WO2014007560A1 - 미생물 포획 및 방출용 마이크로 구조물 - Google Patents

미생물 포획 및 방출용 마이크로 구조물 Download PDF

Info

Publication number
WO2014007560A1
WO2014007560A1 PCT/KR2013/005947 KR2013005947W WO2014007560A1 WO 2014007560 A1 WO2014007560 A1 WO 2014007560A1 KR 2013005947 W KR2013005947 W KR 2013005947W WO 2014007560 A1 WO2014007560 A1 WO 2014007560A1
Authority
WO
WIPO (PCT)
Prior art keywords
microorganism
microstructure
release
capture
microstructures
Prior art date
Application number
PCT/KR2013/005947
Other languages
English (en)
French (fr)
Inventor
정용균
Original Assignee
주식회사 퀀타매트릭스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 퀀타매트릭스 filed Critical 주식회사 퀀타매트릭스
Priority to US14/413,008 priority Critical patent/US10253348B2/en
Priority to EP13813820.1A priority patent/EP2873729B1/en
Priority to ES13813820.1T priority patent/ES2656983T3/es
Priority to CN201380043138.3A priority patent/CN104583395B/zh
Publication of WO2014007560A1 publication Critical patent/WO2014007560A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/24Methods of sampling, or inoculating or spreading a sample; Methods of physically isolating an intact microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/04Enzymes or microbial cells immobilised on or in an organic carrier entrapped within the carrier, e.g. gel or hollow fibres
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/40Apparatus specially designed for the use of free, immobilised, or carrier-bound enzymes, e.g. apparatus containing a fluidised bed of immobilised enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M33/00Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus
    • C12M33/02Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus by impregnation, e.g. using swabs or loops
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/06Enzymes or microbial cells immobilised on or in an organic carrier attached to the carrier via a bridging agent
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/14Enzymes or microbial cells immobilised on or in an inorganic carrier

Definitions

  • the technology disclosed herein relates to microstructures for microbial capture and release.
  • blood culture tests are performed because it is necessary to accurately diagnose what is the causative agent of sepsis and what therapies are good for.
  • blood sample is mixed in a liquid culture medium for blood culture, and is usually observed at 37 ° C. for 1 to 2 days to observe whether the microorganisms grow.
  • Blood-inoculated medium is cultured in the presence and absence of oxygen, and cultures anaerobic bacteria (grows with or without oxygen) or anaerobic bacteria (with or without oxygen) as well as aerobic bacteria (with or without oxygen). can do.
  • the bottom of the culture bottle containing the medium is usually coated with chemicals that discolor or fluoresce when the microorganisms grow, and can automatically detect the growth of microorganisms in the medium using a blood culture device that can recognize color changes or fluorescence. have.
  • the conventional method is to obtain the required amount of bacteria by plating the culture (including microorganisms) after blood culture in agar medium, it takes about 16-24 hours to form colonies. Since the conventional pure culture process takes a relatively long time, the treatment effect for bacterial sepsis is rapidly dropped. Therefore, a shorter incubation time is required for faster testing.
  • this technology requires a process of separating microorganisms from various foods and various environments in identifying and culturing microorganisms present in various foods and various natural environments.
  • this technology requires a process of separating microorganisms from various foods and various environments in identifying and culturing microorganisms present in various foods and various natural environments.
  • microorganisms are present in a small amount in such an environment, even the separation process is not easy, and even if a relatively large amount of microorganisms exist, it is difficult to take a long time because a culture process is required to separate the microorganisms.
  • providing a microstructure to which a microorganism detachable protein is applied comprising mixing the microstructure and the microorganism attachment helper containing solution together with the microbial containing solution to form a mixed solution; Stirring the mixed solution to attach the microorganism to the microstructure; Separating the microstructure to which the microorganism is attached from the mixed solution; And lowering the concentration of the microorganism attachment helper to desorb the microorganism from the microstructure.
  • FIG. 1 is a diagram showing a binding model of human mannose-binding lectin (MBL) and bacteria.
  • Figure 2 is a schematic (a) and the actual optical micrograph (b) showing the bacteria attached to the microstructure coated with MBL.
  • Figure 3 is a process flow diagram showing an embodiment of the microbial capture and separation method.
  • Figure 4 is an optical micrograph showing the experimental results comparing the bacterial capture and release characteristics of the antibody-coated microstructures and MBL-coated microstructures.
  • 5 to 8 show the results of measuring the number of cells after culturing for each hour after separating bacteria from each microstructure attached to microstructures coated with MBL and antibody.
  • novel structures are provided that can facilitate the capture and release of microorganisms.
  • Such microbial capture and separation constructs include microstructures having a surface area to which one or more microorganisms can be attached, and proteins that enable the detachment of the microorganisms artificially applied onto the microstructures.
  • the microstructures have a suitable structure for capturing and releasing microorganisms.
  • the microstructures have a surface area capable of capturing one or more microorganisms. That is, the size of the microstructure is larger than that of the microorganism.
  • the "micro structure” means that the size of the structure is equal to or larger than the size of microorganisms such as bacteria, and means that the longest size is at least 1 ⁇ m or more.
  • the microstructure may be a structure in which at least one of the width, thickness, and length of the structure is 1 ⁇ m or more and 1 mm or less.
  • the microstructure may have a size of at least one of width, thickness, and length of about tens to hundreds of micrometers.
  • the microstructures may be spherical, polyhedral, flat, disk, rod-shaped isotropic or anisotropic structures or amorphous structures.
  • the microstructures may be spherical structures having a diameter of several tens of micrometers.
  • the microstructures may be flat or disc shaped structures having a width of several tens of micrometers.
  • the microstructure has a flat plate shape, at least one microorganism may be attached to each microstructure.
  • the microorganisms are distributed on the plane, which is advantageous in focusing on an object or identifying the number of objects when observing using an imaging device.
  • microstructures can be manufactured in a variety of ways.
  • the microfluidic lithography using the continuous flow lithography technique disclosed in US Publication No. 2007/0105972 or the digital micromirror element (DMD) disclosed in Korean Patent No. 087900 can be used to produce microstructures of various shapes, sizes and chemical compositions. Structures can be created faster and easier.
  • DMD digital micromirror element
  • the microstructure may be a polymer obtained by curing a curable material such as a UV curable polymer or a monomer.
  • the curable material may include a liquid hydrophilic polymer capable of forming a hydrogel by application of energy such as UV.
  • curable materials capable of forming hydrogels include silicone-containing polymers such as polydimethylsiloxane, polyacrylamide, polyethylene oxide, polyethylene glycol diacrylate, polypropylene glycol diacrylate, polyvinylpyrrolidone, polyvinyl alcohol , Polyacrylates and copolymers thereof.
  • silicone-containing polymers such as polydimethylsiloxane, polyacrylamide, polyethylene oxide, polyethylene glycol diacrylate, polypropylene glycol diacrylate, polyvinylpyrrolidone, polyvinyl alcohol , Polyacrylates and copolymers thereof.
  • PEG-DA polyethylene glycol diacrylate
  • the curable material may include any form of medium that can change from a liquid to a solid.
  • Ultraviolet rays may be irradiated to the curable material to generate various types of microstructures by a mask pattern formed from a photomask pattern or a digital micromirror device.
  • the microstructure may be used as a structure for capturing and releasing microorganisms by applying a protein (hereinafter, a microorganism desorption protein) that enables the detachment of the microorganism artificially on a surface.
  • a protein hereinafter, a microorganism desorption protein
  • the protein may be changed in its interaction with the microorganism by the artificial control method including pH, temperature, change in the concentration of external metal ions, and the like.
  • the microstructure may capture or release the microorganism at a specific pH range, a specific temperature range, or a specific ion concentration range.
  • the microstructure may further include a protective layer having a functional group.
  • a protective layer having a functional group.
  • a silica coating layer may be used, and when a functional group such as a carboxyl group is introduced thereto, a microorganism detachable protein such as MBL may be easily applied.
  • the silica coating layer increases the stability of the microstructure and prevents the absorption of MBL into the hydrogel.
  • a functional group for introducing MBL may be introduced through -OH on the surface of the silica coating layer.
  • the microorganism detachable protein may bind to glycoproteins or carbohydrates on the surface of various microorganisms such as viruses, bacteria, protozoa, and the like.
  • the microorganism detachable protein include calcium-dependent serum protein.
  • the calcium dependent serum protein may be Mannose-binding lectin (MBL).
  • Mannose-binding lectin (MBL) is also known as mannose-binding protein (MBP).
  • MBL is a calcium ion (Ca 2+ ) dependent lectin (C-type lectin) that activates the lectin pathway or acts as an opsonin to greatly enhance the phagocytosis of leukocytes.
  • the microorganism desorption protein may be artificially controlled in its properties by a material that helps the protein attach to the microorganism, that is, the microorganism attachment helper.
  • the MBL may bind to microorganisms by calcium ions.
  • FIG. 1 is a diagram showing a binding model of human mannose-binding lectin (MBL) and bacteria.
  • Figure 1 (a) is when the calcium ion concentration is high MBL binds to the sugar portion of the microbial cell wall (Microbial Cell Wall) via Ca 2+ to catch the bacteria with a strong force.
  • Figure 1 (b) shows that when the calcium ion concentration is low MBL can no longer bind to the bacterial cell wall to release the bacteria.
  • the MBL has two to six carbohydrate recognition domains (CRDs).
  • MBL can trap sugars on the surface of microorganisms, such as bacteria, via calcium ions. This allows MBL-coated microstructures to capture microorganisms in high concentrations of calcium ion environments (eg calcium ion concentrations above 20 mM).
  • MBL has the advantage of being able to collect almost all kinds of bacteria and have high efficiency of collection.
  • lowering the concentration of calcium ions allows the bacteria to be easily separated from the MBL, which can be used for cultivating the collected bacteria or directly for antibiotic susceptibility testing (AST).
  • AST antibiotic susceptibility testing
  • Figure 2 is a schematic (a) and the actual optical micrograph (b) showing the bacteria attached to the microstructure coated with MBL.
  • Figure 2 (b) shows the Bacillus subtilis ATCC 6633 bacteria attached to the disk-shaped PEG microstructure having a diameter of 100 ⁇ m size and a height of 25 ⁇ m.
  • Figure 3 is a process flow diagram showing an embodiment of the microbial capture and separation method. Referring to Figure 3, in step S1 to provide a microstructure coated with a microorganism detachable protein.
  • step S2 the microstructure and the microorganism attachment helper-containing solution are mixed together to form a mixed solution.
  • the microorganism-containing solution may be, for example, bacteria in a general culture medium or cultured bacteria after blood culture, or blood, manure, tissue, or the like derived from a living organism, or various foods, bacteria present in various natural environments.
  • the solution containing the microorganism adhesion aid may be, for example, a buffer solution for cells such as TE or calcium phosphate buffered saline (PBS).
  • step S3 the mixed solution is stirred to attach the microorganism to the microstructure.
  • shaking may be carried out, for example, at 30-37 ° C. at 50-100 rpm.
  • step S4 the microstructure to which the microorganism is attached is separated from the mixed solution. Filtration may be used for the separation, or magnetic separation using a magnet may be used when the magnetic material is contained in the microstructure.
  • step S5 the microstructure is exposed to an environment having a low concentration of the microorganism attachment helper to desorb the microorganism from the microstructure.
  • the microorganism may be separated from the microstructure by exposing the microstructure to which the microorganism is attached to a solution in which the microorganism attachment aid is excluded.
  • a solution containing MBL-microstructures attached to microorganisms due to the presence of calcium ions is treated with calcium-free TE or PBS buffer solution to remove calcium from the solution, and then the microstructures are placed in a conventional microbial medium. give.
  • MBL binds to the surface of microorganisms through calcium ions
  • exposing the microstructures to which microorganisms are attached to liquid environment with low concentration of calcium ions separates calcium ions from MBL.
  • the microorganism can be easily detached from the microstructure. Since the desorbed microorganisms are hardly damaged and can be efficiently cultured in the medium.
  • the application of the techniques disclosed herein to bacterial antibiotic sensitivity testing systems can significantly reduce the pure culturing time, which typically takes 16 to 24 hours, due to the excellent capture rate and cultivation efficiency of the method.
  • blood containing 10 5 cfu / ml of bacteria can be incubated at 10 7 cfu / ml in about 3 hours.
  • the technology disclosed herein can effectively separate microorganisms, such as bacteria or viruses, present in tissues, blood, manure, or various foods or various natural environments separated from living organisms, and thus time for identifying microorganisms. It can be reduced and used if necessary to cultivate microorganisms effectively.
  • the techniques disclosed herein can also be used for bacterial storage.
  • CRYOBANK TM a commercial system for storing and preserving bacterial strains using ceramic beads
  • conventional commercial beads are difficult to store many bacteria in the beads due to their low efficiency of adsorption to the beads.
  • the application of this technique to bacterial storage is expected to outperform conventional bead systems in terms of bacterial capture and culture efficiency.
  • the technology disclosed herein may be used for the purpose of efficiently separating DNA and protein by lysing bacterial cells by using beads after bacteria capture, such as Hyglos bacteria capture kit.
  • beads after bacteria capture such as Hyglos bacteria capture kit.
  • Conventional commercial bead lysis kits use antibodies to capture bacteria and therefore can only be used with specific strains and cannot be used for various strains.
  • using this technique it is easy to capture various kinds of strains.
  • an antibody is a substance attached to a specific bacterium, and only one bacterium is bound to one specific antibody, thus having high specificity.
  • various bacteria or unknown bacteria cannot be collected, and the collection rate is also low.
  • nanometer-scale beads are attached to and captured by micrometer-scale bacteria.
  • the collection rate is excellent, it is difficult to remove the beads attached to the bacteria and nanometer-sized beads may be toxic to the cells, which may affect bacterial growth. This makes it difficult to cultivate the collected bacteria or use it in other applications such as AST.
  • Nanobeads make it easy to determine the presence of bacteria, but it is difficult to collect them and use them for purposes other than identification.
  • PEG-DA was cured using photofluidic maskless lithography (OFML) technology to produce a variety of disc-shaped beads 50-200 ⁇ m in diameter and about 10-50 ⁇ m thick. Among them, mainly disc shaped beads having a diameter of 100 ⁇ m and a thickness of 25 ⁇ m were produced. Later, to facilitate separation of the beads from the mixed solution, the magnetic material was contained in the disc-shaped beads (volume ratio of PEG-DA to magnetic material was 10 to 1). Silica was coated on the bead surface, and then the antibody or MBL was added to the bead at a concentration of about 1 to 125 ug (usually 5 ug) per ml using a catalyst such as ECD / NHS.
  • OFML photofluidic maskless lithography
  • the bacterial capture and release properties of the MBL coated microstructures were compared with that of the antibody coated microstructures.
  • the experimental process for this is as follows.
  • Bacteria infected blood was incubated at room temperature until the number of cells per ml was up to 10 8 to prepare samples ranging from 10 0 to 10 7 per ml.
  • Microstructures coated with specific antibodies of Gram-negative bacteria and Gram-positive bacteria of each bacterium, and structures coated with MBL protein were prepared.
  • the microstructures prepared in 1 ml of the prepared bacterial culture were adjusted to 5000 for each condition, and bacteria were attached to the microstructures while shaking at 50 to 100 rpm at 37 ° C. for 1 hour.
  • the beads attached to the bacteria were separated by magnetic or filtration, and then the beads were transferred to a new culture to allow the bacteria to naturally detach from the structure. Incubate the bacteria separated by the microstructure for 1 to 4 hours every hour and measure the number of cultured bacteria from each of the antibody-coated microstructure and the MBL protein-coated construct (C-chip, Nano Entec) compared.
  • Figure 4 is an optical micrograph showing the experimental results comparing the bacterial capture and release characteristics of the antibody-coated microstructures and MBL-coated microstructures. 4 shows the microbial adhesion performance of the MBL-microstructures (left) and the antibody-microstructures (right) and the lower photo shows the MBL-microstructures (left) and the antibody-microstructures (right). Comparison of microbial desorption performance.
  • the two different bacteria Pseudomonas aeruginosa ATCC 27853, Staphylococcus aureus ATCC 292173 are more attached to MBL-microstructures than antibody-microstructures.
  • the photo below shows that when attaching bacteria and separating from microstructure again, it is much more efficient in MBL-microstructure than conventional Antibody-microstructure. It is also possible to reuse bacteria isolated from MBL-microstructures. Therefore, it can be seen that the efficiency of the reaction attached to the microstructures with respect to the entire microbial group using the MBL than when attached to the microstructures in a specific reaction by using the antibodies suited to the characteristics of each bacteria can be confirmed.
  • the future antibiotic sensitivity test in the process of purely separating bacteria from the microstructure, more bacteria are released in a short time, which is superior in terms of time, cost, and sensitivity compared to conventional pure separation and culture methods. Giving.
  • 5 to 8 show the results of measuring the number of cells after culturing for each hour after separating bacteria from each microstructure attached to microstructures coated with MBL and antibody.
  • 5, 6, 7 and 8 are measured results for four types of bacteria, respectively Pseudomonas aeruginosa ATCC 27853, Staphylococcus aureus ATCC 29213, Escherichia coli ATCC 25922, And Enterococcus faecalis It relates to ATCC 29212.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Sustainable Development (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

미생물 탈부착용 단백질이 도포된 마이크로 구조물을 제공하는 단계; 미생물 함유 용액에 상기 마이크로 구조물 및 미생물 부착 도움물질 함유 용액을 함께 혼합하여 혼합 용액을 형성하는 단계; 상기 혼합 용액을 교반하여 상기 미생물을 상기 마이크로 구조물에 부착시키는 단계; 상기 미생물이 부착된 상기 마이크로 구조물을 상기 혼합 용액으로부터 분리해내는 단계; 및 상기 마이크로 구조물을 상기 미생물 부착 도움물질의 농도가 낮은 환경에 노출시켜 상기 미생물을 상기 마이크로 구조물로부터 탈착시키는 단계를 포함하는 마이크로 구조물을 이용한 미생물 포획 및 방출방법이 제공된다.

Description

미생물 포획 및 방출용 마이크로 구조물
본 명세서에 개시된 기술은 미생물 포획 및 방출용 마이크로 구조물에 관한 것이다.
패혈증 또는 균혈증을 의심하는 환자를 적절하게 치료하기 위해서는, 패혈증의 원인균이 무엇이고 그 원인균에 잘 듣는 치료제가 어떤 것인지 정확하게 진단해야 하기 때문에 혈액 배양 검사를 시행하게 된다. 일반적으로 환자로부터 혈액을 채취할 경우 먼저 피부에 정상적으로 존재하는 세균이나 주변 환경의 세균에 오염이 되지 않도록 주사기 등을 이용하여 혈액을 무균적으로 채취한다. 이 혈액 검체를 혈액 배양용 액체 배지에 섞고, 통상적으로 37℃에서 보통 1~2일 동안 배양하면서 미생물이 자라는지 관찰하게 된다. 혈액을 접종한 배지는 산소가 있는 조건과 없는 조건에서 각각 배양하며, 호기성 세균(산소가 있어야만 자람) 또는 통성 혐기성 세균(산소가 있든 없든 자람)뿐 아니라 혐기성 세균(산소가 있으면 자라지 못함)도 배양할 수 있다. 배지가 담겨 있는 배양병 바닥에는 대개 미생물이 자라면 변색되거나 형광을 발하는 화학 물질이 도포되어 있어서, 색 변화나 형광을 인식할 수 있는 혈액 배양 기기를 이용하여 배지 내 미생물 성장을 자동으로 검출할 수 있다. 위 방법으로 환자에서 추출한 미생물을 적정 수(105 cell/ml)가 되기까지 배양 후 그 다음의 과정(병원균주의 동정 및 항생제감수성 검사 등)을 실시하기 위해서 혈액배양 액에서 병원 균주만을 분리 배양하는 순수 배양이 필요하다. 통상적인 방법은 혈액배양후의 배양액(미생물 포함)을 한천배지에 도말하여 필요한 양의 세균을 얻고 있는데 콜로니가 형성될 때까지 약 16~24 시간이 걸리게 된다. 기존의 순수배양과정이 비교적 오래 걸리므로 세균성 패혈증에 대한 치료효과가 급속도로 떨어진다. 따라서 보다 신속한 검사를 위해 배양 시간의 단축이 요구된다.
또한 이 기술은 각종 식품이나 다양한 자연 환경 속에 존재하는 미생물을 동정하고 배양하는데 있어서 미생물을 각종 식품이나 다양한 환경으로부터 분리하는 과정이 필요하다. 그러나 미생물이 이런 환경속에 미량으로 존재할 경우 분리과정 조차 쉽지 않고 또 비교적 다량의 미생물이 존재한다고 해도 그 미생물을 분리하기 위해서 배양과정이 필요하기 때문에 시간이 많이 걸리는 어려움이 있다.
그러므로 각종 다양한 환경 예를 들어 생물에서 유래된 조직, 혈액, 분뇨 등이나 다양한 식품, 또는 다양한 자연환경 속에서 존재하는 미생물을 효과적으로 분리하는 방법, 분리 시간을 줄일 수 있는 기술이 필요하다.
본 명세서에 개시된 기술의 일 측면에 의하면, 하나 이상의 미생물을 부착할 수 있는 표면적을 갖는 마이크로 구조물; 및 상기 마이크로 구조물 위에 도포되어 있으며, 인위적인 제어방식에 의해 상기 미생물의 탈부착을 가능하게 하는 단백질 을 포함하는 미생물 포획 및 방출용 구조물이 제공된다.
본 명세서에 개시된 기술의 다른 측면에 의하면, 미생물 탈부착용 단백질이 도포된 마이크로 구조물을 제공하는 단계; 미생물 함유 용액에 상기 마이크로 구조물 및 미생물 부착 도움물질 함유 용액을 함께 혼합하여 혼합 용액을 형성하는 단계; 상기 혼합 용액을 교반하여 상기 미생물을 상기 마이크로 구조물에 부착시키는 단계; 상기 미생물이 부착된 상기 마이크로 구조물을 상기 혼합 용액으로부터 분리해내는 단계; 및 상기 미생물 부착 도움물질의 농도를 낮추어 상기 미생물을 상기 마이크로 구조물로부터 탈착시키는 단계를 포함하는 마이크로 구조물을 이용한 미생물 포획 및 방출방법이 제공된다.
도 1은 인간 맨노스-바인딩 렉틴(MBL)과 박테리아의 결합 모델을 나타낸 도면이다.
도 2는 MBL로 코팅된 마이크로 구조물에 박테리아가 부착된 모습을 나타낸 개략도(a)와 실제 광학 현미경 사진(b)이다.
도 3은 미생물 포획 및 분리방법의 일 실시예를 나타내는 공정흐름도이다.
도 4는 항체를 코팅한 마이크로 구조물과 MBL을 코팅한 마이크로 구조물의 박테리아 포획 및 방출 특성을 비교한 실험결과를 나타낸 광학 현미경 사진이다.
도 5 내지 도 8은 MBL 및 항체로 도포된 마이크로 구조물들에 각각 부착된 박테리아들을 각 마이크로 구조물로부터 분리한 다음 시간 별로 배양 후 세포 개수를 측정한 결과를 나타낸 것이다.
이하, 도면을 참조하여 본 명세서에 개시된 기술의 실시예들에 대해 상세히 설명하고자 한다. 다음에 소개되는 실시예들은 당업자에게 개시된 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되어지는 것이다. 따라서 개시된 기술은 이하 설명된 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 그리고 도면들에 있어서, 구성요소의 폭, 길이, 두께 등은 편의를 위하여 과장되어 표현될 수도 있다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다. 전체적으로 도면 설명시 관찰자 시점에서 설명하였고, 일 구성요소가 다른 구성요소 위에있다고 할 때, 이는 다른 구성요소 바로 위에있는 경우 뿐 아니라, 그 중간에 또 다른 구성요소가 있는 경우도 포함한다.
본 개시된 기술의 일 측면에 의하면, 미생물의 포집과 방출을 용이하게 할 수 있는 신규한 구조물이 제공된다. 이러한 미생물 포획 및 분리용 구조물은 하나 이상의 미생물을 부착할 수 있는 표면적을 갖는 마이크로 구조물 및 상기 마이크로 구조물 위에 도포된 인위적으로 상기 미생물의 탈부착을 가능하게 하는 단백질을 포함한다.
상기 마이크로 구조물은 미생물을 포획 및 방출하기 위한 적합한 구조를 가진다. 상기 마이크로 구조물은 하나 이상의 미생물을 포획할 수 있는 표면적을 가진다. 즉 상기 마이크로 구조물의 규격은 미생물의 규격보다 크다.
본 명세서에 있어서, "마이크로 구조물"은 구조물의 규격이 박테리아와 같은 미생물의 크기와 동등 또는 그 이상의 크기를 가지면 되며, 가장 긴 쪽의 규격이 적어도 1 ㎛ 이상인 것을 의미한다. 예를 들어 상기 마이크로 구조물은 구조물의 너비, 두께 및 길이 중 적어도 하나가 1 ㎛ 이상이고 1 mm 이하인 구조물일 수 있다. 상기 마이크로 구조물은 너비, 두께 및 길이 중 적어도 하나가 통상 수십 내지 수백 ㎛ 정도의 규격을 가질 수 있다. 상기 마이크로 구조물은 구형, 다면체형, 평판형, 디스크형, 막대형을 포함한 등방형 또는 비등방형의 구조물이나 무정형의 구조물일 수 있다. 예를 들어, 상기 마이크로 구조물은 수십 ㎛ 크기의 직경을 갖는 구형 구조물일 수 있다. 바람직한 예로서, 상기 마이크로 구조물은 수십 ㎛ 크기의 너비를 갖는 평판형 또는 디스크형 구조물일 수 있다. 상기 마이크로 구조물이 평판형의 형태를 가질 경우 상기 마이크로 구조물 하나 당 적어도 하나의 미생물이 부착될 수 있다. 평판형의 전면 및 후면에 다수의 미생물이 부착되면 평면 위에 미생물들이 분포하므로 이후 이미징 장치를 사용하여 관찰할 때 대상물에 대하여 초점을 맞추거나 개체 수를 파악하는 데 유리한 장점이 있다.
상기 마이크로 구조물은 다양한 방법으로 제조될 수 있다. 예를 들어 미국 공개 번호 제2007/0105972호에 개시된 연속흐름 리소그래피 기술이나 한국등록특허 제0875900호에 개시된 디지털 마이크로 미러 소자(DMD)를 이용한 광유체적 리소그래피를 사용하면 다양한 형태, 크기 및 화학 조성의 마이크로 구조물들이 보다 빠르고 쉽게 생성될 수 있다.
상기 마이크로 구조물은 UV 경화형 폴리머 또는 모노머와 같은 경화성 물질을 경화시킨 고분자일 수 있다. 경화성 물질은 UV와 같은 에너지의 인가에 의해 하이드로젤을 형성할 수 있는 액상의 친수성 고분자를 포함할 수 있다.
하이드로젤을 형성할 수 있는 경화성 물질의 예는 폴리디메틸실록산과 같은 실리콘함유 고분자, 폴리아크릴아마이드, 폴리에틸렌옥사이드, 폴리에틸렌 글리콜 디아크릴레이트, 폴리프로필렌 글리콜 디아크릴레이트, 폴리비닐피롤리돈, 폴리비닐알코올, 폴리아크릴레이트 및 이들의 공중합체일 수 있다. 예를 들어, 경화성 물질인 폴리에틸렌 글리콜 디아크릴레이트(PEG-DA)는 폴리에틸렌글리콜(PEG) 양 말단에 아크릴레이트 작용기가 있어서 자유라디칼 중합이 일어날 경우 3차원 구조의 하이드로젤로 가교될 수 있다. 기타, 경화성 물질은 액체에서 고체로 변할 수 있는 어떠한 형태의 매질도 포함할 수 있다.
상기 경화성 물질에 자외선을 조사하여 포토마스크 패턴 또는 디지털 마이크로 미러 소자에서 형성된 마스크 패턴에 의해 다양한 형태의 마이크로 구조물을 생성할 수 있다.
상기 마이크로 구조물은 표면에 인위적으로 상기 미생물의 탈부착을 가능하게 하는 단백질 (이하 미생물 탈부착용 단백질)이 도포됨으로써 미생물 포획 및 방출용 구조물로 사용될 수 있다. 상기 단백질은 pH, 온도, 외부 금속 이온 농도의 변화 등을 포함한 인위적인 제어방식에 의해 상기 미생물과 표면과의 상호작용하는 성질이 변화될 수 있다. 예를 들어 특정 pH 범위, 특정 온도 범위 또는 특정 이온 농도범위에서 상기 마이크로 구조물이 상기 미생물을 포획 또는 방출할 수 있다.
상기 마이크로 구조물은 기능기를 구비한 보호층을 더 포함할 수 있다. 상기 보호층의 바람직한 예로 실리카 코팅층이 사용될 수 있으며 여기에 카복실기와 같은 기능기를 도입하면 MBL과 같은 미생물 탈부착용 단백질이 용이하게 도포될 수 있다.
하이드로젤 기반의 마이크로 구조물의 경우 상기 실리카 코팅층은 상기 마이크로 구조물의 안정성을 높이고 하이드로젤 내부로 MBL이 흡수되지 않도록 한다. 또한, 실리카 코팅층 표면의 -OH를 통해 MBL의 도입을 위한 기능기가 도입할 수 있다.
상기 미생물 탈부착용 단백질은 바이러스, 박테리아, 원생동물 등의 다양한 미생물의 표면에 있는 당단백질이나 탄수화물에 결합할 수 있다. 상기 미생물 탈부착용 단백질의 예로 칼슘 의존성 혈청 단백질(calcium-dependent serum protein)을 들 수 있다. 구체적으로 상기 칼슘 의존성 혈청 단백질은 맨노스-바인딩 렉틴(Mannose-binding lectin, MBL)일 수 있다. 맨노스-바인딩 렉틴(MBL)은 맨노스-바인딩 단백질(MBP)이라고도 한다. MBL은 렉틴 경로(lectin pathway)를 활성화시키거나 옵소닌으로서 기능을 하여 백혈구의 식세포작용(phagocytosis) 기능을 크게 향상시키는 칼슘 이온(Ca2+) 의존성 렉틴(C-형 렉틴)이다. 상기 미생물 탈부착용 단백질은 상기 단백질이 미생물을 부착하는 데 도움이 되는 물질, 즉 미생물 부착 도움물질에 의해 그 성질이 인위적으로 제어될 수 있다. 예를 들어 상기 MBL은 칼슘 이온에 의해 미생물과 결합할 수 있다.
도 1은 인간 맨노스-바인딩 렉틴(MBL)과 박테리아의 결합 모델을 나타낸 도면이다. 도 1의 (a)는 칼슘 이온 농도가 높을 때 MBL이 Ca2+를 매개로 세균 세포벽 (Microbial Cell Wall)의 당부분에 결합하여 세균을 강한 힘으로 잡는 모습이다. 도 1의 (b)는 칼슘 이온 농도가 낮을 때 MBL이 더 이상 세균 세포벽에 결합을 하지 못해서 세균을 방출하는 모습이다.
도 1을 참조하면, MBL은 2 내지 6개의 탄수화물 인식 영역(CRD, carbohydrate recognition domain)을 구비한다. MBL은 칼슘 이온을 매개로 하여 박테리아와 같은 미생물의 표면의 당을 붙잡을 수 있다. 이로 인해 MBL이 도포된 마이크로 구조물은 높은 농도의 칼슘 이온 환경(예를 들어 20mM 이상의 칼슘 이온 농도)에서 미생물을 포획할 수 있다. MBL은 거의 모든 종류의 박테리아를 포집할 수 있고 포집의 효율이 높은 장점이 있다. 또한 주위 칼슘 이온 농도를 낮추면 박테리아를 MBL로부터 쉽게 분리할 수 있어 포집된 박테리아를 배양하거나 항생제 감수성 검사(AST) 등에 직접 이용할 수 있다.
도 2는 MBL로 코팅된 마이크로 구조물에 박테리아가 부착된 모습을 나타낸 개략도(a)와 실제 광학 현미경 사진(b)이다. 도 2의 (b)는 Bacillus subtilis ATCC 6633 박테리아가 100 ㎛ 크기의 직경 및 25 ㎛의 높이를 갖는 디스크 형태의 PEG 마이크로 구조물에 부착된 모습을 나타낸다.
본 개시된 기술의 또 다른 측면에 의하면, 마이크로 구조물을 이용한 미생물 포획 및 분리방법이 제공된다. 도 3은 미생물 포획 및 분리방법의 일 실시예를 나타내는 공정흐름도이다. 도 3을 참조하면, 단계 S1에서 미생물 탈부착용 단백질이 도포된 마이크로 구조물을 제공한다.
단계 S2에서 미생물 함유 용액에 상기 마이크로 구조물 및 미생물 부착 도움물질 함유 용액을 함께 혼합하여 혼합 용액을 형성한다. 상기 미생물 함유 용액은 예를 들어 일반 배양액 속에 있는 박테리아 또는 혈액배양 후의 배양된 박테리아, 또는 생물에서 유래된 혈액, 분뇨, 조직 등 또는 각종 식품, 각종 자연 환경 속에 존재하는 박테리아 일 수 있다. 상기 마이크로 구조물이 MBL로 도포된 경우, 상기 미생물 부착 도움물질 함유 용액은 예를 들어 칼슘 이온을 함유한 TE나 PBS(phospate buffered saline) 등의 세포용 버퍼용액일 수 있다.
단계 S3에서 상기 혼합 용액을 교반하여 상기 미생물을 상기 마이크로 구조물에 부착시킨다. 적절한 교반을 위해, 예를 들어 50~100 rpm으로 30~37℃에서 진탕(shaking)할 수 있다.
단계 S4에서 상기 미생물이 부착된 상기 마이크로 구조물을 상기 혼합 용액으로부터 분리해낸다. 분리를 위해 여과 방식이 이용되거나, 상기 마이크로 구조물 내에 자성 물질이 함유되어 있을 경우 자석을 이용한 자기적 분리 방식이 이용될 수 있다.
단계 S5에서 상기 마이크로 구조물을 상기 미생물 부착 도움물질의 농도가 낮은 환경에 노출시켜 상기 미생물을 상기 마이크로 구조물로부터 탈착시킨다. 상기 미생물이 부착된 상기 마이크로 구조물을 미생물 부착 도움물질이 배제된 용액에 노출시킴으로써 상기 마이크로 구조물로부터 상기 미생물이 분리될 수 있다. 예를 들어, 칼슘 이온의 존재에 의해 미생물에 부착된 MBL-마이크로 구조물을 함유한 용액을 칼슘이 배제된 TE나 PBS 버퍼 용액으로 처리하여 용액 속의 칼슘을 제거한 후 통상의 미생물 배지에 마이크로 구조물을 넣어준다. MBL은 칼슘 이온을 매개로 하여 미생물 표면에 결합하므로 상기 미생물이 부착된 마이크로 구조물을 칼슘 이온의 농도가 낮은 액체 환경(예를 들어 1mM 이하의 칼슘 이온 농도)에 노출시키면 칼슘 이온이 MBL로부터 분리되면서 상기 미생물이 상기 마이크로 구조물로부터 용이하게 탈착될 수 있다. 이후 상기 탈착된 미생물은 손상이 거의 없어 배지에서 효율적으로 배양할 수 있다.
상술한 바에 따르면, MBL이 도포된 마이크로 구조물을 이용함으로써 적은 농도를 갖는 미지 종류의 박테리아를 포집할 수 있으며, 상기 박테리아를 포집한 후에도 이를 배지에 넣으면 마이크로 구조물로부터 용이하게 분리되어 박테리아 배양 효율을 높일 수 있다. 따라서 이러한 방법은 다양한 형태로 응용될 수 있다.
첫째, 본 명세서에 개시된 기술을 박테리아 항생제 민감도 검사 시스템에 적용하면 본 방법의 뛰어난 포집률 및 배양 효율에 의해 보통 16~24 시간이 걸리는 순수 배양(pure culturing) 시간을 대폭 단축시킬 수 있다. 예를 들어 105 cfu/ml 농도의 박테리아가 포함된 혈액을 3 시간 정도에 107 cfu/ml 농도로 배양할 수 있다.
둘째, 본 명세서에 개시된 기술은 생물체로부터 분리된 조직, 혈액, 분뇨, 또는 각종 식품 또는 다양한 자연 환경 속에 존재하는 박테리아나 바이러스 등의 미생물을 효과적으로 그 환경으로부터 분리할 수 있어 미생물을 동정하는데 그 시간을 줄일 수 있고 필요한 경우 미생물을 효과적으로 배양하는 데도 사용할 수 있다.
셋째, 본 명세서에 개시된 기술은 박테리아 저장법에도 이용될 수 있다. 세라믹 비드를 이용하여 박테리아 균주를 저장하고 보존하기 위한 상용 시스템인 CRYOBANKTM과 비교해볼 때, 종래 상용 비드는 박테리아가 비드에 흡착하는 효율이 낮아 많은 박테리아를 비드에 저장하기 힘들다. 반면, 본 기술을 박테리아 저장에 응용할 경우 박테리아 포획과 배양효율 면에서 기존 비드 시스템보다 우수할 것으로 기대된다.
넷째, 본 명세서에 개시된 기술은 Hyglos사의 박테리아 포획 키트와 같이 박테리아 포획 후 비드를 이용하여 박테리아 세포를 용해(lysis)하여 DNA와 단백질을 효율적으로 분리하는 용도에 사용될 수도 있다. 종래 상용 비드 lysis 키트의 경우 항체를 사용하여 박테리아를 포획하므로 특정한 균주 밖에 이용할 수 없고 다양한 균주에 사용하기에 불가능하다. 반면 본 기술을 사용하면 다양한 종류의 균주를 용이하게 포획할 수 있다.
한편, 본 명세서에 개시된 기술의 장점은 아래와 같은 면에서 종래 기술에 대비된다. 박테리아를 포집하는 종래 기술에는 크게 두 가지가 있다. 하나는 박테리아의 항체(antibody)를 비드에 부착하는 방법(Sanchez, J. 8t Jonson, G. Binding of bacteria to carbohydrates immobilized on beads to demonstrate the presence of cell-associated hemagglutinins in Vibrio cholerae. APMIS 98: 353-357, 1990)이고, 나머지 하나는 나노 비드에 MBL을 도포하는 방법(Keun-Hwa Park, Kenji Kurokawa, Human Serum Mannose-binding Lectin Senses Wall Teichoic Acid Glycopolymer of Staphylococcus aureus, Which Is Restricted in Infancy VOLUME 285/NUMBER 35/AUGUST 27, 2010)이다. 전자의 경우, 항체는 특정 박테리아에 붙는 물질로 한 종류의 항체 당 한 종류의 박테리아만 결합되어 높은 특이성을 갖게 된다. 하지만 항체를 이용할 경우 다양한 박테리아 또는 미지의 박테리아를 포집할 수 없으며, 포집률 또한 떨어진다. 후자의 경우, 마이크로미터 스케일의 박테리아에 다수의 나노미터 스케일의 비드들이 부착되어 포집하는 방식이다. 이 경우 포집률이 뛰어나지만, 박테리아에 붙은 비드를 떼어내기 힘들고 나노미터 크기의 비드들이 세포에 대해서 독성이 있을 수 있어 박테리아 성장에 영향을 줄 수 있다. 그리하여 포집한 박테리아를 배양하거나 AST와 같은 다른 용도에 사용하기에 힘들다. 즉 나노 비드를 이용하면 박테리아의 존재 여부를 파악하는 것에는 용이하지만, 박테리아들을 모아서 동정 이외의 다른 목적으로 사용하기는 힘들다.
이하 본 개시된 기술을 실시예를 통해 더욱 상세히 설명하고자 하나, 개시된 기술의 사상이 이하의 실시예에 의해 제한되는 것은 아니다.
[실시예]
마이크로 구조물의 제조
광유체적 무마스크 리소그래피(OFML) 기술을 이용하여 PEG-DA를 경화시켜 50 내지 200 ㎛ 직경 및 약 10 내지 50 ㎛ 두께의 다양한 디스크형 비드를 생산하였다. 이중 주로 지름 100 ㎛ 두께 25 ㎛의 디스크형 비드를 생산하였다. 나중에 혼합용액으로부터 비드의 분리를 용이하게 하기 위해 디스크형 비드 내에 자성 물질이 함유되도록 하였다(PEG-DA 대 자성물질의 부피비는 10 대 1). 만들어진 비드 표면에 실리카를 코팅한 후 ECD/NHS 등의 촉매를 이용하여 비드 표면 위에 1ml당 1~125 ug (보통 5 ug)정도의 농도가 되게 항체 또는 MBL를 첨가 후 부착시켰다.
MBL-코팅 마이크로 구조물과 항체-코팅 마이크로 구조물의 박테리아 포획 및 방출 특성 비교
MBL을 코팅한 마이크로 구조물의 박테리아 포획 및 방출 특성을 항체를 코팅한 마이크로 구조물의 그것과 비교하였다. 이를 위한 실험과정은 아래와 같다.
실온에서 박테리아에 감염된 혈액을 ml 당 세포수가 최대 108개가 될 때까지 배양하여 ml 당 100 ~ 107개가 되는 샘플들을 준비하였다. 각 박테리아의 그람 음성균과 그람 양성균의 특이적인 항체를 코팅한 마이크로 구조물과, MBL 단백질을 코팅한 구조물을 준비하였다. 준비된 박테리아 배양액 1ml에 준비된 마이크로 구조물을 각 조건별로 5000개씩 개수를 맞추어 1시간 동안 37℃에서 50~100 rpm에서 진탕하면서 마이크로 구조물에 박테리아를 부착시켰다.
배양이 끝나면 자기적 방법 또는 여과식 방법으로 박테리아가 부착된 비드들을 분리하였고 그 후 새로운 배양액에 비드를 옮겨 넣어서 구조물에서 박테리아가 자연스럽게 탈착되어 나오도록 하는 과정을 거쳤다. 마이크로 구조물에 의해 순수 분리된 박테리아를 1~4 시간 가량 매 시간 단위로 배양을 하여 항체를 코팅한 마이크로 구조물과 MBL 단백질을 코팅한 구조물 각각에서 나온 배양된 박테리아 수를 측정하여 (C-chip, 나노 엔텍) 비교하였다.
도 4는 항체를 코팅한 마이크로 구조물과 MBL을 코팅한 마이크로 구조물의 박테리아 포획 및 방출 특성을 비교한 실험결과를 나타낸 광학 현미경 사진이다. 도 4의 위쪽 사진은 MBL-마이크로 구조물(좌측)과 항체-마이크로 구조물(우측)에서의 미생물 부착 성능을 비교한 것이고 아래쪽 사진은 MBL-마이크로 구조물(좌측)과 항체-마이크로 구조물(우측)에서의 미생물 탈착 성능을 비교한 것이다.
도 4를 참조하면, 위 사진을 보면, 서로 다른 두 가지 박테리아(Pseudomonas aeruginosa ATCC 27853, Staphylococcus aureus ATCC 29213) 모두 항체-마이크로 구조물보다 MBL-마이크로 구조물에 더 많이 부착되어 있음을 알 수 있다. 또한 아래 사진을 보면, 박테리아를 붙인 후 다시 마이크로 구조물로부터 분리할 때에도 기존의 Antibody-마이크로 구조물보다 MBL-마이크로 구조물에서 훨씬 효율적이다. 또한 MBL-마이크로 구조물로부터 분리된 박테리아의 재사용이 가능하다. 따라서 각 박테리아의 특성에 맞는 항체를 사용하여 특이적인 반응으로 마이크로 구조물에 부착시켰을 때보다 MBL을 사용하여 박테리아 군 전체에 대해 마이크로 구조물에 부착시킨 반응의 효율이 월등히 높음을 확인할 수 있다. 또한 차후의 항생제 민감도 테스트에 있어 박테리아를 마이크로 구조물로부터 순수 분리하는 과정에서 보다 많은 수의 박테리아를 짧은 시간 안에 유리해냄으로써, 기존의 순수분리 및 배양 방법에 비해 시간, 비용, 민감도 면에서 탁월함을 보여주고 있다.
도 5 내지 도 8은 MBL 및 항체로 도포된 마이크로 구조물들에 각각 부착된 박테리아들을 각 마이크로 구조물로부터 분리한 다음 시간 별로 배양 후 세포 개수를 측정한 결과를 나타낸 것이다. 도 5, 6, 7 및 8은 4종류의 박테리아에 관해 측정한 결과로 각각 Pseudomonas aeruginosa ATCC 27853, Staphylococcus aureus ATCC 29213, Escherichia coli ATCC 25922, Enterococcus faecalis ATCC 29212에 관한 것이다.
도면들에서 (a)는 MBL로 도포된 마이크로 구조물들로부터 유래된 박테리아 세포 개수를 나타내고, (b)는 항체로 도포된 마이크로 구조물들로부터 유래된 박테리아 세포 개수를 나타낸다.
도 5 내지 도 8을 참조하면, 항체-마이크로 구조물에서 분리한 박테리아와 비교할 때 MBL-마이크로 구조물에서 분리한 박테리아가 더 잘 자라는 것을 볼 수 있다. 도면에 나타난 숫자는 ml 당 박테리아 수를 나타낸 것으로, 붉은 색 숫자로 표시한 바와 같이 박테리아 수가 107 이상이 되면 이후 항생제 감수성 검사를 할 수 있다.
따라서 도 5 내지 도 8의 결과로부터, 포획 전 후의 박테리아의 활성이 MBL-마이크로 구조물의 경우가 항체-마이크로 구조물보다 우수함을 할 수 있다.
이상에서 개시된 기술의 실시예들에 대해 상세히 기술하였지만, 해당 기술분야에 있어서 통상의 지식을 가진 사람이라면, 개시된 기술의 정신 및 범위를 벗어나지 않으면서 개시된 기술을 여러 가지로 변형하여 실시할 수 있음을 이해할 수 있을 것이다.

Claims (13)

  1. 하나 이상의 미생물을 부착할 수 있는 표면적을 갖는 마이크로 구조물; 및
    상기 마이크로 구조물 위에 도포되어 있으며, 인위적인 제어방식에 의해 상기 미생물의 탈부착을 가능하게 하는 단백질을 포함하는 미생물 포획 및 방출용 구조물.
  2. 제1 항에 있어서,
    상기 마이크로 구조물은 기능기를 구비한 보호층을 더 포함하는 미생물 포획 및 방출용 구조물.
  3. 제2 항에 있어서,
    상기 마이크로 구조물은 하이드로젤을 기반으로 하고, 상기 보호층은 실리카 코팅층인 미생물 포획 및 방출용 구조물.
  4. 제1 항에 있어서,
    상기 마이크로 구조물은 너비, 두께 및 길이 중 적어도 하나가 1 ㎛ 이상이고 1mm 이하인 미생물 포획 및 방출용 구조물.
  5. 제1 항에 있어서,
    상기 마이크로 구조물은 평판형 또는 디스크형인 미생물 포획 및 방출용 구조물.
  6. 제1 항에 있어서,
    상기 마이크로 구조물은 자성 물질을 더 포함하는 미생물 포획 및 방출용 구조물.
  7. 제1 항에 있어서,
    상기 인위적인 제어방식은 pH, 온도 및 외부 금속 이온 농도로 이루어진 군 중에서 선택되는 어느 하나의 조건을 변화하는 것인 미생물 포획 및 방출용 구조물.
  8. 제1 항 내지 제7 항 중 어느 한 항에 있어서,
    상기 단백질은 칼슘 의존성 혈청 단백질인 미생물 포획 및 방출용 구조물.
  9. 제8 항에 있어서,
    상기 칼슘 의존성 혈청 단백질은 맨노스-바인딩 렉틴(MBL)인 미생물 포획 및 방출용 구조물.
  10. 미생물 탈부착용 단백질이 도포된 마이크로 구조물을 제공하는 단계;
    미생물 함유 용액에 상기 마이크로 구조물 및 미생물 부착 도움물질 함유 용액을 함께 혼합하여 혼합 용액을 형성하는 단계;
    상기 혼합 용액을 교반하여 상기 미생물을 상기 마이크로 구조물에 부착시키는 단계;
    상기 미생물이 부착된 상기 마이크로 구조물을 상기 혼합 용액으로부터 분리해내는 단계; 및
    상기 마이크로 구조물을 상기 미생물 부착 도움물질의 농도가 낮은 환경에 노출시켜 상기 미생물을 상기 마이크로 구조물로부터 탈착시키는 단계를 포함하는 마이크로 구조물을 이용한 미생물 포획 및 방출방법.
  11. 제10 항에 있어서,
    상기 미생물 탈부착용 단백질은 맨노스-바인딩 렉틴(MBL)이고, 상기 미생물 부착 도움물질은 칼슘 이온인 미생물 포획 및 방출방법.
  12. 제10 항에 있어서,
    상기 부착 단계에서, 상기 칼슘 이온의 농도는 20mM 이상인 미생물 포획 및 방출방법.
  13. 제10 항에 있어서,
    상기 탈착 단계에서, 상기 칼슘 이온의 농도는 1mM 이하인 미생물 포획 및 방출방법.
PCT/KR2013/005947 2012-07-06 2013-07-04 미생물 포획 및 방출용 마이크로 구조물 WO2014007560A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/413,008 US10253348B2 (en) 2012-07-06 2013-07-04 Microstructure for capturing and releasing microorganism
EP13813820.1A EP2873729B1 (en) 2012-07-06 2013-07-04 Microstructure for microorganism trapping and release
ES13813820.1T ES2656983T3 (es) 2012-07-06 2013-07-04 Microestructura para la captura y liberación de microorganismos
CN201380043138.3A CN104583395B (zh) 2012-07-06 2013-07-04 用于捕获和释放微生物的微结构体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0073974 2012-07-06
KR1020120073974A KR101243631B1 (ko) 2012-07-06 2012-07-06 미생물 포획 및 방출용 마이크로 구조물

Publications (1)

Publication Number Publication Date
WO2014007560A1 true WO2014007560A1 (ko) 2014-01-09

Family

ID=48181885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/005947 WO2014007560A1 (ko) 2012-07-06 2013-07-04 미생물 포획 및 방출용 마이크로 구조물

Country Status (6)

Country Link
US (1) US10253348B2 (ko)
EP (1) EP2873729B1 (ko)
KR (1) KR101243631B1 (ko)
CN (1) CN104583395B (ko)
ES (1) ES2656983T3 (ko)
WO (1) WO2014007560A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101879585B1 (ko) * 2016-10-06 2018-07-18 경희대학교 산학협력단 하이드로겔 입자의 자동 코팅 장치 및 방법
KR102084688B1 (ko) * 2018-06-18 2020-03-04 울산과학기술원 다중 프로브 혼성화를 이용한 미생물 검출 방법
KR102121050B1 (ko) 2018-07-24 2020-06-09 연세대학교 산학협력단 공기 중 바이오 물질의 연속적 포집 및 농축장치, 그리고 그 방법
WO2022114370A1 (ko) 2020-11-26 2022-06-02 영남대학교 산학협력단 바이오 에어로졸 포집장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950008383A (ko) * 1993-09-27 1995-04-17 송승구 미생물 부착을 촉진시키는 입자의 제조방법
JP2006094822A (ja) * 2004-09-30 2006-04-13 Matsushita Electric Ind Co Ltd 微生物の分離法
KR100875900B1 (ko) 2007-06-08 2008-12-26 재단법인서울대학교산학협력재단 마스크를 사용하지 아니하는 광유체적 리소그래피 시스템

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2616925B1 (fr) 1987-06-16 1989-09-08 Crasnianski Serge Dispositif automatique integre pour le developpement de films photographiques et le tirage et le developpement d'epreuves photographiques en continu
JPH01243988A (ja) * 1988-03-24 1989-09-28 Daiso Co Ltd 微生物の固定化法
US5112952A (en) * 1990-09-28 1992-05-12 Pierce Chemical Company Composition and method for isolation and purification of Immunoglobulin M
CN1646152A (zh) * 2002-04-24 2005-07-27 昆士兰医学研究学院理事会 甘露糖结合凝集素及其应用
KR100504207B1 (ko) * 2003-02-10 2005-07-27 퍼멘텍 주식회사 미립자 밀랍 분말을 이용한 기름 흡착제의 제조방법 및그로부터 수득되는 흡착제
WO2008006125A1 (en) * 2006-07-10 2008-01-17 Österreichische Akademie der Wissenschaften Antimicrobial peptides
TWI376416B (en) * 2007-01-16 2012-11-11 Ind Tech Res Inst Method for screening and immobilizing microorganism and immobilization microorganism particle
CA2685209A1 (en) 2007-04-25 2008-11-06 3M Innovative Properties Company Compositions, methods, and devices for isolating biological materials
US20110027267A1 (en) * 2007-11-09 2011-02-03 Anaphore, Inc. Fusion Proteins of Mannose Binding Lectins for Treatment of Disease
CN102302877B (zh) 2011-06-01 2013-06-12 李红 生物防护过滤介质及其应用
WO2013012924A2 (en) * 2011-07-18 2013-01-24 President And Fellows Of Harvard College Engineered microbe-targeting molecules and uses thereof
CN102500291B (zh) * 2011-09-30 2015-04-08 深圳市易瑞生物技术有限公司 具有壳核结构的磁性荧光纳米颗粒的制备方法及应用
EP2810067A4 (en) * 2012-01-31 2015-12-09 American University Of Cairo Auc DIRECT DETECTION OF BIOMARKERS FROM DISEASE IN CLINICAL SAMPLES USING CATIONIC NANOPARTICLE BASED ASSAYS AND VERSATILE AND GREEN METHODS FOR THE SYNTHESIS OF ANISOTROPIC SILVER NANOSTRUCTURES

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950008383A (ko) * 1993-09-27 1995-04-17 송승구 미생물 부착을 촉진시키는 입자의 제조방법
JP2006094822A (ja) * 2004-09-30 2006-04-13 Matsushita Electric Ind Co Ltd 微生物の分離法
KR100875900B1 (ko) 2007-06-08 2008-12-26 재단법인서울대학교산학협력재단 마스크를 사용하지 아니하는 광유체적 리소그래피 시스템

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KEUN-HWA PARK; KENJI KUROKAWA: "Human Serum Mannose-binding Lectin Senses Wall Teichoic Acid Glycopolymer of Staphylococcus aureus", WHICH IS RESTRICTED IN INFANCY, vol. 285, no. 35, 27 August 2010 (2010-08-27)
SANCHEZ, J.; JONSON, G.: "Binding of bacteria to carbohydrates immobilized on beads to demonstrate the presence of cell-associated hemagglutinins in Vibrio cholerae", APMIS, vol. 98, 1990, pages 353 - 357
See also references of EP2873729A4 *

Also Published As

Publication number Publication date
KR101243631B1 (ko) 2013-03-15
CN104583395B (zh) 2019-01-29
CN104583395A (zh) 2015-04-29
US10253348B2 (en) 2019-04-09
EP2873729B1 (en) 2017-12-27
US20150361477A1 (en) 2015-12-17
EP2873729A1 (en) 2015-05-20
EP2873729A4 (en) 2016-05-11
ES2656983T3 (es) 2018-03-01

Similar Documents

Publication Publication Date Title
CN101802213B (zh) 大体积颗粒样品中的病原体检测
RU2505607C2 (ru) Способ быстрого выращивания, детекции и идентификации или подсчета микроколоний микроорганизмов ранней стадии
Brorson et al. Transformation of cystic forms of Borrelia burgdorferi to normal, mobile spirochetes
US5821066A (en) Simple, rapid method for the detection, identification and enumeration of specific viable microorganisms
BR112013012967A2 (pt) processo e dispositivo para concentração de micro-organismos
WO2006105414A2 (en) Apparatus and method for detecting microscopic organisms using microphage
CN102131915A (zh) 用于计数抗生素抗性微生物的方法和组合物
WO2014007560A1 (ko) 미생물 포획 및 방출용 마이크로 구조물
CA2947768A1 (en) Methods of microorganism immobilization
US5750357A (en) Method of rapid analyte detection
JP2001502889A (ja) エンテロトキシンを産生するブドウ球菌を検するための物品および方法
EA016156B1 (ru) Захват микроорганизмов, подобных микобактериям
KR20170140252A (ko) 미생물 항원의 회수법
WO2013018969A1 (ko) 식중독균 검출 센서용 슬라이드 칩 및 그 제조방법
JP2004514430A (ja) 水溶性ポリマーを用いて空気中の微生物を捕捉して閉じこめる方法
RU2332460C1 (ru) Способ выявления эпидемически значимых холерных вибрионов vibrio eltor и vibrio cholerae o139 по их адгезивной способности
Vdovenko et al. Blastocystis hominis: neutral red supravital staining and its application to in vitro drug sensitivity testing
JP2003531595A (ja) 培養細胞のインサイチューでの増殖、凍結、および試験
WO2018176066A2 (en) Cord blood therapy to treat chronic disease caused by l-form bacteria
Desmonts et al. An improved filter method for direct viable count of Salmonella in seawater
RU2360969C1 (ru) Способ определения бактериофиксирующей активности эритроцитов
Kennedy et al. Enumeration of Bradyrhizobium japonicum in soil subjected to high temperature: comparison of plate count, most probable number and fluorescent antibody techniques
RU2378360C1 (ru) Способ дифференцирования патогенных от непатогенных буркхольдерий
RU2177507C1 (ru) Способ идентификации микобактерий
RU2162709C1 (ru) Способ индикации микобактерий туберкулеза в воздушной среде

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13813820

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013813820

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14413008

Country of ref document: US