WO2014007383A1 - 振動波モータ及びレンズ鏡筒 - Google Patents

振動波モータ及びレンズ鏡筒 Download PDF

Info

Publication number
WO2014007383A1
WO2014007383A1 PCT/JP2013/068556 JP2013068556W WO2014007383A1 WO 2014007383 A1 WO2014007383 A1 WO 2014007383A1 JP 2013068556 W JP2013068556 W JP 2013068556W WO 2014007383 A1 WO2014007383 A1 WO 2014007383A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
vibration wave
piezoelectric body
wave motor
electrode pattern
Prior art date
Application number
PCT/JP2013/068556
Other languages
English (en)
French (fr)
Inventor
隆利 芦沢
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012151991A external-priority patent/JP2014017909A/ja
Priority claimed from JP2012151990A external-priority patent/JP6056224B2/ja
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Publication of WO2014007383A1 publication Critical patent/WO2014007383A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/10Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/16Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves
    • H02N2/163Motors with ring stator
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • H10N30/503Piezoelectric or electrostrictive devices having a stacked or multilayer structure having a non-rectangular cross-section in a plane orthogonal to the stacking direction, e.g. polygonal or circular in top view
    • H10N30/505Piezoelectric or electrostrictive devices having a stacked or multilayer structure having a non-rectangular cross-section in a plane orthogonal to the stacking direction, e.g. polygonal or circular in top view the cross-section being annular
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/872Interconnections, e.g. connection electrodes of multilayer piezoelectric or electrostrictive devices

Definitions

  • the present invention relates to a vibration wave motor and a lens barrel.
  • a vibrator of a vibration wave motor used in a photographing apparatus or the like is generally composed of a metal elastic body and a piezoelectric body, and the piezoelectric body is generally a single layer.
  • a high frequency voltage of several tens of volts is required.
  • the voltage of the battery of the photographing apparatus is not sufficient, and there are some equipped with a booster circuit.
  • the booster circuit raises the problem of cost increase and device enlargement, there is also a vibration wave motor that secures a high voltage by stacking piezoelectric bodies (see Patent Document 1).
  • the laminated piezoelectric material described in the above document is complicated because the electrode pattern of each layer is different. Another problem is that the layer bonded to the elastic body and the anti-bonding layer are not polarized, and these unpolarized layers inhibit excitation of vibration waves.
  • the first invention is an electromechanical transducer stack in which vibration is generated by drive signals having a temporal phase difference, and a joint surface joined to the electromechanical transducer stack. And an elastic body having a driving surface that generates a progressive vibration wave by the vibration provided on the opposite side of the joint surface, and a relative motion member that is in pressure contact with the driving surface and is driven by the vibration wave
  • the electromechanical transducer laminated body has a single-layer electromechanical transducer in which a common electrode pattern is formed on one surface and a drive signal applying electrode pattern is formed on the other surface, the thickness direction of the elastic body The common electrode pattern is arranged on the elastic body side surface of the electromechanical transducer stack as a whole, and the drive signal application is applied to the surface opposite to the elastic body side. Electrode putter There said single layer electromechanical transducer is laminated so as to be arranged to provide a vibration wave motor according to claim.
  • a second invention provides a vibration wave motor according to the first invention, wherein the number of stacked layers of the single-layer electromechanical transducer is an odd number.
  • the same electrode pattern is formed on surfaces facing each other in the single-layer electromechanical transducer, and the electromechanical transducer stack of the electromechanical transducer stack is formed.
  • a vibration wave motor characterized in that it is electrically connected by a conductive part extending from a side surface.
  • the single-layer electromechanical transducer elements are in two groups, and the polarization directions of the adjacent single-layer electromechanical transducer elements are The vibration wave motor is characterized in that they are directed in opposite directions.
  • a single-layer electromechanical transducer having a first electrode pattern on one surface and a second electrode pattern for applying a drive signal on the other surface is a surface having the same electrode pattern.
  • a laminate of electromechanical transducers in which vibration is generated by a drive signal, a joint surface joined to the laminate, and an opposite side of the joint surface.
  • An elastic body having a drive surface that generates a vibration wave; and a relative motion member that is pressure-contacted with the drive surface and driven by the vibration wave, wherein the laminate is a single layer of the electromechanical transducer
  • a plurality of bodies are laminated in the thickness direction of the elastic body, and when the laminated body is viewed from one side parallel to the joint surface, a single layer on the front side in the single layer on the rear side There is an exposed portion where the surface is exposed without overlapping with the exposed portion, the exposed portion is continuous stepwise, and a conductive portion between the single layer bodies is formed in the continuous exposed portion.
  • a vibration wave motor is provided.
  • a seventh invention is the vibration wave motor according to the sixth invention, wherein the single-layer body has an annular shape, and the exposed portion is formed on an outer peripheral side or an inner peripheral side of the annular ring.
  • a vibration wave motor is provided.
  • the eighth invention is the vibration wave motor according to the sixth or seventh invention, wherein the single-layer body has different outer diameters or inner-periphery diameters, and the single-layer bodies having different diameters are stacked.
  • a vibration wave motor characterized in that the exposed portion is formed in stages.
  • each of the single-layer bodies is provided with a first notch, and when the single-layer bodies are laminated, Provided is a vibration wave motor characterized in that the position of one notch is shifted from each other so that the exposed portion is formed in a stepped manner.
  • the single-layer body is provided with a second notch portion different from the first notch portion, and the first notch portion and The distance between the second cutout portion differs depending on the single layer body, and the single layer body is arranged such that the second cutout portion is aligned in the thickness direction when the single layer body is laminated.
  • An eleventh aspect of the invention is an electromechanical transducer laminated body in which a plurality of single-layer bodies of electrical conversion elements are laminated, and the single-layer bodies are adjacent when viewed from the direction in which the single-layer bodies are laminated.
  • An electromechanical transducer stack comprising: an exposed portion whose surface is exposed without overlapping with another single layer body, and a conductive portion between the single layer bodies is formed in the exposed portion. Provide the body.
  • the twelfth invention provides a lens barrel provided with the vibration wave motor of any one of the first to eleventh inventions.
  • FIG. 1st Embodiment of this invention It is a figure explaining the vibration wave motor of 1st Embodiment of this invention. It is a block diagram explaining the drive device of the vibration wave motor of 1st Embodiment. It is a figure which shows the lens barrel which mounts the vibration wave motor of 1st Embodiment. It is a figure explaining the elastic body containing a piezoelectric material. It is a figure explaining the piezoelectric material of a 1st embodiment, (a) is a side view of a piezoelectric material, (b) is a figure showing the surface of a piezoelectric material, (c) A sectional view of a piezoelectric material, (d) is a figure. It is the figure which showed the back surface of the piezoelectric material.
  • each single layer piezoelectric material (a) is the figure which showed the electrode pattern of the front and back of each single layer piezoelectric material, (b) is each single layer piezoelectric material in a laminated piezoelectric material It is the figure which showed the polarization direction. It is an enlarged view of the stepped part of a laminated piezoelectric material, (a) is a part where a conductive part of a later-described common electrode is provided, and (b) is a part of a part where a conductive part of a later-described application electrode is provided.
  • FIG. 1 is a diagram illustrating a vibration wave motor 1 according to a first embodiment of the present invention.
  • the vibrator 10 side is fixed, and the movable element (relative motion member) 20 is driven.
  • the mover 20 is made of a light metal such as aluminum, and the surface of the sliding surface is subjected to surface treatment for improving wear resistance.
  • the vibrator 10 includes an electromechanical conversion element (hereinafter referred to as a piezoelectric body) 11, such as a piezoelectric element or an electrostrictive element that converts electrical energy into mechanical energy, and a piezoelectric body 11. And an elastic body 12 bonded to each other, and a progressive vibration wave is generated in the vibrator 10.
  • a piezoelectric body such as a piezoelectric element or an electrostrictive element that converts electrical energy into mechanical energy
  • a piezoelectric body 11 such as a piezoelectric element or an electrostrictive element that converts electrical energy into mechanical energy
  • an elastic body 12 bonded to each other, and a progressive vibration wave is generated in the vibrator 10.
  • the elastic body 12 is made of a metal material having a high resonance sharpness, and has a ring shape.
  • the piezoelectric body 11 is bonded to one surface (bonding surface 12f) of the elastic body 12, and a groove 12b is cut on the opposite side to the one surface. Then, the tip of the protruding portion (location without the groove 12 b) 12 c becomes the driving surface 12 a and is brought into pressure contact with the moving element 20.
  • the portion of the elastic body 12 where the groove 12b is not cut is a base portion 12d, and a flange 12e extends from the base portion 12d to the inner diameter side. The innermost diameter portion of the flange 12 e is fixed to the fixing member 13.
  • the protruding portion 12c of the elastic body 12 is provided with a sliding member such as a coating film or lubricating plating so as to cover the whole.
  • the piezoelectric body 11 has electrodes disposed on the side opposite to the adhesive surface with the elastic body 12 (an FPC side surface, an anti-joint surface, hereinafter referred to as a surface), It has a two-group structure divided into two phases (A phase and B phase) along the direction. In each phase, electrodes are arranged so that they are alternately polarized every 1 ⁇ 2 wavelength, and an interval of 1 ⁇ 4 wavelength is provided between the A phase and the B phase.
  • the output shaft 21 is coupled to the mover 20 via a stopper member 23 inserted so as to fit the rubber member 22 and the D-cut of the output shaft 21.
  • the output shaft 21 and the stopper member 23 are fixed by an E clip 24 or the like, and are rotated integrally with the mover 20.
  • the rubber member 22 between the stopper member 23 and the mover 20 has a function of coupling with the mover 20 and the stopper member 23 due to adhesiveness of rubber, and does not transmit vibration from the mover 20 to the output shaft 21. Butyl rubber having a function of absorbing vibration is preferable.
  • the pressure member 25 is provided between the output gear 51 of the output shaft 21 and the bearing 27. With such a structure, the moving element 20 is in pressure contact with the drive surface 12 a of the elastic body 12.
  • FIG. 2 is a block diagram illustrating the driving device 30 of the vibration wave motor 1 according to the first embodiment.
  • the oscillating unit 32 generates a drive signal having a desired frequency according to a command from the control unit 31.
  • the phase shifter 33 divides the drive signal generated by the oscillator 32 into two drive signals having different phases.
  • the amplifying unit 34 boosts the two drive signals divided by the phase shift unit 33 to respective desired voltages.
  • a drive signal from the amplifying unit 34 is transmitted to the vibration wave motor 1, and a traveling wave is generated in the vibrator 10 by the application of the drive signal, so that the movable element 20 is driven.
  • the rotation detection unit 35 is configured by an optical encoder, a magnetic encoder, or the like, detects the position or speed of a driven object driven by driving the moving element 20, and transmits the detected value to the control unit 31 as an electric signal.
  • the control unit 31 controls driving of the vibration wave motor 1 based on a driving command from the CPU 36 of the lens barrel 110 or the camera body.
  • the control unit 31 receives the detection signal from the rotation detection unit 35, obtains position information and speed information based on the values, and controls the frequency of the oscillation unit 32 so as to be positioned at the target position.
  • the oscillation unit 32 When a drive command is issued from the control unit 31, the oscillation unit 32 generates a drive signal.
  • the drive signal is divided into two drive signals having a phase difference of 90 degrees by the phase shifter 33, and is amplified to a desired voltage by the amplifier 34.
  • the amplified drive signal is applied to the piezoelectric body 11 of the vibration wave motor 1, and the piezoelectric body 11 is excited (vibrated). Due to the excitation of the piezoelectric body 11, fourth-order bending vibration is generated in the elastic body 12.
  • the piezoelectric body 11 is divided into an A phase and a B phase, and drive signals are applied to the A phase and the B phase, respectively.
  • the positional phase of the fourth-order bending vibration generated from the A phase and the fourth-order bending vibration generated from the B phase are shifted by 1 ⁇ 4 wavelength.
  • the phase A drive signal and the phase B drive signal are 90 degrees out of phase, the two bending vibrations are combined into four traveling waves.
  • Elliptic motion occurs at the front of the traveling wave. Therefore, the movable element 20 that is in pressure contact with the drive surface 12a is frictionally driven by this elliptical motion.
  • An optical encoder is disposed in the driving body driven by driving the moving element 20, and an electric pulse is generated therefrom and transmitted to the control unit 31. Based on this signal, the control unit 31 can obtain the current position and the current speed.
  • FIG. 3 is a diagram illustrating the lens barrel 110 on which the vibration wave motor 1 according to the first embodiment is mounted.
  • the vibration wave motor 1 is attached to the gear unit module 113, and the gear unit module 113 is attached to the fixed barrel 114 of the lens barrel 110.
  • Rotational motion of the output gear 51 of the vibration wave motor 1 is transmitted to the cam ring 116 via the reduction gear 115 of the gear unit module 113, and the cam ring 116 is driven to rotate.
  • a key groove 117 is cut obliquely with respect to the circumferential direction in the cam ring 116, and the AF ring 119 in which the fixing pin 118 is inserted into the key groove 117 is rotated by the cam ring 116, It is driven in the straight direction in the direction of the axis OA and can stop at a desired position.
  • the circuit 121 is provided between the outer fixed cylinder 114a and the inner fixed cylinder 114b of the lens barrel 110, and performs driving and control of the vibration wave motor 1, detection of the rotational speed, detection of the vibration sensor, and the like.
  • FIG. 4 is a diagram illustrating the piezoelectric body 11 according to the first embodiment.
  • FIG. 4A is a part of a side view of the piezoelectric body 11 (viewed from a direction orthogonal to the pressing direction of the vibration wave motor 1).
  • 4B is a view showing the surface 11A of the piezoelectric body 11, and
  • FIG. 4A is a view as seen from the aa direction of FIG. 4B.
  • FIG. 4C is a cross-sectional view taken along line cc of FIG.
  • FIG. 4D is a view showing the back surface 11 ⁇ / b> B of the piezoelectric body 11.
  • FIG. 5 is a diagram illustrating the vibrator 10 including the piezoelectric body 11 and the elastic body 12.
  • 5A is a side view
  • FIG. 5B is a view seen from the FPC 14 side.
  • the substrate of the piezoelectric body 11 is composed of lead zirconate titanate called PZT, or barium titanate, bismuth sodium titanate, bismuth potassium titanate, etc. which are lead-free materials in recent years due to environmental problems. Electrodes are arranged on the surface 11A of the substrate of the piezoelectric body 11, and a silver paste is printed thereon.
  • the electrode may be a metal plating such as NiP or gold.
  • the piezoelectric body 11 includes a single-layer piezoelectric body 111 (first-layer piezoelectric body 111a, second-layer piezoelectric body 111b, and third-layer piezoelectric body 111c. ) Are stacked in multiple layers (three layers in this embodiment).
  • the multilayer piezoelectric body 11 is appropriately referred to.
  • the first-layer piezoelectric body 111a, the second-layer piezoelectric body 111b, and the third-layer piezoelectric body 111c are in this order on the side opposite to the adhesive surface of the laminated piezoelectric body 11 with the elastic body 12 (FPC side, hereinafter referred to as the surface 11A). ) Are lined up.
  • An applied electrode pattern 16 is formed on the surface 11A side of the laminated piezoelectric body 11, and is divided into two phases (A phase and B phase) along the circumferential direction. In each phase, electrodes are arranged so that they are alternately polarized every 1 ⁇ 2 wavelength, and an interval of 1 ⁇ 4 wavelength is provided between the A phase and the B phase.
  • a flexible printed circuit board (FPC) 14 is joined to the surface 11A in order to transmit a drive signal.
  • an adhesive 18 is applied so as to extend from the side surfaces of the elastic body 12 and the piezoelectric body 11 to the FPC 14 to reinforce the adhesive strength.
  • the back surface 11B of the laminated piezoelectric body 11 is not a divided electrode pattern 16 but a common electrode pattern 19 that is a common electrode of two drive signal phases (A phase and B phase). Is formed.
  • the back surface 11B is joined to the elastic body 12 with a room temperature curable adhesive.
  • each of the electrode patterns 16 and 19 is partially extended to the outer peripheral side to form a conductive portion 18a, and is electrically connected to the electrode patterns 16 and 19 of the respective layers along the outer peripheral side surface. .
  • the conduction of the electrode patterns 16 and 19 of each layer is performed on the outer peripheral side, but may be performed on the inner peripheral side.
  • FIG. 6 is a diagram for explaining the electrode patterns of the single-layer piezoelectric body 111.
  • 6A is a diagram showing the electrode patterns on the front and back surfaces of each single-layer piezoelectric body 111
  • FIG. 6B is a diagram showing the polarization directions of each single-layer piezoelectric body 111 in the laminated piezoelectric body 11. is there.
  • the applied electrode pattern 16 is arranged on the surface 111aA side of the first layer piezoelectric body 111a, which is composed of two drive signal phases (A phase, B) along the circumferential direction. Phase).
  • the electrodes 17 are arranged so that they are alternately polarized every 1 ⁇ 2 wavelength, and an interval 60 corresponding to 1 ⁇ 4 wavelength is left between the A phase and the B phase.
  • On the back surface 111aB of the first layer piezoelectric body 111a not the divided application electrode pattern 16 but a common electrode pattern 19 of two drive signal phases (A phase and B phase) is formed.
  • the divided application electrode pattern 16 On the surface 111bA of the second-layer piezoelectric body 111b, not the divided application electrode pattern 16 but a common electrode of two drive signal phases (A phase and B phase) is formed.
  • the front surface 111bA of the second layer and the back surface 111aB of the first layer are bonded together.
  • the applied electrode pattern 16 is disposed on the back surface 111bB side of the second layer piezoelectric body 111b, and is divided into two drive signal phases (A phase and B phase) along the circumferential direction. In each phase, electrodes 17 are arranged so that they are alternately polarized every 1 ⁇ 2 wavelength, and an interval of 1 ⁇ 4 wavelength is left between the A phase and the B phase.
  • the electrode 17 is disposed, which is divided into two drive signal phases (A phase and B phase) along the circumferential direction. In each phase, electrodes 17 are alternately arranged every 1 ⁇ 2 wavelength as shown in the figure, and electrodes 17 are arranged between the A phase and the B phase so that there is an interval of 1 ⁇ 4 wavelength.
  • the back surface 111bB of the second layer piezoelectric body 111b and the front surface 111cA of the third layer piezoelectric body 111c are bonded together.
  • a common electrode pattern 19 of two drive signal phases (A phase and B phase) is formed instead of the divided electrode patterns.
  • the polarization of each layer is a quarter wavelength between the A phase and the B phase. Excluding the minutely spaced portion 17, the polarization direction from the odd-numbered-layer-numbered joint surface side to the anti-joint surface side is opposite to the polarization direction from the even-numbered-number-numbered joint surface side to the anti-joint surface side.
  • the second layer piezoelectric body 111b when the polarization direction is from the back surface 111aB side to the front surface 111aA side (this direction is defined as a positive direction), the second layer piezoelectric body 111b. Then, the polarization direction ( ⁇ direction) is from the front surface 111bA to the back surface 111bB, and further, the polarization direction (+ direction) is from the back surface 111cB to the front surface 111cA in the third layer piezoelectric body 111c. That is, the polarization direction is + ⁇ + along the thickness direction of the piezoelectric body. Further, in the region Q adjacent to the region P, the polarization direction is opposite to that of the region P and becomes ⁇ + ⁇ along the thickness direction of the piezoelectric body.
  • the number of stacked single-layer piezoelectric bodies 111 in the piezoelectric body 11 is an odd number. That is, since the polarization direction of the first layer is the same as the polarization direction of the final layer, the number of single-layer piezoelectric bodies 111 is an odd number.
  • the electrode pattern on the bonding surface side of the odd-numbered layer and the electrode pattern on the anti-bonding surface side of the even-numbered layer are the same electrode pattern, and the electrode pattern on the bonding surface side of the even-numbered layer and the anti-bonding surface side of the odd-numbered layer number The electrode pattern is the same electrode pattern.
  • the electrode patterns on the back surfaces 111aB and 111cB of the odd-numbered layers are It will be the same.
  • these surfaces are divided into two drive signal phases (A phase and B phase) along the circumferential direction, and in each phase, every half wavelength alternately as shown in the figure.
  • the application electrode pattern 16 is arranged so that it is polarized and an interval of 1 ⁇ 4 wavelength is left between the A phase and the B phase.
  • the electrode patterns of the front surfaces 111aA and 111cA of the odd-numbered layers (first layer piezoelectric body 111a and third-layer piezoelectric body 111c in this embodiment) and the back surface 111bB of even-numbered layers (second layer piezoelectric body 111b in this embodiment) are It will be the same.
  • the divided application electrode pattern 16 not the divided application electrode pattern 16 but a common electrode pattern 19 of two drive signal phases (A phase and B phase) is formed.
  • three layers are used as an example. However, if the number of layers is five, seven, nine,. Further, although the wave number of the traveling wave has been described as four waves, any wave number such as five waves, six waves, seven waves, etc. may be used.
  • the multilayer piezoelectric body 11 of the present embodiment is an elastic body in which the back surface 111cB of the third layer piezoelectric body 111c becomes the back surface (common electrode pattern 19 side) 11B as the multilayer piezoelectric body 11 as a whole. 12 is joined. Further, the surface 111aA of the first layer piezoelectric body 111a becomes the surface 11A of the laminated piezoelectric body 11 as a whole, and the FPC 14 is joined so that a drive signal can be supplied.
  • FIG. 6 the electrode pattern and the polarization direction of each layer are configured, and as shown in FIG. 4 (a), the conductive portion 18a is extended to the outer peripheral side surface to make each electrode pattern conductive.
  • FIG. 7 is a diagram showing expansion and contraction of the piezoelectric body 11 due to the applied voltage.
  • the drive signal is applied to +, the A-phase and B-phase electrodes are alternately extended and contracted as shown in FIG. That is, the region P is extended and the region Q is reduced.
  • each electrode is alternately extended and reduced as shown in FIG. 7B. That is, the area P is reduced and the area Q is distracted.
  • the magnitude of expansion / contraction (deformation) in the piezoelectric body varies depending on the strength of the electric field generated inside the piezoelectric body. That is, if the applied voltage is the same, the thinner the piezoelectric body, the stronger the electric field. Therefore, it is better that the piezoelectric body is thin. However, if the single-layer piezoelectric body is thin, the strength is insufficient. However, according to the present embodiment, the strength can be ensured by stacking even if the thickness of the single-layer piezoelectric body is reduced.
  • each single-layer piezoelectric body can be thinned, a large amount of deformation can be obtained without increasing the applied voltage so much. That is, a practical amount of deformation can be ensured without using a booster circuit or the like.
  • the single-layer piezoelectric bodies 111 having the same electrode pattern are alternately arranged in different directions. That is, the laminated piezoelectric material is formed by the single-layer piezoelectric material 111 having the same electrode pattern without using the single-layer piezoelectric material having different electrode patterns. For this reason, it is possible to reduce costs, simplify the manufacturing process, reduce operational errors, and improve yield and quality of piezoelectric characteristics.
  • the single-layer piezoelectric body 111 is laminated and each layer is made conductive by the conducting portion 18a, it is possible to simultaneously polarize all the single-layer piezoelectric bodies 111 with one applied voltage.
  • the drive voltage can be lowered as compared with the conventional case, and the performance of the vibration wave motor 1 such as drive efficiency and generated torque can be improved. became.
  • This embodiment has a large effect on driving performance of the small-diameter type traveling wave type vibration wave motor 1 in which the driving voltage increases.
  • the outer diameter is 25 mm or less, the effect of this embodiment is remarkable.
  • the small-diameter type traveling wave type vibration wave motor 1 needs to reduce the number of waves to 4 waves and 5 waves, but if the number of waves is reduced, the number of electrode patterns of the A phase and the B phase is reduced. There are fewer issues. In the case of four waves in the present embodiment, the number of electrode patterns of A phase (or B phase) is 4, and in the case of five waves, the number of electrode patterns of A phase (or B phase) is 5, but the electrodes of each phase When the number of patterns is small, bending vibration is difficult to be excited.
  • each piezoelectric body 11 layer needs to be polarized so that piezoelectric characteristics can be obtained.
  • the effect is particularly obtained when the number of traveling waves is four or five.
  • FIG. 8 is a diagram illustrating a piezoelectric body 11-2 according to the second embodiment.
  • FIG. 8A is a part of a side view of the piezoelectric body 11-2 (viewed from a direction orthogonal to the pressing direction of the vibration wave motor 1-2).
  • FIG. 8B is a view showing the surface 11A of the piezoelectric body 11-2, and
  • FIG. 8A is a view seen from the aa direction of FIG. 8B.
  • FIG. 8C is a sectional view taken along the line cc of FIG.
  • FIG. 8D is a view showing the back surface 11B of the piezoelectric body 11-2.
  • FIG. 9 is a diagram illustrating a vibrator 10-2 including a piezoelectric body 11-2 and an elastic body 12.
  • FIG. 9A is a side view
  • FIG. 9B is a view seen from the front side.
  • FIG. 10 is a view for explaining electrode patterns of the single-layer piezoelectric body 111-2.
  • FIG. 10A is a diagram showing the electrode patterns on the front and back surfaces of each single-layer piezoelectric body 111-2
  • FIG. 10B is the polarization of each single-layer piezoelectric body 111-2 in the laminated piezoelectric body 11-2. It is the figure which showed the direction.
  • the applied electrode pattern 16 is formed on the front surface 111aA of the first layer piezoelectric body 111a, the back surface 111bB of the second layer piezoelectric body 111a, and the front surface 111cA of the third layer piezoelectric body 111c. It is divided into two phases (A phase and B phase) along the direction. In each phase, electrode patterns 17 are arranged so that they are alternately polarized every 1 ⁇ 2 wavelength, and an interval of 1 ⁇ 4 wavelength is provided between the A phase and the B phase.
  • the back surface 111aB of the first layer piezoelectric body 111a, the front surface 111bA of the second layer piezoelectric body 111b, and the back surface 111cB of the third layer piezoelectric body 111c are not divided electrode patterns 16 but two drive signal phases (A phase, A common electrode pattern 19 is formed as a B-phase common electrode.
  • the back surface 111aB of the first layer piezoelectric body 111a and the front surface 111bA of the second layer piezoelectric body 111b are bonded together, and the back surface 111bB of the second layer piezoelectric body 111b and the surface 111cA of the third layer piezoelectric body 111c are bonded together.
  • a laminated piezoelectric body 11-2 is formed.
  • the front surface 111aA of the first layer piezoelectric body 111a becomes the surface 11A as the whole laminated piezoelectric body 11-2
  • the back surface 111cB of the third layer piezoelectric body 111c becomes the back surface 11B as the whole laminated piezoelectric body 11-2.
  • a flexible printed circuit board (FPC) 14 is bonded to the surface 11A as the laminated piezoelectric body 11-2 with an adhesive 18 in order to transmit a drive signal as shown in FIGS. 9 (a) and 9 (b).
  • the adhesive 18 is applied so as to extend from the side surfaces of the elastic body 12 and the piezoelectric body 11-2 to the FPC 14, and the adhesive strength is reinforced.
  • the back surface 11B as the laminated piezoelectric body 11-2 is bonded to the elastic body 12 with a room temperature curable adhesive.
  • the polarization of each layer is opposite to the polarization direction from the back side to the front side of the even layer.
  • the second layer piezoelectric body 111b when the polarization direction is from the back surface 111aB side to the front surface 111aA side (this direction is defined as a positive direction), the second layer piezoelectric body 111b. Then, the polarization direction ( ⁇ direction) is from the front surface 111bA to the back surface 111bB, and further, the polarization direction (+ direction) is from the back surface 111cB to the front surface 111cA in the third layer piezoelectric body 111c. That is, the polarization direction is + ⁇ + along the thickness direction of the piezoelectric body. Further, in the region Q adjacent to the region P, the polarization direction is opposite to that of the region P and becomes ⁇ + ⁇ along the thickness direction of the piezoelectric body.
  • the number of stacked single-layer piezoelectric bodies 111-2 in the piezoelectric body 11-2 is an odd number. That is, since the polarization direction of the first layer is the same as the polarization direction of the final layer, the number of single-layer piezoelectric bodies 111-2 is an odd number.
  • the electrode pattern on the back side of the odd layer and the electrode pattern on the front side of the even layer are the same electrode pattern, and the electrode pattern on the back side of the even layer and the electrode pattern on the front side of the odd layer are the same electrode pattern.
  • the electrode patterns on the back surfaces 111aB and 111cB of the odd-numbered layers are It will be the same.
  • these surfaces are divided into two drive signal phases (A phase and B phase) along the circumferential direction, and in each phase, every half wavelength alternately as shown in the figure.
  • the application electrode pattern 17 is arranged so that it is polarized and an interval of 1 ⁇ 4 wavelength is left between the A phase and the B phase.
  • the electrode patterns of the front surfaces 111aA and 111cA of the odd-numbered layers (first layer piezoelectric body 111a and third-layer piezoelectric body 111c in this embodiment) and the back surface 111bB of even-numbered layers (second layer piezoelectric body 111b in this embodiment) are It will be the same.
  • the divided application electrode pattern 16 not the divided application electrode pattern 16 but a common electrode pattern 19 of two drive signal phases (A phase and B phase) is formed.
  • three layers are used as an example. However, if the number of layers is five, seven, nine,. Further, although the wave number of the traveling wave has been described as four waves, any wave number such as five waves, six waves, seven waves, etc. may be used.
  • the single-layer piezoelectric body 111-2 (the first-layer piezoelectric body 111a, the second-layer piezoelectric body 111b, and the third-layer piezoelectric body 111c) is , Each has an annular shape.
  • the outer diameters of the first layer piezoelectric body 111a, the second layer piezoelectric body 111b, and the third layer piezoelectric body 111c become smaller in order. That is, as shown in FIG.
  • the inner diameter is the same.
  • FIG. 11 is an enlarged view of the stepped portion of the laminated piezoelectric body 11-2.
  • FIG. 11A shows a portion where a later-described common conduction portion 18a is provided
  • FIG. 11B shows a portion where a later-described application conduction portion 18b is provided.
  • the outer peripheral side of the surface 11A of the second layer piezoelectric body 111b becomes an exposed portion 40b exposed without overlapping the first layer piezoelectric body 111a.
  • the outer peripheral side of the third layer piezoelectric body 111c is an exposed portion 40c exposed without overlapping the second layer piezoelectric body 111b.
  • each electrode pattern 16, 17, 19 is formed apart from the outer edge and the inner edge of the ring. A part of the space between the outer edge of the ring and the electrode patterns 16, 17, 19 is the exposed portions 40 b, 40 c described above.
  • extending portions 16a, 17a, and 19a extending from the electrode patterns 16, 17, and 19 to the outer edge are formed in the separated portions (exposed portions 40b and 40c).
  • the common conductive portion 18 a extends so as to connect the side surface 111 cs of the third layer piezoelectric body 111 c and the common electrode pattern 19.
  • electrical_connection part 18a is formed by apply
  • the extending portion 19a of the surface 111bA of the second layer piezoelectric body 111b is connected to the common electrode pattern 19 of the surface 111bA of the second layer piezoelectric body 111b and the common electrode pattern 19 of the back surface 111bB of the first layer piezoelectric body 111a. Is done.
  • the extending portion 17a of the surface 111cA of the third layer piezoelectric body 111c is connected to the electrode pattern 17 of the third layer piezoelectric body 111c and the electrode pattern 17 of the second layer piezoelectric body 111b.
  • the electrode pattern 17 on the back surface 111bB of the two-layer piezoelectric body 111b, the electrode pattern 17 on the front surface 111cA of the third-layer piezoelectric body 111c, and the common electrode pattern 19 on the back surface 111cB of the third-layer piezoelectric body 111c are common conducting portions 18a. Connected by.
  • the application conducting portion 18b extends in the direction.
  • the applied conducting portion 18b provided on the exposed portion 40b of the surface 111bA of the second layer piezoelectric body 111b is composed of the common electrode pattern 19 on the surface 111bA of the second layer piezoelectric body 111b and the back surface 111bB of the first layer piezoelectric body 111a.
  • the common electrode pattern 19 is not connected.
  • the extending portion 16a of the surface 111cA of the third layer piezoelectric body 111c is connected to the application electrode pattern 16 of the third layer piezoelectric body 111c and the application electrode pattern 16 of the second layer piezoelectric body 111b.
  • the applied electrode pattern 16 on the front surface 111aA of the first layer piezoelectric body 111a, the applied electrode pattern 16 on the back surface 111bB of the second layer piezoelectric body 111b, the applied electrode pattern 16 on the surface 111cA of the third layer piezoelectric body 111c, are connected by the application conduction part 18b.
  • the electrode patterns 16 and 19 of each layer are conducted on the outer peripheral side.
  • a step shape may be formed on the inner peripheral side and the conduction may be conducted on the inner peripheral side. good.
  • the single-layer piezoelectric bodies 111-2 constituting the multilayer piezoelectric body 11-2 are stacked stepwise. Further, the surface of the step portion is exposed, and the exposed portions 40b and 40c are extended portions 16a, 17a, and 19a that are conductively extended from the electrode patterns formed on the front and back surfaces of the single-layer piezoelectric body 111-2. Is provided. By applying a conductive paint to the exposed portions of the extending portions 16a, 17a, 19a, conduction between the laminated piezoelectric bodies can be easily and reliably achieved.
  • FIG. 12 is a diagram illustrating the piezoelectric body 11-3 according to the third embodiment of the present invention, and corresponds to FIG. 8 according to the second embodiment.
  • FIG. 12A is a part of a side view of the piezoelectric body 11-3 according to the third embodiment.
  • FIG. 12B is a view showing the surface 11A of the piezoelectric body 11-3, and
  • FIG. 12A is a view seen from the aa direction of FIG. 12B.
  • FIG. 12C is a cross-sectional view taken along the line cc of FIG.
  • FIG. 12D shows the back surface 11B of the piezoelectric body 11-3.
  • FIG. 12E is an enlarged view of a portion surrounded by a dotted circle in FIG.
  • the exposed portions 40b and 40c are formed by laminating the single-layer piezoelectric bodies 111-2 having different outer diameters so that the outer peripheral side is stepped.
  • a notch 50 is provided in the piezoelectric body 11-3, and a step portion is formed by shifting the notch 50 in the circumferential direction to provide the exposed portions 40b and 40c. That is, a semicircular first cutout portion 50 is provided on the outer peripheral portion of the electrode pattern of the single-layer piezoelectric body 111-3, and the extending portions 16a, 17a, 19a are extended from the electrode patterns 16, 17, 19 there.
  • the first notch 50 is slightly shifted in the circumferential direction in each layer.
  • the extending portions 16a, 17a, and 19a of the second layer piezoelectric body 111b and the third layer piezoelectric body 111c are made visible from the first cutout portion 50 of the first layer piezoelectric body 111a. That is, the extension portions 16a, 17a, and 19a of the second layer piezoelectric body 111b and the third layer piezoelectric body 111c are shifted so as to be exposed inside the first notch 50 of the first layer piezoelectric body 111a.
  • a reference cutout (second cutout 51) is provided in each layer.
  • the distance between the second notch 51 and the first notch is different for each layer.
  • the distance between the second cutout portion 51 and the first cutout portion 50 in the second layer piezoelectric body 111b is larger than the distance between the second cutout portion 51 and the first cutout portion 50 in the first layer piezoelectric body 111a.
  • the distance between the second notch 51 and the first notch 50 in the third layer piezoelectric body 111c is larger than that.
  • the first cutout portion 50 of the first-layer piezoelectric body 111a is removed.
  • the extending portions 16a, 17a, and 19a provided on the surfaces of the second-layer piezoelectric body 111b and the third-layer piezoelectric body 111c are displaced so as to be visible, and a stepped portion is formed.
  • the electrodes of the single-layer piezoelectric body 111-3 can be made conductive as in the second embodiment.
  • FIG. 13 is a diagram illustrating a lens barrel 200 according to the third embodiment of the present invention.
  • the present invention can be configured not only in the piezoelectric body 11 of the small-diameter type vibration wave motor 1 of the first embodiment but also in the piezoelectric body 11 of the large-diameter ring-type vibration wave motor 210. The same effect as in the first embodiment can be obtained.
  • the vibrator 211 includes a piezoelectric body 11 and an elastic body 214 joined with the piezoelectric body 11.
  • the traveling wave is generated in the vibrator 211.
  • the traveling wave is described as 9 traveling waves as an example.
  • the elastic body 214 is made of a metal material having a high resonance sharpness and has an annular shape. A groove is cut on the opposite surface to which the piezoelectric body 11 is bonded, and the surface of the portion where the groove is not provided becomes the driving surface 216a and is brought into pressure contact with the moving element 220.
  • the surface of the driving surface 216a of the elastic body 214 is provided with a lubricating coating film for ensuring driving performance and improving durability.
  • the piezoelectric body 11 is divided into two phases (A phase and B phase) along the circumferential direction, and in each phase, elements with alternating polarization for each half wavelength are arranged. An interval of 1/4 wavelength is provided between the A phase and the B phase.
  • a non-woven fabric 252 and a pressure member 250 are disposed under the piezoelectric body 11.
  • the nonwoven fabric 252 is an example of felt, and is disposed under the piezoelectric body 11 so as not to transmit the vibration of the vibrator 211 to the pressure member 250.
  • the pressure member 250 is disposed under a pressure plate (not shown) and generates pressure.
  • a coil spring or a wave spring may be used instead of a disc spring in which the pressure member 250 is a disc spring.
  • the pressure member 250 is held by the pressing ring 251 being fixed to the fixing member 223.
  • the mover 220 is made of a light metal such as aluminum, and a sliding material for improving wear resistance is provided on the surface of the sliding surface.
  • a vibration absorbing member 243 such as rubber is arranged to absorb the vertical vibration of the moving element 220, and an output transmission member 242 is arranged thereon.
  • the output transmission member 242 regulates the pressurization direction and the radial direction by a bearing 253 provided on the fixed member 223, thereby regulating the pressurization direction and the radial direction of the moving element 220. .
  • the output transmission member 242 has a protrusion 241 from which a fork connected to the cam ring 315 is engaged, and the cam ring 315 is rotated with the rotation of the output transmission member 242.
  • a key groove 317 is cut obliquely in the cam ring 315, and a fixing pin 318 provided in the AF ring 319 is engaged with the key groove 317 so that the cam ring 315 is rotationally driven.
  • the AF ring 319 is driven in the straight direction in the optical axis direction, and can be stopped at a desired position.
  • the fixing member 223, the pressing ring 251 is attached with a screw, and by attaching this, the output transmission member 242, the moving element 220, the vibrator 211, and the pressing member 250 can be configured as one motor unit.
  • the piezoelectric body 213 of the fourth embodiment is also a laminated piezoelectric body similar to the piezoelectric body 11 of the first embodiment. That is, a single-layer piezoelectric body is laminated by a plurality of layers (three layers in this embodiment). The first-layer piezoelectric body, the second-layer piezoelectric body, and the third-layer piezoelectric body are arranged in this order from the side opposite to the adhesive surface of the laminated piezoelectric body with the elastic body.
  • the electrode is arrange
  • the electrodes are arranged so that they are alternately polarized every 1 ⁇ 2 wavelength, and an interval of 1 ⁇ 4 wavelength is left between the A phase and the B phase.
  • On the back surface of the first layer piezoelectric body not a divided electrode pattern but a common electrode pattern of two drive signal phases (A phase and B phase) is formed.
  • the second layer piezoelectric body On the surface of the second layer piezoelectric body, not a divided electrode pattern but a common electrode pattern of two drive signal phases (A phase and B phase) is formed.
  • the surface of the second layer and the back surface B of the first layer are bonded together.
  • An electrode is disposed on the back surface side of the second layer piezoelectric body, which is divided into two drive signal phases (A phase and B phase) along the circumferential direction.
  • the electrodes 16 are arranged so that they are alternately polarized every 1 ⁇ 2 wavelength, and an interval of 1 ⁇ 4 wavelength is left between the A phase and the B phase.
  • Electrodes are arranged on the surface of the third layer piezoelectric body, which is divided into two drive signal phases (A phase and B phase) along the circumferential direction. In each phase, the electrodes are arranged so that they are alternately polarized every 1 ⁇ 2 wavelength, and an interval of 1 ⁇ 4 wavelength is left between the A phase and the B phase.
  • the back surface of the second layer piezoelectric body and the front surface of the third layer piezoelectric body are bonded together.
  • On the back surface of the third layer piezoelectric body not a divided electrode pattern, but a common electrode pattern of two drive signal phases (A phase and B phase) is formed.
  • the single-layer piezoelectric body constituting the multilayer piezoelectric body can be laminated stepwise. Then, the surface of the step portion is exposed, and a conductive portion can be provided in the exposed portion. In this way, the fourth embodiment can have the same effects as those of the second embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

 簡単な構成且つ低電圧で駆動可能な振動波モータを提供する。 本発明の振動波モータ1は、互いに時間的位相差がある駆動信号により振動が発生される電気機械変換素子積層体11と、該積層体に接合される接合面12f、及び接合面の反対側に設けられた振動によって進行性の振動波を生じる駆動面12a、を有する弾性体12と、駆動面に加圧接触され、振動波によって駆動される相対運動部材20と、を備え、積層体は、一方の面に共通電極パターン、他方の面に駆動信号印加電極パターン16が形成された単層電気機械変換素子111a,11b,111cが、弾性体の厚さ方向へ複数積層されたものであり、積層体全体としての弾性体側の面11Bには、共通電極パターン19が配置され、弾性体側と反対側の面11Aには、駆動信号印加電極パターン16が配置されるように単層電気機械変換素子が積層されている。

Description

振動波モータ及びレンズ鏡筒
 本発明は振動波モータ及びレンズ鏡筒に関するものである。
 撮影装置等に用いられる振動波モータの振動子は、金属製の弾性体と圧電体から構成され、圧電体は一層であることが一般的である。このような一層の圧電素子を用いた超音波モータを実用的な出力で駆動するには、数十ボルトの高周波電圧が必要である。このため、撮影装置の電池の電圧では不十分で、昇圧回路を備えるものがある。しかし、昇圧回路はコストアップや装置大型化の問題が生じるため、圧電体を積層化することで、高電圧を確保している振動波モータもある(特許文献1参照)。
特開平7-213081号公報
 しかし、上記文献の積層化された圧電体では、各層の電極パターンが異なるため複雑化する。また、弾性体に接合する側の層と反接合側の層と分極されておらず、これらの分極されていない層が振動波の励振を阻害するといった課題もある。
 本発明では、簡単な構成且つ低電圧で駆動可能な振動波モータ及びレンズ鏡筒を提供することを目的とする。
 前記課題を解決するために、第1の発明は、互いに時間的位相差がある駆動信号により振動が発生される電気機械変換素子積層体と、前記電気機械変換素子積層体に接合される接合面、及び該接合面の反対側に設けられた前記振動によって進行性の振動波を生じる駆動面、を有する弾性体と、前記駆動面に加圧接触され、前記振動波によって駆動される相対運動部材と、を備え、前記電気機械変換素子積層体は、一方の面に共通電極パターン、他方の面に駆動信号印加電極パターンが形成された単層電気機械変換素子が、前記弾性体の厚さ方向へ複数積層されたものであり、前記電気機械変換素子積層体全体としての前記弾性体側の面には、前記共通電極パターンが配置され、前記弾性体側と反対側の面には、前記駆動信号印加電極パターンが配置されるように前記単層電気機械変換素子が積層されていること、を特徴とする振動波モータを提供する。
 第2の発明は、第1の発明の振動波モータにおいて、前記単層電気機械変換素子の積層数は、奇数であること、を特徴とする振動波モータを提供する。
 第3の発明は、第1または第2の発明の振動波モータにおいて、前記単層電気機械変換素子における、互いに対向する面には、同じ電極パターンが形成され、前記電気機械変換素子積層体の側面を延びる導通部で導通されていること、を特徴とする振動波モータを提供する。
 第4の発明は、第1から第3の発明の3のいずれか1つの振動波モータにおいて、前記単層電気機械変換素子は2群で、かつ隣り合う前記単層電気機械変換素子の分極方向が互いに反対方向を向くようになっていること、を特徴とする振動波モータを提供する。
 第5の発明は、一方の面に第一の電極パターン、他方の面に駆動信号を印加するための第2の電極パターンが形成された単層電気機械変換素子を、同じ電極パターンを有する面が向かい合うように積層したことを特徴とする積層型電気機械変換素子を提供する。
 第6の発明は、駆動信号により振動が発生される電気機械変換素子の積層体と、前記積層体に接合される接合面、及び該接合面の反対側に設けられ、前記振動によって進行性の振動波を生じる駆動面、を有する弾性体と、前記駆動面に加圧接触され、前記振動波によって駆動される相対運動部材と、を備え、前記積層体は、前記電気機械変換素子の単層体が、前記弾性体の厚さ方向へ、複数積層されたものであり、前記積層体を前記接合面と平行な一方の面側からみたときに、後方の単層体において前方の単層体と重ならずに表面が露出している露出部が存在し、該露出部は段階状に連続し、その連続する露出部に前記単層体間の導通部が形成されていること、を特徴とする振動波モータを提供する。
 第7の発明は、第6の発明の振動波モータにおいて、前記単層体は円環形状であり、前記露出部は、円環の外周側または内周側に形成されていること、を特徴とする振動波モータを提供する。
 第8の発明は、第6または第7の発明の振動波モータにおいて、前記単層体は外周側または内周側の径が互いに異なり、該径の異なる前記単層体を積層させることにより、前記露出部が段階状に形成されていること、を特徴とする振動波モータを提供する。
 第9の発明は、第6または第7の発明の振動波モータにおいて、前記単層体には、それぞれ第1切欠き部が設けられており、前記単層体を積層させる際に、該第1切欠き部の位置が互いにずれることにより、前記露出部が段階状に形成されていること、を特徴とする振動波モータを提供する。
 第10の発明は、第9の発明の振動波モータにおいて、前記単層体には、前記第1切欠き部とは異なる第2切欠き部が設けられており、前記第1切欠き部と前記第2切欠き部との間の距離は、前記単層体によって異なり、前記単層体を積層させる際に、前記第2切欠き部が前記厚さ方向に整列するように前記単層体を並べることにより、前記第1切欠きの縁部において前記露出部が段階状に形成されること、を特徴とする振動波モータを提供する。
 第11の発明は、電気変換素子の単層体が複数積層された電気機械変換素子積層体であって、前記単層体は、前記単層体が積層される方向からみたときに、隣り合う他の単層体と重ならずに表面が露出している露出部を有し、前記露出部に前記単層体間の導通部が形成されていること、を特徴とする電気機械変換素子積層体を提供する。
 第12の発明は、第1~第11の発明のいずれか1つの振動波モータを備えるレンズ鏡筒を提供する。
 本発明によれば、簡単な構成且つ低電圧で駆動可能な振動波モータ及びレンズ鏡筒を提供することができる。
本発明の第1実施形態の振動波モータを説明する図である。 第1実施形態の振動波モータの駆動装置を説明するブロック図である。 第1実施形態の振動波モータを搭載したレンズ鏡筒を示す図である。圧電体を含む弾性体を説明する図である。 第1実施形態の圧電体を説明する図であり、(a)は圧電体の側面図、(b)は圧電体の表面を示した図、(c)圧電体の断面図、(d)は圧電体の裏面を示した図である。 圧電体を含む弾性体を説明する図であり、(a)は側面図、(b)はFPC側から見た図である。 単層圧電体それぞれの電極パターンを説明する図であり、(a)は単層圧電体それぞれの表裏面の電極パターンを示した図であり、(b)は積層圧電体における単層圧電体それぞれの分極方向を示した図である。 印加電圧による圧電体の伸縮を示した図であり、(a)は印加電圧がプラスの場合、(b)は印加電圧がマイナスの場合を示した図である。 第2実施形態の圧電体を説明する図であり、(a)は圧電体の側面図、(b)は圧電体の表面を示した図、(c)圧電体の断面図、(d)は圧電体の裏面を示した図である。 圧電体を含む弾性体を説明する図であり、(a)は側面図、(b)は表面側から見た図である。 単層圧電体それぞれの電極パターンを説明する図であり、(a)は単層圧電体それぞれの表裏面の電極パターンを示した図であり、(b)は積層圧電体における単層圧電体それぞれの分極方向を示した図である。 積層圧電体の段階状部分の拡大図であり、(a)は、後述の共通電極の導通部が設けられている部分、(b)は後述の印加電極の導通部が設けられている部分の図である。 第3実施形態の圧電体を説明する図であり、(a)は圧電体の側面図、(b)は圧電体の表面を示した図、(c)は圧電体の断面図、(d)は圧電体の裏面を示した図、(e)は(b)の点線の丸で囲った部分の拡大図である。 本発明の第4実施形態のレンズ鏡筒を説明する図である。
(第1実施形態)
 以下、本発明にかかる振動波モータ1の実施形態について、添付図面を参照しながら詳細に説明する。
 図1は、本発明の第1実施形態の振動波モータ1を説明する図である。
 本実施形態では振動子10側を固定とし、移動子(相対運動部材)20を駆動する様になっている。
 移動子20は、アルミニウム等の軽金属からなり、摺動面の表面には耐摩耗性向上のための表面処理が成されている。
 振動子10は、後で説明する様に電気エネルギ-を機械エネルギ-に変換する圧電素子や電歪素子等を例とした電気機械変換素子(以下、圧電体と称する)11と、圧電体11が接合された弾性体12と、から構成され、振動子10には進行性振動波が発生する。
 弾性体12は、共振先鋭度が大きな金属材料から成り、形状は、円環形状である。
 弾性体12の一面(接合面12f)には圧電体11が接合され、その一面と反対側は溝12bが切られている。そして、突起部分(溝12bがない箇所)12cの先端は駆動面12aとなって移動子20に加圧接触される。
 弾性体12の溝12bが切られていない部分はベース部12dであり、ベース部12dから内径側にフランジ12eが伸延されている。フランジ12eの最内径部は、固定部材13に固定されている。
 弾性体12の突起部分12cには、全体を覆う様にして塗装膜や潤滑メッキ等の摺動部材が施されている。
 圧電体11は、後に詳述するが、弾性体12との接着面と反対側(FPC側の面、反接合面、以後、この面を表面という)には、電極が配置され、それは円周方向に沿って2つの相(A相、B相)に分かれた2群構造となっている。
 各相においては、1/2波長毎に交互に分極され、A相とB相との間には1/4波長分間隔があくように電極が配置されている。
 出力軸21は、ゴム部材22と出力軸21のDカットにはまるように挿入されたストッパー部材23を介して移動子20に結合されている。そして、出力軸21とストッパー部材23はEクリップ24等により固定され、移動子20と一体に回転する様にされている。
 ストッパー部材23と移動子20との間のゴム部材22は、ゴムによる粘着性で移動子20とストッパー部材23と結合する機能があり、かつ移動子20からの振動を出力軸21へ伝えないための振動吸収との機能があるブチルゴム等が好適である。
 加圧部材25は、出力軸21の出力ギア51とベアリング27との間に設けられている。この様な構造により、移動子20は弾性体12の駆動面12aに加圧接触する。
 図2は、第1実施形態の振動波モータ1の駆動装置30を説明するブロック図である。
 まず、振動波モータ1の駆動/制御部31について説明する。
 発振部32は、制御部31の指令により所望の周波数の駆動信号を発生する。
 移相部33は、発振部32で発生した駆動信号を位相の異なる2つの駆動信号に分ける。
 増幅部34は、移相部33によって分けられた2つの駆動信号をそれぞれ所望の電圧に昇圧する。
 増幅部34からの駆動信号は、振動波モータ1に伝達され、この駆動信号の印加により振動子10に進行波が発生し、移動子20が駆動される。
 回転検出部35は、光学式エンコーダや磁気エンコーダ等により構成され、移動子20の駆動によって駆動された駆動物の位置や速度を検出し、検出値を電気信号として制御部31に伝達する。
 制御部31は、レンズ鏡筒110内またはカメラ本体のCPU36からの駆動指令を基に振動波モータ1の駆動を制御する。制御部31は、回転検出部35からの検出信号を受け、その値を基に、位置情報と速度情報を得て、目標位置に位置決めされるように発振部32の周波数を制御する。
 次に、第1実施形態の振動波モータ1の動作を説明する。
 制御部31から駆動指令が発令されると、発振部32は駆動信号を発生させる。
 その駆動信号は移相部33により90度位相の異なる2つの駆動信号に分割され、増幅部34により所望の電圧に増幅される。
 増幅された駆動信号は、振動波モータ1の圧電体11に印加され、圧電体11は励振(振動)される。その圧電体11の励振によって、弾性体12には4次の曲げ振動が発生する。圧電体11はA相とB相とに分けられており、駆動信号はそれぞれA相とB相に印加される。
 A相から発生する4次曲げ振動とB相から発生する4次曲げ振動とは位置的な位相が1/4波長ずれるようになっている。また、A相駆動信号とB相駆動信号とは90度位相がずれているため、2つの曲げ振動は合成され、4波の進行波となる。
 進行波の波頭には楕円運動が生じる。従って、駆動面12aに加圧接触された移動子20は、この楕円運動によって摩擦的に駆動される。
 移動子20の駆動により駆動された駆動体には、光学式エンコ-ダが配置されていて、そこから、電気パルスが発生し、制御部31に伝達される。制御部31は、この信号を基に、現在の位置と現在の速度を得ることが可能となる。
 図3は、第1実施形態の振動波モータ1を搭載したレンズ鏡筒110を示す図である。
 振動波モータ1はギアユニットモジュール113に取り付けられ、ギアユニットモジュール113はレンズ鏡筒110鏡筒の固定筒114に取り付けられている。
 振動波モータ1の出力ギア51は、ギアユニットモジュール113の減速ギア115を介して、カム環116に回転運動が伝達され、カム環116は回転駆動する。
 カム環116には、周方向に対して斜めにキー溝117が切られており、該キー溝117に固定ピン118が挿入されたAF環119は、カム環116が回転駆動することにより、光軸OA方向に直進方向に駆動され、所望の位置に停止できる様にされている。
 回路121は、レンズ鏡筒110の外側固定筒114aと内側固定筒114bとの間に設けられ、振動波モータ1の駆動、制御、回転数の検出、振動センサーの検出等を行う。
 次に、圧電体11について詳述する。
 図4は、第1実施形態の圧電体11を説明する図である。図4(a)は圧電体11の側面図(振動波モータ1の加圧方向と直交する方向から見た図)の一部である。図4(b)は圧電体11の表面11Aを示した図であり、(a)は(b)のa-a方向から見た図である。図4(c)は(b)のc-c断面図である。図4(d)は圧電体11の裏面11Bを示した図である。
 図5は、圧電体11と弾性体12とを含む振動子10説明する図である。図5(a)は側面図であり、図5(b)はFPC14側から見た図である。
 圧電体11の素地は、PZTと呼ばれるチタン酸ジルコン酸鉛、または、近年では環境問題から鉛フリーの材料であるチタン酸バリウム、チタン酸ビスマスナトリウム、チタン酸ビスマスカリウム等から構成されている。
 圧電体11の素地の表面11Aには、電極が配置され、銀ペーストが印刷されている。電極はNiPや金等の金属メッキでも良い。
 また、圧電体11は、図4(a),(c),図5に示すように、単層圧電体111(第1層圧電体111a,第2層圧電体111b及び第3層圧電体111c)を複数層(本実施形態では3層)積層したものである。以下、圧電体11を、単層圧電体111と区別するために、適宜、積層圧電体11という。
 第1層圧電体111a、第2層圧電体111b及び第3層圧電体111cは、この順で、積層圧電体11の弾性体12との接着面と反対側(FPC側、以下、表面11Aという)から並んでいる。
 積層圧電体11の表面11A側には、印加電極パターン16が形成され、それは円周方向に沿って2つの相(A相、B相)に分かれている。
 各相においては、1/2波長毎に交互に分極され、A相とB相との間には1/4波長分間隔があくように電極が配置されている。
 この表面11Aには、図5(a),(b)に示すように駆動信号を伝達するためにフレキシブルプリント基板(FPC)14が接合されている。
 図5(a)に示すように、弾性体12及び圧電体11の側面からFPC14まで延びるように接着剤18が塗布されて、接着強度が補強されている。
 積層圧電体11の裏面11Bは、図4(d)に示すように、分割した電極パターン16ではなく、2つの駆動信号の相(A相、B相)の共通電極とする共通電極パターン19が形成されている。本実施形態で裏面11Bは、弾性体12に常温硬化性の接着剤により接合されている。
 各電極パターン16,19は、図4(a)に示すように一部が外周側に伸延されて導通部18aが形成され、外周側面を沿って各層の電極パターン16,19と導通されている。なお、本実施形態では、各層の電極パターン16,19の導通を外周側面側にて実施しているが、内周側面側でも良い。
 図6は、単層圧電体111それぞれの電極パターンを説明する図である。図6(a)は単層圧電体111それぞれの表裏面の電極パターンを示した図であり、図6(b)は積層圧電体11における単層圧電体111それぞれの分極方向を示した図である。
 図6(a)に示すように、第1層圧電体111aの表面111aA側には、印加電極パターン16が配置され、それは、円周方向に沿って2つの駆動信号の相(A相、B相)に分かれている。各相においては、1/2波長毎に交互に分極され、A相とB相との間には1/4波長分間隔60が空く様に電極17が配置されている。
 第1層圧電体111aの裏面111aBは、分割した印加電極パターン16ではなく、2つの駆動信号の相(A相、B相)の共通電極パターン19が形成されている。
 第2層圧電体111bの表面111bAは、分割した印加電極パターン16ではなく、2つの駆動信号の相(A相、B相)の共通電極が形成されている。そして、第2層目の表面111bAと第1層目の裏面111aBとは貼り合わされている。
 第2層圧電体111bの裏面111bB側には、印加電極パターン16が配置され、それは円周方向に沿って2つの駆動信号の相(A相、B相)に分かれている。各相においては、1/2波長毎に交互に分極され、A相とB相との間には1/4波長分間隔が空く様に電極17が配置されている。
 第3層圧電体111cの表面111cAは、電極17が配置され、それは円周方向に沿って2つの駆動信号の相(A相、B相)に分かれている。各相においては、1/2波長毎に交互に図の様に分極され、A相とB相との間には1/4波長分間隔が空く様に電極17が配置されている。そして、第2層圧電体111bの裏面111bBと第3層圧電体111cの表面111cAとは貼り合わされている。
 第3層圧電体111cの裏面111cBは、分割した電極パターンではなく、2つの駆動信号の相(A相、B相)の共通電極パターン19が形成されている。
 図6(b)に示すように、各層(第1層圧電体111a,第2層圧電体111b,第3層圧電体111c)の分極は、A相とB相との間の1/4波長分間隔の部分17を除くと、奇数層数目の接合面側から反接合面側への分極方向と、偶数層数目の接合面側から反接合面側へ分極方向が反対となっている。
 すなわち、図6(b)に示す領域Pにおける第1層圧電体111aにおいて、裏面111aB側から表面111aA側へ向かう分極方向だった場合(この方向を+方向とする)、第2層圧電体111bでは、表面111bAから裏面111bBへ向かう分極方向(-方向)となり、さらに第3層圧電体111cでは、裏面111cBから表面111cAへ向かう分極方向(+方向)となる。すなわち、分極方向が圧電体の厚さ方向に沿って+-+となる。
 また、領域Pと隣接する領域Qでは、領域Pと分極方向が逆で、圧電体の厚さ方向に沿って-+-となる。
 また、上記の様な電極および分極の構成において、圧電体11における単層圧電体111の積層数は奇数となる。すなわち、第1層の分極方向と最終層の分極方向とが同じになるので、単層圧電体111の数は奇数となる。
 奇数層数目の接合面側の電極パターンと偶数層数目の反接合面側の電極パターンとは、同じ電極パターンとなり、偶数層数目の接合面側の電極パターンと奇数層数目の反接合面側の電極パターンとは、同じ電極パターンとなる。
 すなわち、奇数層(本実施形態では第1層圧電体111aと第3層圧電体111c)の裏面111aB,111cBと偶数層(本実施形態では第2層圧電体111b)の表面111bAの電極パターンは同じとなる。本実施形態においてはこれらの面には、円周方向に沿って2つの駆動信号の相(A相、B相)に分かれ、各相においては、1/2波長毎に交互に図の様に分極され、A相とB相との間には1/4波長分間隔が空く様に印加電極パターン16が配置されている。
 また、奇数層(本実施形態では第1層圧電体111aと第3層圧電体111c)の表面111aA,111cAと偶数層(本実施形態では第2層圧電体111b)の裏面111bBの電極パターンは同じとなる。本実施形態においては、分割した印加電極パターン16ではなく、2つの駆動信号の相(A相、B相)の共通電極パターン19が形成されている。
 なお、本実施形態では、説明を簡単にするため、3層を例としたが、5層、7層、9層・・・と、奇数の積層数なら同様の構成とすることができる。
 また、進行波の波数を4波として説明したが、5波、6波、7波・・・と、どの様な波数でも良い。
 上述の図5に示すように、本実施形態の積層圧電体11は、第3層圧電体111cの裏面111cBが積層圧電体11全体としての裏面(共通電極パターン19側)11Bとなって弾性体12に接合されている。
 また第1層圧電体111aの表面111aAが積層圧電体11全体としての表面11AとなってFPC14が接合され、駆動信号が供給できる様にされている。
 図6に示す様に各層の電極パターンおよび分極方向を構成し、図4(a)に示すように外周側面に導通部18aを延ばして各電極パターンを導通させる。
 図7は印加電圧による圧電体11の伸縮を示した図である。駆動信号が+に印加された場合、A相およびB相の各電極は、図7(a)の様に伸延および縮小が交互になされる。すなわち、領域Pにおいては伸延し、領域Qは縮小する。
 また、逆に駆動信号が-に印加された場合、上記と逆に、図7(b)のように各電極は伸延および縮小が交互になされる。すなわち、領域Pにおいては縮小し、領域Qは伸延する。
 このように、本実施形態の構成では、印加電圧と伸縮方向においては従来の単相の圧電体11と同じ挙動を示す。
 圧電体における伸縮(変形)の大きさは、圧電体内部に生じる電界の強度によって異なる。すなわち、印加電圧が同じならば、圧電体が薄いほうが電界が強くなる。
 したがって、圧電体は薄いほうがよいが、単層の圧電体を薄くすると強度的に不十分である。しかし、本実施形態によると、単層圧電体の厚さを薄くしても積層することで強度が確保できる。
 そして、単層圧電体それぞれを薄くすることが可能となるため、印加電圧をそれほど高くしなくとも、大きな変形量を得ることができる。すなわち、昇圧回路等を用いずに実用的な変形量を確保することができる。
 さらに、積層の際、同一の電極パターンを有する単層圧電体111を、向きを変えて交互に配置している。すなわち、異なる電極パターンの単層圧電体を用いることなく、同一の電極パターンを有する単層圧電体111によって積層圧電体を形成している。このため、コストダウンが可能となり、製造工程が単純化され、作業上のミスが低減され、歩留まりや圧電特性の品質を向上することが可能となる。
 本実施形態によると、単層圧電体111を積層し、導通部18aによって各層を導通させているので、単層圧電体111全てを、一つの印加電圧で同時に分極することが可能である。
 このように本実施形態によると、振動波モータ1として組立てた場合に、従来よりも駆動電圧を下げることができ、駆動効率や発生トルク等の振動波モータ1の性能を向上することが可能となった。
 本実施形態は、駆動電圧が大きくなる、小径タイプの進行波型振動波モータ1に対して、その駆動性能向上への効果が大きい。特に、外径が25mm以下の場合に、本実施形態の効果が顕著である。
 また、小径タイプの進行波型振動波モータ1は、波長を得るために、4波、5波と波数を少なくする必要があるが、波数を少なくすると、A相およびB相の電極パターン数が少なくなる課題がある。
 本実施形態の4波の場合、A相(またはB相)の電極パターン数は4、5波の場合では、A相(またはB相)の電極パターン数は5となるが、各相の電極パターン数が少ないと、屈曲振動の励起がされにくい。
 従って、本実施形態のように、各圧電体11層とも分極され、圧電特性が得られる様になっている必要がある。本発明では、進行波の波数が4波、5波の場合に特に効果が得られる。
(第2実施形態)
 次に、本発明の第2実施形態の圧電体11-2について詳述する。
 図8は、第2実施形態の圧電体11-2を説明する図である。図8(a)は圧電体11-2の側面図(振動波モータ1-2の加圧方向と直交する方向から見た図)の一部である。図8(b)は圧電体11-2の表面11Aを示した図であり、(a)は(b)のa-a方向から見た図である。図8(c)は(b)のc-c断面図である。図8(d)は圧電体11-2の裏面11Bを示した図である。
 図9は、圧電体11-2と弾性体12とを含む振動子10-2を説明する図である。図9(a)は側面図であり、図9(b)は表面側から見た図である。
 図10は、単層圧電体111-2それぞれの電極パターンを説明する図である。図10(a)は単層圧電体111-2それぞれの表裏面の電極パターンを示した図であり、図10(b)は積層圧電体11-2における単層圧電体111-2それぞれの分極方向を示した図である。
 図10に示すように、第1層圧電体111aの表面111aA、第2層圧電体111aの裏面111bB、第3層圧電体111cの表面111cAには、印加電極パターン16が形成され、それは円周方向に沿って2つの相(A相、B相)に分かれている。
 各相においては、1/2波長毎に交互に分極され、A相とB相との間には1/4波長分間隔があくように、電極パターン17が配置されている。
 第1層圧電体111aの裏面111aB、第2層圧電体111bの表面111bA、第3層圧電体111cの裏面111cBには、分割した電極パターン16ではなく、2つの駆動信号の相(A相、B相)の共通電極とする共通電極パターン19が形成されている。
 そして、第1層圧電体111aの裏面111aBと第2層圧電体111bの表面111bAとは貼り合わされ、第2層圧電体111bの裏面111bBと第3層圧電体111cの表面111cAとは貼り合わされ、積層圧電体11-2が形成されている。
 第1層圧電体111aの表面111aAは、積層圧電体11-2全体としての表面11Aとなり、第3層圧電体111cの裏面111cBは、積層圧電体11-2全体としての裏面11Bとなる。
 積層圧電体11-2としての表面11Aには、図9(a),(b)に示すように駆動信号を伝達するためにフレキシブルプリント基板(FPC)14が接着剤18で接着されている。接着剤18は、弾性体12及び圧電体11-2の側面からFPC14まで延びるように塗布されて、接着強度が補強されている。
 また、積層圧電体11-2としての裏面11Bは、常温硬化性の接着剤により弾性体12に接合されている。
 図10(b)に示すように、各層(第1層圧電体111a,第2層圧電体111b,第3層圧電体111c)の分極は、奇数層の接合面(弾性体側の面、以後、こちら側を裏面という)側から表面側への分極方向と、偶数層の裏面側から表面側へ分極方向が反対となっている。
 すなわち、図10(b)に示す領域Pにおける第1層圧電体111aにおいて、裏面111aB側から表面111aA側へ向かう分極方向だった場合(この方向を+方向とする)、第2層圧電体111bでは、表面111bAから裏面111bBへ向かう分極方向(-方向)となり、さらに第3層圧電体111cでは、裏面111cBから表面111cAへ向かう分極方向(+方向)となる。すなわち、分極方向が圧電体の厚さ方向に沿って+-+となる。
 また、領域Pと隣接する領域Qでは、領域Pと分極方向が逆で、圧電体の厚さ方向に沿って-+-となる。
 また、上記の様な電極および分極の構成において、圧電体11-2における単層圧電体111-2の積層数は奇数となる。すなわち、第1層の分極方向と最終層の分極方向とが同じになるので、単層圧電体111-2の数は奇数となる。
 奇数層の裏面側の電極パターンと偶数層の表側の電極パターンとは、同じ電極パターンとなり、偶数層の裏面側の電極パターンと奇数層の表面側の電極パターンとは、同じ電極パターンとなる。
 すなわち、奇数層(本実施形態では第1層圧電体111aと第3層圧電体111c)の裏面111aB,111cBと偶数層(本実施形態では第2層圧電体111b)の表面111bAの電極パターンは同じとなる。
 本実施形態においてはこれらの面には、円周方向に沿って2つの駆動信号の相(A相、B相)に分かれ、各相においては、1/2波長毎に交互に図の様に分極され、A相とB相との間には1/4波長分間隔が空く様に印加電極パターン17が配置されている。
 また、奇数層(本実施形態では第1層圧電体111aと第3層圧電体111c)の表面111aA,111cAと偶数層(本実施形態では第2層圧電体111b)の裏面111bBの電極パターンは同じとなる。本実施形態においては、分割した印加電極パターン16ではなく、2つの駆動信号の相(A相、B相)の共通電極パターン19が形成されている。
 なお、本実施形態では、説明を簡単にするため、3層を例としたが、5層、7層、9層・・・と、奇数の積層数なら同様の構成とすることができる。
 また、進行波の波数を4波として説明したが、5波、6波、7波・・・と、どの様な波数でも良い。
 ここで、図8(a),(c),図9に示すように、単層圧電体111-2(第1層圧電体111a,第2層圧電体111b及び第3層圧電体111c)は、それぞれ円環形状を有している。その外径は、それぞれ異なり、第1層圧電体111a,第2層圧電体111b及び第3層圧電体111cの順に外径が小さくなっている。
 すなわち、図8(c)に示すように、第1層圧電体111aの外径ra,第2層圧電体111bの外径rb及び第3層圧電体111cの外径rcとすると、ra<rb<rcとなっている。なお、本実施形態で内径は同一である。
 このため、図8(c)、図9に示すように、積層圧電体11-2としてみたときに、断面図における外径側は段階状になっている。図11は、積層圧電体11-2の段階状部分の拡大図である。図11(a)は、後述の共通導通部18aが設けられている部分、図11(b)は後述の印加導通部18bが設けられている部分である。
 そして、第1層圧電体111aの表面11A側から見たときに、第2層圧電体111bの表面11Aの外周側は、第1層圧電体111aと重ならずに露出した露出部40bとなっている。さらに第3層圧電体111cの外周側は、第2層圧電体111bと重ならずに露出した露出部40cとなっている。
 また、図8(b),(c),図11に示すように、それぞれの電極パターン16,17,19は、円環の外縁と内縁とから離間して形成されている。そして、この円環の外縁と電極パターン16,17,19との間の離間している部分の一部が、上述の露出部40b,40cとなる。
 本実施形態において、この離間部分(露出部40b,40c)には、それぞれの電極パターン16,17,19から外縁まで延びる延伸部16a,17a,19aが形成されている。
 そして、図11(a)に示すように、第1層圧電体111aの表面111aAの電極パターン17と、第1層圧電体111aの延伸部17aと、第1層圧電体111aの側面111asと、第2層圧電体111bの表面111bAの延伸部19a(露出部40b)と、第2層圧電体111bの側面111bsと、第3層圧電体111cの表面111cAの延伸部17a(露出部40c)と、第3層圧電体111cの側面111csと、共通電極パターン19とを接続するように共通導通部18aが延びている。なお、共通導通部18aは、例えば、導電性塗料を塗布することで形成される。
 ここで、第2層圧電体111bの表面111bAの延伸部19aは、第2層圧電体111bの表面111bAの共通電極パターン19と、第1層圧電体111aの裏面111bBの共通電極パターン19に接続される。
 また、第3層圧電体111cの表面111cAの延伸部17aは、第3層圧電体111cの電極パターン17、第2層圧電体111bの電極パターン17とに接続される。
 すなわち、第1層圧電体111aの表面111aAの電極パターン17と、第1層圧電体111aの裏面111aBの共通電極パターン19と、第2層圧電体111bの表面111bAの共通電極パターン19と、第2層圧電体111bの裏面111bBの電極パターン17と、第3層圧電体111cの表面111cAの電極パターン17と、第3層圧電体111cの裏面111cBの共通電極パターン19と、が共通導通部18aによって接続される。
 また、図11(b)に示すように、第1層圧電体111aの表面111aAの印加電極パターン16と、第1層圧電体111aの延伸部16aと、第1層圧電体111aの側面111asと、第2層圧電体111bの表面111bAの露出部40bと、第2層圧電体111bの側面111bsと、第3層圧電体111cの表面111cAの延伸部16aと印加電極パターン16とを接続するように印加導通部18bが延びている。
 ここで、第2層圧電体111bの表面111bAの露出部40bに設けられた印加導通部18bは、第2層圧電体111bの表面111bAの共通電極パターン19と第1層圧電体111aの裏面111bBの共通電極パターン19とに接続されていない。
 一方、第3層圧電体111cの表面111cAの延伸部16aは、第3層圧電体111cの印加電極パターン16、第2層圧電体111bの印加電極パターン16に接続される。
 すなわち、第1層圧電体111aの表面111aAの印加電極パターン16と、第2層圧電体111bの裏面111bBの印加電極パターン16と、第3層圧電体111cの表面111cAの印加電極パターン16と、が印加導通部18bによって接続される。
 なお、本実施形態では、各層の電極パターン16,19の導通を外周側面側にて実施しているが、段階形状を内周側に形成して、導通を内周面側で導通させても良い。
 このように、本実施形態によると、積層圧電体11-2を構成する単層圧電体111-2が段階状に積層されている。そして、段階部分は表面が露出しており、その露出部40b,40cには、それぞれの単層圧電体111-2の表裏に形成された電極パターンから導通して延びる延伸部16a,17a,19aが設けられている。
 この延伸部16a,17a,19aの露出している部分に導電性塗料を塗布することで、積層圧電体間の導通を、容易且つ確実に図ることができる。
(第3実施形態)
 図12は、本発明の第3実施形態の圧電体11-3を説明する図であり、第2実施形態の図8に対応している。第2実施形態と同様の部分には同一の符号を付し、その説明を省略する。
 図12(a)は第3実施形態の圧電体11-3の側面図の一部である。図12(b)は圧電体11-3の表面11Aを示した図であり、(a)は(b)のa-a方向から見た図である。図12(c)は(b)のc-c断面図である。図12(d)は圧電体11-3の裏面11Bを示した図である。さらに、図12(e)は(b)の点線の丸で囲った部分の拡大図である。
 第2実施形態では、外径の異なる単層圧電体111-2を積層することで、外周側を段階状として露出部40b,40cを形成した。第3実施形態では圧電体11-3に切欠き50を設け、この切欠き50を周方向にずらすことによって段階部分を形成して露出部40b,40cを設ける。
 すなわち、単層圧電体111-3の電極パターンの外周部に半円状の第1切欠き部50を設け、そこへ各電極パターン16,17,19から延伸部16a,17a,19aを延ばす。
 単層圧電体111-3を積層させる際に、第1切欠き部50が各層で周方向側に少しずつずれるようにする。この際、第1層圧電体111aの第1切欠き部50から、第2層圧電体111b及び第3層圧電体111cの延伸部16a,17a,19aが見えるようにする。すなわち、第1層圧電体111aの第1切欠き部50の内部に、第2層圧電体111b及び第3層圧電体111cの延伸部16a,17a,19aが露出しているようにずらす。
 また、このようにずらすために、本実施形態では、各層に基準となる切欠き部(第2切欠き部51)を設ける。第2切欠き部51と第1切欠き部との距離は各層で異なる。
 第1層圧電体111aにおける第2切欠き部51と第1切欠き部50との間の距離よりも、第2層圧電体111bにおける第2切欠き部51と第1切欠き部50との間の距離が大きく、さらに、それよりも第3層圧電体111cにおける第2切欠き部51と第1切欠き部50との間の距離が大きい。
 単層圧電体111-3を積層する際に、この第2切欠き部51の位置を、厚さ方向において全ての層で一致させると、第1層圧電体111aの第1切欠き部50から、第2層圧電体111b及び第3層圧電体111cの表面に設けられた延伸部16a,17a,19aが見えるようにずれ、段階部が形成される。
 本実施形態によっても、第1切欠き部50の段階部に導電塗料を塗布することで、第2実施形態と同様に、単層圧電体111-3の電極間を導通させることができる。
(第4実施形態)
 図13は、本発明の第3実施形態のレンズ鏡筒200を説明する図である。本発明は第1実施形態の小径タイプの振動波モータ1の圧電体11のみならず、大径円環タイプの振動波モータ210の圧電体11においても同様な構成にすることが可能で、第1実施形態と同じ効果が得られる。
 まず、振動波モータ210の構成を説明する。
 振動子211は、圧電体11と、圧電体11を接合した弾性体214とから構成されている。振動子211には進行波が発生するようにされているが、本実施形態では一例として9波の進行波として説明する。
 弾性体214は、共振先鋭度が大きな金属材料から成り、円環形状となっている。圧電体11が接合される反対面には溝が切ってあり、溝が設けられていない部分の面が駆動面216aとなり移動子220に加圧接触される。弾性体214の駆動面216aの表面には、駆動性能確保および耐久性向上のために潤滑塗装膜が施されている。
 圧電体11は、円周方向に沿って2つの相(A相、B相)に分かれており、各相においては、1/2波長毎に分極が交互となった要素が並べられていて、A相とB相との間には1/4波長分間隔が空くようにしてある。
 圧電体11の下には、不織布252、加圧部材250が配置されている。
 不織布252は、フェルトを例としたものであり、圧電体11の下に配置され、振動子211の振動を加圧部材250に伝えないようにしてある。
 加圧部材250は、加圧板(図示せず)の下に配置されていて、加圧力を発生させるものである。本実施形態では、加圧部材250を皿バネとする、皿バネでなくともコイルバネやウェーブバネでも良い。加圧部材250は、押さえ環251は固定部材223に固定されることで、保持される。
 移動子220は、アルミニウムといった軽金属からなり、摺動面の表面には耐摩耗性向上のための摺動材料が設けられている。
 移動子220の上には、移動子220の縦方向の振動を吸収するために、ゴムの様な振動吸収部材243が配置され、その上には出力伝達部材242が配置されている。
 出力伝達部材242は、固定部材223に設けられたベアリング253により、加圧方向と径方向とを規制し、これにより移動子220の加圧方向と径方向とが規制されるようにされている。
 出力伝達部材242は、突起部241があり、そこからカム環315に接続されたフォークがかん合しており、出力伝達部材242の回転とともに、カム環315が回転される。
 カム環315には、キー溝317がカム環315に斜めに切られており、AF環319に設けられた固定ピン318が、キー溝317にかん合していて、カム環315が回転駆動することにより、光軸方向に直進方向にAF環319が駆動され、所望の位置に停止できる様にされている。
 固定部材223は、押さえ環251がネジにより取り付けられ、これを取り付けることで、出力伝達部材242から移動子220、振動子211、加圧部材250までを一つのモータユニットとして構成できるようになる。
 第4実施形態の圧電体213も、第1実施形態の圧電体11と同様の積層圧電体である。
 すなわち、単層圧電体を複数層(本実施形態では3層)積層したものである。第1層圧電体、第2層圧電体及び第3層圧電体が、この順で、積層圧電体の弾性体との接着面と反対側から並んでいる。
 そして、第1層圧電体の表面側には、電極が配置され、それは、円周方向に沿って2つの駆動信号の相(A相、B相)に分かれている。各相においては、1/2波長毎に交互に分極され、A相とB相との間には1/4波長分間隔が空く様に電極が配置されている。
 第1層圧電体の裏面は、分割した電極パターンではなく、2つの駆動信号の相(A相、B相)の共通電極パターンが形成されている。
 第2層圧電体の表面は、分割した電極パターンではなく、2つの駆動信号の相(A相、B相)の共通電極パターンが形成されている。そして、第2層目の表面と第1層目の裏面Bとは貼り合わされている。
 第2層圧電体の裏面側には、電極が配置され、それは円周方向に沿って2つの駆動信号の相(A相、B相)に分かれている。各相においては、1/2波長毎に交互に分極され、A相とB相との間には1/4波長分間隔が空く様に電極16が配置されている。
 第3層圧電体の表面は、電極が配置され、それは円周方向に沿って2つの駆動信号の相(A相、B相)に分かれている。各相においては、1/2波長毎に交互に分極され、A相とB相との間には1/4波長分間隔が空く様に電極が配置されている。そして、第2層圧電体の裏面と第3層圧電体の表面とは貼り合わされている。
 第3層圧電体の裏面は、分割した電極パターンではなく、2つの駆動信号の相(A相、B相)の共通電極パターンが形成されている。
 そして、第4実施形態においても、積層圧電体を構成する単層圧電体は段階状に積層させることができる。そして、段階部分は表面が露出しており、その露出部に導通部を設けることができる。このようにすれば、第4実施形態においても、上記第2実施形態と同様の効果を有することができる。
 1:振動波モータ、10,10-2:振動子、11,11-2,11-3:圧電体,積層圧電体、11A:表面、11B:裏面、12:弾性体、16:電極、18:接着剤、18a:伸延部、20:移動子、110:レンズ鏡筒、111,111-2,111-3:単層圧電体、111a:第1層圧電体、111aA:表面、111aB:裏面、111b:第2層圧電体、111bA:表面、111bB:裏、111bB:裏面、111c:第3層圧電体、111cA:表面、111cB:裏面、200:レンズ鏡筒、210:振動波モータ、211:振動子、213:圧電体、214:弾性体、220:移動子

Claims (12)

  1.  互いに時間的位相差がある駆動信号により振動が発生される電気機械変換素子積層体と、
     前記電気機械変換素子積層体に接合される接合面、及び該接合面の反対側に設けられた前記振動によって進行性の振動波を生じる駆動面、を有する弾性体と、
     前記駆動面に加圧接触され、前記振動波によって駆動される相対運動部材と、を備え、
     前記電気機械変換素子積層体は、
     一方の面に共通電極パターン、他方の面に駆動信号印加電極パターンが形成された単層電気機械変換素子が、前記弾性体の厚さ方向へ複数積層されたものであり、
     前記電気機械変換素子積層体全体としての前記弾性体側の面には、前記共通電極パターンが配置され、前記弾性体側と反対側の面には、前記駆動信号印加電極パターンが配置されるように前記単層電気機械変換素子が積層されていること、
    を特徴とする振動波モータ。
  2.  請求項1記載の振動波モータにおいて、
     前記単層電気機械変換素子の積層数は、奇数であること、
    を特徴とする振動波モータ。
  3.  請求項1または2記載の振動波モータにおいて、
     前記単層電気機械変換素子における、互いに対向する面には、同じ電極パターンが形成され、
     前記電気機械変換素子積層体の側面を延びる導通部で導通されていること、
    を特徴とする振動波モータ。
  4.  請求項1から3のいずれか1項に記載の振動波モータにおいて、
     前記単層電気機械変換素子は2群で、かつ隣り合う前記単層電気機械変換素子の分極方向が互いに反対方向を向くようになっていること、
    を特徴とする振動波モータ。
  5.  一方の面に第一の電極パターン、他方の面に駆動信号を印加するための第2の電極パターンが形成された単層電気機械変換素子を、同じ電極パターンを有する面が向かい合うように積層した
    ことを特徴とする積層型電気機械変換素子。
  6.  駆動信号により振動が発生される電気機械変換素子の積層体と、
     前記積層体に接合される接合面、及び該接合面の反対側に設けられ、前記振動によって進行性の振動波を生じる駆動面、を有する弾性体と、
     前記駆動面に加圧接触され、前記振動波によって駆動される相対運動部材と、を備え、
     前記積層体は、前記電気機械変換素子の単層体が、前記弾性体の厚さ方向へ、複数積層されたものであり、
     前記積層体を前記接合面と平行な一方の面側からみたときに、後方の単層体において前方の単層体と重ならずに表面が露出している露出部が存在し、該露出部は段階状に連続し、
     その連続する露出部に前記単層体間の導通部が形成されていること、
    を特徴とする振動波モータ。
  7.  請求項6に記載の振動波モータにおいて、
     前記単層体は円環形状であり、前記露出部は、円環の外周側または内周側に形成されていること、
    を特徴とする振動波モータ。
  8.  請求項6または7に記載の振動波モータにおいて、
     前記単層体は外周側または内周側の径が互いに異なり、該径の異なる前記単層体を積層させることにより、前記露出部が段階状に形成されていること、
    を特徴とする振動波モータ。
  9.  請求項6または7に記載の振動波モータにおいて、
     前記単層体には、それぞれ第1切欠き部が設けられており、前記単層体を積層させる際に、該第1切欠き部の位置が互いにずれることにより、前記露出部が段階状に形成されていること、
    を特徴とする振動波モータ。
  10.  請求項9に記載の振動波モータにおいて、
     前記単層体には、前記第1切欠き部とは異なる第2切欠き部が設けられており、
     前記第1切欠き部と前記第2切欠き部との間の距離は、前記単層体によって異なり、
     前記単層体を積層させる際に、前記第2切欠き部が前記厚さ方向に整列するように前記単層体を並べることにより、前記第1切欠きの縁部において前記露出部が段階状に形成されること、
    を特徴とする振動波モータ。
  11.  電気変換素子の単層体が複数積層された電気機械変換素子積層体であって、
     前記単層体は、前記単層体が積層される方向からみたときに、隣り合う他の単層体と重ならずに表面が露出している露出部を有し、
     前記露出部に前記単層体間の導通部が形成されていること、
    を特徴とする電気機械変換素子積層体。
  12.  請求項1~11のいずれか1項に記載の振動波モータを備えるレンズ鏡筒。
PCT/JP2013/068556 2012-07-06 2013-07-05 振動波モータ及びレンズ鏡筒 WO2014007383A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-151990 2012-07-06
JP2012-151991 2012-07-06
JP2012151991A JP2014017909A (ja) 2012-07-06 2012-07-06 振動波モータ及びレンズ鏡筒
JP2012151990A JP6056224B2 (ja) 2012-07-06 2012-07-06 振動波モータ

Publications (1)

Publication Number Publication Date
WO2014007383A1 true WO2014007383A1 (ja) 2014-01-09

Family

ID=49882134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068556 WO2014007383A1 (ja) 2012-07-06 2013-07-05 振動波モータ及びレンズ鏡筒

Country Status (1)

Country Link
WO (1) WO2014007383A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677550A (ja) * 1992-08-25 1994-03-18 Canon Inc 積層圧電素子及びその製造方法並びに分極処理方法、及び超音波モータ
JPH11252956A (ja) * 1998-03-02 1999-09-17 Star Micronics Co Ltd 積層型圧電素子とこれを用いた超音波モータ
JP2000152672A (ja) * 1998-11-11 2000-05-30 Takata Corp 超音波モータのステータ
JP2000228886A (ja) * 1999-02-05 2000-08-15 Matsushita Electric Ind Co Ltd 超音波モータ及び圧電バイブレータ
JP2004350349A (ja) * 2003-05-20 2004-12-09 Taiheiyo Cement Corp 圧電アクチュエータおよびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677550A (ja) * 1992-08-25 1994-03-18 Canon Inc 積層圧電素子及びその製造方法並びに分極処理方法、及び超音波モータ
JPH11252956A (ja) * 1998-03-02 1999-09-17 Star Micronics Co Ltd 積層型圧電素子とこれを用いた超音波モータ
JP2000152672A (ja) * 1998-11-11 2000-05-30 Takata Corp 超音波モータのステータ
JP2000228886A (ja) * 1999-02-05 2000-08-15 Matsushita Electric Ind Co Ltd 超音波モータ及び圧電バイブレータ
JP2004350349A (ja) * 2003-05-20 2004-12-09 Taiheiyo Cement Corp 圧電アクチュエータおよびその製造方法

Similar Documents

Publication Publication Date Title
JP6056224B2 (ja) 振動波モータ
US8217553B2 (en) Reduced-voltage, linear motor systems and methods thereof
KR101524447B1 (ko) 전기 기계 변환 소자, 진동 액추에이터, 진동 액추에이터의구동 장치, 렌즈 경통 및 카메라
TWI321264B (en) Piezoelectricity-driving optical lens module
JP5256762B2 (ja) レンズ鏡筒、カメラ
JP4941469B2 (ja) 振動アクチュエータ、レンズ鏡筒、カメラシステム、振動子
US9209714B2 (en) Vibrating actuator assembly and digital image processing apparatus including the same
US8035906B2 (en) Vibration actuator, lens barrel and camera
JP5433991B2 (ja) 振動アクチュエータ、レンズ鏡筒及びカメラ
US11165370B2 (en) Vibration actuator
JP2014017909A (ja) 振動波モータ及びレンズ鏡筒
JP4871593B2 (ja) 振動子及び振動波駆動装置
WO2014007383A1 (ja) 振動波モータ及びレンズ鏡筒
KR20110001033A (ko) 초음파 모터 및 그 제조 방법
JP2009201322A (ja) 振動アクチュエータ、レンズ鏡筒、カメラ、振動アクチュエータの製造方法
JP6593411B2 (ja) 振動波モータ及び光学機器
US8446066B2 (en) Ultrasonic motor
JP5736646B2 (ja) 振動波モータ、レンズ鏡筒及びカメラ
JP6221521B2 (ja) 振動波モータ及び光学機器
JP5446551B2 (ja) 圧電アクチュエータ、レンズ鏡筒及びカメラ
JP2006014512A (ja) 超音波モータ
JP5423160B2 (ja) 圧電アクチュエータ、レンズ鏡筒及びカメラ
JP2013255337A (ja) 振動波モータ、レンズ鏡筒及びカメラ
JP5736647B2 (ja) 振動波モータ、レンズ鏡筒およびカメラ
WO2010041533A1 (ja) 超音波モータおよび圧電振動体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13812754

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13812754

Country of ref document: EP

Kind code of ref document: A1