WO2014007293A1 - エッジライト型面光源装置 - Google Patents

エッジライト型面光源装置 Download PDF

Info

Publication number
WO2014007293A1
WO2014007293A1 PCT/JP2013/068273 JP2013068273W WO2014007293A1 WO 2014007293 A1 WO2014007293 A1 WO 2014007293A1 JP 2013068273 W JP2013068273 W JP 2013068273W WO 2014007293 A1 WO2014007293 A1 WO 2014007293A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
light
source device
led
edge
Prior art date
Application number
PCT/JP2013/068273
Other languages
English (en)
French (fr)
Inventor
康史 伊藤
小野崎 学
幹 高瀬
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201380034975.XA priority Critical patent/CN104412032B/zh
Priority to JP2014523767A priority patent/JP5851608B2/ja
Priority to US14/411,705 priority patent/US9244213B2/en
Publication of WO2014007293A1 publication Critical patent/WO2014007293A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0068Arrangements of plural sources, e.g. multi-colour light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0073Light emitting diode [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Definitions

  • the present invention relates to an edge light type surface light source device.
  • An edge light type surface light source device using a light guide plate is widely used mainly as a liquid crystal backlight.
  • the liquid crystal backlight uses a linear light source at the edge and converts it into planar light emission using the light guide plate.
  • the surface light source device of the type is effective in reducing the thickness of the backlight module for liquid crystal and its application products, and has become mainstream (for example, see Patent Document 1 below).
  • an edge light type surface light source device is also used for illumination.
  • CCFL Cold Cathode Fluorescent Lamp
  • LED Light Emitting Diode
  • FIG. 14 is an exploded perspective view showing a configuration of a conventional edge light type surface light source device.
  • 15 is a sectional view of the conventional edge light type surface light source device shown in FIG. 14 in an assembled state.
  • an LED light source device 100 that is a conventional edge light type surface light source device includes a casing 160, a light guide plate 120, a reflection sheet 130, a diffusion sheet 150, and an LED light source substrate 140. ing.
  • the member called the light guide plate 120 is a general light guide means including what is called a light guide sheet.
  • the LED light source substrate 140 emits irradiation light for irradiating the light guide plate 120.
  • Irradiation light emitted from the LED light source substrate 140 enters the light guide plate 120 from an incident surface that is one side surface of the light guide plate 120.
  • the irradiation light incident from the incident surface is mixed and uniformed inside the light guide plate 120 and is emitted from the top surface serving as the irradiation surface of the light guide plate 120 as planar light.
  • the reflective sheet 130 is arranged on the back side of the light guide plate 120 (opposite side of the irradiation surface), and contributes to the improvement of light utilization efficiency by returning the light leaking to the back side into the light guide plate.
  • the diffusion sheet 150 is disposed on the front surface side (the irradiation surface side) of the light guide plate 120, has an effect of uniformizing the light emitted to the front surface side, and reducing luminance unevenness. It is used in combination with an optical sheet (for example, a lens sheet, a polarization reflection sheet, etc.).
  • an optical sheet for example, a lens sheet, a polarization reflection sheet, etc.
  • the housing 160 accommodates these members inside, and fixes and supports these members inside the housing 160.
  • the LED light source device 100 functions as a surface irradiation device using the light emission of the LED light source substrate 140 with the above configuration.
  • FIG. 16 shows an external appearance of an LED light source substrate provided in a conventional edge light type surface light source device. 17 is a cross-sectional view of the LED light source substrate shown in FIG.
  • the LED light source substrate 600 is configured by mounting a plurality of LED packages 620 and connectors 601 on a flat wiring substrate 610 as shown in FIG.
  • the LED package 620 is electrically connected to the outside (not shown) via a connector 601 and a harness (not shown), so that light emission from the outside can be controlled.
  • the wiring substrate 610 is configured by laminating a base material 611, a wiring layer 612, and a solder resist layer 613.
  • the LED package 620 is connected and fixed on the wiring layer 612 by solder 626.
  • the LED package 620 includes an LED element 621, a sealing resin 622, a bonding wire 623, a wiring layer 624, and a base material 625.
  • the LED element 621 is mounted on the substrate 625 and connected to the wiring layer 624 using a bonding wire 623.
  • the sealing resin 622 protects the internal components and connection state by sealing the inside of the base material 625 with resin.
  • the sealing resin 622 can convert the emission color of the LED element 621 by containing a phosphor, and constitutes an LED package that emits white using, for example, a blue LED element and a yellow phosphor. can do.
  • the wiring layer 624 provides wiring between a portion connected by the solder 626 and a portion where the LED element 621 is wire-bonded.
  • the wiring layer 624 has a shape that penetrates the base material 625
  • the solder 626 is connected to the wiring layer 624 on the bottom surface side of the base material 625
  • the LED element 621 has a base structure.
  • the material 625 is connected to the wiring layer 624 on the top surface side.
  • the LED element 621 is electrically connected to the outside (not shown) via the wiring board 610, the connector 601, and a harness (not shown) while the LED element is mechanically fixed. This makes it possible to control light emission from the outside.
  • FIG. 18 shows another example of an LED light source substrate provided in a conventional edge light type surface light source device.
  • FIG. 19 is a cross-sectional view taken along the line AA of the LED light source substrate shown in FIG.
  • an LED element 515 is mounted on a base material 511 by COB (Chip On Board) without using an LED package. That is, the LED element 515 is directly mounted on the base material 511.
  • the base material 511 may include another layer (for example, a wiring layer 513) on the surface, and in this case, the LED element 515 can be mounted on the surface of the other layer.
  • the LED element 515 is not mounted on the wiring board after being stored in the package, but is mounted as it is.
  • the base material 511 has a surface (the surface horizontally drawn on the base material 511 at the top in FIG. 19) and a concave portion recessed therefrom, and the LED element 515 is mounted inside these concave portions. .
  • the wiring layer 513 and the LED element 515 are electrically connected by a bonding wire 516.
  • the wiring layer 513 is electrically connected to the electrode terminals of the connector 512. With this configuration, it is possible to control the light emission of the LED element 515 by electrically controlling a harness (not shown) connected to the connector 512.
  • the LED element 515, the bonding wire 516, and their connection parts are easily damaged by an impact.
  • the LED element 515 and the bonding wire 516 are sealed with a sealing resin 514 including the connection part.
  • the sealing resin 514 is injected into the recess.
  • the color tone of the emitted light of the LED light source substrate 500 can be adjusted by adding a colorant or a phosphor to the sealing resin 514.
  • the LED light source substrate 500 can emit white light when the LED element 515 emits blue or ultraviolet light and contains a phosphor that fits in the sealing resin 514.
  • Constructing the LED light source substrate 140 using the LED package and the wiring substrate like the LED light source substrate 600 is easy to create a relatively large substrate because the outer shape can be created by press processing or router processing. There is an advantage that an LED package can be mounted using a simple mounter.
  • the method of mounting the LED element by COB like the LED light source substrate 500 does not require the use of solder for mounting, so there is no temperature restriction due to the solder temperature at the time of use. Since it can be manufactured in a final form in the process, there is an advantage that a small substrate can be manufactured at low cost.
  • FIG. 20 shows a light reflection pattern in a conventional edge light type surface light source device.
  • light emitted from the LED light source substrate 140 enters the light guide plate 120 from the incident surface (left side in the figure) of the light guide plate 120.
  • the light guide plate 120 includes a light guide 121 and a reflection pattern 122.
  • the trajectory of typical incident light is indicated by arrows.
  • the light emitted from the LED light source substrate 140 and applied to the incident surface of the light guide 121 is refracted and incident on the inside of the light guide 121 when the incident angle is smaller than a certain degree, and the incident angle is more than a certain degree. When it is large, it is totally reflected on the incident surface and is not incident on the inside of the light guide 121.
  • the incident light incident on the light guide 121 repeats total reflection on the top and bottom surfaces of the light guide 121.
  • the incident light hits the reflection pattern 122, it is diffusely reflected and many components are emitted from the top surface, that is, the exit surface.
  • the reflection pattern 122 is set appropriately in order to make the surface light emission pattern uniform or to obtain a desired surface light emission pattern.
  • the density of the reflection pattern is large in the part far from the light source (each reflection pattern is large, the number of reflection patterns per area is large, or a combination thereof), and the light source The density of the reflection pattern is reduced in a portion close to (the individual reflection patterns are small, the number of reflection patterns per area is small, or a combination thereof).
  • an acrylic resin having a very high transmittance or a polycarbonate having a high transmittance and a high strength is often used.
  • an acrylic resin is often used in a surface light source module having a somewhat large size because the amount of light lost due to absorption by the light guide plate cannot be ignored.
  • polycarbonate is often used when the size is relatively small and strength is required.
  • the reflection pattern 122 can be added to the light guide 121 by laser marking or coating of the light guide 121, or can be realized in a shape that is formed at the same time as the light guide 121 is formed. It is.
  • FIGS. 21 to 24 schematically show the arrangement of light source substrates in a conventional edge light type surface light source device.
  • a light source substrate 140a and a light source substrate 140b are arranged on each of a pair of long sides (upper side and lower side in the drawing) of the light guide plate 120.
  • the length of each of the light source substrate 140a and the light source substrate 140b is equal to the length of each of the pair of long sides of the light guide plate 120.
  • a light source substrate 140a and a light source substrate 140b are arranged on each of a pair of short sides (left side and right side in the drawing) of the light guide plate 120.
  • the length of each of the light source substrate 140a and the light source substrate 140b is equal to the length of each set of short sides of the light guide plate 120.
  • the light source substrate 140 is disposed on one long side (lower side in the drawing) of the light guide plate 120.
  • the length of the light source substrate 140 is equal to the length of one long side of the light guide plate 120.
  • the light source substrate 140 is disposed on one short side (left side in the drawing) of the light guide plate 120.
  • the length of the light source substrate 140 is equal to the length of one short side of the light guide plate 120.
  • the total length of the light source substrate can be made shorter by arranging the light source substrate on the short side of the light guide plate than on the long side of the light guide plate. Further, the total length of the light source substrate can be made shorter by arranging the light source substrate on one side of the light guide plate than arranging the light source substrate on the two sides of the light guide plate.
  • the configuration shown in FIG. 22 can make the total length of the light source substrates shorter than the configuration shown in FIG.
  • the total length of the light source substrate can be made shorter in the configuration shown in FIG. 23 than in the configuration shown in FIG.
  • the total length of the light source substrate can be made shorter in the configuration shown in FIG. 24 than in the configuration shown in FIG.
  • shortening the total length of the light source substrate is often used to reduce production costs, reduce product weight, reduce environmental impact by reducing the amount of materials used, and reduce transportation costs associated with reduced dimensions and weight. Can be found.
  • the length of the light source substrate needs to be equal to the length of the corresponding side.
  • the reason is that it is necessary to satisfy the requirement of making the luminance of the light guide plate as uniform as possible, and this can be easily realized by making the length of the light source substrate equal to the length of the corresponding side. That is, when the configuration of FIG. 24 is adopted, if the length of the light source substrate is made shorter than the length of the corresponding side, a portion where sufficient luminance cannot be obtained in the light guide plate occurs.
  • FIG. 25 shows the light irradiation range of the light source substrate in a conventional surface light source device in which the light source substrate is arranged on one side of the light guide plate.
  • FIG. 25 shows an example in which, in a conventional surface light source device, a light source substrate 140 shorter than the side is experimentally arranged for one short side of the light guide plate 120.
  • the light emitted from the LED light source substrate 140 travels toward the right side of the light guide plate 120, and the irradiation range 210 a is in the upper side direction of the light guide plate 120. And a spread forming a refraction angle ⁇ toward the lower side of the light guide plate 120.
  • the irradiation range 210a can be directly irradiated with light, but with respect to the dark portion. Cannot directly irradiate light. For this reason, in the conventional surface light source device, since sufficient luminance cannot be obtained in the light guide plate, the length of the light source substrate 140 cannot be made shorter than the length of the corresponding short side.
  • the entire region of the light guide plate 120 of the original size can be set as the irradiation range.
  • the length of the extended portion of the long side is not allowed to exceed 10% of the length of the short side.
  • the critical angle ⁇ is about 42 °.
  • a part of the optical glass has a refractive index lower than that of about 1.43.
  • the critical angle ⁇ is about 45 °.
  • the length of the light source substrate 140 is less than 0.8 times the length of the corresponding short side, the length of the extended portion of the long side exceeds 10% of the length of the short side. Therefore, it is very difficult to make the length of the light source substrate 140 not more than 0.8 times the length of the corresponding short side.
  • Patent Document 2 a configuration in which an illumination light introduction unit is provided and the illumination light emitted from the light source is spread and guided to the light guide plate while the length of the light source is shorter than the length of the short side of the light guide plate. Is disclosed.
  • Patent Document 3 discloses a configuration in which light is diffused in the light guide plate by forming light scattering holes in the light guide plate while making the length of the light source shorter than the length of the short side of the light guide plate. Has been.
  • an L-shaped light source is arranged at the corner of the light guide plate, thereby reducing the power consumption of the light source and measuring the uniformity of display luminance. Is disclosed.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an edge light that can obtain sufficient and uniform luminance over the entire irradiation surface of the light guide plate and can reduce the cost.
  • the object is to provide a mold surface light source device.
  • an edge light type surface light source device of the present invention includes a light guide means and a plurality of light sources that irradiate light into the light guide means from a side surface of the light guide means, A plurality of light sources are arranged on each of a pair of sides facing each other of the light guide means, and the length of the longest light-emitting portion of the plurality of light sources is the guide where the plurality of light sources are arranged.
  • the light sources are shorter than the side length of the light means, and the plurality of light sources emit light having a smaller brightness gradient at the edge of the range than light having substantially uniform brightness in the entire range where the light source emits light. It is characterized by being configured.
  • a light source having a short size is used for each of the plurality of light sources, and the arrangement of the plurality of light sources is set to the above arrangement, thereby sufficiently obtaining a light irradiation range by the plurality of light sources. it can.
  • the edge light type surface light source device of the present invention includes a light guide means and a plurality of light sources that irradiate light into the light guide means from a side surface of the light guide means.
  • the light guide means is disposed on each of a pair of sides facing each other, and the length of the longest light emitting portion of the plurality of light sources is the length of the side of the light guide means on which the plurality of light sources are arranged.
  • the plurality of light sources that are shorter than the length are configured to irradiate light having a smaller brightness gradient at the edge of the range than light having substantially uniform brightness in the entire range where the light source emits light. ing.
  • FIG. 1 schematically shows a configuration of a surface light source device according to a first embodiment of the present invention.
  • substrate in the surface light source device which concerns on 1st Embodiment of this invention is shown.
  • the structure of the surface light source device which concerns on 2nd Embodiment of this invention is shown roughly.
  • substrate in the surface light source device which concerns on 2nd Embodiment of this invention is shown.
  • the structure of the surface light source device which concerns on 3rd Embodiment of this invention is shown roughly.
  • substrate in the surface light source device which concerns on 3rd Embodiment of this invention is shown.
  • the structure of the surface light source device which concerns on 4th Embodiment of this invention is shown roughly.
  • substrate in the surface light source device which concerns on 4th Embodiment of this invention is shown.
  • It is sectional drawing which shows the structure of the surface light source device which concerns on 5th Embodiment of this invention.
  • the structure of the reflective sheet and reflective material with which the surface light source device which concerns on 5th Embodiment of this invention is provided is shown.
  • the structure of the side of a light-guide plate in the surface light source device which concerns on 5th Embodiment of this invention is shown.
  • the structure of the side of a light-guide plate in the surface light source device which concerns on 6th Embodiment of this invention is shown.
  • FIG. 19 is a cross-sectional view taken along the line AA of the LED light source substrate shown in FIG.
  • the light reflection pattern in the conventional edge light type surface light source device is shown.
  • 1 schematically shows an arrangement of light source substrates in a conventional edge light type surface light source device.
  • 1 schematically shows an arrangement of light source substrates in a conventional edge light type surface light source device.
  • 1 schematically shows an arrangement of light source substrates in a conventional edge light type surface light source device.
  • 1 schematically shows an arrangement of light source substrates in a conventional edge light type surface light source device.
  • substrate to the one side of a light-guide plate is shown.
  • the schematic structure of the surface light source device which concerns on the application example of this invention, and the mode of light irradiation are shown.
  • FIG. 27 is a waveform showing the brightness due to irradiation by each LED light source substrate in the surface light source device according to the application example of the present invention, and shows the relationship of brightness between AA ′ in FIG.
  • FIG. 27 is a waveform showing brightness by irradiation with each LED light source substrate in a surface light source device according to a modification of the application example of the present invention, and shows the relationship of brightness between AA ′ in FIG.
  • substrate is shown.
  • substrate is smaller than the brightness
  • substrate is shown.
  • substrate shows the 1st example of a structure different from the light source which irradiates the light which has a substantially uniform brightness
  • substrate shows the 1st example of a structure different from the light source which irradiates the light which has a substantially uniform brightness
  • substrate differs from the light source which irradiates the light which has a substantially uniform brightness
  • substrate shows the 5th example of a structure different from the light source which irradiates the light which has a substantially uniform brightness
  • 6 shows a sixth example of a configuration in which the light distribution characteristics of light emitted from both ends of an LED light source substrate are different from those of a light source that emits light having substantially uniform luminance in the entire light irradiation range.
  • FIG. 1 schematically shows a configuration of a surface light source device 10 according to a first embodiment of the present invention.
  • the surface light source device 10 shown in FIG. 1 includes a light guide plate (light guide means) 120 and LED light source substrates (light sources) 140a and 140b.
  • the surface light source device 10 is a so-called edge light type surface light source device that irradiates light from the side surface of the light guide plate 120 by LED light source substrates 140 a and 140 b disposed on the side surface of the light guide plate 120.
  • the light guide plate 120 corresponds to the shape of the liquid crystal display panel mounted on the display device together with the light guide plate 120, as shown in FIG. 1, a pair of short sides (left side and right side in the figure) facing each other, It has a horizontally long rectangular shape composed of a pair of long sides (upper side and lower side in the figure) facing each other.
  • an LED light source substrate is disposed on each of the pair of short sides. Specifically, the LED light source substrate 140 a is disposed on the left side of the light guide plate 120, and the LED light source substrate 140 b is disposed on the right side of the light guide plate 120.
  • the LED light source board 140a is provided at the upper end of the left side, whereas the LED light source board 140b is provided at the lower end of the right side. That is, the LED light source substrate 140a is provided near the upper left corner of the light guide plate 120, whereas the LED light source substrate 140b is provided near the lower right corner of the light guide plate 120.
  • the length W1 of the light emitting portion of the LED light source substrate 140a and the length W2 of the light emitting portion of the LED light source substrate 140b are extremely short.
  • the total of W2 is a point shorter than the length of one short side of the light guide plate 120.
  • FIG. 2 shows a light irradiation range (also referred to as an irradiation region) by each LED light source substrate in the surface light source device 10 according to the first embodiment of the present invention.
  • (a) of Drawing 2 shows irradiation range 210a of light by LED light source board 140a.
  • FIG. 2B shows a light irradiation range 210b by the LED light source substrate 140b.
  • FIG. 2C shows the light irradiation range by both the LED light source substrates 140a and 140b.
  • the irradiation range 210a is The light guide plate 120 has a spread that forms a refraction angle ⁇ in the lower side direction. This is because the light emitted from the LED light source substrate 140a is refracted on the side surface (that is, the boundary surface) of the light guide plate 120. Thereby, in the lower left corner of the light guide plate 120, as shown in FIG. 2A, a dark portion 212a (a portion not hatched) where the light from the LED light source substrate 140a is not irradiated is formed. .
  • the refractive index ⁇ of the light guide plate 120 is larger than 1. For this reason, the refraction angle ⁇ formed by the normal line and the refraction line is smaller than 90 °.
  • FIG. 2C shows the irradiation range 210a and the irradiation range 210b superimposed on each other.
  • the irradiation range 210c indicated by the third hatch is a region where the irradiation range 210a and the irradiation range 210b overlap.
  • FIGS. 2A and 2B when the state in which only the LED light source board 140a is turned on and the state in which only the LED light source board 140b is turned on are individually viewed, a dark part 212a and a dark part are respectively shown. 212b is formed, but as shown in FIG. 2C, in the state where both the LED light source substrates 140a and 140b are turned on, the dark portion 212a is eliminated by the irradiation range 210b in the light guide plate 120. Since the dark part 212b is eliminated by the irradiation range 210a, the entire region becomes the irradiation range.
  • the surface light source device 10 of the present embodiment uses the LED light source substrate whose light-emitting portion is extremely short, but devise the arrangement as described above, thereby irradiating light on the light guide plate 120. It is possible to obtain a sufficient range.
  • the side length of the light guide plate 120 and the refractive index ⁇ of the light guide plate 120 are different from those of the present embodiment, at least one light emitting portion of the LED light source substrate 140a and the LED light source substrate 140b is used as necessary. By changing the length of, all the regions in the light guide plate 120 can be set as the irradiation range as in the present embodiment.
  • the entire area of the light guide plate 120 can be set as the irradiation range.
  • FIG. 2D shows an example in which the overlapping irradiation range 210c is 0, but all the regions in the light guide plate 120 can be covered by the irradiation ranges 210a and 210b of the light irradiated from the LED light source substrates 140a and 140b.
  • L that is the sum of the lengths of the LED light source substrate 140a and the LED light source substrate 140b is the shortest while satisfying the above formula (2).
  • the following formula (2 ′) is established between the lengths W1 and W2 of the LED light source substrates 140a and 140b and the length y of the short side of the light guide plate 120. ) Will be satisfied.
  • W1 + x ⁇ tan ( ⁇ ) + W2 y (2 ′)
  • W1 + W2 is the sum of the lengths of the LED light source substrate 140a and the LED light source substrate 140b is L
  • the refraction angle ⁇ is an angle satisfying the above equation (1).
  • the boundary line 213a moves downward, and when the length of the LED light source substrate 140b becomes longer, the boundary line 213b moves upward. To do. Therefore, from this state, when at least one of the LED light source substrate 140a and the LED light source substrate 140b is long, the irradiation range where the irradiation range 210a and the irradiation range 210b overlap as illustrated in FIG. 210c is formed.
  • the length of the light emitting portion (the length of at least one of the LED light source substrate 140a and the LED light source substrate 140b).
  • the length of the light emitting portion can be made as short as possible.
  • the surface light source device 10 of the present embodiment can relatively increase the luminance of each corner of the light guide plate 120.
  • the LED light source substrate 140a is disposed at the upper left corner of the light guide plate 120, it is possible to increase the luminance of the upper left corner, as well as the method of the LED light source substrate 140a.
  • the brightness of the upper right corner of the light guide plate 120 in the linear direction can also be increased. This is because a linear LED light source substrate generally has a high intensity of irradiation light in the normal direction.
  • the luminance of the lower right corner can be increased, as well as the LED light source substrate 140b.
  • the brightness of the lower left corner of the light guide plate 120 in the normal direction can also be increased.
  • the arrangement of the LED light source substrates 140a and 140b with respect to the light guide plate 120 is point symmetric, and the light reflection pattern on the light guide plate 120 is also point symmetric. It can be installed symmetrically in a liquid crystal display panel etc. in a rotated state. Thereby, the surface light source device 10 of this embodiment can improve the productivity at the time of the said integration. In this case, it is preferable to use the same LED light source substrate for the LED light source substrates 140a and 140b, thereby obtaining an effect such as component cost reduction.
  • FIG. 3 schematically shows a configuration of a surface light source device 30 according to the second embodiment of the present invention.
  • the surface light source device 30 of the second embodiment differs from the surface light source device 10 in the arrangement of each LED light source substrate, and is the same as the surface light source device 10 in other respects.
  • the LED light source substrate 140a is provided at the center of the left side of the light guide plate 120, and the LED light source substrate 140b is guided. It is provided at the center of the right side of the optical plate 120.
  • FIG. 4 shows a light irradiation range by each LED light source substrate in the surface light source device 30 according to the second embodiment of the present invention.
  • (a) of FIG. 4 shows the light irradiation range 210a by the LED light source board
  • FIG. 4B shows a light irradiation range 210b by the LED light source substrate 140b.
  • (c) of Drawing 4 shows the irradiation range of light by both LED light source boards 140a and 140b.
  • the irradiation range 210a is The light guide plate 120 has a spread that forms a refraction angle ⁇ in the upper side direction, and a light spread that forms a refraction angle ⁇ in the lower side direction of the light guide plate 120. Thereby, in each of the upper left corner and the lower left corner of the light guide plate 120, a dark portion 212a where the light from the LED light source substrate 140a is not irradiated is formed.
  • the light emitted from the LED light source substrate 140b travels in the direction of the left side of the light guide plate 120, and its irradiation range.
  • 210b has a spread forming a refraction angle ⁇ in the upper side direction of the light guide plate 120 and a spread forming a refraction angle ⁇ in the lower side direction of the light guide plate 120.
  • a dark portion 212b that is not irradiated with light from the LED light source substrate 140b is formed.
  • the surface light source device 30 of the present embodiment as shown in FIGS. 4A and 4B, only the LED light source board 140a is lit, and only the LED light source board 140b is lit. Are individually formed, a dark portion 212a and a dark portion 212b are formed. However, as shown in FIG. 4C, in the state where both the LED light source substrates 140a and 140b are turned on, the light guide plate 120 is formed. , The dark part 212a is eliminated by the irradiation range 210b, and the dark part 212b is eliminated by the irradiation range 210a.
  • the surface light source device 30 of the present embodiment also uses the LED light source substrate whose light emitting portion is extremely short, and has devised the arrangement as described above, thereby reducing the light irradiation range in the light guide plate 120. It is possible to get enough.
  • This surface light source device 30 can also irradiate light from the entire region of the light guide plate 120 with a short LED light source substrate, similarly to the surface light source device 10.
  • a short LED light source substrate similarly to the surface light source device 10.
  • the length of the light source substrate 140 is less than 0.8 times the length of the short side of the light guide plate 120, the length of the extension portion of the light guide plate 120 that is necessary.
  • the length of the light source substrate 140 is 0.8 times the length of the short side of the light guide plate 120. Even when the length is less than 10, the length of the extended portion is sufficiently less than 10% of the length of the short side of the light guide plate 120, and the length can be made substantially zero.
  • a surface light source device 50 according to a third embodiment which is an example of an edge light type light source substrate according to the present invention, will be described with reference to FIGS. 5 and 6.
  • FIG. 5 schematically shows a configuration of a surface light source device 50 according to a third embodiment of the present invention.
  • the surface light source device 50 of the third embodiment is different from the surface light source devices 10 and 30 in the arrangement of each LED light source substrate, and is the same as the surface light source devices 10 and 30 in other points.
  • the LED light source substrate 140a is provided at the left end of the upper side of the light guide plate 120, and the LED light source substrate 140b is guided. It is provided at the right end of the lower side of the optical plate 120. That is, in the surface light source device 50 of the third embodiment, the LED light source substrate is provided on each of the pair of long sides in the light guide plate 120.
  • FIG. 6 shows a light irradiation range by each LED light source substrate in the surface light source device 50 according to the third embodiment of the present invention.
  • the irradiation range of light by each LED light source substrate is shown.
  • (a) of Drawing 6 shows irradiation range 210a of light by LED light source board 140a.
  • FIG. 6B shows a light irradiation range 210b by the LED light source substrate 140b.
  • (c) of Drawing 6 shows the irradiation range of light by both LED light source boards 140a and 140b.
  • substrate 140a advances toward the lower side direction of the light-guide plate 120,
  • the irradiation range 210a is
  • the light guide plate 120 has a spread that forms a refraction angle ⁇ in the right side direction. Thereby, in the upper right corner portion of the light guide plate 120, a dark portion 212a where the light from the LED light source substrate 140a is not irradiated is formed.
  • the light emitted from the LED light source substrate 140b travels in the upper side direction of the light guide plate 120, and its irradiation range.
  • 210 b has a spread that forms a refraction angle ⁇ in the direction of the left side of the light guide plate 120.
  • a dark part 212b is formed where the light from the LED light source substrate 140b is not irradiated.
  • the light guide plate 120 is formed when both the LED light source substrates 140a and 140b are turned on. , The dark part 212a is eliminated by the irradiation range 210b, and the dark part 212b is eliminated by the irradiation range 210a.
  • the surface light source device 50 of the present embodiment also uses the LED light source substrate whose light emitting portion is extremely short, and has devised the arrangement as described above, so that the light irradiation range on the light guide plate 120 is reduced. It is possible to get enough.
  • the length of the long side of the light guide plate 120 is x
  • the length of the short side of the light guide plate 120 is y
  • the length of the LED light source substrate 140a and the LED light source substrate 140b are L
  • the surface light source device 50 of the present embodiment since the LED light source substrate is disposed along the long side of the light guide plate, the light emitted from the LED light source substrate passes through the light guide plate from the irradiation surface of the light guide plate. The distance until it is emitted is relatively short. Therefore, the light absorbed by the light guide plate is relatively small, and the light emission efficiency can be improved.
  • the surface light source device 70 of the fourth embodiment which is an example of the edge light type light source substrate according to the present invention, will be described with reference to FIGS. 7 and 8.
  • FIG. 7 schematically shows a configuration of a surface light source device 70 according to a fourth embodiment of the present invention.
  • the surface light source device 70 of the fourth embodiment is different from the surface light source devices 10, 30, and 50 in the arrangement of each LED light source substrate, and is otherwise the same as the surface light source devices 10, 30, and 50.
  • the surface light source device 70 of the fourth embodiment includes an LED light source substrate 140a, an LED light source substrate 140b, and an LED light source substrate 140c as LED light source substrates.
  • the LED light source substrate 140 a is provided at the left end portion of the upper side of the light guide plate 120, the LED light source substrate 140 b is provided at the right end portion of the upper side of the light guide plate 120, and the LED light source substrate 140 c is provided on the light guide plate 120. It is provided at the center of the lower side.
  • the surface light source device 70 of the fourth embodiment two LED light source substrates are provided on the point that three LED light source substrates are provided and one long side (upper side) of the light guide plate 120. This is different from the surface light source devices 10, 30, and 50 described so far.
  • FIG. 8 shows a light irradiation range by each LED light source substrate in the surface light source device 70 according to the fourth embodiment of the present invention.
  • the irradiation range of light by each LED light source substrate is shown.
  • (a) of FIG. 8 shows the irradiation range 210a of the light by the LED light source substrate 140a.
  • FIG. 8B shows a light irradiation range 210b by the LED light source substrate 140b.
  • FIG. 8C shows a light irradiation range 210c by the LED light source substrate 140c.
  • (d) of Drawing 8 shows the irradiation range of light by all LED light source boards 140a, b, and c.
  • the light emitted from the LED light source substrate 140a travels toward the lower side of the light guide plate 120, and the irradiation range 210a is as follows.
  • the light guide plate 120 has a spread that forms a refraction angle ⁇ in the right side direction.
  • the dark part 212a where the light from the LED light source substrate 140a is not irradiated is mainly formed in the upper right corner part of the light guide plate 120.
  • the light emitted from the LED light source substrate 140b travels toward the lower side of the light guide plate 120, and the irradiation range thereof.
  • 210 b has a spread that forms a refraction angle ⁇ in the direction of the left side of the light guide plate 120.
  • the dark part 212b where the light from the LED light source substrate 140b is not irradiated is mainly formed in the upper left corner of the light guide plate 120.
  • the light emitted from the LED light source substrate 140c travels in the upper side direction of the light guide plate 120, and its irradiation range.
  • 210 c has a spread that forms a refraction angle ⁇ in the direction of the left side of the light guide plate 120 and a spread that forms a refraction angle ⁇ in the direction of the right side of the light guide plate 120.
  • a dark portion 212c that is not irradiated with light from the LED light source substrate 140b is formed.
  • FIGS. 8A to 8C only the LED light source board 140a is lit, only the LED light source board 140b is lit, the LED light source When the state in which only the substrate 140c is lit is viewed individually, a dark portion 212a, a dark portion 212b, and a dark portion 212c are formed, respectively, but as shown in FIG.
  • the LED light source substrates 140a, 140b In the state where all c are turned on, in the light guide plate 120, the dark portion 212a is eliminated by the irradiation ranges 210b and c, the dark portion 212b is eliminated by the irradiation ranges 210a and c, and the dark portion 212c is eliminated by the irradiation ranges 210a and b. Therefore, all the areas are the irradiation range.
  • the surface light source device 70 of the present embodiment also uses an LED light source substrate whose light emitting portion is extremely short, but the number and arrangement of the surface light source device 70 are devised as described above. It is possible to obtain a sufficient range.
  • the length of the light emitting portion is set by appropriately arranging each LED light source substrate as described above in view of the spreading shape of the light emitted from each LED light source substrate.
  • the surface light source device 70 of the present embodiment increases the number of LED light source substrates by one as compared with the surface light source device 50 of the third embodiment, but extremely reduces the size of the LED light source substrate. Can do.
  • N 2
  • L 0, the above formula (5) is not satisfied. That is, there is a limit to shortening the total length of the LED light source substrates.
  • the edge light type surface light source device 30 described in the second embodiment has a configuration in which the LED light source substrate is provided at the center of the short side of the light guide plate 120, the brightness of each corner of the light guide plate 120 is other than this. It may be lower than the part.
  • FIG. 9 is a cross-sectional view showing a configuration of a surface light source device 30 according to a fifth embodiment of the present invention.
  • the conventional edge light type surface light source device is provided with the LED light source substrate only on one short side of the light guide plate 120.
  • the surface light source device 30 is provided with LED light source substrates on both short sides of the light guide plate 120.
  • the surface light source device 30 of the present embodiment is provided with the reflective material 131 on both short sides of the light guide plate 120.
  • the conventional edge light type surface light source device has such a reflective material. Is not provided.
  • FIG. 10 shows the configuration of the reflective sheet 130 and the reflective material 131 provided in the surface light source device 30 according to the fifth embodiment of the present invention.
  • a reflective material 131 is integrally formed on the reflective sheet 130 of the surface light source device 30.
  • each of the pair of short sides has a portion that is extended with a certain width along the short side, and the extended portion is a reflection material. 131.
  • the reflective member 131 is bent vertically at the boundary line (broken line in the figure) with the reflective sheet 130, and thereby the side surface of the light guide plate 120 can be covered. For this reason, the width of the reflector 131 is sufficient to cover the side surface of the light guide plate 120. Further, the boundary line portion is subjected to perforation processing, half cut processing, compression processing, etc. in order to make the bending easy and reliable.
  • the reflective material 131 is provided at both ends of each of the pair of short sides.
  • a material having a total light reflectance of about 70% or more is used for the reflector 131.
  • the surface light source device 30 of this embodiment can cover the short side surface with the reflective material 131 in all the corners of the light guide plate 120 to increase the luminance of the corners. .
  • a notch 132 which is a portion where the reflective material 131 is not provided, is provided at the center of each of the pair of short sides.
  • the notch 132 is provided so as not to block light emitted from the LED light source substrate. Therefore, it is preferable that the length of the cutout portion 132 is at least longer than the length of the light emitting portion of the LED light source substrate.
  • the notch portion 132 is not provided is possible if the light emitted from the LED light source substrate is not blocked.
  • it can be set as the structure which does not block the light irradiated from the LED light source board
  • the reflective material 131 is comprised so that all the side surfaces of the light guide plate 120 may be covered, and LED light source board
  • the light irradiated from the LED light source substrate can be configured not to be blocked.
  • the configuration of the reflecting material 131 can be simplified, or the number of parts of the reflecting material 131 can be reduced.
  • the reflective member 131 is provided to increase the reflectance at an arbitrary portion of the light guide plate 120 (each corner portion in the above example).
  • the side surface of the light guide plate 120 is white.
  • the reflectance of an arbitrary portion of the light guide plate 120 may be increased by other configurations such as applying a paint or depositing a metal having a high reflectance such as silver. In these cases, a function similar to that of the reflective member 131 can be easily realized.
  • the reflectance of an arbitrary part of the light guide plate 120 may be lowered by installing, applying, vapor deposition, or the like on the side surface of the light guide plate 120.
  • the material include a material having a total light reflectance of about 10% or less, which can be generally recognized as black, such as a resin or paint containing carbon black.
  • FIG. 11 shows a lateral configuration of the light guide plate 120 in the surface light source device 30 according to the fifth embodiment of the present invention.
  • FIG. 11 shows a state in which the light guide plate 120, the reflective sheet 130, the reflective material 131, the LED light source substrate 140a, and the LED light source substrate 140b are combined with each other.
  • the LED light source substrate 140a and the LED light source substrate 140b have a reflection sheet fixing member 630 in addition to the wiring substrate 610 and the LED package 620.
  • the reflection sheet fixing member 630 is a member that protrudes from the wiring board 610 toward the light guide plate 120, and presses the reflection material 131 against the light guide plate 120.
  • the surface light source device 30 of this embodiment does not need to separately provide a member for fixing the reflective material 131, and the reflective material 131 can be easily fixed.
  • the reflection sheet fixing member 630 can be configured integrally with the wiring board 610.
  • LED elements may be COB mounted on the wiring substrate.
  • the wiring board and the reflection sheet fixing member can be easily integrally formed by injection molding the wiring board.
  • FIG. 12 shows a lateral configuration of the light guide plate 120 in the surface light source device 30 according to the sixth embodiment of the present invention.
  • FIG. 12 specifically shows a partial configuration of the surface light source device 30 of the second embodiment.
  • the light guide plate 120, the reflection sheet 130, the reflective material 131, the LED light source substrate 140 a, and the LED light source substrate 140 b include , Shows a combined state.
  • the light source substrate 140a and the light source substrate 140b are configured by connecting a plurality (three in this example) of small substrates 141.
  • the plurality of small substrates 141 are configured to be mechanically and electrically connectable to each other, and can be handled in the same manner as a single light source substrate.
  • the reflective member 131 is also configured to be mechanically connectable to the small substrate 141.
  • any known configuration may be used for the configuration of the connecting portion.
  • a configuration in which both the members are connected by fitting the convex portion of one member and the concave portion of the other member is used. it can.
  • the LED light source substrate is provided on the side surface of the light guide plate 120 by connecting the reflective material 131 to both ends of the LED light source substrate 140a and the LED light source substrate 140b.
  • the reflectance of the non-existing portion is adjusted, and the same effect as that of the surface light source device 30 of the fifth embodiment can be obtained.
  • the surface light source device 30 of the present embodiment can easily change the reflectance by using a detachable reflecting material 131.
  • the configuration of the reflective material 131 is not limited to this. That is, the reflective material 131 may be provided as a single member. In that case, the position of the reflector 131 can be fixed by being adhered to the light guide plate 120 by an adhesive means such as an adhesive or a tape.
  • FIG. 13 shows a lateral configuration of the light guide plate 120 in the surface light source device 30 according to the seventh embodiment of the present invention.
  • the shape of the reflector 131 is different from that of the sixth embodiment. Specifically, in the present embodiment, the substrate portion of the small substrate 141 is used as the reflector 131.
  • the reflector 131 of the present embodiment can use the substrate portion of the small substrate 141 as it is, and can be connected in the same manner as the small substrate 141. Therefore, the reflective material 131 of this embodiment can ensure the performance and reliability equivalent to the small substrate 141 regarding the structure and intensity
  • a material having high reflectivity is used for the substrate portion of the small substrate 141 in order to effectively use light, it can be used as it is as the reflective material 131 having high reflectivity without being processed. It is possible.
  • the LED light source substrate is used as the light source, but the present invention is not limited to this.
  • an LED light source substrate as a light source, it is possible to achieve the same luminance with a shorter light source substrate.
  • the luminance of an arbitrary portion of the conductor plate 120 can be easily adjusted by adjusting the number and arrangement (position and interval) of the LED elements. For example, when increasing the luminance at the end of the short side of the conductor plate 120, this can be easily realized by shortening the installation interval of the LED elements at the end.
  • an LED package may be used as a method for mounting the LED element on the LED light source substrate, but COB mounting is more preferable for the following reasons.
  • FIG. 26 shows a schematic configuration of a surface light source device according to this application example and a state of light irradiation.
  • the dark portion 212a that is not irradiated with light from the LED light source substrate 140a is illuminated by the LED light source substrate 140b, and the dark portion 212b that is not irradiated with light from the LED light source substrate 140b.
  • the LED light source substrate 140a was illuminated by the LED light source substrate 140a. In this manner, a configuration in which light is irradiated from all the irradiation surfaces of the light guide plate 120 was realized.
  • FIG. 26 shows a surface light source device 300 which is an application example of the surface light source device 30.
  • the surface light source device 300 includes the same members as the surface light source device 30.
  • FIG. 26 shows an LED package (point light source, light emitting diode) 620a which is an LED package 620 provided on the LED light source board 140a, and an LED package 620b which is an LED package 620 provided on the LED light source board 140b.
  • the LED light source substrate 140a is disposed so as to extend along the left side of the light guide plate 120, and there are a plurality of LED packages 620a in the extending direction of the LED light source substrate 140a (seven in FIG. 26, but not limited thereto). ) It is provided side by side.
  • the LED light source substrate 140b is arranged so as to extend along the right side of the light guide plate 120, and there are a plurality of LED packages 620b in the extending direction of the LED light source substrate 140b (seven in FIG. (But not limited to).
  • the irradiation range 210c is divided into an irradiation range 210ca that is mainly illuminated by light emitted from the LED light source substrate 140a and an irradiation range 210cb that is mainly illuminated by light emitted from the LED light source substrate 140b. It is done. For this reason, the portions illuminated mainly by the light emitted from the LED light source substrate 140a are irradiation ranges 210a and 210ca (white portions in the irradiation surface of the light guide plate 120). On the other hand, the portions illuminated mainly by the light emitted from the LED light source substrate 140b are irradiation ranges 210b and 210cb (gray portions in the irradiation surface of the light guide plate 120).
  • the luminance of the light emitted from the white portion is the same as the luminance of the light emitted from the gray portion, the brightness of the light emitted from all the irradiation surfaces of the light guide plate 120 can be made uniform. It is considered possible. And as a method of making the luminance of the light emitted from the white portion the same as the luminance of the light emitted from the gray portion, the following method can be mentioned. That is, the luminance distribution due to irradiation by the LED light source substrate 140a and the luminance distribution due to irradiation by the LED light source substrate 140b on the entire irradiation surface of the light guide plate 120 have a mutually opposite relationship.
  • the reverse phase refers to a state in which the luminance distribution (luminance magnitude) of one emission is substantially inverted with respect to the luminance distribution (luminance magnitude) of the other emission with respect to two types of emission that illuminate the same region. Means. Therefore, in other words, the luminance distribution obtained from the light emitted from the LED light source substrate 140a is compared with the luminance distribution obtained from the light emitted from the LED light source substrate 140b over the entire irradiation surface of the light guide plate 120. The size is almost reversed.
  • the reflection pattern 122 (see FIG. 20) appropriately, it is easy to obtain a desired surface light emission pattern, and thus the configuration having the above-described reverse phase relationship is realized. That is technically easy.
  • FIG. 27 is a waveform showing the brightness due to irradiation by each of the LED light source substrate 140a and the LED light source substrate 140b in the surface light source device 300 (application example), and shows the relationship of brightness between AA ′ in FIG. Show.
  • the brightness (luminance) due to irradiation by the LED light source substrate 140a is high in the irradiation range 210ca (white portion), and the irradiation range. It is low at 210b (gray portion).
  • the brightness due to irradiation by the LED light source substrate 140b is low in the irradiation range 210ca and high in the irradiation range 210b.
  • the example shown in FIG. 27 irradiates the surface light source device 300 with light having substantially uniform luminance in the entire range where the LED light source substrate 140a and the LED light source substrate 140b emit light.
  • the LED packages 620a normally have substantially uniform luminance, and the LED packages 620b also have substantially uniform luminance.
  • the brightness gradient at a position where the brightness changes due to the irradiation by the LED light source substrate 140a at the boundary between the irradiation range 210ca and the irradiation range 210b, and the same gradient due to the irradiation by the LED light source substrate 140b. Is steep. This is because the LED light source substrate 140a and the LED light source substrate 140b irradiate light having substantially uniform luminance in the entire light irradiation range, so that the edge of the range is almost the same as the range other than the edge. Due to being bright.
  • the brightness changes due to the irradiation by the LED light source board 140a and the brightness by the irradiation by the LED light source board 140b.
  • the brightness of the backlight is constant, and it can be said that uniform irradiation is realized on all irradiation surfaces of the light guide plate 120.
  • the LED light source board 140a when the LED light source board 140a is displaced downward for some reason, as shown in the lower graph of FIG. 27, the brightness changes due to the irradiation by the LED light source board 140a and the LED light source board 140b.
  • the brightness changes due to irradiation.
  • the portion BM1 in which the brightness of the backlight falls is generated as a large drop in a narrow range, which causes uneven illumination on the illumination surface of the light guide plate 120 (that is, uneven brightness).
  • the LED light source substrate 140a is arranged to be shifted to other than the bottom, and further to the case where the LED light source substrate 140b is arranged to be displaced.
  • the LED light source substrate 140a and the LED light source substrate 140b are disposed in the entire light irradiation range in order to suppress non-uniform irradiation on the irradiation surface of the light guide plate 120. Therefore, it is configured to irradiate light having a smaller luminance gradient at the edge of the range than light having substantially uniform luminance.
  • FIG. 26 This will be described with reference to FIGS. 26 and 28 to 30.
  • FIG. 28 is a waveform showing brightness due to irradiation by each of the LED light source substrate 140a and the LED light source substrate 140b in the surface light source device 300 (modified example of the application example), and the brightness between AA ′ in FIG. Shows the relationship.
  • the surface light source device 300 achieves uniform irradiation over the entire irradiation surface of the light guide plate 120 in the same manner as in FIG. 27, and this is shown as the brightness of the backlight in FIG. Yes.
  • each LED package 620a and each LED package 620b in this case will be described later.
  • the brightness changes due to the irradiation with the LED light source board 140a and the brightness due to the irradiation with the LED light source board 140b.
  • the brightness of the backlight is constant, and it can be said that uniform irradiation is realized on all irradiation surfaces of the light guide plate 120.
  • the LED light source board 140a when the LED light source board 140a is shifted downward for some reason, as shown in the graph in the lower part of FIG. 28, the brightness changes due to the irradiation by the LED light source board 140a and the LED light source board 140b. The brightness changes due to irradiation.
  • the portion BM2 in which the brightness of the backlight is reduced occurs as a dip that is smaller than that of the BM1 though it is in a wide range. Since the BM2 appears as a small drop in a wide range, it is less noticeable as luminance unevenness, and the influence on the irradiation surface of the light guide plate 120 is non-uniform.
  • the LED light source substrate 140a is arranged to be shifted to other than the bottom, and further to the case where the LED light source substrate 140b is arranged to be displaced.
  • the configuration of the LED light source substrate 140a and the LED light source substrate 140b for realizing the example shown in FIG. 28 will be described.
  • the LED light source substrate 140a will be described for convenience, but the same configuration as that of the LED light source substrate 140a can be applied to the LED light source substrate 140b.
  • the LED light source substrate 140a is arranged so as to extend along the left side of the light guide plate 120 (the LED light source substrate 140b extends along the right side of the light guide plate 120).
  • the luminance of light emitted from both ends of the LED light source substrate 140a is preferably smaller than the luminance of light emitted from the central portion of the LED light source substrate 140a.
  • the luminance of the LED package 620a arranged at both ends S and S of the LED light source substrate 140a is made smaller than the luminance of the LED package 620a arranged at the central portion C of the LED light source substrate 140a (see FIG. 29).
  • the plurality of LED packages 620a arranged at both ends S and S of the LED light source substrate 140a are arranged more sparser than the plurality of LED packages 620a arranged at the central portion C of the LED light source substrate 140a (see FIG. 30).
  • the current value for driving the LED package 620a disposed at both ends S and S of the LED light source substrate 140a is the current value for driving the LED package 620a disposed at the central portion C of the LED light source substrate 140a. Smaller than.
  • a plurality of LED packages 620a connected in parallel to each other are provided on both ends S and S and the central portion C of the LED light source substrate 140a. At this time, the number of LED packages 620a connected in parallel at both ends S and S is made larger than the number of LED packages 620a connected in parallel at the central portion C.
  • each LED package 620a of the LED light source board 140a is driven by PWM (Pulse Width Modulation).
  • the duty ratio of the current for driving the LED package 620a disposed at both ends S and S of the LED light source substrate 140a is set to the duty ratio of the current for driving the LED package 620a disposed at the central portion C of the LED light source substrate 140a. Smaller than the ratio.
  • the luminance of light emitted from both ends of the LED light source substrate 140a is reduced by about 5 to 10% with respect to the luminance of light emitted from the central portion of the LED light source substrate 140a. If a large change is made at once, a step (a portion where the change is extremely steep) occurs in the brightness gradient of the LED package 620a itself, and this step causes uneven brightness.
  • the luminance is changed sufficiently gently from the central portion C toward both ends S ⁇ S, the luminance of the light emitted from both ends of the LED light source substrate 140a is set to the luminance of the light emitted from the central portion of the LED light source substrate 140a. It is possible to reduce the luminance by about 30% at the maximum.
  • the LED light source substrate 140a is a light source (herein referred to as a reference light source) that irradiates light having light distribution characteristics of light emitted from both ends and having substantially uniform luminance in the entire light irradiation range. Preferably they are different.
  • the direction of at least one LED package 620a provided at both ends S and S of the LED light source substrate 140a is made different from that of the reference light source.
  • at least one LED package 620a provided at both ends S and S of the LED light source substrate 140a may be inclined toward the central portion C side or the other side.
  • at least one LED package 620a provided at both ends S and S of the LED light source board 140a may be provided in a state of being rotated in a direction parallel to the surface of the wiring board 610a.
  • the height at which at least one LED package 620a provided at both ends S and S of the LED light source substrate 140a is arranged is different from that of the reference light source.
  • all LED packages 620a provided on the LED light source substrate 140a are prevented from having the same light distribution characteristics.
  • a light reflecting member (light reflecting means) 730a that reflects light emitted from both ends S and S of the LED light source substrate 140a is provided (see FIG. 33).
  • a material having a total light reflectance of about 70% or more is used for the light reflecting member 730a.
  • a light absorbing member (light absorbing means) 740a that absorbs light emitted from both ends S and S of the LED light source substrate 140a is provided (see FIG. 34).
  • a light diffusing member (light diffusing means) 750a for diffusing light emitted from both ends S and S of the LED light source substrate 140a is provided (see FIG. 35).
  • the light diffusion member 750a for example, the same material as that of the diffusion sheet 150 is used.
  • the LED light source substrate 140a may be one in which each LED package 620a is mounted on a lead frame by a wire bonding method.
  • the LED light source substrate 140a may be one in which each LED package 620a is mounted on the substrate by a wire bonding method.
  • the LED light source substrate 140a may be one in which each LED package 620a is mounted on the substrate by a joining method using solder.
  • the LED package 620a may be a white LED (white light emitting diode), and the surface light source device 300 may include a plurality of LED packages 620a having different emission colors.
  • the LED light source substrate 140a preferably includes three or more such LED packages 620a.
  • the surface light source device 300 In the edge light type surface light source device using the LED light source substrate 140a shorter than the side of the corresponding light guide plate 120, the surface light source device 300 generally has uniform luminance. In this case, if the luminance gradient is large at the edge of the light emitted from the LED light source substrate 140a, luminance unevenness due to the positional deviation of the LED light source substrate 140a is likely to occur.
  • the LED packages 620a are sparsely arranged at both ends S and S of the LED light source substrate 140a. Also, a circuit for driving the LED package 620a at both ends S and S of the LED light source substrate 140a and a circuit for driving the LED package 620a at the central portion C of the LED light source substrate 140a are separated. Only for the LED package 620a at both ends S ⁇ S, the current value or the duty ratio for driving it is lowered.
  • the LED packages 620a at both ends S and S of the LED light source substrate 140a are tilted.
  • luminance unevenness due to the assembly accuracy of the surface light source device 300 can be reduced, and strictness with respect to tolerance can be reduced.
  • the surface light source device 300 shown in FIG. 26 is a combination of the configuration of the surface light source device 30 and the technical ideas related to the application example and the modified example, and any one of the surface light source devices 10, 50, 70, Naturally, it may be combined with the technical ideas according to the application examples and the modified examples.
  • the LED light source substrate 140a When the LED light source substrate 140a is arranged in the middle of the corresponding side of the light guide plate 120, it is necessary to make the luminance gradient of both ends S ⁇ S gentle, but when the LED package 620a is arranged at the corner of the side. The effect can be obtained by reducing the gradient of the luminance at one end S (the far side from the corner).
  • the at least one light source includes three or more point light sources.
  • At least one light source is arranged so as to extend along the side of the corresponding light guide means and is emitted from at least one end thereof. It is preferable that the brightness of the light to be emitted is smaller than the brightness of the light emitted from the central portion.
  • the at least one light source has a luminance of the point light source arranged at the end portion higher than a luminance of the point light source arranged at the central portion. small.
  • the at least one light source includes a plurality of the point light sources at each of the end portion and the central portion, and is disposed at the end portion.
  • the plurality of point light sources are arranged sparser than the plurality of point light sources arranged in the central portion.
  • the at least one light source is configured such that a current value of a current driving the point light source disposed at the end portion is disposed at the central portion. It is smaller than the current value of the current for driving the point light source.
  • the at least one light source includes a plurality of the point light sources at each of the end portion and the central portion, and the point light source at the end portion. Is larger than the number of columns of the point light sources in the central portion.
  • the at least one light source has a duty ratio of current for driving the point light source by pulse width modulation and driving the point light source disposed at the end.
  • the duty ratio of the current for driving the point light source disposed in the central portion is smaller.
  • At least one light source is arranged so as to extend along the side of the corresponding light guide means and is emitted from at least one end thereof. It is preferable that the light distribution characteristic of the light is different from a reference light source that is a light source that emits light having substantially uniform luminance in the entire light irradiation range.
  • the at least one light source is different from the reference light source in the direction of at least one point light source provided at the end.
  • the height of the at least one light source in which the at least one point light source provided at the end is arranged is different from the reference light source.
  • the three or more point light sources are not all of the same light distribution characteristics.
  • the edge light type surface light source device of the present invention includes light reflecting means for reflecting the light emitted from the end portion.
  • the edge light type surface light source device of the present invention includes a light absorbing means for absorbing light emitted from the end portion.
  • the edge light type surface light source device of the present invention comprises a light diffusing means for diffusing the light emitted from the end portion.
  • the at least one light source may be one in which the point light source is mounted on a lead frame by a wire bonding method.
  • the at least one light source may be one in which the point light source is mounted on a substrate by a wire bonding method.
  • the at least one light source may be one in which the point light source is mounted on a substrate by a joining method using solder.
  • the point light source is preferably a light emitting diode.
  • the light emitting diode may be a white light emitting diode.
  • the edge light type surface light source device of the present invention may include a plurality of the light emitting diodes having different emission colors.
  • the edge light type surface light source device of the present invention includes a luminance distribution by irradiation of light emitted from one of the plurality of light sources over the entire irradiation surface of the light guide unit, and another of the plurality of light sources. It is preferable that the luminance distribution due to the irradiation of light emitted from one of them has a phase relationship opposite to each other.
  • the present invention can be used for an edge light type surface light source device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Planar Illumination Modules (AREA)
  • Fastening Of Light Sources Or Lamp Holders (AREA)
  • Led Device Packages (AREA)

Abstract

 導光板の照射面の全面において十分かつ均一な輝度を得ると共に、低コスト化を図ることを可能とする。LED光源基板(140a)および(140b)は、光を照射する範囲の全てにて略均一な輝度を有する光よりも、この範囲の縁における輝度の勾配が小さい光を照射するように構成されている。

Description

エッジライト型面光源装置
 本発明は、エッジライト型面光源装置に関する。
 主に液晶用バックライトの用途として、導光板を用いたエッジライト型面光源装置が広く普及している。
 液晶用バックライトでは、導光板を用いずに液晶パネルの直下に光源を配置する直下型のバックライトと比べ、線状光源を縁に配置し導光板にて面状の発光に変換するエッジライト型の面光源装置が、液晶用バックライトモジュールやその応用商品の薄型化に効果的であり、主流となっている(例えば、下記特許文献1参照)。また、一部では、照明用としても、エッジライト型の面光源装置が使用されている。
 従来は、これらの光源装置の発光源として冷陰極管(CCFL:Cold Cathode Fluorescent Lamp)が主流であったが、近年、発光ダイオード(LED:Light Emitting Diode)への置き換えが進んでいる。この置き換えにより、CCFLや蛍光灯で使用される環境負荷の高い水銀の使用を廃止し、消費電力を削減し、色再現性を高め、光源装置の寿命を長らえることが可能になる。
 ここで、図14~図25を用いて、従来のエッジライト型面光源装置について説明する。図14は、従来のエッジライト型の面光源装置の構成を示す分解斜視図である。図15は、図14に示す従来のエッジライト型の面光源装置の、組み立てられた状態の断面図である。
 図14および図15に示すように、従来のエッジライト型の面光源装置であるLED光源装置100は、筐体160、導光板120、反射シート130、拡散シート150、およびLED光源基板140を備えている。
 なお、導光板120として比較的薄手のものが使用される場合は導光シートと呼ばれることがあるが、これらには厳密な区別は無く、慣用的に使い分けられる表現である。ここで導光板120と称する部材は導光シートと呼ばれるものを含む導光手段一般である。
 LED光源基板140は、導光板120へ照射するための照射光を発光する。LED光源基板140から照射された照射光は、導光板120の一側面である入射面から、導光板120内へ入射される。入射面から入射した上記照射光は、導光板120の内部でミキシングおよび均一化され、面状光となって導光板120の照射面となる天面から出射される。
 反射シート130は、導光板120の裏面側(上記照射面の反対側)に配置され、当該裏面側に漏れた光を導光板内へ戻すことにより、光の利用効率の向上に寄与する。
 拡散シート150は、導光板120の表面側(上記照射面側)に配置され、当該表面側に出射された光を均一化し、輝度ムラを低減する効果があり、必要に応じてその他の様々な光学シート(例えば、レンズシート、偏光反射シート等)と組み合わせて用いられる。
 筐体160はこれらの部材を内部に収納し、当該内部においてこれらの部材を固定および支持する。
 LED光源装置100は、上記構成により、LED光源基板140の発光を利用した面照射装置として機能する。
 ここで、図16~図19を用いて、従来のエッジライト型面光源装置が備えるLED光源基板の構成について具体的に説明する。
 図16は、従来のエッジライト型面光源装置が備えるLED光源基板の外観を示す。図17は、図16に示したLED光源基板の断面図である。
 LED光源基板600は、図16に示すように、平板状の配線基板610上に、複数のLEDパッケージ620およびコネクタ601が実装されて構成されている。LEDパッケージ620は、コネクタ601およびハーネス(図示省略)を介して、外部(図示省略)と電気的に接続され、これにより、外部からの発光の制御が可能となっている。
 図17を用いて、LEDパッケージ620周辺の構造を更に詳細に説明する。
 配線基板610は、基材611、配線層612、およびソルダーレジスト層613が積層されて構成されている。配線層612の上に、半田626によりLEDパッケージ620が接続および固定される。
 LEDパッケージ620は、LED素子621、封止樹脂622、ボンディングワイヤ623、配線層624、基材625を含む。LED素子621は基材625上に実装され、ボンディングワイヤ623を用いて配線層624に接続される。封止樹脂622は基材625の内部を樹脂にて封止することで、内部の部品や接続状態を保護する。また、封止樹脂622は、蛍光体を含有することで、LED素子621の発光色を変換することが可能であり、例えば青色LED素子と黄色蛍光体を使用して白色を発するLEDパッケージを構成することができる。配線層624は、半田626にて接続される部位と、LED素子621がワイヤボンディングされる部位を配線する。
 図17にて示す例では、配線層624は基材625を貫通する形状となっており、半田626は、基材625の底面側の配線層624に接続されており、LED素子621は、基材625の天面側の配線層624に接続されている。
 図17に示す構成により、LED素子621は、LED素子は機構的に固定されつつ、配線基板610、コネクタ601、およびハーネス(図示省略)を介して、外部(図示省略)と電気的に接続され、これにより、外部からの発光の制御が可能となっている。
 図18は、従来のエッジライト型面光源装置が備えるLED光源基板の他の一例を示す。図19は、図18に示したLED光源基板のA-A矢視断面図である。図18および図19に示すLED光源基板500は、LEDパッケージを用いずに、基材511上にLED素子515がCOB(Chip On Board)にて実装されている。すなわち、LED素子515は、基材511の上に直接実装されている。基材511は、その表面に別の層(例えば配線層513)を備えていてもよく、この場合、LED素子515をその別の層の表面に実装することも可能である。いずれにせよ、COBでは、LED素子515はパッケージに格納された上で間接的に配線基板に実装されるのではなく、素子のままで実装される。
 基材511は、表面(図19にて、基材511で最も上に水平に描かれた面)と、そこから窪んだ凹部を有し、LED素子515はこれらの凹部の内部に実装される。
 LED光源基板500では、配線層513およびLED素子515はボンディングワイヤ516により電気的に接続される。また、特に図示しないが、配線層513はコネクタ512の有する電極端子と電気的に接続される。この構成により、コネクタ512に接続されたハーネス(不図示)を電気的に制御することでLED素子515の発光を制御することが可能になる。
 LED素子515、ボンディングワイヤ516、およびこれらの接続部位は、衝撃により容易に破損するので、それを防止するため、LED素子515とボンディングワイヤ516は接続部分も含めて封止樹脂514により封止される。すなわち、凹部に封止樹脂514が注入される。この構成により、LED素子515およびボンディングワイヤ516は、外部から付加されるある程度の衝撃に耐えられることに加え、水分・異物などから保護される。
 また、封止樹脂514に着色剤や蛍光体が添加されることで、LED光源基板500の出射光の色調の調整が可能である。例えば、LED素子515が青色や紫外線を発光し、封止樹脂514内に適合する蛍光体を含有することで、LED光源基板500は白色光を出射することができる。
 LED光源基板140を、LED光源基板600のようにLEDパッケージと配線基板を用いて構成することは、外形をプレス加工やルーター加工で作成できるので比較的大型の基板を作成しやすいこと、一般的なマウンタを用いてLEDパッケージを実装できること、などの利点がある。それに対し、LED光源基板500のようにCOBによりLED素子を実装する方法は、実装に半田を使用する必要が無いので使用時の半田温度に起因する温度の制約が無いこと、LEDパッケージと同様の工程で最終の形態に製造できるので小型の基板であれば低コストで製造できること、などの利点がある。
 図20は、従来のエッジライト型面光源装置における、光の反射パターンを示す。図20において、LED光源基板140から発せられた光は、導光板120の入射面(図の左辺)より導光板120へ入射される。導光板120は、導光体121と反射パターン122からなる。
 図20において、代表的な入射光の軌跡を矢印で示している。LED光源基板140より出射され、導光体121の入射面に照射された光は、その入射角がある程度より小さい場合、屈折して導光体121の内部に入射され、その入射角がある程度より大きい場合、入射面で全反射し、導光体121の内部には入射されない。
 導光体121に入射された入射光は、導光体121の天面および底面で全反射を繰り返す。入射光が反射パターン122に当たると、そこで拡散反射され、多くの成分が天面すなわち出射面より出射される。
 通常、面発光パターンを均一化したり、所望の面発光パターンとしたりするため、反射パターン122は適正に設定される。例えば、均一な発光パターンを実現するためには、光源から遠い部位は反射パターンの密度を大きく(ひとつひとつの反射パターンが大きい、面積当たりの反射パターンの数が多い、あるいはそれらの組み合わせなど)、光源から近い部位は反射パターンの密度を小さく(ひとつひとつの反射パターンが小さい、面積当たりの反射パターンの数が少ない、あるいはそれらの組み合わせなど)する。
 導光体121の材質には、透過率が非常に高いアクリル樹脂や、透過率がある程度高く強度が高いポリカーボネート等が使用されることが多い。特に、ある程度大きなサイズの面光源モジュールでは、導光板による吸収のために失われる光の量が無視できないので、アクリル樹脂を使用することが多い。一方、サイズが比較的小さく強度が必要な場合は、ポリカーボネートが使用されることが多い。
 反射パターン122は、導光体121へのレーザーマーキング、塗料の塗布などにより導光体121に付加することも出来、また導光体121の成形時に同時に形成される形状にて実現することも可能である。
 ここで、図21~図24を用いて、従来のエッジライト型面光源装置における光源基板の配置について説明する。図21~図24は、従来のエッジライト型面光源装置における光源基板の配置を概略的に示すものである。
 図21に示す例では、導光板120の一組の長辺(図中上辺および下辺)の各々に、光源基板140aおよび光源基板140bが配置されている。光源基板140aおよび光源基板140bの各々の長さは、導光板120の一組の長辺の各々の長さと等しくなっている。
 図22に示す例では、導光板120の一組の短辺(図中左辺および右辺)の各々に、光源基板140aおよび光源基板140bが配置されている。光源基板140aおよび光源基板140bの各々の長さは、導光板120の一組の短辺の各々の長さと等しくなっている。
 図23に示す例では、導光板120の一の長辺(図中下辺)に、光源基板140が配置されている。光源基板140の長さは、導光板120の一の長辺の長さと等しくなっている。
 図24に示す例では、導光板120の一の短辺(図中左辺)に、光源基板140が配置されている。光源基板140の長さは、導光板120の一の短辺の長さと等しくなっている。
 ここで、光源基板を導光板の長辺に配置するよりも、導光板の短辺に配置する方が、光源基板の合計長さをより短くできる。また、光源基板を導光板の2辺に配置するよりも、導光板の1辺に配置する方が、光源基板の合計長さをより短くできる。
 例えば、図22に示す構成の方が、図21に示す構成よりも、光源基板の合計長さをより短くできる。また、図23に示す構成の方が、図21に示す構成よりも、光源基板の長さの合計を短くすることができる。また、図24に示す構成の方が、図22に示す構成よりも、光源基板の長さの合計を短くすることができる。
 一般に、光源基板の長さの合計を短くすることは、生産コストの低減、製品重量の低減、部材の使用量低減による環境負荷の低減、寸法および重量の低下に伴う輸送費の低減など、多くのメリットが見出せる。
 しかしながら、光源基板の長さの合計を最も短くすることができる図24の構成を採用したとしても、光源基板の長さは、対応する辺の長さと等しくする必要がある。その理由は、導光板における輝度をなるべく均一にするという要求を満たす必要があり、光源基板の長さを対応する辺の長さと等しくすることにより、容易にこれを実現できるからである。すなわち、図24の構成を採用した場合、光源基板の長さを、対応する辺の長さよりも短くしてしまうと、導光板において十分な輝度が得られない部分が生じてしまう。
 この問題について、図25を用いて具体的に説明する。図25は、導光板の一辺に光源基板を配置した従来の面光源装置における、光源基板による光の照射範囲を示す。図25では、従来の面光源装置において、導光板120の短辺1辺に対し、試験的に当該辺よりも短い光源基板140を配置した例を示す。
 図25に示すように、従来の面光源装置においては、LED光源基板140から照射された光は、導光板120の右辺方向に向かって進行し、その照射範囲210aは、導光板120の上辺方向への屈折角αをなす広がり、および、導光板120の下辺方向への屈折角αをなす広がりを持っている。
 これは、LED光源基板140から照射された光が、導光板120の側面(すなわち、境界面)において屈折するからである。これにより、導光板120の左上角部および左下角部の各々においては、図25に示すように、LED光源基板140からの光が照射されない暗部(ハッチが施されていない部分)が形成されている。
 このように、光源基板140の長さを対応する辺の長さよりも短くしてしまうと、上記照射範囲210aに対しては、光を直接的に照射することができるものの、上記暗部に対しては、光を直接的に照射することができない。このため、従来の面光源装置においては、導光板において十分な輝度が得られなくなるため、光源基板140の長さを、対応する短辺の長さよりも短くすることができない。
 光源基板140の長さを短くしなくとも、導光板120の長辺の長さを延長することにより、元のサイズの導光板120の全領域を、照射範囲とすることが可能である。しかしながら、通常、上記長辺の延長部分の長さが、短辺の長さの1割を超えることは許されない。
 例えば、導光板120がアクリル樹脂(屈折率1.49)からなる場合、臨界角αは、約42°となる。光学ガラスの一部はこれよりも屈折率が低く、1.43程度のものがあり、この場合、臨界角αは、約45°となる。この場合、光源基板140の長さが対応する短辺の長さの0.8倍を下回ると、上記長辺の延長部分の長さが、短辺の長さの1割を超えてしまう。したがって、光源基板140の長さを、対応する短辺の長さの0.8倍以下とすることは、非常に困難である。
 しかしながら、やはり光源基板の長さを対応する辺の長さよりも短くしたいという要求は不変である。そこで、従来、このような要求に応じるべく、光源基板の長さを対応する辺の長さよりも短くするための技術が考案されている。
 例えば、下記特許文献2には、光源の長さを導光板の短辺の長さより短くしつつも、照明光導入部を設け、光源から出射された照明光を広げて、導光板に導く構成が開示されている。
 また、下記特許文献3には、光源の長さを導光板の短辺の長さより短くしつつも、導光板に光散乱穴を形成することにより、導光板内において光を拡散させる構成が開示されている。
 また、下記特許文献4および下記特許文献5には、L字状の光源を、導光板の角部に配置することにより、光源の低消費電力化を図りつつ、表示輝度の均一化を測る構成が開示されている。
日本国公開特許公報「特開2010-039299号公報(公開日:2010年2月18日)」 日本国公開特許公報「特開平09-231822号公報(公開日:1997年9月5日)」 日本国公開特許公報「特開平10-293213号公報(公開日:1998年11月4日)」 日本国公開特許公報「特開平10-039299号公報(公開日:1998年2月13日)」 日本国公開特許公報「特開平10-083711号公報(公開日:1998年3月31日)」
 しかしながら、上記特許文献2に記載の技術では、光源と導光板との間に照明光導入部を設ける必要があるため、コストが増加するだけでなく、そのためのスペースを導光板の縁部に設ける必要があり、面光源装置の大型化を招く。さらには、導光板への入射角が増大するため、入射効率が低下する。
 また、上記特許文献3に記載の技術では、導光板に光散乱穴を形成する必要があり、このような加工は成形上の難度が高く、コストの大きな上昇に繋がる。
 また、上記特許文献4、5に記載の技術では、L字状という複雑な構成の光源を用いる必要があるため、コストの増加を招く。また、事実上、導光板の長辺と短辺との双方に光源が配置されるため、一方の辺の側部を省スペース化することができない。
 以上のとおり、特許文献2~5に開示されている技術では、導光板の照射面の全面において十分かつ均一な輝度を得ると共に、低コスト化を図ることが難しかった。
 本発明は、上記の問題に鑑みて為されたものであり、その目的は、導光板の照射面の全面において十分かつ均一な輝度を得ると共に、低コスト化を図ることを可能とするエッジライト型面光源装置を提供することにある。
 本発明のエッジライト型面光源装置は、上記の問題を解決するために、導光手段と、前記導光手段の側面から前記導光手段内に光を照射する複数の光源とを備え、前記複数の光源は、前記導光手段の互いに対向しあう一組の辺の各々に配置され、当該複数の光源の発光部分のうち最も長いものの長さは、当該複数の光源が配置される前記導光手段の辺の長さより短く、前記複数の光源は、当該光源が光を照射する範囲の全てにて略均一な輝度を有する光よりも、当該範囲の縁における輝度の勾配が小さい光を照射するように構成されていることを特徴としている。
 上記の構成によれば、複数の光源の各々に短いサイズの光源を用いつつ、当該複数の光源の配置を上記配置としたことにより、当該複数の光源による光の照射範囲を十分に得ることができる。
 さらに、上記の構成によれば、前記複数の光源から、当該光源が光を照射する範囲の縁における輝度の勾配が小さい光を照射する。これにより、光源の位置ずれに依存して、導光手段の特定領域にて輝度が極端に低下することを抑制することができる。従って、導光板(導光手段)の照射面の全面において均一な輝度を得ることが可能となる。
 以上のとおり、本発明のエッジライト型面光源装置は、導光手段と、前記導光手段の側面から前記導光手段内に光を照射する複数の光源とを備え、前記複数の光源は、前記導光手段の互いに対向しあう一組の辺の各々に配置され、当該複数の光源の発光部分のうち最も長いものの長さは、当該複数の光源が配置される前記導光手段の辺の長さより短く、前記複数の光源は、当該光源が光を照射する範囲の全てにて略均一な輝度を有する光よりも、当該範囲の縁における輝度の勾配が小さい光を照射するように構成されている。
 従って、導光板の照射面の全面において十分かつ均一な輝度を得ると共に、低コスト化を図ることが可能であるという効果を奏する。
本発明の第1実施形態に係る面光源装置の構成を概略的に示す。 本発明の第1実施形態に係る面光源装置における、各LED光源基板による光の照射範囲を示す。 本発明の第2実施形態に係る面光源装置の構成を概略的に示す。 本発明の第2実施形態に係る面光源装置における、各LED光源基板による光の照射範囲を示す。 本発明の第3実施形態に係る面光源装置の構成を概略的に示す。 本発明の第3実施形態に係る面光源装置における、各LED光源基板による光の照射範囲を示す。 本発明の第4実施形態に係る面光源装置の構成を概略的に示す。 本発明の第4実施形態に係る面光源装置における、各LED光源基板による光の照射範囲を示す。 本発明の第5実施形態に係る面光源装置の構成を示す断面図である。 本発明の第5実施形態に係る面光源装置が備える、反射シートおよび反射材の構成を示す。 本発明の第5実施形態に係る面光源装置における、導光板の側方の構成を示す。 本発明の第6実施形態に係る面光源装置における、導光板の側方の構成を示す。 本発明の第7実施形態に係る面光源装置における、導光板の側方の構成を示す。 従来のエッジライト型の面光源装置の構成を示す分解斜視図である。 図14に示す従来のエッジライト型の面光源装置の、組み立てられた状態の断面図である。 従来のエッジライト型面光源装置が備えるLED光源基板の外観を示す。 図16に示したLED光源基板の断面図である。 従来のエッジライト型面光源装置が備えるLED光源基板の他の一例を示す。 図18に示したLED光源基板のA-A矢視断面図である。 従来のエッジライト型面光源装置における、光の反射パターンを示す。 従来のエッジライト型面光源装置における光源基板の配置を概略的に示す。 従来のエッジライト型面光源装置における光源基板の配置を概略的に示す。 従来のエッジライト型面光源装置における光源基板の配置を概略的に示す。 従来のエッジライト型面光源装置における光源基板の配置を概略的に示す。 導光板の一辺に光源基板を配置した従来の面光源装置における、光源基板による光の照射範囲を示す。 本発明の応用例に係る面光源装置の概略構成、および光の照射の様子を示している。 本発明の応用例に係る面光源装置における、各LED光源基板による照射による明るさを示す波形であり、図26のA-A´間における明るさの関係を示している。 本発明の応用例の変形例に係る面光源装置における、各LED光源基板による照射による明るさを示す波形であり、図26のA-A´間における明るさの関係を示している。 LED光源基板の両端から出射される光の輝度がLED光源基板の中央部分から出射される光の輝度よりも小さい構成の第1例を示している。 LED光源基板の両端から出射される光の輝度がLED光源基板の中央部分から出射される光の輝度よりも小さい構成の第2例を示している。 LED光源基板の両端から出射される光の配光特性が、光を照射する範囲の全てにて略均一な輝度を有する光を照射する光源と異なっている構成の第1例を示している。 LED光源基板の両端から出射される光の配光特性が、光を照射する範囲の全てにて略均一な輝度を有する光を照射する光源と異なっている構成の第1例を示している。 LED光源基板の両端から出射される光の配光特性が、光を照射する範囲の全てにて略均一な輝度を有する光を照射する光源と異なっている構成の第4例を示している。 LED光源基板の両端から出射される光の配光特性が、光を照射する範囲の全てにて略均一な輝度を有する光を照射する光源と異なっている構成の第5例を示している。 LED光源基板の両端から出射される光の配光特性が、光を照射する範囲の全てにて略均一な輝度を有する光を照射する光源と異なっている構成の第6例を示している。
 以下本発明の実施形態を、図面を用いて説明する。また、同一構成部材については同一の符号を用い、詳細な説明は適宜省略する。
 〔第1実施形態〕
 まず、図1および図2を用いて、本発明に係るエッジライト型面光源装置の一例である第1実施形態の面光源装置10について説明する。
 (面光源装置の構成)
 図1は、本発明の第1実施形態に係る面光源装置10の構成を概略的に示す。図1に示す面光源装置10は、導光板(導光手段)120、LED光源基板(光源)140a、および140bを備えている。この面光源装置10は、導光板120の側面に配置されたLED光源基板140aおよび140bによって、導光板120の側面からその内部に光を照射する、いわゆるエッジライト型の面光源装置である。
 導光板120は、当該導光板120とともに表示装置に搭載される液晶表示パネルの形状に対応して、図1に示すように、互いに対向しあう一対の短辺(図中左辺および右辺)と、互いに対向しあう一対の長辺(図中上辺および下辺)とからなる、横長の長方形状を有している。
 この面光源装置10においては、上記一対の短辺の各々に、LED光源基板が配置されている。具体的には、導光板120の左辺にはLED光源基板140aが配置されており、導光板120の右辺には、LED光源基板140bが配置されている。
 特に、注目すべきは、LED光源基板140aは、上記左辺の上端部に設けられているのに対し、LED光源基板140bは、上記右辺の下端部に設けられている点である。すなわち、LED光源基板140aは、導光板120の左上角部近傍に設けられているのに対し、LED光源基板140bは、導光板120の右下角部近傍に設けられている。
 さらに、注目すべきは、LED光源基板140aの発光部分の長さW1、およびLED光源基板140bの発光部分の長さW2は、極めて短く、これら2つのLED光源基板の発光部分の長さW1,W2の合計は、導光板120の1つの短辺の長さよりも短い点である。これは、2つのLED光源基板を上記のように配置したことにより、各LED光源基板の発光部分の長さをこれ以上長くしなくとも、導光板120において十分な照射範囲を得ることが可能となっているからである。
 (光の照射範囲)
 図2は、本発明の第1実施形態に係る面光源装置10における、各LED光源基板による光の照射範囲(照射領域とも呼ぶ)を示す。このうち、図2の(a)は、LED光源基板140aによる光の照射範囲210aを示す。また、図2の(b)は、LED光源基板140bによる光の照射範囲210bを示す。そして、図2の(c)は、LED光源基板140a,bの双方による光の照射範囲を示す。
 (LED光源基板140aによる光の照射範囲)
 図2の(a)に示すように、本実施形態の面光源装置10においては、LED光源基板140aから照射された光は、導光板120の右辺方向に向かって進行し、その照射範囲210aは、導光板120の下辺方向への屈折角αをなす広がりを持っている。これは、LED光源基板140aから照射された光が、導光板120の側面(すなわち、境界面)において屈折するからである。これにより、導光板120の左下角部においては、図2の(a)に示すように、LED光源基板140aからの光が照射されない暗部212a(ハッチが施されていない部分)が形成されている。
 ここで、導光板120の屈折率λは1より大きくなっている。このため、法線と屈折線とがなす屈折角αは、90°より小さいものとなる。
 上記屈折率λと上記屈折角αとの関係は、下記式(1)によって表すことができる。
 sinα = 1/λ ・・・ (1)
 (LED光源基板140bによる光の照射範囲)
 また、図2の(b)に示すように、本実施形態の面光源装置10においては、LED光源基板140bから照射された光は、導光板120の左辺方向に向かって進行し、その照射範囲210bは、導光板120の上辺方向への屈折角αをなす広がりを持っている。これにより、導光板120の右上角部においては、LED光源基板140bからの光が照射されない暗部212b(ハッチが施されていない部分)が形成されている。
 (LED光源基板140a,bによる光の照射範囲)
 図2の(c)は、照射範囲210aと照射範囲210bとを重ね合わせて示している。図2の(c)において、第3のハッチによって示されている照射範囲210cは、照射範囲210aと照射範囲210bとが重なり合っている領域である。
 図2の(a)および図2の(b)に示すように、LED光源基板140aのみを点灯させた状態、LED光源基板140bのみを点灯させた状態を個別に見ると、それぞれ暗部212a、暗部212bが形成されることとなるが、図2の(c)に示すように、LED光源基板140a,bの双方を点灯させた状態では、導光板120において、暗部212aは照射範囲210bによって解消され、暗部212bは照射範囲210aによって解消されるため、その全ての領域が照射範囲となる。
 (本実施形態の効果)
 このように、本実施形態の面光源装置10は、その発光部分の長さが極めて短いLED光源基板を用いていながら、その配置を上記のように工夫したことにより、導光板120における光の照射範囲を十分に得ることが可能となっている。
 なお、もし、導光板120の辺の長さや、導光板120の屈折率λが本実施形態と異なる場合には、必要に応じて、LED光源基板140aおよびLED光源基板140bの少なくとも一方の発光部分の長さを変更することにより、本実施形態と同様に、導光板120における全ての領域を照射範囲とすることができる。
 この場合、導光板120の長辺の長さをx、導光板120の短辺の長さをy、LED光源基板140aとLED光源基板140bの長さの和をLとしたとき、下記式(2)を満たすことにより、導光板120における全ての領域を照射範囲とすることができる。
 L+x/√(λ-1) ≧ y ・・・ (2)
 ここで、上記式(2)をより詳細に説明するために、上記式(2)で不等号が等号の場合、すなわち、LED光源基板140a、LED光源基板140bから照射された光の照射領域が重複する照射範囲210cが0となるが、LED光源基板140a、140bから照射された光の照射範囲210a、210bによって導光板120における全ての領域を網羅することができる事例を図2の(d)に示す。この事例では、上記式(2)を満たしつつ、LED光源基板140aとLED光源基板140bの長さの和であるLが最短となる。
 図2の(d)に示すように、この事例では、LED光源基板140aから照射された光の照射範囲210aの境界線213aと、LED光源基板140bから照射された光の照射範囲210bの境界線213bとが、上記式(1)を満たす屈折角αに沿って丁度、同じ直線上に重なっている。
 このとき、図2の(d)を参照すればわかるように、LED光源基板140a、140bの長さW1、W2と導光板120の短辺の長さyとの間で、下記式(2’)を満たすことなる。
 W1+x×tan(α)+W2=y ・・・ (2’)
 ここで、W1+W2は、上述の通り、LED光源基板140aとLED光源基板140bの長さの和はLであり、屈折角αは、上記式(1)を満たす角度なので、式(2’)を導光板の屈折率λおよびLを用いて書き直すと、式(2’)は、上記式(2)で不等号が等号の場合となる。
 式(2’)で左辺が右辺(y:導光板120の短辺の長さ)より大きくなるとLED光源基板140a、LED光源基板140bから照射された光の照射領域が重複する照射範囲210cが増加することになる。
 例えば、図2の(d)の状態から、LED光源基板140aの長さが長くなると、境界線213aは下方に移動し、LED光源基板140bの長さが長くなると、境界線213bは上方に移動する。したがって、この状態から、少なくともLED光源基板140aまたはLED光源基板140bの一方の長さが長くなると、図2の(c)に例示するように、照射範囲210aと照射範囲210bとが重複する照射範囲210cが形成されることとなる。
 なお、上記発光部分の長さ(LED光源基板140aまたはLED光源基板140bの少なくともいずれか一方の長さ)をより短くすることも可能な場合がある。たとえば導光板120にアクリル樹脂(λ=1.49)を使用し、導光板120の縦横比が液晶テレビ等に一般的に用いられている9:16であるとき、いかなるLであっても上記の式(2)を満たすことができる。すなわち、上記発光部分の長さを可能な限り短くすることができる。
 また、本実施形態の面光源装置10は、導光板120における各角部の輝度を、比較的高めることができる。
 例えば、面光源装置10は、LED光源基板140aが導光板120の左上角部に配置されているので、当該左上角部の輝度を高めることができるのはもちろんのこと、LED光源基板140aの法線方向にある、導光板120の右上角部の輝度を高めることもできる。一般に、線状のLED光源基板は、法線方向への照射光の強度が強いからである。
 同様に、面光源装置10は、LED光源基板140bが導光板120の右下角部に配置されているので、当該右下角部の輝度を高めることができるのはもちろんのこと、LED光源基板140bの法線方向にある、導光板120の左下角部の輝度を高めることもできる。
 また、本実施形態の面光源装置10は、導光板120に対するLED光源基板140a,bの配置が点対称となっており、導光板120における光の反射パターンも点対称となっているため、180°回転させた状態で、液晶表示パネルなどに対称に組み込むことが可能となっている。これにより、本実施形態の面光源装置10は、上記組み込み時の生産性を高めることが可能となっている。この場合、LED光源基板140a,bには、同一のLED光源基板を用いることが好ましく、これにより、部品コスト削減等の効果を得ることができる。
 〔第2実施形態〕
 次に、図3および図4を用いて、本発明に係るエッジライト型光源基板の一例である第2実施形態の面光源装置30について説明する。
 図3は、本発明の第2実施形態に係る面光源装置30の構成を概略的に示す。この第2実施形態の面光源装置30は、各LED光源基板の配置が、面光源装置10と異なり、その他の点については、面光源装置10と同様である。
 具体的には、図3に示すように、第2実施形態の面光源装置30は、LED光源基板140aが、導光板120の左辺の中央部に設けられており、LED光源基板140bが、導光板120の右辺の中央部に設けられている。
 図4は、本発明の第2実施形態に係る面光源装置30における、各LED光源基板による光の照射範囲を示す。このうち、図4の(a)は、LED光源基板140aによる光の照射範囲210aを示す。また、図4の(b)は、LED光源基板140bによる光の照射範囲210bを示す。そして、図4の(c)は、LED光源基板140a,bの双方による光の照射範囲を示す。
 図4の(a)に示すように、本実施形態の面光源装置30においては、LED光源基板140aから照射された光は、導光板120の右辺方向に向かって進行し、その照射範囲210aは、導光板120の上辺方向への屈折角αをなす広がり、および、導光板120の下辺方向への屈折角αをなす広がりを持っている。これにより、導光板120の左上角部および左下角部の各々において、LED光源基板140aからの光が照射されない暗部212aが形成されている。
 また、図4の(b)に示すように、本実施形態の面光源装置30においては、LED光源基板140bから照射された光は、導光板120の左辺方向に向かって進行し、その照射範囲210bは、導光板120の上辺方向への屈折角αをなす広がり、および、導光板120の下辺方向への屈折角αをなす広がりを持っている。これにより、導光板120の右上角部および右下角部の各々において、LED光源基板140bからの光が照射されない暗部212bが形成されている。
 本実施形態の面光源装置30においても、図4の(a)および図4の(b)に示すように、LED光源基板140aのみを点灯させた状態、LED光源基板140bのみを点灯させた状態を個別に見ると、それぞれ暗部212a、暗部212bが形成されることとなるが、図4の(c)に示すように、LED光源基板140a,bの双方を点灯させた状態では、導光板120において、暗部212aは照射範囲210bによって解消され、暗部212bは照射範囲210aによって解消されるため、その全ての領域が照射範囲となる。
 すなわち、本実施形態の面光源装置30も、その発光部分の長さが極めて短いLED光源基板を用いていながら、その配置を上記のように工夫したことにより、導光板120における光の照射範囲を十分に得ることが可能となっている。
 この面光源装置30によっても、面光源装置10と同様、短いLED光源基板によって導光板120の全領域から光を照射することが出来る。特に、面光源装置30によれば、この構成によれば、視聴者にとってより自然な見た目となる、上下対称かつ左右対称の照射パターンを、導光板120に形成することができる。
 既に説明したとおり、従来技術(図25参照)では、光源基板140の長さが導光板120の短辺の長さの0.8倍を下回ると、必要となる導光板120の延長部分の長さが導光板120の短辺の長さの1割を超えるが、本実施形態の面光源装置30においては、光源基板140の長さが導光板120の短辺の長さの0.8倍を下回る場合でも、上記延長部分の長さが導光板120の短辺の長さの1割を十分に下回り、当該長さを略ゼロにすることもできる。
 〔第3実施形態〕
 次に、図5および図6を用いて、本発明に係るエッジライト型光源基板の一例である第3実施形態の面光源装置50について説明する。
 図5は、本発明の第3実施形態に係る面光源装置50の構成を概略的に示す。この第3実施形態の面光源装置50は、各LED光源基板の配置が、面光源装置10,30と異なり、その他の点については、面光源装置10,30と同様である。
 具体的には、図5に示すように、第3実施形態の面光源装置50は、LED光源基板140aが、導光板120の上辺の左端部に設けられており、LED光源基板140bが、導光板120の下辺の右端部に設けられている。すなわち、第3実施形態の面光源装置50は、LED光源基板が、導光板120における一対の長辺の各々に設けられている。
 図6は、本発明の第3実施形態に係る面光源装置50における、各LED光源基板による光の照射範囲を示す。各LED光源基板による光の照射範囲を示す。このうち、図6の(a)は、LED光源基板140aによる光の照射範囲210aを示す。また、図6の(b)は、LED光源基板140bによる光の照射範囲210bを示す。そして、図6の(c)は、LED光源基板140a,bの双方による光の照射範囲を示す。
 図6の(a)に示すように、本実施形態の面光源装置50においては、LED光源基板140aから照射された光は、導光板120の下辺方向に向かって進行し、その照射範囲210aは、導光板120の右辺方向への屈折角αをなす広がりを持っている。これにより、導光板120の右上角部において、LED光源基板140aからの光が照射されない暗部212aが形成されている。
 また、図6の(b)に示すように、本実施形態の面光源装置50においては、LED光源基板140bから照射された光は、導光板120の上辺方向に向かって進行し、その照射範囲210bは、導光板120の左辺方向への屈折角αをなす広がりを持っている。これにより、導光板120の左下角部において、LED光源基板140bからの光が照射されない暗部212bが形成されている。
 本実施形態の面光源装置50においても、図6の(a)および図6の(b)に示すように、LED光源基板140aのみを点灯させた状態、LED光源基板140bのみを点灯させた状態を個別に見ると、それぞれ暗部212a、暗部212bが形成されることとなるが、図6の(c)に示すように、LED光源基板140a,bの双方を点灯させた状態では、導光板120において、暗部212aは照射範囲210bによって解消され、暗部212bは照射範囲210aによって解消されるため、その全ての領域が照射範囲となる。
 すなわち、本実施形態の面光源装置50も、その発光部分の長さが極めて短いLED光源基板を用いていながら、その配置を上記のように工夫したことにより、導光板120における光の照射範囲を十分に得ることが可能となっている。
 このように、LED光源基板を長辺に設ける場合、導光板120の長辺の長さをx、導光板120の短辺の長さをy、LED光源基板140aとLED光源基板140bの長さの和をLとしたとき、第1実施形態で説明した式(2)と同様に、下記式(3)を満たすことにより、導光板120における全ての領域を照射範囲とすることができる。
 L+y/√(λ-1) ≧ x ・・・ (3)
 たとえば導光板120にアクリル樹脂(λ=1.49)を使用し、導光板120の縦横比が液晶テレビ等に一般的に用いられている9:16であるとき、下記式(4)を満たすことにより、導光板120における全ての領域を照射範囲とすることができる。
 L ≧ 0.49x ・・・ (4)
 すなわち、光源基板140aと光源基板140bの長さの和が、導光板120の長辺の長さの0.49倍を上回っていれば、導光板120における全ての領域を照射範囲とすることができる。
 本実施形態の面光源装置50によれば、LED光源基板は導光板の長辺に沿って配置されるため、LED光源基板から照射された光が、導光板を通って導光板の照射面から出射されるまでの距離は比較的短い。従って、導光板により吸収される光は比較的少なく、発光効率の向上が可能となる。
 〔第4実施形態〕
 次に、図7および図8を用いて、本発明に係るエッジライト型光源基板の一例である第4実施形態の面光源装置70について説明する。
 図7は、本発明の第4実施形態に係る面光源装置70の構成を概略的に示す。この第4実施形態の面光源装置70は、各LED光源基板の配置が、面光源装置10,30,50と異なり、その他の点については、面光源装置10,30,50と同様である。
 具体的には、図7に示すように、第4実施形態の面光源装置70は、LED光源基板として、LED光源基板140a、LED光源基板140b、およびLED光源基板140cを備えている。
 LED光源基板140aは、導光板120の上辺の左端部に設けられており、LED光源基板140bは、導光板120の上辺の右端部に設けられており、LED光源基板140cは、導光板120の下辺の中央部に設けられている。
 すなわち、第4実施形態の面光源装置70は、3つのLED光源基板が設けられている点、および、導光板120の1つの長辺(上辺)に対して2つのLED光源基板が設けられている点で、これまでに説明した面光源装置10,30,50と異なる。
 図8は、本発明の第4実施形態に係る面光源装置70における、各LED光源基板による光の照射範囲を示す。各LED光源基板による光の照射範囲を示す。このうち、図8の(a)は、LED光源基板140aによる光の照射範囲210aを示す。また、図8の(b)は、LED光源基板140bによる光の照射範囲210bを示す。また、図8の(c)は、LED光源基板140cによる光の照射範囲210cを示す。そして、図8の(d)は、LED光源基板140a,b,cの全てによる光の照射範囲を示す。
 図8の(a)に示すように、本実施形態の面光源装置70においては、LED光源基板140aから照射された光は、導光板120の下辺方向に向かって進行し、その照射範囲210aは、導光板120の右辺方向への屈折角αをなす広がりを持っている。これにより、導光板120の右上角部を主として、LED光源基板140aからの光が照射されない暗部212aが形成されている。
 また、図8の(b)に示すように、本実施形態の面光源装置70においては、LED光源基板140bから照射された光は、導光板120の下辺方向に向かって進行し、その照射範囲210bは、導光板120の左辺方向への屈折角αをなす広がりを持っている。これにより、導光板120の左上角部を主として、LED光源基板140bからの光が照射されない暗部212bが形成されている。
 また、図8の(c)に示すように、本実施形態の面光源装置70においては、LED光源基板140cから照射された光は、導光板120の上辺方向に向かって進行し、その照射範囲210cは、導光板120の左辺方向への屈折角αをなす広がり、および、導光板120の右辺方向への屈折角αをなす広がりを持っている。これにより、導光板120の左下角部および右下角部の各々において、LED光源基板140bからの光が照射されない暗部212cが形成されている。
 本実施形態の面光源装置70においても、図8の(a)~(c)に示すように、LED光源基板140aのみを点灯させた状態、LED光源基板140bのみを点灯させた状態、LED光源基板140cのみを点灯させた状態を個別に見ると、それぞれ暗部212a、暗部212b、暗部212cが形成されることとなるが、図8の(d)に示すように、LED光源基板140a,b,cを全て点灯させた状態では、導光板120において、暗部212aは照射範囲210b,cによって解消され、暗部212bは照射範囲210a,cによって解消され、暗部212cは照射範囲210a,bによって解消されるため、その全ての領域が照射範囲となる。
 すなわち、本実施形態の面光源装置70も、その発光部分の長さが極めて短いLED光源基板を用いていながら、その数および配置を上記のように工夫したことにより、導光板120における光の照射範囲を十分に得ることが可能となっている。
 特に、本実施形態の面光源装置70は、各LED光源基板から照射された光の広がり形状を鑑みて、各LED光源基板を上記のとおり適切に配置したことにより、その発光部分の長さが極めて短いLED光源基板を僅か3つしか用いていないにも関わらず、導光板120における光の照射範囲を十分に得ることが可能となっている。すなわち、本実施形態の面光源装置70は、第3実施形態の面光源装置50と比較すると、LED光源基板の数を1つ増やすこととなるが、LED光源基板のサイズを極端に小さくすることができる。
 この効果は、面光源装置50の照射範囲を示す図6と、面光源装置70の照射範囲を示す図8とを見比べれば明らかであるが、以下の説明からも明らかである。
 N個のLED光源基板を長辺に設ける場合、導光板120における全ての領域を照射範囲とするためには、第1実施形態で説明した式(2)と同様に、下記式(5)を満たす必要がある。
 L+(N-1)y/√(λ-1) ≧ x ・・・(5)
 例えば、導光板120にアクリル樹脂(λ=1.49)を使用し、導光板120の縦横比が9:16である場合を考える。
 第3実施形態の面光源装置50の場合、N=2となり、この場合、L=0では、上記式(5)を満たさない。すなわち、LED光源基板の長さの総和を短くすることに限界がある。
 一方、本実施形態の面光源装置50の場合、N=3となり、この場合、L=0としても、上記式(5)を満たす。すなわち、LED光源基板の長さの総和を短くすることに限度は無い。
 〔第5実施形態〕
 次に、図9~図11を用いて、本発明の第5実施形態について説明する。
 第2実施形態で説明したエッジライト型面光源装置30は、LED光源基板を導光板120の短辺の中央に設ける構成となっているため、導光板120における各角部の輝度が、これ以外の部分よりも低くなる場合がある。
 そこで、本実施形態では、第2実施形態の面光源装置30を用いて、導光板120における各角部の輝度を向上させる構成の一例を説明する。
 図9は、本発明の第5実施形態に係る面光源装置30の構成を示す断面図である。
 図9と図15とを比較すれば分かるように、従来のエッジライト型の面光源装置には、導光板120の一方の短辺にしかLED光源基板が設けられていないが、本実施形態の面光源装置30には、導光板120の両方の短辺に、LED光源基板が設けられている。
 さらに、本実施形態の面光源装置30には、導光板120の両方の短辺に、反射材131が設けられているが、従来のエッジライト型の面光源装置には、このような反射材が設けられていない。
 図10は、本発明の第5実施形態に係る面光源装置30が備える、反射シート130および反射材131の構成を示す。
 図10に示すように、面光源装置30の反射シート130には、反射材131が一体的に形成されている。具体的には、反射シート130には、その一対の短辺の各々において、当該短辺に沿ってある程度の幅を有して拡張された部分を有しており、この拡張部分が、反射材131となっている。
 図9に示すように、反射材131は、反射シート130との境界線(図中破線)において垂直に折り曲げられ、これにより、導光板120の側面を覆うことが可能となる。このため、反射材131の上記幅は、導光板120の側面を覆うのに十分なものとなっている。また、上記境界線部分には、上記折り曲げを容易かつ確実なものとするために、ミシン目加工、ハーフカット加工、圧縮加工等が施されている。
 特に、反射シート130においては、一対の短辺の各々の両端部に、反射材131が設けられている。例えば、反射材131には、全光反射率が約70%以上の材料が用いられる。これにより、本実施形態の面光源装置30は、導光板120の全ての角部において、その短辺側の側面を反射材131で覆い、当該角部の輝度を高めることが可能となっている。
 さらに、反射シート130においては、上記一対の短辺の各々の中央部に、反射材131が設けられていない部分である、切り欠け部132が設けられている。この切り欠け部132は、LED光源基板から照射された光を遮らないようにするために設けられている。したがって、切り欠け部132の長さは、少なくとも、LED光源基板の発光部分の長さよりも長くなっていることが好ましい。
 なお、LED光源基板から照射された光を遮らなければ、切り欠け部132を設けない構成とすることも可能である。例えば、切り欠け部132の代わりに、開口部を設けることによっても、LED光源基板から照射された光を遮らない構成とすることができる。
 また、切り欠け部や開口部を備えなくとも、導光板120の側面を全て覆うように、反射材131を構成し、LED光源基板を反射材131と導光板120との間に配置することで、LED光源基板から照射された光を遮らない構成とすることができる。この場合、反射材131の構成をより簡単に、あるいは反射材131の部品点数を低減することも可能である。
 なお、反射材131として、反射シート130よりも反射率を低くする場合、反射材131の表面に例えば黒色の塗料を塗布することにより、これを容易に実現できる。
 また、本実施形態では、反射材131を設けることにより、導光板120の任意の部分(上記例では、各角部)における反射率を高めることとしたが、例えば、導光板120の側面に白色塗料を塗布したり、銀など反射率の高い金属を蒸着したりする等、これ以外の構成により、導光板120の任意の部分における反射率を高めるようにしてもよい。これらの場合、反射材131と同様の機能を容易に実現することが可能である。
 また、必要に応じて、上記例とは反対に、導光板120の任意の部分における反射率を低める構成を用いても良い。例えば、導光板120の側面に反射率の低い材料を設置、塗布、蒸着等することにより、導光板120の任意の部分における反射率を低めるようにしてもよい。上記材料としては、例えば、カーボンブラックを配合した樹脂や塗料等、一般的に黒色として認識できる全光反射率が約10%以下の材料が挙げられる。
 図11は、本発明の第5実施形態に係る面光源装置30における、導光板120の側方の構成を示す。図11は、導光板120、反射シート130、反射材131、LED光源基板140a、およびLED光源基板140bが、互いに組み合わされた状態を示す。
 図11において、LED光源基板140aおよびLED光源基板140bは、配線基板610およびLEDパッケージ620に加え、反射シート固定部材630を有する。反射シート固定部材630は、配線基板610から導光板120側に突出する部材であり、反射材131を導光板120に押さえつける。これにより、本実施形態の面光源装置30は、反射材131を固定するための部材を別途設ける必要が無く、反射材131の固定が容易なものとなっている。
 なお、反射シート固定部材630を配線基板610と一体的に構成することも可能である。特に、本実施形態において、LED光源基板140aおよびLED光源基板140bにLEDパッケージを用いる代わりに、LED素子を配線基板にCOB実装してもよい。これにより、配線基板を射出成形することで、配線基板と反射シート固定部材とを容易に一体成形することができる。
 〔第6実施形態〕
 次に、図12を用いて、本発明の第6実施形態について説明する。本実施形態では、複数の小基板141を連結することにより、LED光源基板140を構成する例を説明する。
 図12は、本発明の第6実施形態に係る面光源装置30における、導光板120の側方の構成を示す。図12は、第2実施形態の面光源装置30の一部の構成を具体的に示すものであり、導光板120、反射シート130、反射材131、LED光源基板140a、およびLED光源基板140bが、互いに組み合わされた状態を示す。
 図12おいて、光源基板140aおよび光源基板140bは、複数(本例では3個)の小基板141が連結されて構成されている。これら複数の小基板141は相互に機構的および電気的に連結可能に構成され、連結されることで、単一の光源基板と同等に取り扱うことが可能となっている。さらに、反射材131も、小基板141と機構的に連結可能に構成されている。
 連結部分の構成は、公知のどのような構成を用いてもよいが、例えば、一方の部材の凸部と他方の部材の凹部とが勘合することにより、両部材が連結する構成を用いることができる。
 このように、本実施形態の面光源装置30は、LED光源基板140aおよびLED光源基板140bの両端に反射材131を連結させたことにより、導光板120の側面のうちLED光源基板が設けられていない部分の反射率が調整され、第5実施形態の面光源装置30と同様の効果を奏することが可能となっている。特に、本実施形態の面光源装置30は、着脱自在な反射材131を用いたことにより、上記反射率を容易に変更することが可能となっている。
 以上の例では、反射材131を反射シート130と一体に構成する例を説明したが、反射材131の構成はこれに限定されない。すなわち、反射材131は、単独の部材として備えられてもよい。その場合、反射材131は、導光板120に対して接着剤やテープ等の接着手段により接着されることで、位置を固定することが可能となる。
 〔第7実施形態〕
 次に、図13を用いて、本発明の第7実施形態について説明する。図13は、本発明の第7実施形態に係る面光源装置30における、導光板120の側方の構成を示す。
 本実施形態では、反射材131の形状が、第6実施形態と異なる。具体的には、本実施形態では、反射材131に、小基板141の基板部分が用いられている。
 これにより、本実施形態の反射材131は、小基板141の基板部分をそのまま用いることができ、小基板141と同様に連結することが可能となっている。したがって、本実施形態の反射材131は、その構造や強度に関し、小基板141と同等の性能や信頼性が確保できる。また、反射材131に専用の部品を用いる必要がないため、反射材131に係るコストを削減することができる。
 特に、小基板141の基板部分には、光を有効に活用するために反射率の高い材料が用いられているため、特に加工することなく、そのまま反射率の高い反射材131として利用することが可能となっている。
 〔補足説明〕
 上記各実施形態において、光源としてLED光源基板を用いることとしたが、これに限らない。但し、上記各実施形態に例示したように、光源としてLED光源基板を用いることにより、より短い光源基板で同等の輝度を実現することができる。
 特に、光源としてLED光源基板を用いることにより、LED素子の数や配置(位置や間隔)を調整することで、導体板120における任意の部分の輝度を容易に調整することができる。例えば、導体板120の短辺の端部における輝度を高める場合、当該端部におけるLED素子の設置間隔を短くすることで、容易にこれを実現することができる。
 また、上記各実施形態において、LED光源基板におけるLED素子の実装方法として、LEDパッケージを用いてもよいが、以下の理由から、COB実装することがより好ましい。(1)LEDパッケージを配線基板に実装する方法では、パッケージやその半田付けを構成するためにある程度の長さが必要となるので、同じ長さ当たりに実装できるLED素子の数が少ない。より多くのLED素子を高密度に実装するためには、COB実装が好適である。(2)COB実装では半田を使用しないことが可能であるので、半田温度の制約を受けず、より多くの電力を使用する、すなわち温度の上昇を許容できるため大きな電流を流すことが可能で、同じLED素子であってもより輝度を向上することができる。(3)COB用の基板を射出成形にて作成する場合、第6実施形態および第7実施形態で説明したような、連結可能な構成を容易に実現することができる。
 〔応用例〕
 以下、上記各実施形態の応用例について、図4の(a)~(c)および図26を参照して説明する。
 図26には、本応用例に係る面光源装置の概略構成、および光の照射の様子を示している。
 図4の(a)~(c)に示す面光源装置30では、LED光源基板140aからの光が照射されない暗部212aをLED光源基板140bにより照らし、LED光源基板140bからの光が照射されない暗部212bをLED光源基板140aにより照らした。こうして、導光板120の照射面の全てから光が照射される構成を実現した。
 ここでは、導光板120の照射面の全てから照射される光の明るさの均一化を図る手法について説明する。
 図26には、面光源装置30の応用例である面光源装置300を示している。図示の範囲において、面光源装置300は面光源装置30と同じ部材を備えている。
 加えて、図26には、LED光源基板140aが備えているLEDパッケージ620であるLEDパッケージ(点光源、発光ダイオード)620aと、LED光源基板140bが備えているLEDパッケージ620であるLEDパッケージ620bとを示している。LED光源基板140aは導光板120の左辺に沿って延伸するように配置されており、LEDパッケージ620aはLED光源基板140aの延伸方向に複数個(図26では7個であるが、これに限定されない)並んで設けられている。同様に、LED光源基板140bは導光板120の右辺に沿って延伸するように配置されており、LEDパッケージ620bはLED光源基板140bの延伸方向に複数個(図26では7個であるが、これに限定されない)並んで設けられている。
 図26によれば、照射範囲210cは、主にLED光源基板140aから出射される光により照らされる照射範囲210caと、主にLED光源基板140bから出射される光により照らされる照射範囲210cbとに分けられる。このため、主にLED光源基板140aから出射される光により照らされる部分は、照射範囲210aおよび210ca(導光板120の照射面内の白色部分)となる。一方、主にLED光源基板140bから出射される光により照らされる部分は、照射範囲210bおよび210cb(導光板120の照射面内の灰色部分)となる。
 白色部分から出射される光の輝度と、灰色部分から出射される光の輝度とを同じにすれば、導光板120の照射面の全てから照射される光の明るさの均一化を図ることが可能であると考えられる。そして、白色部分から出射される光の輝度と、灰色部分から出射される光の輝度とを同じにする手法としては、下記の手法が挙げられる。すなわち、導光板120の照射面の全面における、LED光源基板140aによる照射による輝度分布と、LED光源基板140bによる照射による輝度分布とが、互いに逆相の関係を有するようにする。
 ここで逆相とは、同じ領域を照らす2種類の発光に関し、一方の発光による輝度分布(輝度の大小)が、他方の発光による輝度分布(輝度の大小)に対して略反転している状態を意味している。従って、換言すれば、導光板120の照射面の全面では、LED光源基板140aから出射される光から得られる輝度分布が、LED光源基板140bから出射される光から得られる輝度分布に対して、その大小が略反転している。
 なお、導光板120において、反射パターン122(図20参照)を適正に設けることにより、所望の面発光パターンを得ることは容易であることから、上記の互いに逆相の関係を有する構成を実現することは、技術的には容易である。
 ここで、上記の互いに逆相の関係を有する構成を実現する際の注意点について、図26および図27を参照して説明する。
 図27は、面光源装置300(応用例)における、LED光源基板140aおよびLED光源基板140bの各々による照射による明るさを示す波形であり、図26のA-A´間における明るさの関係を示している。
 図27によれば、上記の互いに逆相の関係を有する構成を実現した場合、LED光源基板140aによる照射による明るさ(輝度)は、照射範囲210ca(白色部分)では高くなっており、照射範囲210b(灰色部分)では低くなっている。反対に、この場合、LED光源基板140bによる照射による明るさは、照射範囲210caでは低くなっており、照射範囲210bでは高くなっている。照射範囲210cb(灰色部分)および照射範囲210a(白色部分)についても同様である。これにより、面光源装置300では、導光板120の照射面の全てにおいて均一の照射を実現しており、これを図27ではバックライトの明るさとして示している。
 ここで注意すべき点は、図27に示す例が、面光源装置300において、LED光源基板140aおよびLED光源基板140bが、光を照射する範囲の全てにて略均一な輝度を有する光を照射する場合の例であるということである。なおこの場合、通常は、各LEDパッケージ620aは互いに略均一な輝度となり、各LEDパッケージ620bも互いに略均一な輝度となる。
 図27に示す例では、照射範囲210caと照射範囲210bとの境目にて、LED光源基板140aによる照射による明るさが変化する位置での輝度の勾配と、LED光源基板140bによる照射による同勾配とが急峻となっている。これは、LED光源基板140aおよびLED光源基板140bが、光を照射する範囲の全てにて略均一な輝度を有する光を照射するため、該範囲の縁が、縁以外の該範囲内と同程度に明るいことによる。
 LED光源基板140aおよびLED光源基板140bに位置ずれが無い場合、図27の上に示すグラフのように、LED光源基板140aによる照射による明るさが変化する部分と、LED光源基板140bによる照射による明るさが変化する部分とが完全に一致する。この結果、正真正銘、バックライトの明るさは一定となり、導光板120の照射面の全てにおいて均一の照射が実現されていると言える。
 一方、何らかの要因でLED光源基板140aが下にずれて配置された場合、図27の下に示すグラフのように、LED光源基板140aによる照射による明るさが変化する部分と、LED光源基板140bによる照射による明るさが変化する部分とがずれる。この結果、バックライトの明るさが落ち込む部分BM1が、狭い範囲に大きな落ち込みとして生じ、これが導光板120の照射面における照射が不均一となる(すなわち、輝度ムラの)要因となる。LED光源基板140aが下以外にずれて配置される場合、さらには、LED光源基板140bがずれて配置される場合についても同様である。
 〔応用例の変形例〕
 図27を参照して説明した要領で、導光板120の照射面における照射が不均一となることを抑制するために、LED光源基板140aおよびLED光源基板140bは、光を照射する範囲の全てにて略均一な輝度を有する光よりも、当該範囲の縁における輝度の勾配が小さい光を照射するように構成する。
 これにより、LED光源基板140aまたはLED光源基板140bの位置ずれに依存して、導光板120の特定領域にて輝度が極端に低下することを抑制することができる。従って、導光板120の照射面の全面において均一な輝度を得ることが可能となる。
 このことについて、図26および図28~図30を参照して説明する。
 図28は、面光源装置300(応用例の変形例)における、LED光源基板140aおよびLED光源基板140bの各々による照射による明るさを示す波形であり、図26のA-A´間における明るさの関係を示している。
 図28によっても、図27と同様の要領により、面光源装置300では、導光板120の照射面の全てにおいて均一の照射を実現しており、これを図28ではバックライトの明るさとして示している。
 ここで注目すべき点は、図28に示す例が、面光源装置300において、LED光源基板140aおよびLED光源基板140bが、光を照射する範囲の縁における輝度の勾配が小さい光を照射する場合の例であるということである。なおこの場合の、各LEDパッケージ620aおよび各LEDパッケージ620bの構成例については後述する。
 図28に示す例では、照射範囲210caと照射範囲210bとの境目にて、LED光源基板140aによる照射による明るさが変化する位置での輝度の勾配と、LED光源基板140bによる照射による同勾配とが、図27に示す例と比べて緩やかとなっている。これは、LED光源基板140aおよびLED光源基板140bが、光を照射する範囲の縁における輝度の勾配が小さい光を照射するため、該縁が、縁以外の該範囲内よりも暗いことによる。
 LED光源基板140aおよびLED光源基板140bに位置ずれが無い場合、図28の上に示すグラフのように、LED光源基板140aによる照射による明るさが変化する部分と、LED光源基板140bによる照射による明るさが変化する部分とが完全に一致する。この結果、正真正銘、バックライトの明るさは一定となり、導光板120の照射面の全てにおいて均一の照射が実現されていると言える。
 一方、何らかの要因でLED光源基板140aが下にずれて配置された場合、図28の下に示すグラフのように、LED光源基板140aによる照射による明るさが変化する部分と、LED光源基板140bによる照射による明るさが変化する部分とがずれる。
 しかしながら、上述したとおり、照射範囲210caと照射範囲210bとの境目にて、LED光源基板140aによる照射による明るさが変化する位置での輝度の勾配と、LED光源基板140bによる照射による同勾配とが緩やかとなっている。この結果、バックライトの明るさが落ち込む部分BM2が、広い範囲にこそなるが上記BM1よりも小さな落ち込みとして生じる。該BM2は、広い範囲に小さい落ち込みとして現れるため、輝度ムラとして目立ちにくく、導光板120の照射面における照射が不均一となる要因としては、影響が小さい。LED光源基板140aが下以外にずれて配置される場合、さらには、LED光源基板140bがずれて配置される場合についても同様である。
 ここで、図28に示す例を実現するための、LED光源基板140aおよびLED光源基板140bの構成について説明する。以下では、便宜上、LED光源基板140aについてのみ説明を行うが、LED光源基板140bにおいても、LED光源基板140aと同様の構成を適用することができる。
 まず、LED光源基板140aは、導光板120の左辺に沿って(LED光源基板140bは、導光板120の右辺に沿って)延伸するように配置されている。LED光源基板140aの両端から出射される光の輝度がLED光源基板140aの中央部分から出射される光の輝度よりも小さいのが好ましい。
 なお、このような構成は、具体的に下記の各構成により実現することができる。
 第1例として、LED光源基板140aの両端S・Sに配置されているLEDパッケージ620aの輝度を、LED光源基板140aの中央部分Cに配置されているLEDパッケージ620aの輝度よりも小さくする(図29参照)。
 第2例として、LED光源基板140aの両端S・Sに配置された複数のLEDパッケージ620aを、LED光源基板140aの中央部分Cに配置された複数のLEDパッケージ620aよりも疎に配置する(図30参照)。
 第3例として、LED光源基板140aの両端S・Sに配置されているLEDパッケージ620aを駆動する電流値を、LED光源基板140aの中央部分Cに配置されているLEDパッケージ620aを駆動する電流値よりも小さくする。
 第4例として、LED光源基板140aの両端S・Sおよび中央部分Cのそれぞれに、互いに並列に接続された複数のLEDパッケージ620aを設ける。そしてこのとき、両端S・Sにて互いに並列に接続されたLEDパッケージ620aの個数を、中央部分Cにて互いに並列に接続されたLEDパッケージ620aの個数よりも多くする。
 第5例として、LED光源基板140aの各LEDパッケージ620aをPWM(Pulse Width Modulation:パルス幅変調)により駆動する。そして、LED光源基板140aの両端S・Sに配置されているLEDパッケージ620aを駆動する電流のデューティー比を、LED光源基板140aの中央部分Cに配置されているLEDパッケージ620aを駆動する電流のデューティー比よりも小さくする。
 各例により、LED光源基板140aの両端から出射される光の輝度を、LED光源基板140aの中央部分から出射される光の輝度に対して、5~10%程度小さくするのが好ましい。一度に大きく変化させると、LEDパッケージ620a自体の輝度の勾配に段差(変化が極めて急峻な箇所)が生じ、この段差が輝度ムラの原因となる。中央部分Cから両端S・Sに向かって、十分なだらかに輝度を変化させる場合は、LED光源基板140aの両端から出射される光の輝度を、LED光源基板140aの中央部分から出射される光の輝度に対して、最大30%程度小さくすることも可能である。
 続いて、LED光源基板140aは、両端から出射される光の配光特性が、光を照射する範囲の全てにて略均一な輝度を有する光を照射する光源(ここでは基準光源と称する)と異なっているのが好ましい。
 なお、このような構成は、具体的に下記の各構成により実現することができる。
 第1例として、LED光源基板140aの両端S・Sに設けられた少なくとも1つのLEDパッケージ620aの向きを、前記基準光源と異ならせる。具体的には、図31に示すように、LED光源基板140aの両端S・Sに設けられた少なくとも1つのLEDパッケージ620aを中央部分C側またはその他の側に傾けてもよい。また、図32に示すように、LED光源基板140aの両端S・Sに設けられた少なくとも1つのLEDパッケージ620aを配線基板610aの面と平行な方向に回転させた状態で設けてもよい。
 第2例として、LED光源基板140aの両端S・Sに設けられた少なくとも1つのLEDパッケージ620aを配置する高さを、前記基準光源と異ならせる。
 第3例として、LED光源基板140aに設けられたLEDパッケージ620aの全てが、同じ配光特性とならないようにする。
 第4例として、LED光源基板140aの両端S・Sから出射される光を反射させる光反射部材(光反射手段)730aを設ける(図33参照)。光反射部材730aには、例えば全光反射率が約70%以上の材料が用いられる。
 第5例として、LED光源基板140aの両端S・Sから出射される光を吸収する光吸収部材(光吸収手段)740aを設ける(図34参照)。
 第6例として、LED光源基板140aの両端S・Sから出射される光を拡散させる光拡散部材(光拡散手段)750aを設ける(図35参照)。光拡散部材750aには、例えば拡散シート150と同様の材料が用いられる。
 また、LED光源基板140aは、ワイヤボンディング方式により、リードフレームに各LEDパッケージ620aを実装したものであってもよい。
 また、LED光源基板140aは、ワイヤボンディング方式により、基板上に各LEDパッケージ620aを実装したものであってもよい。
 また、LED光源基板140aは、半田を用いた接合方式により、基板上に各LEDパッケージ620aを実装したものであってもよい。
 また、LEDパッケージ620aは白色LED(白色発光ダイオード)であってもよいし、面光源装置300は、互いに異なる発光色である複数のLEDパッケージ620aを備えていてもよい。
 LED光源基板140aは、このようなLEDパッケージ620aを3つ、またはそれ以上備えているのが好ましい。
 対応する導光板120の辺より短いLED光源基板140aを用いるエッジライト型面光源装置において、面光源装置300は、輝度が均一であるのが一般的であった。この場合、LED光源基板140aが出射する光の縁において輝度の勾配が大きいと、LED光源基板140aの位置ずれに起因する輝度ムラが発生し易くなる。
 そこで、LED光源基板140aの両端における輝度の勾配を緩やかにすることで、光を照射する範囲の縁における輝度の勾配が小さい光を照射する。具体的には、LED光源基板140aの端部Sの輝度または配光特性を変える。
 輝度を変えるためには、下記の方法が考えられる。すなわち、LED光源基板140aの両端S・SにLEDパッケージ620aを疎に配置する。また、LED光源基板140aの両端S・SのLEDパッケージ620aを駆動する回路と、LED光源基板140aの中央部分CのLEDパッケージ620aを駆動する回路とを別にする。そして、両端S・SのLEDパッケージ620aについてのみ、それを駆動する電流値またはデューティー比を下げる。
 一方、配光特性を変えるためには、LED光源基板140aの両端S・SのLEDパッケージ620aを傾ける。
 この結果、面光源装置300の組み立て精度に起因する輝度ムラを低減することができ、公差に対する厳密さを緩和することができる。
 なお、図26に示す面光源装置300は、面光源装置30の構成と応用例およびその変形例に係る技術思想とを組み合わせたものであるが、面光源装置10、50、70のいずれかと、応用例およびその変形例に係る技術思想とを組み合わせても当然良い。
 LED光源基板140aを導光板120の対応する辺の中程に配置するときは、両端S・Sの輝度の勾配をゆるやかにする必要があるが、LEDパッケージ620aを当該辺の隅に配置するときは、一方(隅から遠い方)の端部Sの輝度の勾配をゆるやかにすれば効果が得られる。
 LED光源基板140aと導光板120との位置ずれに起因する輝度ムラを軽減するためには、これらの双方に対策を施す必要がある。
 また、本発明のエッジライト型面光源装置において、前記少なくとも1つの光源は、3つ以上の点光源を備えているのが好ましい。
 また、本発明のエッジライト型面光源装置において、少なくとも1つの光源は、対応する前記導光手段の辺に沿って延伸するように配置されており、かつ、その少なくとも一方の端部から出射される光の輝度がその中央部分から出射される光の輝度よりも小さいのが好ましい。
 上記の構成によれば、前記複数の光源から、当該光源が光を照射する範囲の縁における輝度の勾配が小さい光を照射することを実現することが可能である。なお、このような構成は、具体的に下記の各構成により実現することができる。
 まず、本発明のエッジライト型面光源装置において、前記少なくとも1つの光源は、前記端部に配置されている前記点光源の輝度が、前記中央部分に配置されている前記点光源の輝度よりも小さい。
 続いて、本発明のエッジライト型面光源装置において、前記少なくとも1つの光源は、前記端部と前記中央部分とのそれぞれに、複数の前記点光源を備えており、前記端部に配置された複数の前記点光源が、前記中央部分に配置された複数の前記点光源よりも疎に配置されている。
 続いて、本発明のエッジライト型面光源装置において、前記少なくとも1つの光源は、前記端部に配置されている前記点光源を駆動する電流の電流値が、前記中央部分に配置されている前記点光源を駆動する電流の電流値よりも小さい。
 続いて、本発明のエッジライト型面光源装置において、前記少なくとも1つの光源は、前記端部と前記中央部分とのそれぞれに、複数の前記点光源を備えており、前記端部における前記点光源の列数が、前記中央部分における前記点光源の列数よりも多い。
 そして、本発明のエッジライト型面光源装置において、前記少なくとも1つの光源は、前記点光源をパルス幅変調により駆動し、前記端部に配置されている前記点光源を駆動する電流のデューティー比が、前記中央部分に配置されている前記点光源を駆動する電流のデューティー比よりも小さい。
 また、本発明のエッジライト型面光源装置において、少なくとも1つの光源は、対応する前記導光手段の辺に沿って延伸するように配置されており、かつ、その少なくとも一方の端部から出射される光の配光特性が、光を照射する範囲の全てにて略均一な輝度を有する光を照射する光源である基準光源と異なっているのが好ましい。
 上記の構成によれば、前記複数の光源から、当該光源が光を照射する範囲の縁における輝度の勾配が小さい光を照射することを実現することが可能である。なお、このような構成は、具体的に下記の各構成により実現することができる。
 まず、本発明のエッジライト型面光源装置において、前記少なくとも1つの光源は、前記端部に設けられた少なくとも1つの前記点光源の向きが、前記基準光源と異なっている。
 続いて、本発明のエッジライト型面光源装置において、前記少なくとも1つの光源は、前記端部に設けられた少なくとも1つの前記点光源を配置する高さが、前記基準光源と異なっている。
 続いて、本発明のエッジライト型面光源装置は、前記3つ以上の点光源が、全て同じ配光特性でない。
 続いて、本発明のエッジライト型面光源装置は、前記端部から出射される光を反射させる光反射手段を備えている。
 続いて、本発明のエッジライト型面光源装置は、前記端部から出射される光を吸収する光吸収手段を備えている。
 そして、本発明のエッジライト型面光源装置は、前記端部から出射される光を拡散させる光拡散手段を備えている。
 また、本発明のエッジライト型面光源装置において、前記少なくとも1つの光源は、ワイヤボンディング方式により、リードフレームに前記点光源を実装したものであってもよい。
 また、本発明のエッジライト型面光源装置において、前記少なくとも1つの光源は、ワイヤボンディング方式により、基板上に前記点光源を実装したものであってもよい。
 また、本発明のエッジライト型面光源装置において、前記少なくとも1つの光源は、半田を用いた接合方式により、基板上に前記点光源を実装したものであってもよい。
 また、本発明のエッジライト型面光源装置において、前記点光源は発光ダイオードであるのが好ましい。
 また、本発明のエッジライト型面光源装置において、前記発光ダイオードは、白色発光ダイオードであってもよい。
 また、本発明のエッジライト型面光源装置において、互いに異なる発光色である複数の前記発光ダイオードを備えていてもよい。
 また、本発明のエッジライト型面光源装置は、前記導光手段の照射面の全面における、前記複数の光源の1つから出射された光の照射による輝度分布と、前記複数の光源の別の1つから出射された光の照射による輝度分布とが、互いに逆相の関係を有するのが好ましい。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 本発明は、エッジライト型面光源装置に利用することができる。
10、30、50、70、300 面光源装置(エッジライト型面光源装置)
140、140a、140b、140c、500、600 LED光源基板(光源)
141 小基板
120 導光板(導光手段)
121 導光体
122 反射パターン
130 反射シート
131 反射材
132 反射シートの切り欠き部
150 拡散シート
160 筺体
601 コネクタ
610 配線基板
611 基材
612 配線層
613 ソルダーレジスト層
620、620a、620b LEDパッケージ(点光源、発光ダイオード)
621 LED素子
622 封止樹脂
623 ボンディングワイヤ
624 配線層
625 基材
626 半田
630 反射シート固定部材
511 基材
512 コネクタ
513 配線層
514 封止樹脂
515 LED素子
516 ボンディングワイヤ
730a 光反射部材(光反射手段)
740a 光吸収部材(光吸収手段)
750a 光拡散部材(光拡散手段)
C 中央部分
S 端部
S・S 両端

Claims (23)

  1.  導光手段と、
     前記導光手段の側面から前記導光手段内に光を照射する複数の光源と
     を備え、
     前記複数の光源は、
     前記導光手段の互いに対向しあう一組の辺の各々に配置され、当該複数の光源の発光部分のうち最も長いものの長さは、当該複数の光源が配置される前記導光手段の辺の長さより短く、
     前記複数の光源は、
     当該光源が光を照射する範囲の全てにて略均一な輝度を有する光よりも、当該範囲の縁における輝度の勾配が小さい光を照射するように構成されていることを特徴とするエッジライト型面光源装置。
  2.  少なくとも1つの光源は、
     対応する前記導光手段の辺に沿って延伸するように配置されており、かつ、その少なくとも一方の端部から出射される光の輝度がその中央部分から出射される光の輝度よりも小さいことを特徴とする請求項1に記載のエッジライト型面光源装置。
  3.  前記少なくとも1つの光源は、
     3つ以上の点光源を備えていることを特徴とする請求項2に記載のエッジライト型面光源装置。
  4.  前記少なくとも1つの光源は、
     前記端部に配置されている前記点光源の輝度が、前記中央部分に配置されている前記点光源の輝度よりも小さいことを特徴とする請求項3に記載のエッジライト型面光源装置。
  5.  前記少なくとも1つの光源は、
     前記端部と前記中央部分とのそれぞれに、複数の前記点光源を備えており、
     前記端部に配置された複数の前記点光源が、前記中央部分に配置された複数の前記点光源よりも疎に配置されていることを特徴とする請求項3に記載のエッジライト型面光源装置。
  6.  前記少なくとも1つの光源は、
     前記端部に配置されている前記点光源を駆動する電流の電流値が、前記中央部分に配置されている前記点光源を駆動する電流の電流値よりも小さいことを特徴とする請求項3に記載のエッジライト型面光源装置。
  7.  前記少なくとも1つの光源は、
     前記端部と前記中央部分とのそれぞれに、複数の前記点光源を備えており、
     前記端部における前記点光源の列数が、前記中央部分における前記点光源の列数よりも多いことを特徴とする請求項3に記載のエッジライト型面光源装置。
  8.  前記少なくとも1つの光源は、
     前記点光源をパルス幅変調により駆動し、
     前記端部に配置されている前記点光源を駆動する電流のデューティー比が、前記中央部分に配置されている前記点光源を駆動する電流のデューティー比よりも小さいことを特徴とする請求項3に記載のエッジライト型面光源装置。
  9.  少なくとも1つの光源は、
     対応する前記導光手段の辺に沿って延伸するように配置されており、かつ、その少なくとも一方の端部から出射される光の配光特性が、光を照射する範囲の全てにて略均一な輝度を有する光を照射する光源である基準光源と異なっていることを特徴とする請求項1に記載のエッジライト型面光源装置。
  10.  前記少なくとも1つの光源は、
     3つ以上の点光源を備えていることを特徴とする請求項9に記載のエッジライト型面光源装置。
  11.  前記少なくとも1つの光源は、
     前記端部に設けられた少なくとも1つの前記点光源の向きが、前記基準光源と異なっていることを特徴とする請求項10に記載のエッジライト型面光源装置。
  12.  前記少なくとも1つの光源は、
     前記端部に設けられた少なくとも1つの前記点光源を配置する高さが、前記基準光源と異なっていることを特徴とする請求項10に記載のエッジライト型面光源装置。
  13.  前記3つ以上の点光源が、全て同じ配光特性でないことを特徴とする請求項10に記載のエッジライト型面光源装置。
  14.  前記端部から出射される光を反射させる光反射手段を備えていることを特徴とする請求項9に記載のエッジライト型面光源装置。
  15.  前記端部から出射される光を吸収する光吸収手段を備えていることを特徴とする請求項9に記載のエッジライト型面光源装置。
  16.  前記端部から出射される光を拡散させる光拡散手段を備えていることを特徴とする請求項9に記載のエッジライト型面光源装置。
  17.  前記少なくとも1つの光源は、
     ワイヤボンディング方式により、リードフレームに前記点光源を実装したものであることを特徴とする請求項3に記載のエッジライト型面光源装置。
  18.  前記少なくとも1つの光源は、
     ワイヤボンディング方式により、基板上に前記点光源を実装したものであることを特徴とする請求項3に記載のエッジライト型面光源装置。
  19.  前記少なくとも1つの光源は、
     半田を用いた接合方式により、基板上に前記点光源を実装したものであることを特徴とする請求項3に記載のエッジライト型面光源装置。
  20.  前記点光源は発光ダイオードであることを特徴とする請求項3に記載のエッジライト型面光源装置。
  21.  前記発光ダイオードは、白色発光ダイオードであることを特徴とする請求項20に記載のエッジライト型面光源装置。
  22.  互いに異なる発光色である複数の前記発光ダイオードを備えていることを特徴とする請求項20に記載のエッジライト型面光源装置。
  23.  前記導光手段の照射面の全面における、前記複数の光源の1つから出射された光の照射による輝度分布と、前記複数の光源の別の1つから出射された光の照射による輝度分布とが、互いに逆相の関係を有することを特徴とする請求項1に記載のエッジライト型面光源装置。
PCT/JP2013/068273 2012-07-04 2013-07-03 エッジライト型面光源装置 WO2014007293A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380034975.XA CN104412032B (zh) 2012-07-04 2013-07-03 边光型面光源装置
JP2014523767A JP5851608B2 (ja) 2012-07-04 2013-07-03 エッジライト型面光源装置
US14/411,705 US9244213B2 (en) 2012-07-04 2013-07-03 Edge-light type planar light source device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012150924 2012-07-04
JP2012-150924 2012-07-04

Publications (1)

Publication Number Publication Date
WO2014007293A1 true WO2014007293A1 (ja) 2014-01-09

Family

ID=49882045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068273 WO2014007293A1 (ja) 2012-07-04 2013-07-03 エッジライト型面光源装置

Country Status (4)

Country Link
US (1) US9244213B2 (ja)
JP (1) JP5851608B2 (ja)
CN (1) CN104412032B (ja)
WO (1) WO2014007293A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102416031B1 (ko) * 2015-06-10 2022-07-04 삼성디스플레이 주식회사 백라이트 유닛 및 이를 포함하는 표시 장치
EP3390902A1 (en) * 2015-12-17 2018-10-24 3M Innovative Properties Company Light guides

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008007487A1 (fr) * 2006-07-11 2008-01-17 Sharp Kabushiki Kaisha Module d'éclairage, rétroéclairage, éclairage par l'avant, et affichage
JP4073435B2 (ja) * 2002-10-22 2008-04-09 シャープ株式会社 バックライトユニット及びバックライトユニットを用いた液晶表示装置
JP2008098190A (ja) * 2008-01-11 2008-04-24 Mitsubishi Electric Corp 面光源装置
JP2009081096A (ja) * 2007-09-27 2009-04-16 Fujifilm Corp 面状照明装置
WO2009110145A1 (ja) * 2008-03-07 2009-09-11 シャープ株式会社 発光素子、照明装置および液晶表示装置
JP2010020097A (ja) * 2008-07-10 2010-01-28 Hitachi Ltd 液晶表示装置
JP2011119180A (ja) * 2009-12-07 2011-06-16 Panasonic Corp 照明装置
JP2011210674A (ja) * 2010-03-30 2011-10-20 Sumita Optical Glass Inc 発光装置
JP2012015527A (ja) * 2010-07-05 2012-01-19 Lg Innotek Co Ltd 発光素子モジュール
WO2012066887A1 (ja) * 2010-11-18 2012-05-24 シャープ株式会社 照明装置およびこれを備えた液晶表示装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09231822A (ja) 1996-02-20 1997-09-05 Enplas Corp サイドライト型面光源装置
JPH1039299A (ja) 1996-07-26 1998-02-13 Toshiba Corp 光照射装置及び液晶表示装置
JPH1083711A (ja) 1996-09-09 1998-03-31 Toshiba Corp 面光源装置及びそれを使用した平面表示装置
JPH10293213A (ja) 1997-04-22 1998-11-04 Toshiba Corp バックライト装置
US8104945B2 (en) * 2007-12-27 2012-01-31 Samsung Led Co., Ltd. Backlight unit implementing local dimming for liquid crystal display device
KR101575877B1 (ko) * 2008-06-19 2015-12-10 삼성디스플레이 주식회사 도광판 및 이를 포함하는 백라이트 유닛
JP5267920B2 (ja) 2008-08-06 2013-08-21 住友化学株式会社 偏光板およびその製造方法、ならびに液晶表示装置
CN101749666B (zh) * 2008-12-05 2012-05-02 上海向隆电子科技有限公司 背光模块的光源布设结构
US8545083B2 (en) 2009-12-22 2013-10-01 Sumita Optical Glass, Inc. Light-emitting device, light source and method of manufacturing the same
JP4920757B2 (ja) * 2010-02-16 2012-04-18 シャープ株式会社 バックライトユニットおよびそれを備えた表示装置
WO2011108165A1 (ja) * 2010-03-04 2011-09-09 シャープ株式会社 エッジライト式面状光源装置、及び液晶表示装置
JP2011238432A (ja) * 2010-05-10 2011-11-24 Fujifilm Corp 面状照明装置
US9063259B2 (en) * 2010-08-09 2015-06-23 Sharp Kabushiki Kaisha Illuminating device, liquid crystal display device and television receiving device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4073435B2 (ja) * 2002-10-22 2008-04-09 シャープ株式会社 バックライトユニット及びバックライトユニットを用いた液晶表示装置
WO2008007487A1 (fr) * 2006-07-11 2008-01-17 Sharp Kabushiki Kaisha Module d'éclairage, rétroéclairage, éclairage par l'avant, et affichage
JP2009081096A (ja) * 2007-09-27 2009-04-16 Fujifilm Corp 面状照明装置
JP2008098190A (ja) * 2008-01-11 2008-04-24 Mitsubishi Electric Corp 面光源装置
WO2009110145A1 (ja) * 2008-03-07 2009-09-11 シャープ株式会社 発光素子、照明装置および液晶表示装置
JP2010020097A (ja) * 2008-07-10 2010-01-28 Hitachi Ltd 液晶表示装置
JP2011119180A (ja) * 2009-12-07 2011-06-16 Panasonic Corp 照明装置
JP2011210674A (ja) * 2010-03-30 2011-10-20 Sumita Optical Glass Inc 発光装置
JP2012015527A (ja) * 2010-07-05 2012-01-19 Lg Innotek Co Ltd 発光素子モジュール
WO2012066887A1 (ja) * 2010-11-18 2012-05-24 シャープ株式会社 照明装置およびこれを備えた液晶表示装置

Also Published As

Publication number Publication date
CN104412032B (zh) 2016-06-08
JP5851608B2 (ja) 2016-02-03
CN104412032A (zh) 2015-03-11
US20150160403A1 (en) 2015-06-11
US9244213B2 (en) 2016-01-26
JPWO2014007293A1 (ja) 2016-06-02

Similar Documents

Publication Publication Date Title
JP5450778B2 (ja) エッジライト型面光源装置および照明装置
JP7125636B2 (ja) 発光装置
US7441938B2 (en) Planar light source device
US8757860B2 (en) Backlight device, liquid crystal display device and television receiver
JP2006286638A (ja) 複数の隣り合って重なり合う導光板を有する発光装置
US20060221610A1 (en) Light-emitting apparatus having a plurality of overlapping panels forming recesses from which light is emitted
JP5113594B2 (ja) 線状光源装置、および面状照明装置
KR20130121602A (ko) 발광장치
US20100321954A1 (en) Light emitting device and surface light source device
JP2010157444A (ja) 砲弾型ledを用いた照明ユニットおよび面発光装置
WO2012032978A1 (ja) 反射シート、照明装置および表示装置
JP2022082802A (ja) 発光装置
WO2011108165A1 (ja) エッジライト式面状光源装置、及び液晶表示装置
JP5944516B2 (ja) エッジライト型面光源装置
WO2012066887A1 (ja) 照明装置およびこれを備えた液晶表示装置
JP5851608B2 (ja) エッジライト型面光源装置
KR20120061292A (ko) 광원 장치, 백라이트 유닛 및 이를 포함하는 표시 장치
JP2012059737A (ja) 発光装置、バックライトユニット、液晶表示装置及び照明装置
JP2008277189A (ja) 線状光源装置およびその製造方法
WO2011004643A1 (ja) 照明装置、表示装置、およびテレビ受像装置
US8002453B2 (en) Light-emitting diode backlight module and liquid crystal display using the same
KR20100077872A (ko) 백라이트 유닛
US20120069266A1 (en) Light emitting assemblies having optical conductors with a tapered cross sectional shape
JP2010231974A (ja) 照明装置、面照明装置及び発光装置
WO2014057990A1 (ja) エッジライト型面光源装置および液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13812704

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014523767

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14411705

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13812704

Country of ref document: EP

Kind code of ref document: A1