、4輪分のフレームがTPMS-ECU3で受信される。そして、TPMS-ECU3では、各フレームに格納されたID情報に基づいて車輪5a~5dに取り付けられたいずれの送信機2から送られてきたフレームであるかを特定し、タイヤ空気圧に関する情報より各車輪5a~5dのタイヤ空気圧を検出する。これにより、各車輪5a~5dのタイヤ空気圧の低下を検出でき、車輪5a~5dのいずれのタイヤ空気圧が低下しているかを特定することが可能となる。そして、タイヤ空気圧の低下が検出されると、その旨をメータ4に伝えることで、メータ4によって車輪5a~5dを特定しつつタイヤ空気圧の低下を示す表示を行い、ドライバに特定車輪のタイヤ空気圧の低下を報知する。
 以上説明したように、本実施形態では、車速に応じて基準角度からのディレイ時間を設定し、送信機2の角度が基準角度に達したのちディレイ時間経過したときにフレーム送信を行うようにしている。これにより、フレーム送信が行われる送信角度を車速に応じて変更できるため、そのうちの一部がNullの位置と一致したとしても、それ以外ではNullを回避することができ、より確実に送信されたフレームがTPMS-ECU3に届くようにすることができる。同じ速度域において同じディレイ時間が設定されたとしても、車速が異なっていれば同じディレイ時間中に回転するタイヤ回転角度が異なるため、Nullの位置が連続して続くことはほとんど無いと言える。そして、車速についてはTPMS-ECU3側でも取得することができる。このため、フレームにディレイ時間に関する情報、換言すれば角度情報を含めなくても、TPMS-ECU3でディレイ時間を把握することができ、正確に基準角度でフレーム送信が行われたとした場合の歯位置を演算することができる。したがって、確実に送信機2からの送信フレームを受信できるようにしつつ、フレームに角度情報を含まなくても確実に車輪位置の特定が行える車輪位置検出装置にできる。
 また、車速に応じて送信角度をずらしてフレーム送信が行われるため、Nullの位置等でフレームを受信できないときがあっても、それ以外の送信角度のときに確実にTPMS-ECU3側でフレームを受信できる。このため、繰り返しフレーム受信をできない場合と比較して、より短時間で正確に、かつ、より確実に車輪位置の特定が行える車輪位置検出装置とすることが可能となる。
 また、車輪5a~5dと連動して回転させられる歯車12a~12dの歯の通過を検出する車輪速度センサ11a~11dの検出信号に基づいて、歯車12a~12dの歯位置を示す歯車情報を取得している。そして、フレームの受信タイミングのときの歯位置に基づいてバラツキ許容幅を設定し、その後のフレームの受信タイミングのときの歯位置がバラツキ許容幅の範囲内であるか否かに基づいて車輪位置の特定を行っている。すなわち、フレームの受信タイミングのときの歯位置がバラツキ許容幅の範囲外であれば、該フレームが送信された送信機2の取り付けられた車輪の候補から除外していき、残った車輪をフレームが送信された送信機2の取り付けられた車輪として登録している。このため、多くのデータ量が揃わなくても車輪位置の特定を行うことができる。
 さらに、フレームの受信タイミングのときの歯位置に基づくバラツキ許容幅と、前回のフレームの受信タイミングに設定されたバラツキ許容幅と重なる部分を新たなバラツキ許容幅として設定している。このため、これらの重複範囲に新たなバラツキ許容幅を狭めることができる。したがって、より短時間で正確に車輪位置の特定が行える車輪位置検出装置とすることが可能となる。
 また、車速が所定速度以上になったことをフレーム送信の条件にしたり、加速度センサ22を用いて各車輪5a~5dでの送信機2の位置検出を行っているため、車両1が走行し始めてからしか車輪位置検出を行えないものの、走行後直ぐに車輪位置検出を行うことができる。さらに、トリガ機が出力した信号の受信強度などに基づいて車輪位置検出を行う場合のように、トリガ機などを必要としなくても車輪位置検出を行うことが可能となる。
 (第2実施形態)
 本開示の第2実施形態について説明する。本実施形態のタイヤ空気圧検出装置は、第1実施形態に対して車輪位置検出機能におけるフレーム送信のディレイ時間の設定方法を変更したものである。その他に関しては第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
 上記実施形態では、各車速に対応するディレイ時間を1つ設定しているが、本実施形態では、各車速に対応するディレイ時間を2つ設定し、それを送信回数に応じて交互に適用する。例えば、図11に示すように、0km/h以上かつ50km/h未満の車速域ではディレイ時間を10msと40msとし、送信回数が奇数回目のときには10ms、偶数回目のときには40msとする。50km/h以上かつ100km/h未満の車速域ではディレイ時間を20msと50msとし、送信回数が奇数回目のときには20ms、偶数回目のときには50msとする。100km/h以上の車速域ではディレイ時間を30msと60msとし、送信回数が奇数回目のときには30ms、偶数回目のときには60msとする。
 このように、車速が同じ車速域であっても、奇数回目と偶数回目とでディレイ時間を変更するようにしている。このようにすると、図12に示すように車速および送信回数に応じて、基準角度からのディレイ時間を変更することが可能となる。
 第1実施形態の場合、同じ車速域で走行し続けた場合に、ディレイ時間を設けてフレーム送信を行うようにした送信角度がNullと一致すると、連続的にTPMS-ECU3にフレームが届かなくなる可能性がある。しかしながら、本実施形態のようにすれば、例えばTPMS-ECU3に奇数回目に送信したフレームが届かなくても偶数回目に送信したフレームは届くようにできる。したがって、同じ車速域で走行し続けた場合に、より確実にTPMS-ECU3にフレームが届くようにでき、より確実に車輪位置検出を行うことができる。
 なお、奇数回目と偶数回目のいずれかのフレーム送信において、Nullの位置と一致してフレーム受信が行えないことがあり得る。フレーム受信が行えなかったか否かについては、フレーム中に送信カウントのデータを含めておけば、容易にTPMS-ECU3側で確認できるため、フレーム受信が行えなかった場合を加味して送信角度がずらされた分を補正できる。しかしながら、送信カウントのデータを含めなくても、フレームの送信間隔が所定周期で定められていることから、各フレームの受信間隔に基づいてディレイ時間を把握できる。つまり、前回のフレーム受信からの経過時間に対応した回数だけフレーム送信が行われていると考えられるため、その経過時間から今回受信したフレームが奇数回目と隅数回目のいずれに送信されたかを把握できる。したがって、送信カウントのデータをフレーム中に含めなくても、Nullの位置でフレームを受信できなかったときに問題なく上記補正を行うことができる。
 (他の実施形態)
 上記実施形態では、車速に対応したディレイとして、ディレイ時間を設けることで、基準角度から送信角度がずらされるようにしたが、車速に対応したディレイ角度を設定し、基準角度からディレイ角度ずらした送信角度でフレーム送信を行うようにしても良い。この場合にも、車速が大きくなるほどディレイ角度を大きく、もしくは、車速が大きくなるほどディレイ角度を小さく設定することができる。また、フレームの送信回数に応じてディレイ角度を変更し、例えば、フレームの送信回数が奇数回目のときと偶数回目のときとでディレイ時間を異ならせることができる。
 また、上記第2実施形態では、同じ車速域でのディレイ時間を送信回数が奇数回目か偶数回目かに分けて2つ設定する場合について説明したが、2つではなくそれ以上の数としても良い。その場合、送信回数毎に異なる各ディレイ時間が順番に設定されるようにし、送信回数がディレイ時間の数に至ったら、再度異なる各ディレイ時間が順番に設定されるようにローテーションすれば良い。また、車速に応じてディレイ時間ではなくディレイ角度を設ける場合も同様に、送信回数に応じて異なるディレイ時間が設定されるようにしても良い。
 また、上記実施形態では、フレーム送信を行う角度として、角度が0度の位置を各車輪5a~5dの中心軸を中心として加速度センサ22が上方位置に位置しているときとしている。しかしながら、これは単なる一例であり、車輪の周方向の任意の位置を角度0度とすればよい。
 また、上記実施形態では、ディレイ時間に応じてTPMS-ECU3でエッジ数もしくは歯数という歯位置の補正を行うようにしたが、バラツキ許容幅をディレイ時間に対応してずらしても良い。例えば、2回目のフレーム受信時の判定に用いるバラツキ許容幅を1回目受信角度を中心とした90度の範囲に対して1回目と2回目のディレイ時間の差に相当する角度だけ足した範囲とする。このように、各回のディレイ時間の差に相当する角度だけバラツキ許容幅を補正しても良い。
 また、上記実施形態では、フレームの受信タイミング毎にバラツキ許容幅を変更し、徐々にバラツキ許容幅が狭くなるようにしているが、歯位置を中心として設定されるバラツキ許容幅については一定としている。この歯位置を中心として設定されるバラツキ許容幅についても変更可能である。例えば、歯位置のバラツキは、車速が大きいほど大きくなる可能性がある。このため、車速が大きくなるほどバラツキ許容幅を大きくすることで、より的確なバラツキ許容幅を設定できる。また、加速度センサ22で加速度検出を行うときのサンプリング周期が長いほど、送信機2の角度が所定角度になったタイミングの検出精度が落ちることから、それに応じてバラツキ許容幅を変更することで、より的確なバラツキ許容幅を設定できる。その場合、送信機2側でサンプリング周期などを把握していることから、送信機2が送信するフレーム内にバラツキ許容幅の大きさを決めるデータを含めて送信させるようにすることができる。
 上記実施形態では、TPMS-ECU3がブレーキECU10から歯車情報を取得するようにしているが、TPMS-ECU3が歯車情報として歯車の歯のエッジ数もしくは歯数を取得できれば良い。このため、他のECUから取得しても良いし、車輪速度センサ11a~11dの検出信号を入力し、その検出信号から歯車の歯のエッジ数もしくは歯数を取得するようにしても良い。特に、上記実施形態では、TPMS-ECU3とブレーキECU10を別々のECUで構成する場合について説明したが、これらが一体化された単独のECUで構成される場合もあり得る。その場合には、そのECUが直接車輪速度センサ11a~11dの検出信号を入力し、その検出信号から歯車の歯のエッジ数もしくは歯数を取得することになる。また、その場合には、歯車の歯のエッジ数もしくは歯数を常時取得することができるため、これらの情報を所定周期毎に取得する場合と異なり、フレームの受信タイミング丁度の歯車情報に基づいて車輪位置検出を行うことが可能となる。
 また、上記実施形態では、4つの車輪5a~5dが備えられた車両1に対して備えられた車輪位置検出装置について説明したが、さらに車輪数が多い車両についても、同様に本開示を適用することができる。
 また、上記実施形態では、歯車情報に基づいて車輪位置特定を行う際に、歯位置に基づいてバラツキ許容幅を設定し、その範囲外であるか否かに基づいて車輪位置特定を行っている。そして、前回のバラツキ許容幅と今回のバラツキ許容幅とが重なる部分を新たなバラツキ許容幅として設定することでバラツキ許容幅を狭くしている。これにより、より短期間で車輪位置特定を行うことが可能となるが、バラツキ許容幅を狭くしなくても、送信角度を車速に応じて変更することで、TPMS-ECU3で確実にフレームが受信できる。このことから、繰り返しフレーム受信をできない場合と比較して、より短時間で正確に、かつ、より確実に車輪位置の特定を行うことが可能となる。
 さらに、歯位置のバラツキ許容幅を利用して車輪位置特定を行うようにしたが、複数回のフレーム送信時の歯位置の標準偏差などに基づいて車輪位置特定を行う場合であっても、送信角度をフレーム送信毎にずらすことで、上記と同様の効果が得られる。
 なお、本開示では、車輪速度センサ11a~11dにより車輪5a~5dの回転に連動して回転させられる歯車の歯の通過を検出できれば良い。このため、歯車としては、外周面が導体とされた歯の部分と歯の間に位置する部分が交互に繰り返される磁気抵抗の異なる構造であれば良い。つまり、外縁部が凹凸とされることで外周面が導体となる凸部と非導体となる空間で構成された一般的なもののみではなく、例えば外周面が導体となる部分と非導体となる絶縁体で構成されたロータスイッチ等も含まれる(例えば特開平10-048233号公報参照)。

Claims (9)

  1.  車体(6)に対してタイヤを備えた複数の車輪(5a~5d)が取り付けられた車両(1)に適用される車輪位置検出装置は、
     前記複数の車輪(5a~5d)それぞれに設けられ、固有の識別情報を含めたフレームを作成して送信する第1制御部(23)を有する送信機(2)と、
     前記車体(6)側に設けられ、受信アンテナ(31)を介して前記送信機(2)から送信されたフレームを受信することで、前記フレームを送信してきた前記送信機(2)が前記複数の車輪(5a~5d)のいずれに取り付けられたものであるかを特定し、前記複数の車輪(5a~5d)と該複数の車輪(5a~5d)それぞれに設けられた前記送信機(2)の識別情報とを対応づけて記憶する車輪位置検出を行う第2制御部(33)を有する受信機(3)とを備えた車輪位置検出装置であって、
     前記送信機(2)は、該送信機(2)が取り付けられた車輪(5a~5d)の回転に伴って変化する重力加速度成分を含む加速度に応じた検出信号を出力する加速度センサ(22)を有し、
     前記第1制御部(23)は、前記加速度センサ(22)の検出信号に基づいて車速を検出して該車速に対応するディレイ時間を設定すると共に、該送信機(2)が取り付けられた車輪(5a~5d)の中心軸を中心とし、かつ、該車輪(5a~5d)の周方向の任意の位置を角度0度として、前記加速度センサ(22)の検出信号に含まれる重力加速度成分に基づいて前記送信機(2)の角度を検出し、該角度が所定の基準角度から前記ディレイ時間経過したときを送信タイミングとすることで前記車速に応じて異なる送信角度で繰り返し前記フレームを送信し、
     前記第2制御部(33)は、予め前記車速と前記ディレイ時間との関係を記憶していると共に、前記複数の車輪(5a~5d)と連動して回転させられる歯車(12a~12d)の歯の通過に応じた検出信号を出力する車輪速度センサ(11a~11d)の検出信号に基づいて、前記歯車の歯位置を示す歯車情報および車速を取得し、取得した車速と記憶してある前記車速と前記ディレイ時間との関係より前記送信機(2)で設定された前記ディレイ時間を推定し、前記フレームの受信タイミングのときの前記歯位置と前記ディレイ時間に基づいて前記フレームが送信された送信機(2)の取り付けられた車輪(5a~5d)を特定することを特徴とする車輪位置検出装置。
  2.  前記第1制御部(23)は、前記車速が大きくなるほど前記ディレイ時間を大きく、もしくは、前記車速が大きくなるほど前記ディレイ時間を小さく設定することを特徴とする請求項1に記載の車輪位置検出装置。
  3.  前記第1制御部(23)は、前記フレームの送信回数に応じてディレイ時間を変更することを特徴とする請求項1または2に記載の車輪位置検出装置。
  4.  前記第1制御部(23)は、前記フレームの送信回数が奇数回目のときと偶数回目のときとで前記ディレイ時間を異ならせることを特徴とする請求項3に記載の車輪位置検出装置。
  5.  車体(6)に対してタイヤを備えた複数の車輪(5a~5d)が取り付けられた車両(1)に適用される車輪位置検出装置は、
     前記複数の車輪(5a~5d)それぞれに設けられ、固有の識別情報を含めたフレームを作成すると共に送信する第1制御部(23)を有する送信機(2)と、
     前記車体(6)側に設けられ、受信アンテナ(31)を介して前記送信機(2)から送信されたフレームを受信することで、前記フレームを送信してきた前記送信機(2)が前記複数の車輪(5a~5d)のいずれに取り付けられたものであるかを特定し、前記複数の車輪(5a~5d)と該複数の車輪(5a~5d)それぞれに設けられた前記送信機(2)の識別情報とを対応づけて記憶する車輪位置検出を行う第2制御部(33)を有する受信機(3)とを備えた車輪位置検出装置であって、
     前記送信機(2)は、該送信機(2)が取り付けられた車輪(5a~5d)の回転に伴って変化する重力加速度成分を含む加速度に応じた検出信号を出力する加速度センサ(22)を有し、
     前記第1制御部(23)は、前記加速度センサ(22)の検出信号に基づいて車速を検出して該車速に対応するディレイ角度を設定すると共に、該送信機(2)が取り付けられた車輪(5a~5d)の中心軸を中心とし、かつ、該車輪(5a~5d)の周方向の任意の位置を角度0度として、前記加速度センサ(22)の検出信号に含まれる重力加速度成分に基づいて前記送信機(2)の角度を検出し、該角度が所定の基準角度から前記ディレイ角度ずれた角度を送信角度として、前記車速に応じて異なる送信角度で繰り返し前記フレームを送信し、
     前記第2制御部(33)は、予め前記車速と前記ディレイ角度との関係を記憶していると共に、前記複数の車輪(5a~5d)と連動して回転させられる歯車(12a~12d)の歯の通過に応じた検出信号を出力する車輪速度センサ(11a~11d)の検出信号に基づいて、前記歯車の歯位置を示す歯車情報および車速を取得し、取得した車速と記憶してある前記車速と前記ディレイ角度との関係より前記送信機(2)で設定された前記ディレイ角度を推定し、前記フレームの受信タイミングのときの前記歯位置と前記ディレイ角度に基づいて前記フレームが送信された送信機(2)の取り付けられた車輪(5a~5d)を特定することを特徴とする車輪位置検出装置。
  6.  前記第1制御部(23)は、前記車速が大きくなるほど前記ディレイ角度を大きく、もしくは、前記車速が大きくなるほど前記ディレイ角度を小さく設定することを特徴とする請求項5に記載の車輪位置検出装置。
  7.  前記第1制御部(23)は、前記フレームの送信回数に応じてディレイ角度を変更することを特徴とする請求項5または6に記載の車輪位置検出装置。
  8.  前記第1制御部(23)は、前記フレームの送信回数が奇数回目のときと偶数回目のときとで前記ディレイ角度を異ならせることを特徴とする請求項7に記載の車輪位置検出装置。
  9.  請求項1ないし8のいずれか1つに記載の車輪位置検出装置を含むタイヤ空気圧検出装置であって、
     前記送信機(2)は、前記複数の車輪(5a~5d)それぞれに備えられた前記タイヤの空気圧に応じた検出信号を出力するセンシング部(21)を備え、前記第1制御部(23)によって前記センシング部(21)の検出信号を信号処理したタイヤ空気圧に関する情報をフレームに格納したのち、当該フレームを前記受信機(3)に送信し、
     前記受信機(3)は、前記第2制御部(2)にて、該タイヤ空気圧に関する情報より、前記複数の車輪(5a~5d)それぞれに備えられた前記タイヤの空気圧を検出することを特徴とするタイヤ空気圧検出装置。
PCT/JP2013/003661 2012-07-13 2013-06-11 車輪位置検出装置およびそれを備えたタイヤ空気圧検出装置 WO2014010167A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012157633A JP2014019214A (ja) 2012-07-13 2012-07-13 車輪位置検出装置およびそれを備えたタイヤ空気圧検出装置
JP2012-157633 2012-07-13

Publications (1)

Publication Number Publication Date
WO2014010167A1 true WO2014010167A1 (ja) 2014-01-16

Family

ID=49915652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/003661 WO2014010167A1 (ja) 2012-07-13 2013-06-11 車輪位置検出装置およびそれを備えたタイヤ空気圧検出装置

Country Status (2)

Country Link
JP (1) JP2014019214A (ja)
WO (1) WO2014010167A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014117856B4 (de) * 2013-12-20 2017-08-10 Hyundai Autron Co., Ltd. Reifendruckkontrollsystem sowie Verfahren zur Durchführung dessen automatischer Ortsbestimmung
EP3769977A4 (en) * 2018-10-01 2021-04-21 Pacific Industrial Co., Ltd. TIRE CONDITION MONITORING SYSTEM, TRANSMITTER AND RECEIVER

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013211152A1 (de) * 2013-06-14 2014-12-18 Continental Automotive Gmbh Verfahren und Vorrichtung zum Lokalisieren von Rädern eines Fahrzeugs sowie Reifendruckkontrollsystem
JP2016203722A (ja) * 2015-04-17 2016-12-08 太平洋工業株式会社 車輪位置判定装置
JP6407808B2 (ja) * 2015-06-29 2018-10-17 太平洋工業株式会社 車輪位置特定装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006312342A (ja) * 2005-05-06 2006-11-16 Denso Corp 車輪位置検出装置およびそれを備えたタイヤ空気圧検出装置
JP2009107530A (ja) * 2007-10-31 2009-05-21 Mitsubishi Electric Corp 車載受信装置
WO2011085877A1 (de) * 2009-12-21 2011-07-21 Continental Automotive Gmbh Verfahren und vorrichtung zum lokalisieren der verbaupositionen von fahrzeugrädern in einem kraftfahrzeug
JP2011168099A (ja) * 2010-02-16 2011-09-01 Tokai Rika Co Ltd タイヤ空気圧監視システム
US20120112899A1 (en) * 2010-11-05 2012-05-10 Trw Automotive U.S. Llc Method and apparatus for determining tire condition and location
JP2012096640A (ja) * 2010-11-01 2012-05-24 Tokai Rika Co Ltd センサユニット登録システム及びセンサユニット登録方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2889610B1 (fr) * 2005-08-04 2007-10-19 Siemens Vdo Automotive Sas Procede de transmission d'un signal electromagnetique de requete d'identification a destination d'un boitier electronique monte sur une roue d'un vehicule
JP5298607B2 (ja) * 2008-04-08 2013-09-25 パナソニック株式会社 タイヤ空気圧モニタ装置、その制御方法、およびプログラム
DE102008049046A1 (de) * 2008-09-26 2010-04-08 Continental Automotive Gmbh Verfahren, Sensor, Detektor und System, zur Lokalisierung zumindest eines Rades an einem Fahrzeug

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006312342A (ja) * 2005-05-06 2006-11-16 Denso Corp 車輪位置検出装置およびそれを備えたタイヤ空気圧検出装置
JP2009107530A (ja) * 2007-10-31 2009-05-21 Mitsubishi Electric Corp 車載受信装置
WO2011085877A1 (de) * 2009-12-21 2011-07-21 Continental Automotive Gmbh Verfahren und vorrichtung zum lokalisieren der verbaupositionen von fahrzeugrädern in einem kraftfahrzeug
JP2011168099A (ja) * 2010-02-16 2011-09-01 Tokai Rika Co Ltd タイヤ空気圧監視システム
JP2012096640A (ja) * 2010-11-01 2012-05-24 Tokai Rika Co Ltd センサユニット登録システム及びセンサユニット登録方法
US20120112899A1 (en) * 2010-11-05 2012-05-10 Trw Automotive U.S. Llc Method and apparatus for determining tire condition and location

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014117856B4 (de) * 2013-12-20 2017-08-10 Hyundai Autron Co., Ltd. Reifendruckkontrollsystem sowie Verfahren zur Durchführung dessen automatischer Ortsbestimmung
US10118446B2 (en) 2013-12-20 2018-11-06 Hyundai Autron Co., Ltd. Tire pressure monitoring system and method for performing auto-location thereof
EP3769977A4 (en) * 2018-10-01 2021-04-21 Pacific Industrial Co., Ltd. TIRE CONDITION MONITORING SYSTEM, TRANSMITTER AND RECEIVER

Also Published As

Publication number Publication date
JP2014019214A (ja) 2014-02-03

Similar Documents

Publication Publication Date Title
JP5585595B2 (ja) 車輪位置検出装置およびそれを備えたタイヤ空気圧検出装置
JP5477369B2 (ja) 車輪位置検出装置およびそれを備えたタイヤ空気圧検出装置
JP5477368B2 (ja) 車輪位置検出装置およびそれを備えたタイヤ空気圧検出装置
JP5910402B2 (ja) 車輪位置検出装置およびそれを備えたタイヤ空気圧検出装置
JP5585596B2 (ja) 車輪位置検出装置およびそれを備えたタイヤ空気圧検出装置
JP5585597B2 (ja) 車輪位置検出装置およびそれを備えたタイヤ空気圧検出装置
JP5609860B2 (ja) 車輪位置検出装置およびそれを備えたタイヤ空気圧検出装置
JP5803710B2 (ja) 車輪位置検出装置およびそれを備えたタイヤ空気圧検出装置
JP5803733B2 (ja) 車輪位置検出機能を備えたタイヤ空気圧検出装置
WO2013187016A1 (ja) 車輪位置検出装置およびそれを備えたタイヤ空気圧検出装置
JP5954006B2 (ja) 車輪位置検出装置およびそれを備えたタイヤ空気圧検出装置
WO2014010167A1 (ja) 車輪位置検出装置およびそれを備えたタイヤ空気圧検出装置
JP5477370B2 (ja) 車輪位置検出装置およびそれを備えたタイヤ空気圧検出装置
JP6372226B2 (ja) 車輪位置検出装置およびそれを備えたタイヤ空気圧検出装置
WO2020013240A1 (ja) 車輪位置検出装置およびそれを備えたタイヤ空気圧監視システム
WO2014006823A1 (ja) 車輪位置検出装置およびそれを備えたタイヤ空気圧検出装置
JP6375970B2 (ja) 車輪位置検出装置およびそれを備えたタイヤ空気圧検出システム
JP5810940B2 (ja) 車輪位置検出装置およびそれを備えたタイヤ空気圧検出装置
JP5954001B2 (ja) 車輪位置検出装置およびそれを備えたタイヤ空気圧検出装置
WO2016121365A1 (ja) 車輪位置検出装置およびそれを備えたタイヤ空気圧検出システム
JP5810941B2 (ja) 車輪位置検出装置およびそれを備えたタイヤ空気圧検出装置
WO2016121366A1 (ja) 車輪位置検出装置およびそれを備えたタイヤ空気圧検出システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13816144

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13816144

Country of ref document: EP

Kind code of ref document: A1