WO2014007323A1 - 1-[2'-デオキシ-4'-チオ-1'-β-D-リボフラノシル]-5-フルオロウラシルの製造中間体、及び該中間体を用いた製造方法 - Google Patents

1-[2'-デオキシ-4'-チオ-1'-β-D-リボフラノシル]-5-フルオロウラシルの製造中間体、及び該中間体を用いた製造方法 Download PDF

Info

Publication number
WO2014007323A1
WO2014007323A1 PCT/JP2013/068354 JP2013068354W WO2014007323A1 WO 2014007323 A1 WO2014007323 A1 WO 2014007323A1 JP 2013068354 W JP2013068354 W JP 2013068354W WO 2014007323 A1 WO2014007323 A1 WO 2014007323A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
salt
producing
formula
xylene
Prior art date
Application number
PCT/JP2013/068354
Other languages
English (en)
French (fr)
Inventor
由起 田中
正哲 福岡
均 宮腰
大地 内藤
Original Assignee
大鵬薬品工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大鵬薬品工業株式会社 filed Critical 大鵬薬品工業株式会社
Publication of WO2014007323A1 publication Critical patent/WO2014007323A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals

Definitions

  • the present invention relates to a useful production intermediate for producing 1- [2′-deoxy-4′-thio-1′- ⁇ -D-ribofuranosyl] -5-fluorouracil having an inhibitory effect on leukemia cell L1210, and
  • the present invention relates to a production method using the intermediate.
  • compound (4) (1- [2′-deoxy-4′-thio-1′- ⁇ -D-ribofuranosyl] -5-fluorouracil) (hereinafter referred to as compound (4)) is expressed as leukemia cell L1210 in Non-Patent Document 1. It has been reported to have a growth-inhibiting action against leukemia and is a useful antitumor agent against leukemia and the like.
  • Non-Patent Documents 2 and 3 include intermediate compound (X) (benzyl-3,5-di-O-benzyl-2-deoxy-1,4-dithio- ⁇ , obtained by the method described in Non-Patent Document 4.
  • ⁇ -D-erythro-pentofuranoside is glycosylated by allowing a silylated nucleobase to act on the presence of a Lewis acid in an aprotic solvent to purify a compound having the desired three-dimensional structure ( ⁇ form)
  • a method for further obtaining a target product by deprotecting the benzyl group which is a protecting group for the 3′- and 5′-position hydroxyl groups of the obtained compound is disclosed.
  • Non-Patent Document 5 does not specifically disclose the compounds (1) to (4). Further, using the method described in Non-Patent Document 5, the target compound suitable for the production of ⁇ -form 4′-thio-2′-deoxyuridine containing compound (4) is obtained in high yield and high purity. The conditions are not known and there are no optimized reports.
  • the present invention provides a simple and high yield of 1- [2′-deoxy-4′-thio-1′- ⁇ -D-ribofuranosyl] -5-fluorouracil (compound (4)) having an inhibitory effect on leukemia cell L1210. It is an object of the present invention to provide a useful production intermediate for obtaining a high purity and a high purity, and an industrially suitable production method using the intermediate.
  • the novel pyrimidine nucleoside shown below or a salt thereof is 1- [2′-deoxy-4′-thio-1′- ⁇ - D-ribofuranosyl] -5-fluorouracil (compound (4)), a useful intermediate, and a production method applicable to industrial production using the pyrimidine nucleoside or a salt thereof was found. Completed the invention.
  • the present invention relates to a useful production intermediate for producing the compound (4) and a production method using the intermediate.
  • Item 5 The method for producing a compound (3) according to Item 3 or 4, wherein the reducing reagent is tributyltin hydride.
  • Item 6 The molar ratio of the diastereomer mixture consisting of the compound (1) or a salt thereof, or the compound (1) or a salt thereof and the compound (2) or a salt thereof, is 1: 1 to 1: Item 10.
  • Item 7 The ratio of the diastereomeric mixture comprising the compound (1) or a salt thereof, or the compound (1) or a salt thereof and the compound (2) or a salt thereof, and the tributyltin hydride is 1: 1.2 in a molar ratio.
  • Item 8 The method for producing a compound (3) according to any one of Items 3 to 7, wherein the reduction reaction is performed in the presence of a radical initiator.
  • Item 9 The method for producing a compound (3) according to Item 8, wherein the radical initiator is triethylboron.
  • Item 10 The method for producing the compound (3) according to Item 9, wherein the ratio of tributyltin hydride to triethylboron is 10: 1 to 2: 1 in terms of molar ratio.
  • Item 11 The method for producing the compound (3) according to Item 9, wherein the molar ratio of tributyltin hydride to triethylboron is 6: 1.
  • Item 12. The method for producing a compound (3) according to any one of Items 3 to 11, wherein the reduction reaction is performed in a solvent containing anisole and xylene.
  • Item 13 The method for producing the compound (3) according to Item 12, wherein the ratio of anisole to xylene is 1: 1 by volume.
  • Item 14 The method for producing a compound (3) according to Item 12 or 13, wherein xylene is m-xylene.
  • Item 15 The method for producing a compound (3) according to any one of Items 3 to 14, further comprising a step of adding a poor solvent to the reaction solution after the reduction reaction.
  • Item 16 The method for producing a compound (3) according to Item 15, wherein the poor solvent is heptane.
  • Item 17. The method for producing the compound (3) according to Item 16, wherein the ratio of the total volume of anisole and xylene and the volume of heptane is 1: 0.60 to 1: 1.25.
  • Item 18. The method for producing a compound (3) according to any one of Items 3 to 17, wherein the reduction reaction is performed between ⁇ 40 ° C. and 0 ° C.
  • Item 19 The method for producing a compound (3) according to any one of Items 3 to 17, wherein the reduction reaction is performed between ⁇ 16 ° C. and 0 ° C.
  • the pyrimidine nucleoside or a salt thereof, which is a compound of the present invention, can be isolated and purified, and has 1- [2′-deoxy-4′-thio-1′- ⁇ -D-ribofuranosyl which has a growth inhibitory action on leukemia cells L1210. ] -5-Fluorouracil (compound (4)) is extremely useful as an intermediate for production.
  • Ribofuranosyl] -5-fluorouracil (compound (3)) can be easily produced in high yield and high purity.
  • a method for producing such a compound (3) suitable for industrial production has not been conventionally known.
  • the diastereomeric mixture according to the present invention is a mixture comprising the compound (1) or a salt thereof and the compound (2) or a salt thereof.
  • reaction process formula p shows a reaction formula for obtaining the compound (1) or a salt thereof according to the present invention and the diastereomeric mixture according to the present invention.
  • Compound (1) or a salt thereof according to the present invention may be in the form of a diastereomeric mixture with compound (2) or a salt thereof, or may be an embodiment in which compound (1) or a salt thereof is isolated and purified from the diastereomeric mixture. Can be used for the next step.
  • the compound (1) or a salt thereof according to the present invention and the diastereomeric mixture according to the present invention include a solvate represented by a hydrate, an amorphous form or a crystalline polymorph.
  • isolation and purification of the compound (1) from the diastereomer mixture can be performed using means such as column chromatography, fractional recrystallization and the like.
  • the carrier used for column chromatography include silica gel, chemically bonded silica gel (ODS, etc.), alumina, activated carbon and the like.
  • the salt of compound (1) and compound (2) is not particularly limited as long as it does not affect the reaction of the production method described later, and examples thereof include sodium salt and potassium salt.
  • the compound (1) according to the present invention or a salt thereof, and the diastereomeric mixture according to the present invention are prepared by 1- [3 ′, 5′-O-dibenzyl-2′-deoxy-4 ′ by the production method described later.
  • -Thio-1'- ⁇ -D-ribofuranosyl] -5-fluorouracil compound (3)
  • 1- [2'-deoxy-4'-thio-1'- ⁇ -D-ribofuranosyl] -5-fluorouracil It can be used as a useful production intermediate for producing the compound (4)).
  • the isolated and purified compound (1) or a salt thereof can be used as the compound (1) or a salt thereof.
  • the diastereomeric mixture which consists of a compound (1) or its salt obtained from according to the method of the above-mentioned nonpatent literature 5, for example, and a compound (2) or its salt is also included. Can be used.
  • the reaction process formula in the case of using a diastereomer mixture is shown in the following Reaction Scheme 1 '(Reaction Process Formula 1').
  • Compound (3) can be obtained by reductively removing the 2'-position iodine of compound (1) or a salt thereof.
  • Examples of the method for reductively removing iodine include a method in which a reducing reagent is reacted with compound (1).
  • the reducing reagent used in this reaction is not particularly limited as long as iodine can be removed reductively.
  • metal reagents such as lithium, sodium, magnesium, and zinc, sodium borohydride, sodium cyanoborohydride, hydrogen And hydrogenated trialkylsilanes such as lithium aluminum hydride, trimethylsilane, and triethylsilane, tristrimethylsilylsilane, and tributyltin hydride.
  • the reducing reagent is preferably tributyltin hydride.
  • the ratio of the reducing reagent to be used is not particularly limited as long as iodine can be reductively removed from compound (1), or relative to 1 mol of compound (1) or a salt thereof, or compound (1) or a salt thereof and compound (2).
  • the reducing agent can be used in an amount of about 1 to 20 moles per mole of the diastereomeric mixture composed of the salt.
  • tributyltin hydride is used as the reducing reagent, the ratio of the diastereomer mixture comprising compound (1) or a salt thereof, or compound (1) or a salt thereof and compound (2) or a salt thereof, and tributyltin hydride is molar.
  • the ratio is preferably 1: 1 to 1:10, and particularly preferably the molar ratio is 1: 1.2.
  • a radical initiator can be used to start the reduction reaction.
  • the reduction reaction is performed in the presence of a radical initiator.
  • the radical initiator is not particularly limited as long as the reaction for reductively removing iodine from the compound (1) can be started.
  • 2,2′-azobis isobutyronitrile) (AIBN)
  • 2,2′- Azobis (2,4-dimethylvaleronitrile) V-65
  • 2,2′-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride VA-044
  • 2,2′- Azobis (2-amidinopropane) dihydrochloride V-50
  • VA-azobis [N- (2-carboxyethyl) -2-methylpropionamide] VA-057
  • 2,2′-azobis (4-Methoxy-2,4-dimethylvaleronitrile) V-70, V-70L
  • 2,2′-azobis [2- (2-imidazolin-2-yl) propane] VA-061
  • 2 , 2'-Azobisisobutyric acid dimethyl V 601)
  • the ratio of the radical initiator used is not particularly limited as long as the reaction for reductively removing iodine from the compound (1) can be started.
  • the ratio of the reducing reagent to the radical initiator is 10: 1 to 2: 1 can be used.
  • the combination of the reducing reagent and the radical initiator is not particularly limited as long as the reaction for reductively removing iodine from the compound (1) starts and proceeds, but is preferably tributyltin hydride and triethylboron.
  • the use ratio of tributyltin hydride and triethylboron is not particularly limited as long as the reaction for reductively removing iodine from compound (1) starts and proceeds, but preferably the ratio of tributyltin hydride to triethylboron Is in a molar ratio of 10: 1 to 2: 1, particularly preferably 6: 1.
  • the reaction solvent is not particularly limited as long as the reaction for reductively removing iodine from the compound (1) starts and proceeds, but toluene, xylene, cumene, chlorobenzene, anisole and the like can be used alone or in combination. .
  • the reaction solvent in the present invention is preferably xylene or anisole.
  • the ratio of xylene and anisole is not particularly limited as long as the reaction for reductively removing iodine from the compound (1) starts and proceeds, but preferably in a volume ratio of 1: 1.
  • the xylene is preferably m-xylene.
  • the reaction temperature is not particularly limited as long as the reaction for reductively removing iodine from compound (1) proceeds, but it is usually ⁇ 78 to 100 ° C., preferably ⁇ 40 to 0 ° C., particularly preferably ⁇ 16 to 0 ° C. .
  • the reaction time is not particularly limited as long as the reaction for reductively removing iodine from the compound (1) proceeds, but it is usually 0.1 to 100 hours, preferably 1 to 5 hours.
  • the reaction mixture obtained by the reduction reaction is compound (3) and ⁇ which are ⁇ -forms.
  • the following compound (5) which is a body is included.
  • Compound (3) can be obtained by selectively obtaining compound (3) from a reaction mixture containing compound (3) and compound (5).
  • the method for selectively obtaining the compound (3) is preferably a method in which the obtained reaction mixture and a poor solvent are mixed and the precipitate is collected by filtration.
  • the poor solvent is not particularly limited as long as the compound (3) can be selectively obtained, and includes heptane, hexane, pentane, diisopropyl ether, cyclohexane and the like, and preferably heptane.
  • the proportion of the poor solvent used is not particularly limited as long as compound (3) can be selectively obtained, but is preferably 1: 0.5 to 1: 1.5 in a volume ratio of the reaction solvent to the poor solvent.
  • the combination of the reaction solvent and the poor solvent is not particularly limited as long as the compound (3) can be selectively obtained, but preferably xylene and anisole as the reaction solvent and heptane as the poor solvent.
  • the use ratio of xylene and anisole and heptane is not particularly limited as long as compound (3) can be selectively obtained.
  • the ratio of the total volume of xylene and anisole to the volume of heptane is 1: 0. 60 to 1: 1.25.
  • Example 1 1- [3 ′, 5′-O-dibenzyl-2′-deoxy-2′- ⁇ -iodo-4′-thio-1′- ⁇ -D-ribofuranosyl] -5-fluorouracil (compound (1)), as well as, 1- [3 ′, 5′-O-dibenzyl-2′-deoxy-2′- ⁇ -iodo-4′-thio-1′- ⁇ -D-ribofuranosyl] -5-fluorouracil (compound (2))
  • Compound (X) (benzyl-3,5-di-O-benzyl-2-deoxy-1,4-dithio- ⁇ , ⁇ -D-erythro-pent obtained from the method of Non-Patent Document 4
  • Non-patent document 5 No.
  • Example 2 [3 ′, 5′-O-dibenzyl-2′-deoxy-4′-thio-1′- ⁇ -D-ribofuranosyl] -5-fluorouracil (compound (3))
  • a diastereomer mixture (3.27 g) of the compound (1) and the compound (2) obtained in Example 1 was dissolved in anisole (13.0 mL), and m-xylene (13.0 mL) was added to the system. was purged with nitrogen and cooled to -16 ° C.
  • Tributyltin hydride (2.00 g, 1.2 eq) and triethylboron / n-hexane solution (1.0 M, 1.2 mL, 0.2 eq) were added, and the air in the system was replaced. After stirring for 2 hours, heptane (16.0 mL) was added, and the mixture was further stirred at 0 ° C. for 2 hours. The crystallized product in the system was collected by filtration and dried to obtain Compound (3) (1.21 g, 48%). The compound (5) was below the detection limit by 1 H-NMR.
  • Example 3 [3 ′, 5′-O-dibenzyl-2′-deoxy-4′-thio-1′- ⁇ -D-ribofuranosyl] -5-fluorouracil (compound (3))
  • a diastereomeric mixture 500 mg
  • the compound (1) and the compound (2) obtained in Example 1 was dissolved in anisole (2.5 mL), m-xylene (2.5 mL) was added, and the system was filled with nitrogen. Displacement and cooling to ⁇ 40 ° C.
  • Tributyltin hydride (308 mg, 1.2 eq) and triethylboron / n-hexane solution (1.0 M, 0.18 mL, 0.2 eq) were added, and the air in the system was replaced.
  • Example 4 [3 ′, 5′-O-dibenzyl-2′-deoxy-4′-thio-1′- ⁇ -D-ribofuranosyl] -5-fluorouracil (compound (3))
  • a diastereomeric mixture 500 mg
  • the compound (1) and the compound (2) obtained in Example 1 was dissolved in anisole (2.5 mL), m-xylene (2.5 mL) was added, and the system was filled with nitrogen.
  • Tributyltin hydride (308 mg, 1.2 eq) and triethylboron / n-hexane solution (1.0 M, 0.18 mL, 0.2 eq) were added, and the air in the system was replaced.
  • Example 5 [3 ′, 5′-O-dibenzyl-2′-deoxy-4′-thio-1′- ⁇ -D-ribofuranosyl] -5-fluorouracil (compound (3))
  • the diastereomeric mixture 500 mg
  • the compound (1) and the compound (2) obtained in Example 1 was dissolved in anisole (2.0 mL), m-xylene (2.0 mL) was added, and the system was filled with nitrogen.
  • Tributyltin hydride (308 mg, 1.2 eq) and triethylboron / n-hexane solution (1.0 M, 0.18 mL, 0.2 eq) were added, and the air in the system was replaced.
  • Example 6 [3 ′, 5′-O-dibenzyl-2′-deoxy-4′-thio-1′- ⁇ -D-ribofuranosyl] -5-fluorouracil (compound (3))
  • a diastereomeric mixture (90 mg) of the compound (1) and the compound (2) obtained in Example 1 was dissolved in toluene (1.0 mL), and tributyltin hydride (230 mg) and V-70L (14.6 mg) were dissolved. The mixture was further stirred at room temperature for 1 hour. After completion of the reaction, the reaction solution was concentrated and the solvent was distilled off to obtain Compound (3) (12%: estimated from surface percentage by UPLC analysis). However, the yield of compound (3) was lower than when triethylboron was used as the radical initiator.
  • surface percent value means the peak area value of the target compound expressed as a percentage in the chromatogram obtained by UPLC analysis.
  • Example 7 [3 ′, 5′-O-dibenzyl-2′-deoxy-4′-thio-1′- ⁇ -D-ribofuranosyl] -5-fluorouracil (compound (3))
  • the diastereomer mixture 150 mg
  • compound (1) and compound (2) obtained in Example 1 was dissolved in m-xylene (0.8 mL) and anisole (0.8 mL).
  • Tris (trimethylsilyl) silane (78 mg) and a triethylboron / n-hexane solution (1.0 M, 0.1 mL) were added, and the mixture was stirred at ⁇ 20 ° C. for 1 hour.
  • Reference example 1 [2′-Deoxy-4′-thio-1′- ⁇ -D-ribofuranosyl] -5-fluorouracil (compound (4))
  • compound (3) 130 mg was dissolved in toluene (1.3 mL) and dichloromethane (1.3 mL), and a titanium tetrachloride / toluene solution (1.0 M, 0.88 mL, Compound (4) (50 mg, 65%) was obtained by adding 3.0 eq) for reaction.
  • the physical property values were measured, it was consistent with Non-Patent Document 3, and thus the production of compound (4) could be confirmed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

 本発明は、1-[2'-デオキシ-4'-チオ-1'-β-D-リボフラノシル]-5-フルオロウラシルを製造するための有用な製造中間体、及び該中間体を用いた製造方法を提供することを課題とする。 斯かる課題を解決するための手段として、 式(1) (式中、Bnはベンジル基を示す。)で表される化合物(1)又はその塩を提供する。

Description

1-[2’-デオキシ-4’-チオ-1’-β-D-リボフラノシル]-5-フルオロウラシルの製造中間体、及び該中間体を用いた製造方法
 [関連出願の相互参照]
 本出願は、2012年7月5日に出願された、日本国特許出願第2012-151905号明細書(その開示全体が参照により本明細書中に援用される)に基づく優先権を主張する。
 本発明は、白血病細胞L1210に対する増殖抑制作用を有する1-[2’-デオキシ-4’-チオ-1’-β-D-リボフラノシル]-5-フルオロウラシルを製造するための有用な製造中間体及び該中間体を用いた製造方法に関する。
 下記式(4)
Figure JPOXMLDOC01-appb-C000011
で表される(1-[2’-デオキシ-4’-チオ-1’-β-D-リボフラノシル]-5-フルオロウラシル)(以下、化合物(4))は、非特許文献1において白血病細胞L1210に対する増殖抑制作用を有することが報告されており、白血病等に対する有用な抗腫瘍剤である。
 従来、化合物(4)を含む4’-チオ-2’-デオキシウリジンの一般的な合成法としては、特許文献1記載の方法、及び、非特許文献2及び3に記載の方法が知られている。非特許文献2及び3には、非特許文献4記載の方法で得られる中間体化合物(X)(ベンジル-3,5-ジ-O-ベンジル-2-デオキシ-1,4-ジチオ-α,β-D-エリスロ-ペントフラノシド)に対して、非プロトン性溶媒中ルイス酸存在化にシリル化核酸塩基を作用させてグリコシル化を行い、目的の立体構造(β体)を有する化合物を精製した後に、さらに得られた化合物の3’、5’位水酸基の保護基であるベンジル基を脱保護して目的物を得る方法が開示されている。
Figure JPOXMLDOC01-appb-C000012
 しかしながら、これらの手法を用いた場合、反応系中において目的の立体構造を有するβ体よりも、逆の立体構造を有するα体の生成がはるかに優先して進行してしまう。そのため物性が非常に近似であるα体(副生成物)とβ体(目的物)の混合物の中からカラムクロマトグラフィーを用いて目的の立体構造のみを厳密に単離精製する必要がある。このため、従来方法は、β体の工業的な合成法としては適さなかった。
 その様な中で、Millerらのグループはチオグリカールを経由する方法で目的物であるβ体を優先して合成する手法を見出した(非特許文献5)。
 しかし、非特許文献5には、化合物(1)~(4)について具体的な開示はない。また、非特許文献5の記載方法を利用した、化合物(4)を含むβ体の4’-チオ-2’-デオキシウリジンの製造に適した、目的化合物を高収率、高純度で取得する条件は知られておらず、最適化された報告もない。
国際公開WO91/04033号公報
Hui, Y. et al. Nucleosides & Nucleotides., 12(2), 139-147 (1993) Rahim,S. G. et al. J. Med. Chem., 39, 789-795 (1996) Otter,G. P. et al. J. Chem. Soc.,Perkin Trans. 2, 2343-2349 (1998) Walker,R. T. et al. Carbo. Res. 216, 237-248 (1992) Miller, J. A. et al. Tetrahedron Letters., 41, 3265-3268 (2000) Lee, E. et al. J. Am. Chem. Soc. 117, 8017-8018 (1995)
 本発明は、白血病細胞L1210に対する増殖抑制作用を有する1-[2’-デオキシ-4’-チオ-1’-β-D-リボフラノシル]-5-フルオロウラシル(化合物(4))を簡便に高収率、高純度で取得するための有用な製造中間体、及び該中間体を用いた工業的に適する製造方法を提供することを目的とする。
 本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、下記に示される新規なピリミジンヌクレオシド又はその塩が、1-[2’-デオキシ-4’-チオ-1’-β-D-リボフラノシル]-5-フルオロウラシル(化合物(4))を製造するために有用な中間体であること、さらに該ピリミジンヌクレオシド又はその塩を用いた工業的製造に適用可能な製造方法を見出し、本発明を完成した。
 本発明は、化合物(4)を製造するための有用な製造中間体、及び該中間体を用いた製造方法に関する。
 項1.式(1)
Figure JPOXMLDOC01-appb-C000013
(式中、Bnはベンジル基を示す。)で表される化合物(1)又はその塩。
 項2.式(1)
Figure JPOXMLDOC01-appb-C000014
(式中、Bnはベンジル基を示す。)で表される化合物(1)又はその塩、及び
式(2)
Figure JPOXMLDOC01-appb-C000015
(式中、Bnは前記に同じ。)で表される化合物(2)又はその塩からなるジアステレオマー混合物。
 項3.式(1)
Figure JPOXMLDOC01-appb-C000016
(式中、Bnはベンジル基を示す。)で表される化合物(1)又はその塩と、還元試薬とを反応させる工程を含む、
式(3)
Figure JPOXMLDOC01-appb-C000017
で表される化合物(3)の製造方法。
 項4.式(1)
Figure JPOXMLDOC01-appb-C000018
(式中、Bnはベンジル基を示す。)で表される化合物(1)又はその塩、及び
式(2)
Figure JPOXMLDOC01-appb-C000019
(式中、Bnは前記に同じ。)で表される化合物(2)又はその塩からなるジアステレオマー混合物と、還元試薬とを反応させる工程を含む、
式(3)
Figure JPOXMLDOC01-appb-C000020
で表される化合物(3)の製造方法。
 項5.還元試薬が水素化トリブチルスズである、項3または4に記載の化合物(3)の製造方法。
 項6.化合物(1)若しくはその塩、又は、化合物(1)若しくはその塩及び化合物(2)若しくはその塩からなるジアステレオマー混合物と、水素化トリブチルスズの比率が、モル比で、1:1~1:10である、項5に記載の化合物(3)の製造方法。
 項7.化合物(1)若しくはその塩、又は、化合物(1)若しくはその塩及び化合物(2)若しくはその塩からなるジアステレオマー混合物と、水素化トリブチルスズの比率が、モル比で、1:1.2である、項5に記載の化合物(3)の製造方法。
 項8.還元反応が、ラジカル開始剤の存在下で行われる、項3から7のいずれか1項に記載の化合物(3)の製造方法。
 項9.ラジカル開始剤がトリエチルホウ素である、項8に記載の化合物(3)の製造方法。
 項10. 水素化トリブチルスズとトリエチルホウ素との比が、モル比で、10:1~2:1である、項9に記載の化合物(3)の製造方法。
 項11.水素化トリブチルスズとトリエチルホウ素との比が、モル比で、6:1である、項9に記載の化合物(3)の製造方法。
 項12.還元反応が、アニソール及びキシレンを含む溶媒中で行われる、項3から11のいずれか1項に記載の化合物(3)の製造方法。
 項13.アニソールとキシレンの比率が、体積比で、1:1である、項12に記載の化合物(3)の製造方法。
 項14.キシレンがm-キシレンである、項12または13に記載の化合物(3)の製造方法。
 項15.還元反応後、反応液に貧溶媒を加える工程をさらに含む、項3から14のいずれか1項に記載の化合物(3)の製造方法。
 項16.貧溶媒がヘプタンである、項15に記載の化合物(3)の製造方法。
 項17.アニソール及びキシレンの合計体積と、ヘプタンの体積との比率が、1:0.60~1:1.25である、項16に記載の化合物(3)の製造方法。
 項18.還元反応が、-40℃から0℃の間で行われる、項3から17のいずれか1項に記載の化合物(3)の製造方法。
 項19.還元反応が、-16℃から0℃の間で行われる、項3から17のいずれか1項に記載の化合物(3)の製造方法。
 項20、項3から19のいずれか1項に記載の製造方法により式(3)
Figure JPOXMLDOC01-appb-C000021
で表される化合物(3)を製造する工程、及び
 化合物(3)のベンジル基を脱保護する工程を含む、式(4)
Figure JPOXMLDOC01-appb-C000022
で表される化合物(4)の製造方法。
 本発明化合物であるピリミジンヌクレオシド又はその塩は、単離精製が可能であり、白血病細胞L1210に対する増殖抑制作用を有する1-[2’-デオキシ-4’-チオ-1’-β-D-リボフラノシル]-5-フルオロウラシル(化合物(4))の製造中間体として極めて有用である。
 また、本発明の製造方法によれば、化合物(4)の製造に有用な1-[3’,5’-O-ジベンジル-2’-デオキシ-4’-チオ-1’-β-D-リボフラノシル]-5-フルオロウラシル(化合物(3))を、簡便に高収率、高純度で製造することができる。このような工業的製造に適した化合物(3)の製造方法は、従来知られていなかった。
 以下、本発明について詳細に説明する。
 [1]化合物及びジアステレオマー混合物
 本発明に係る化合物(1)又はその塩は、非特許文献5(第3266頁、Scheme 1、工程(i)及び(ii))に記載の方法に準じて、合成することができる。
 化合物(1)又はその塩は、上記非特許文献5の記載方法に準じて合成した場合、そのジアステレオマーである化合物(2)又はその塩とのジアステレオマー混合物として得られる。すなわち、本発明に係るジアステレオマー混合物は、化合物(1)又はその塩、及び、化合物(2)又はその塩からなる混合物である。
 以下のReaction Scheme p(反応工程式p)に、本発明に係る化合物(1)又はその塩、及び、本発明に係るジアステレオマー混合物を得るための反応式を示す。
Figure JPOXMLDOC01-appb-C000023
(式中、Bnはベンジル基(C6H5-CH2-)を示す。以下同じ。)
 本発明に係る化合物(1)又はその塩は、化合物(2)又はその塩とのジアステレオマー混合物の態様でも、該ジアステレオマー混合物から化合物(1)又はその塩を単離精製した態様でも、次のステップに利用することができる。また、本発明に係る化合物(1)又はその塩、及び、本発明に係るジアステレオマー混合物は、水和物に代表される溶媒和物、無晶形(アモルファス)又は結晶多形も包含する。
 なお、ジアステレオマー混合物からの化合物(1)の単離精製は、例えば、カラムクロマトグラフィー、分別再結晶等の手段を用いて行うことができる。カラムクロマトグラフィーに用いる担体としては、例えば、シリカゲル、化学結合型シリカゲル(ODS等)、アルミナ、活性炭等を挙げることができる。
 化合物(1)及び化合物(2)の塩としては、後述する製造方法の反応に影響を与えない塩であれば特に限定されないが、例えばナトリウム塩、カリウム塩をあげることができる。
 本発明に係る化合物(1)又はその塩、及び、本発明に係るジアステレオマー混合物は、後述の製造方法により、1-[3’,5’-O-ジベンジル-2’-デオキシ-4’-チオ-1’-β-D-リボフラノシル]-5-フルオロウラシル(化合物(3))及び1-[2’-デオキシ-4’-チオ-1’-β-D-リボフラノシル]-5-フルオロウラシル(化合物(4))を製造するための有用な製造中間体として用いることができる。
 [2]製造方法
 本発明に係る1-[3’,5’-O-ジベンジル-2’-デオキシ-4’-チオ-1’-β-D-リボフラノシル]-5-フルオロウラシル(化合物(3))の製造方法は、以下のReaction Scheme 1(反応工程式1)に示す化合物(1)から化合物(3)を生成する製造方法に関する。
Figure JPOXMLDOC01-appb-C000024
 本発明に係る製造方法の1つの態様においては、化合物(1)又はその塩は、単離精製した化合物(1)又はその塩を用いることができる。また、別の態様においては、例えば、上述の非特許文献5に記載の方法に準じて得られる、化合物(1)又はその塩、及び、化合物(2)又はその塩からなるジアステレオマー混合物も用いることができる。ジアステレオマー混合物を用いる場合の反応工程式を、下記Reaction Scheme 1’(反応工程式1’)に示す。
Figure JPOXMLDOC01-appb-C000025
 化合物(3)は、化合物(1)又はその塩の2’位ヨウ素を還元的に除去することによって得られる。ヨウ素を還元的に除去する方法としては、化合物(1)に、還元試薬を反応させる方法が挙げられる。
 本反応に用いる還元試薬としては、ヨウ素を還元的に除去できるものであれば特に限定されないが、例えばリチウム、ナトリウム、マグネシウム、亜鉛等の金属試薬、水素化ホウ素ナトリウム、シアノ水素化ホウ素ナトリウム、水素化リチウムアルミニウム、トリメチルシラン、トリエチルシラン等の水素化トリアルキルシラン、トリストリメチルシリルシラン、水素化トリブチルスズ等が挙げられる。化合物(3)を高収率で得られるとの観点から、還元試薬は、好ましくは水素化トリブチルスズである。
 還元試薬の使用割合は、化合物(1)からヨウ素を還元的に除去できれば特に限定されないが、化合物(1)若しくはその塩1モルに対し、又は、化合物(1)若しくはその塩及び化合物(2)若しくはその塩からなるジアステレオマー混合物1モルに対し、前記の還元試薬を1~20モル量程度使用することができる。還元試薬として水素化トリブチルスズを用いる場合、化合物(1)若しくはその塩、又は、化合物(1)若しくはその塩及び化合物(2)若しくはその塩からなるジアステレオマー混合物と、水素化トリブチルスズの比率はモル比で、好ましくは1:1~1:10であり、特に好ましくは、モル比で、1:1.2である。
 還元試薬としてトリメチルシラン、トリエチルシラン等の水素化トリアルキルシラン、トリストリメチルシリルシラン、水素化トリブチルスズ等を用いる場合、還元反応の開始には、ラジカル開始剤を用いることができる。この場合、還元反応をラジカル開始剤の存在下で行う。
 ラジカル開始剤としては、化合物(1)からヨウ素を還元的に除去する反応が開始できれば特に限定されず、例えば、2,2’-アゾビス(イソブチロニトリル)(AIBN)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)(V-65)、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二塩酸塩(VA-044)、2,2’-アゾビス(2-アミジノプロパン)二塩酸塩(V-50)、2,2’-アゾビス[N-(2-カルボキシエチル)-2-メチルプロピオンアミド](VA-057)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)(V-70、V-70L)、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン](VA-061)、2,2’-アゾビスイソ酪酸ジメチル(V-601)等のアゾ化合物、トリエチルホウ素等を使用することができる。化合物(3)が高収率で得られるとの観点から、還元試薬は、好ましくはトリエチルホウ素である。
 ラジカル開始剤の使用割合は、化合物(1)からヨウ素を還元的に除去する反応が開始できれば特に限定されないが、例えば還元試薬とラジカル開始剤の比が、モル比で、10:1~2:1で用いることができる。
 還元試薬とラジカル開始剤の組合せは、化合物(1)からヨウ素を還元的に除去する反応が開始し進行すれば特に限定されないが、好ましくは水素化トリブチルスズとトリエチルホウ素である。この場合は、水素化トリブチルスズとトリエチルホウ素の使用割合は、化合物(1)からヨウ素を還元的に除去する反応が開始し進行すれば特に限定されないが、好ましくは水素化トリブチルスズとトリエチルホウ素との比が、モル比で、10:1~2:1であり、特に好ましくは、6:1である。
 反応溶媒としては、化合物(1)からヨウ素を還元的に除去する反応が開始し進行すれば特に限定されないが、トルエン、キシレン、クメン、クロロベンゼン、アニソール等を単独又は混合して使用することができる。キシレンとしては、o-キシレン、m-キシレン、p-キシレン、混合キシレン(o-キシレン、m-キシレン、p-キシレン及びエチルベンゼンの混合物、又は、o-キシレン、m-キシレン及びp-キシレンの混合物)を用いることができる。本発明における反応溶媒として、好ましくはキシレン、アニソールである。キシレンとアニソールを混合して用いる場合は、キシレンとアニソールの比率は化合物(1)からヨウ素を還元的に除去する反応が開始し進行すれば特に限定されないが、好ましくは、体積比で、1:1である。該キシレンは、好ましくはm-キシレンである。
 反応温度は、化合物(1)からヨウ素を還元的に除去する反応が進めば特に限定されないが、通常-78~100℃、好ましくは-40~0℃、特に好ましくは-16~0℃である。
 反応時間は、化合物(1)からヨウ素を還元的に除去する反応が進めば特に限定されないが、通常0.1~100時間、好ましくは1時間~5時間である。
 還元反応において、化合物(1)又はその塩、及び、化合物(2)又はその塩からなるジアステレオマー混合物を用いる場合、還元反応により得られる反応混合物は、β体である化合物(3)及びα体である下記化合物(5)を含む。化合物(3)は、化合物(3)及び化合物(5)を含む反応混合物から化合物(3)を選択的に取得することによって得られる。化合物(3)を選択的に取得する方法としては、好ましくは、得られた反応混合物と貧溶媒とを混合し析出物を濾取する方法である。
Figure JPOXMLDOC01-appb-C000026
 貧溶媒としては、化合物(3)を選択的に取得できれば特に限定されないが、ヘプタン、ヘキサン、ペンタン、ジイソプロピルエーテル、シクロヘキサンなどが挙げられ、好ましくは、ヘプタンである。
 貧溶媒の使用割合としては、化合物(3)を選択的に取得できれば特に限定されないが、好ましくは反応溶媒と貧溶媒との体積比で1:0.5~1:1.5である。
 反応溶媒と貧溶媒の組合せは、化合物(3)を選択的に取得できれば特に限定されないが、好ましくは反応溶媒としてキシレンとアニソール、貧溶媒としてヘプタンである。この場合は、キシレン及びアニソールと、ヘプタンの使用割合は、化合物(3)を選択的に取得できれば特に限定されないが、好ましくは、キシレン及びアニソール合計体積と、ヘプタンの体積の比が1:0.60~1:1.25である。
 化合物(3)から1-[2’-デオキシ-4’-チオ-1’-β-D-リボフラノシル]-5-フルオロウラシル(化合物(4))は、化合物(3)の3’位及び5’位水酸基を保護するベンジル基を脱保護することによって得られる。本工程には当業者に通常用いられる方法を用いることができ、例えば非特許文献3に記載の方法に準じて行うことができる。脱保護に用いる試薬としては、化合物(3)の3’位及び5’位水酸基を保護するベンジル基を脱保護することができれば特に限定されないが、例えば三塩化ホウ素、四塩化チタン、三臭化ホウ素などのルイス酸を用いることができる。化合物(3)から化合物(4)を得るためのReaction Scheme q(反応工程式q)を、下記に示す。
Figure JPOXMLDOC01-appb-C000027
 以下、本発明を実施例、参考例を挙げて更に詳細に説明するが、これらは本発明を限定するものではない。なお、H-NMRスペクトルは、TMS(テトラメチルシラン)を内部標準として測定し、δ値(ppm)で化学シフトを示した。化学シフトは、かっこ内に吸収パターン、カップリング定数(J値)、プロトン数を示した。
 また、吸収パターンに関して、次の記号を使用する。s=シングレット、d=ダブレット、t=トリプレット、q=クワルテット、dd=ダブルダブレット、m=マルチプレット、br=ブロード、brs=ブロードシングレット。
 実施例1
1-[3’,5’-O-ジベンジル-2’-デオキシ-2’-α-ヨード-4’-チオ-1’-β-D-リボフラノシル]-5-フルオロウラシル(化合物(1))、及び、
1-[3’,5’-O-ジベンジル-2’-デオキシ-2’-β-ヨード-4’-チオ-1’-α-D-リボフラノシル]-5-フルオロウラシル(化合物(2))とのジアステレオマー混合物
 非特許文献4の方法から得られる化合物(X)(ベンジル-3,5-ジ-O-ベンジル-2-デオキシ-1,4-ジチオ-α,β-D-エリスロ-ペントフラノシド)(14.2g)を用いて、塩基として5-フルオロウラシル(5-フルオロピリミジン-2,4(1H,3H)-ジオン;5-FU)を用いる以外は、非特許文献5(第3266頁、Scheme 1、工程(i)及び(ii))に記載の方法に準じて、化合物(1)及び化合物(2)のジアステレオマー混合物(13.9g、75%)を得た。
 化合物(1)と化合物(2)のジアステレオマー混合物:
H-NMR(400MHz,CDCl) δ 8.71 - 8.62 (3H, m), 8.12 (2H, d, J = 6.4 Hz), 7.70 (1H, d, J = 6.0 Hz), 7.41 - 7.25 (30H, m), 6.32 (2H, dd, J = 7.2 & 1.2 Hz), 6.26 (1H, dd, J = 6.8 & 1.2 Hz), 4.72 - 4.52 (13H, m), 4.35 - 4.28 (2H, m), 3.86 - 3.60 (12H, m) ; ESI-MS m/z 567 (M-H).化合物(2)と化合物(1)の比率は、H-NMRのピーク比で1:2.0だった。
1-[3’,5’-O-ジベンジル-2’-デオキシ-2’-α-ヨード-4’-チオ-1’-β-D-リボフラノシル]-5-フルオロウラシル(化合物(1))
 上記で得られた混合物200mgをシリカゲルカラムクロマトグラフィーにて精製し、精製されたフラクションのみを収集して濃縮乾固することにより、化合物(1)の精製体(12mg)を得た。
 化合物(1): 
H-NMR(400MHz,CDCl) δ 9.11 (1H, brs), 8.12 (1H, d, J = 6.4 Hz), 7.41 - 7.26 (10H, m), 6.32 (1H, dd, J = 7.2 & 1.2 Hz), 4.63 - 4.54 (5H, m),  3.74 - 3.68 (3H, m), 3.63 - 3.60 (1H, m) ; ESI-MS m/z 567 (M-H)
 実施例2
1-[3’,5’-O-ジベンジル-2’-デオキシ-4’-チオ-1’-β-D-リボフラノシル]-5-フルオロウラシル(化合物(3))
 実施例1で得た化合物(1)及び化合物(2)のジアステレオマー混合物(3.27g)をアニソール(13.0mL)に溶解し、m-キシレン(13.0mL)を加えた後に系中を窒素置換し、-16℃まで冷却した。水素化トリブチルスズ(2.00g, 1.2eq)、トリエチルホウ素/n-ヘキサン溶液(1.0M, 1.2mL, 0.2eq)を加え、系中の空気置換を行った。2時間撹拌した後にヘプタン(16.0mL)を加え、さらに0℃で2時間撹拌を行った。系中の晶析物を濾取し、乾燥させることにより化合物(3)(1.21g, 48%)を得た。H-NMRで化合物(5)は検出限界以下だった。
 1H-NMR(400MHz,CDCl) δ 8.39 (brs), 8.27 (1H, d, J = 6.4 Hz), 7.39 - 7.26 (10H, m), 6.41 (1H, m), 4.58 - 4.52 (4H, m), 4.22 (1H, m), 3.79 - 3.60 (3H, m), 2.51 - 2.48 (1H, m), 2.21 - 2.13 (1H, m), ; ESI-MS m/z 441 (M-H)
 実施例3
1-[3’,5’-O-ジベンジル-2’-デオキシ-4’-チオ-1’-β-D-リボフラノシル]-5-フルオロウラシル(化合物(3))
 実施例1で得た化合物(1)及び化合物(2)のジアステレオマー混合物(500mg)をアニソール(2.5mL)に溶解し、m-キシレン(2.5mL)を加えた後に系中を窒素置換し、-40℃まで冷却した。水素化トリブチルスズ(308mg、1.2eq)、トリエチルホウ素/n-ヘキサン溶液(1.0M, 0.18mL、0.2eq)を加え、系中の空気置換を行った。2時間撹拌した後に種晶(2mg)を加え、0℃まで昇温し、20分間撹拌した。さらにヘプタン(5mL)を加え、さらに0℃で1時間撹拌を行った。系中の晶析物を濾取し、乾燥させることにより化合物(3)(190mg,49%)を得た。H-NMRで化合物(5)は検出限界以下だった。
 H-NMR(400MHz,CDCl) δ 8.30 (brs), 8.26 (1H, d, J = 6.4 Hz), 7.40 - 7.25 (10H, m), 6.41 (1H, m), 4.60 - 4.48 (4H, m), 4.20 (1H, m), 3.81 - 3.58 (3H, m), 2.53 - 2.48 (1H, m), 2.24 - 2.13 (1H, m), ; ESI-MS m/z 441 (M-H)
 実施例4
1-[3’,5’-O-ジベンジル-2’-デオキシ-4’-チオ-1’-β-D-リボフラノシル]-5-フルオロウラシル(化合物(3))
 実施例1で得た化合物(1)及び化合物(2)のジアステレオマー混合物(500mg)をアニソール(2.5mL)に溶解し、m-キシレン(2.5mL)を加えた後に系中を窒素置換し、0℃まで冷却した。水素化トリブチルスズ(308mg、1.2eq)、トリエチルホウ素/n-ヘキサン溶液(1.0M, 0.18mL、0.2eq)を加え、系中の空気置換を行った。2時間撹拌した後にヘプタン(5mL)を加え、さらに0℃で1時間撹拌を行った。系中の晶析物を濾取し、乾燥させることにより化合物(3)(144mg,37%)を得た。H-NMRで化合物(5)は検出限界以下だった。
 H-NMR(400MHz,CDCl) δ 8.40 (brs), 8.27 (1H, d, J = 6.2 Hz), 7.37 - 7.24 (10H, m), 6.39 (1H, m), 4.61 - 4.50 (4H, m), 4.21 (1H, m), 3.78 - 3.60 (3H, m), 2.50 - 2.46 (1H, m), 2.20 - 2.13 (1H, m), ; ESI-MS m/z 441 (M-H)
 実施例5
1-[3’,5’-O-ジベンジル-2’-デオキシ-4’-チオ-1’-β-D-リボフラノシル]-5-フルオロウラシル(化合物(3))
 実施例1で得た化合物(1)及び化合物(2)のジアステレオマー混合物(500mg)をアニソール(2.0mL)に溶解し、m-キシレン(2.0mL)を加えた後に系中を窒素置換し、0℃まで冷却した。水素化トリブチルスズ(308mg、1.2eq)、トリエチルホウ素/n-ヘキサン溶液(1.0M, 0.18mL、0.2eq)を加え、系中の空気置換を行った。2時間撹拌した後にヘプタン(5mL)を加え、さらに0℃で1時間撹拌を行った。系中の晶析物を濾取し、乾燥させることにより化合物(3)(170mg,44%)を得た。H-NMRで化合物(5)は検出限界以下だった。
 H-NMR(400MHz,CDCl) δ 8.44 (brs), 8.25 (1H, d, J = 6.4 Hz), 7.42 - 7.25 (10H, m), 6.39 (1H, m), 4.56 - 4.50 (4H, m), 4.20 (1H, m), 3.83 - 3.60 (3H, m), 2.50 - 2.48 (1H, m), 2.20 - 2.11 (1H, m), ; ESI-MS m/z 441 (M-H)
 実施例6
1-[3’,5’-O-ジベンジル-2’-デオキシ-4’-チオ-1’-β-D-リボフラノシル]-5-フルオロウラシル(化合物(3))
 実施例1で得た化合物(1)及び化合物(2)のジアステレオマー混合物(90mg)をトルエン(1.0mL)に溶解し、水素化トリブチルスズ(230mg)、V-70L(14.6mg)を加え、室温で1時間撹拌した。反応終了後に反応溶液を濃縮して溶媒を留去し、化合物(3)(12%:UPLC解析による面百値より推定)を得た。ただし、ラジカル開始剤としてトリエチルホウ素を用いる場合に比して、化合物(3)の収量は低かった。
 なお、「面百値」とは、UPLC解析により得られるクロマトグラムにおける、目的化合物のピーク面積値を百分率で表したものを意味する。
 実施例7
1-[3’,5’-O-ジベンジル-2’-デオキシ-4’-チオ-1’-β-D-リボフラノシル]-5-フルオロウラシル(化合物(3))
 非特許文献6の手法に従い、実施例1で得た化合物(1)及び化合物(2)のジアステレオマー混合物(150mg)をm-キシレン(0.8mL)、アニソール(0.8mL)に溶解し、トリス(トリメチルシリル)シラン(78mg)、トリエチルホウ素/n-ヘキサン溶液(1.0M, 0.1mL)を加え、-20℃下で1時間撹拌した。反応終了後に反応溶液を濃縮して溶媒を留去し、化合物(3)(9%:UPLC解析による面百値より推定)を得た。ただし、還元試薬として水素化トリブチルスズを用いる場合に比して、化合物(3)の収量は低かった。
 参考例1
1-[2’-デオキシ-4’-チオ-1’-β-D-リボフラノシル]-5-フルオロウラシル(化合物(4))
 非特許文献3の方法に準じて、化合物(3)(130mg)をトルエン(1.3mL)及びジクロロメタン(1.3mL)に溶解し、四塩化チタン/トルエン溶液(1.0M,0.88mL,3.0eq)を加えて反応させる事により化合物(4)(50mg,65%)を得た。物性値を測定したところ、非特許文献3と一致したため、化合物(4)の製造が確認できた。

Claims (20)

  1.  式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式中、Bnはベンジル基を示す。)で表される化合物(1)又はその塩。
  2.  式(1)
    Figure JPOXMLDOC01-appb-C000002
    (式中、Bnはベンジル基を示す。)で表される化合物(1)又はその塩、及び
    式(2)
    Figure JPOXMLDOC01-appb-C000003
    (式中、Bnは前記に同じ。)で表される化合物(2)又はその塩からなるジアステレオマー混合物。
  3.  式(1)
    Figure JPOXMLDOC01-appb-C000004
    (式中、Bnはベンジル基を示す。)で表される化合物(1)又はその塩と、還元試薬とを反応させる工程を含む、
    式(3)
    Figure JPOXMLDOC01-appb-C000005
    で表される化合物(3)の製造方法。
  4.  式(1)
    Figure JPOXMLDOC01-appb-C000006
    (式中、Bnはベンジル基を示す。)で表される化合物(1)又はその塩、及び
    式(2)
    Figure JPOXMLDOC01-appb-C000007
    (式中、Bnは前記に同じ。)で表される化合物(2)又はその塩からなるジアステレオマー混合物と、還元試薬とを反応させる工程を含む、
    式(3)
    Figure JPOXMLDOC01-appb-C000008
    で表される化合物(3)の製造方法。
  5.  還元試薬が水素化トリブチルスズである、請求項3または4に記載の化合物(3)の製造方法。
  6.  化合物(1)若しくはその塩、又は、化合物(1)若しくはその塩及び化合物(2)若しくはその塩からなるジアステレオマー混合物と、水素化トリブチルスズの比率が、モル比で、1:1~1:10である、請求項5に記載の化合物(3)の製造方法。
  7.  化合物(1)若しくはその塩、又は、化合物(1)若しくはその塩及び化合物(2)若しくはその塩からなるジアステレオマー混合物と、水素化トリブチルスズの比率が、モル比で、1:1.2である、請求項5に記載の化合物(3)の製造方法。
  8.  還元反応が、ラジカル開始剤の存在下で行われる、請求項3から7のいずれか1項に記載の化合物(3)の製造方法。
  9.  ラジカル開始剤がトリエチルホウ素である、請求項8に記載の化合物(3)の製造方法。
  10.  水素化トリブチルスズとトリエチルホウ素との比が、モル比で、10:1~2:1である、請求項9に記載の化合物(3)の製造方法。
  11.  水素化トリブチルスズとトリエチルホウ素との比が、モル比で、6:1である、請求項9に記載の化合物(3)の製造方法。
  12.  還元反応が、アニソール及びキシレンを含む溶媒中で行われる、請求項3から11のいずれか1項に記載の化合物(3)の製造方法。
  13.  アニソールとキシレンの比率が、体積比で、1:1である、請求項12に記載の化合物(3)の製造方法。
  14.  キシレンがm-キシレンである、請求項12または13に記載の化合物(3)の製造方法。
  15.  還元反応後、反応液に貧溶媒を加える工程をさらに含む、請求項3から14のいずれか1項に記載の化合物(3)の製造方法。
  16.  貧溶媒がヘプタンである、請求項15に記載の化合物(3)の製造方法。
  17.  アニソール及びキシレンの合計体積と、ヘプタンの体積との比率が、1:0.60~1:1.25である、請求項16に記載の化合物(3)の製造方法。
  18.  還元反応が、-40℃から0℃の間で行われる、請求項3から17のいずれか1項に記載の化合物(3)の製造方法。
  19.  還元反応が、-16℃から0℃の間で行われる、請求項3から17のいずれか1項に記載の化合物(3)の製造方法。
  20.  請求項3から19のいずれか1項に記載の製造方法により式(3)
    Figure JPOXMLDOC01-appb-C000009
    で表される化合物(3)を製造する工程、及び
     化合物(3)のベンジル基を脱保護する工程を含む、式(4)
    Figure JPOXMLDOC01-appb-C000010
    で表される化合物(4)の製造方法。
PCT/JP2013/068354 2012-07-05 2013-07-04 1-[2'-デオキシ-4'-チオ-1'-β-D-リボフラノシル]-5-フルオロウラシルの製造中間体、及び該中間体を用いた製造方法 WO2014007323A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-151905 2012-07-05
JP2012151905 2012-07-05

Publications (1)

Publication Number Publication Date
WO2014007323A1 true WO2014007323A1 (ja) 2014-01-09

Family

ID=49882074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068354 WO2014007323A1 (ja) 2012-07-05 2013-07-04 1-[2'-デオキシ-4'-チオ-1'-β-D-リボフラノシル]-5-フルオロウラシルの製造中間体、及び該中間体を用いた製造方法

Country Status (2)

Country Link
TW (1) TW201408684A (ja)
WO (1) WO2014007323A1 (ja)

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CIENFUEGOS LA ET AL.: "Highly efficient synthesis of 2',3'-didehydro-2',3'-dideoxy-p- nucleosides through a sulfur-mediated reductive 2',3'- trans-elimination. From iodomethylcyclopropanes to thiirane analogs", TETRAHEDRON LETTERS, vol. 46, 2005, pages 469 - 473 *
HUANG B ET AL.: "A facile synthesis of 4'-thio- 2'-deoxypyrimidine nucleosides and preliminary studies on their properties", NUCLEOSIDES & NUCLEOTIDES, vol. 12, 1993, pages 139 - 147 *
MASLEN HL ET AL.: "6-Azapyrimidine-2'-deoxy-4'- thionucleosides: Antiviral Agents against TK+ and TK-HSV and VZV Strains", JOURNAL OF MEDICINAL CHEMISTRY, vol. 47, 2004, pages 5482 - 5491 *
MILLER JA ET AL.: "Synthesis of 4-thiofuranoid 1, 2-glycals and their application to stereoselective synthesis of 4'- thionucleosides", TETRAHEDRON LETTERS, vol. 41, 2000, pages 3265 - 3268 *
WIRSCHING J ET AL.: "Synthesis and structural elucidation of 2'-deoxy-4'-thio-L-threo- pentofuranosylpyrimidine and -purine nucleosides", EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, 2001, pages 1077 - 1087 *

Also Published As

Publication number Publication date
TW201408684A (zh) 2014-03-01

Similar Documents

Publication Publication Date Title
US9873714B2 (en) Processes for preparing of glucopyranosyl-substituted benzyl-benzene derivatives
JP5193040B2 (ja) ジ(ピリミジンヌクレオシド5’−)ポリホスフェートの製造法
WO2012043730A1 (ja) モルホリノ核酸誘導体
EP3172218B1 (en) Process for the preparation of gemcitabine-[phenyl(benzoxy-l-alaninyl)] phosphate
JP2020523381A (ja) 3’−デオキシアデノシン−5’−o−[フェニル(ベンジルオシキ−l−アラニニル)]ホスフェート(nuc−7738)の合成
EP4192839A1 (en) Remdesivir intermediates
KR20150018524A (ko) 2-데옥시-2-플루오로-2-메틸-d-리보푸라노실 뉴클레오시드 화합물의 제조 방법
US11078211B2 (en) Photoresponsive nucleotide analog capable of photocrosslinking in visible light region
JP3677790B2 (ja) ヌクレオシド誘導体とその製造方法
WO2019053476A1 (en) SYNTHESIS OF FLOXURIDINE
WO2020032152A1 (ja) 4'-置換ヌクレオシド誘導体の立体選択的合成法
JP2019522003A (ja) ソホスブビルの調製のための改善された製造方法
KR100699099B1 (ko) 1-α-할로-2,2-다이플루오로-2-데옥시-D-라이보퓨라노스유도체 및 이의 제조방법
KR20080099263A (ko) 젬시타빈 및 관련된 중간체의 제조 방법
WO2014007323A1 (ja) 1-[2'-デオキシ-4'-チオ-1'-β-D-リボフラノシル]-5-フルオロウラシルの製造中間体、及び該中間体を用いた製造方法
WO2016110761A1 (en) PROCESS FOR PRODUCING 1-β-D-ARABINOFURANOSYLCYTOSINE AND 2,2'-O-CYCLOCYTIDINE
US10676498B2 (en) Processes for the preparation of sofosbuvir and intermediates thereof
JP2018502858A (ja) フォロデシンの製造方法
JP2009256335A (ja) 2’位にアルキル型保護基を有するリボ核酸の製造法
JPH0959292A (ja) 4−アミノピリミジンヌクレオシドの製造法
JP3388489B2 (ja) インドロピロロカルバゾール誘導体の製造法、その製造中間体及びその製造法
KR100741310B1 (ko) 젬시타빈의 합성에 유용한 신규한나프탈렌-2-카르복실레이트 유도체와 그의 제조방법
JP7423533B2 (ja) 配糖体化合物の製造方法
IL117225A (en) Preparation of T4D from 5 methyluridine, and several intermediates for this
TWI399381B (zh) 克拉屈濱(cladribine)的製備方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13812539

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13812539

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP