WO2014005358A1 - 一种纳米图形化系统及其光响应特性检测装置 - Google Patents

一种纳米图形化系统及其光响应特性检测装置 Download PDF

Info

Publication number
WO2014005358A1
WO2014005358A1 PCT/CN2012/078760 CN2012078760W WO2014005358A1 WO 2014005358 A1 WO2014005358 A1 WO 2014005358A1 CN 2012078760 W CN2012078760 W CN 2012078760W WO 2014005358 A1 WO2014005358 A1 WO 2014005358A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanopatterning
electron beam
characteristic detection
sample
spherical mirror
Prior art date
Application number
PCT/CN2012/078760
Other languages
English (en)
French (fr)
Inventor
刘盼
郭鹏
于国强
韩秀峰
孙晓玉
周向前
Original Assignee
中国科学院物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院物理研究所 filed Critical 中国科学院物理研究所
Publication of WO2014005358A1 publication Critical patent/WO2014005358A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2607Circuits therefor
    • G01R31/2632Circuits therefor for testing diodes
    • G01R31/2635Testing light-emitting diodes, laser diodes or photodiodes

Definitions

  • the present invention relates to a nano-patterning system, and more particularly to a nano-patterning system and a photo-responsiveness detecting device suitable for photoexcitation and light detection in a magnetoelectric high-frequency characteristic measuring system. Background technique
  • optical fibers The introduction of optical fibers, fiber optic transmitters, fiber optic detectors, precision spherical mirrors, optical CCD photography, and spectroscopic methods have been widely used in various engineering measurement techniques and are also important tools for high-precision physics experiments.
  • the above optical instruments and optical experimental techniques are extremely important research methods in studying the interaction of matter and light and the structure of atomic molecules.
  • micro and nano-patterned devices Based on optical systems, various stages of micro and nano-patterned devices need to be characterized in the patterning and measurement systems of micro and nano devices.
  • the micromachining process can be tracked and detected, and the optical properties of the micron and nano-patterned devices can also reflect and reflect the basic physical properties of the device during the measurement process. Real-time in-situ detection of micron and nano-patterned devices is possible.
  • the measurement of photoexcitation, light absorption, light emission, and photoelectric conversion properties of micro and nano patterned materials or devices by spectroscopic analysis is expected to reveal micron and nanopatterned materials or devices. New effect.
  • the technical problem to be solved by the present invention is to provide a nano-patterning system capable of real-time and in-situ detection of surface features and/or photoelectric properties in a patterning and measuring system of micro and nano-patterned devices and its photoresponse characteristics detection. Device.
  • the present invention provides a photoresponsiveness detection method of a nano-patterning system.
  • Device for nano-patterning systems for real-time and in-situ detection of photoresponse characteristics of micro- and nano-patterned materials or devices in micro- and nano-patterned device micromachining and probing including light emitters, lead-in fibers, light a detector, a CCD imaging device, and a precision conductive fiber, the light emitter being coupled to the lead-in optical fiber through the precision conductive fiber, the photodetector being coupled to the CCD imaging device through the precision conductive fiber,
  • the introduction fiber and the photodetector are respectively disposed in a vacuum chamber of the nano-patterning system, and the introduction fiber is used to introduce the light beam emitted by the light emitter to On the sample of the sample stage, the photodetector is configured to collect reflected light of the sample, and the photodetector is disposed relative to the introduction optical fiber to collect reflected light of the sample.
  • the optical response characteristic detecting apparatus of the above nano patterning system further includes a spectrometer connected to the photodetector through the precision conducting optical fiber.
  • the optical response characteristic detecting device of the nano-patterning system described above further comprising an electrode probe connected to the voltage source or the current source through the electrode probe arm, wherein the electrode probe and the sample respectively have In a connected position and a disconnected position, the electrode probe and the sample form a closed circuit when in the connected position.
  • the above-mentioned photo-responsiveness detecting device of the nano-patterning system wherein the electrode probe arm and the lead-in optical fiber and/or the photodetector are respectively mounted in the vacuum chamber through a combiner, and the combiner is used Controlling the movement and positioning of the introduction fiber and/or the photodetector and the electrode probe arm.
  • the optical response characteristic detecting device of the above nano-patterning system wherein the combiner comprises a fixing frame and a fiber slide rail, a driving motor and a transmission mechanism mounted on the fixing frame, wherein the electrode probe arm is installed at the On the fixing frame, the optical fiber is mounted on the optical fiber slide rail, and the optical fiber sliding rail is connected to the driving motor through the transmission mechanism.
  • the optical response characteristic detecting device of the above nano-patterning system wherein the electrode probe is a four-way electrode probe, and a pair of probes of the four-way electrode probe are connected to the voltage source, the four-way Another pair of probes of the electrode probe are coupled to the current source.
  • the optical response characteristic detecting device of the nano-patterning system described above further comprising a spherical mirror for condensing the reflected light of the sample, the spherical mirror being disposed under the electron beam gun of the nano-patterning system and with the light
  • the distance of the detector is less than the focal radius of the spherical mirror, and the spherical mirror is provided with micron-sized apertures to ensure that the electron beam passes through the spherical mirror to micromachine and/or image the sample.
  • the present invention also provides a system for analysing a nanometer nanometer graph, including the electric system.
  • the power source, the control and control device, and the measuring and measuring device are disposed, and the control device is connected to the measuring and measuring device.
  • the control control device mounting device and the said measuring and measuring device mounting device are respectively connected to the electric power source, and the measuring and measuring device loading device includes The electron beam beam gun, the true vacuum cavity cavity, the true vacuum air system system, the sample sample platform, and the light and light response response characteristic test detection device are arranged, a vacuum air system is connected to the true vacuum cavity, and
  • the electric electron beam beam gun and the sample sample stage are disposed in the cavity of the true vacuum cavity, and the electric electron beam beam gun is Corresponding to the setting of the sample rack set in the above-mentioned sample, wherein the photo-response response characteristic characteristic inspection detecting and measuring device is set as the above-mentioned
  • the photo-electric response of the nanometer graph patterning system is set by the characteristic inspection and testing device.
  • the said measuring and measuring device mounting device further comprises a wide-bandwidth frequency signal signal number test test analysis
  • the device for setting the width and frequency signal signal number, the test value analysis and analysis device package includes a signal signal transmission and transmission device, and the signal signal transmission and transmission device
  • the pairing correspondence should be set in the sample platform set according to 1100, and the signal signal transmission and transmission device package includes a high frequency and high frequency probe probe arm and/or Or a low-low frequency probe probe arm, a probe probe arm movement mechanism, and a probe needle, the high-frequency probe probe arm and/or Or the low-frequency and low-frequency probe probe arm is coupled to the arm of the probe probe arm movement mechanism, and the probe probe is mounted at the height a high frequency frequency probe probe arm and/or a low front and rear end of the low frequency probe probe arm,
  • the pole probe probe arm arm is separately integrated with the high frequency probe probe arm and/or the low frequency probe probe arm arm set in the integrated body . .
  • Figure 11 is a block diagram showing the structure of the nanometer nanometer graph morphing system system according to the present invention.
  • FIG. 22 is a schematic view showing a structure of a light-light response response characteristic inspection detecting and measuring device according to an embodiment of the present invention.
  • FIG. 33 is a schematic view showing the structure of a junction bonder structure for the embodiment of the present invention.
  • FIG. 44 is a schematic view showing a structure of a junction bonder structure according to still another embodiment of the present invention.
  • Figure 55 is a schematic view showing the structure of the light-response response characteristic characteristic detecting and measuring device according to another embodiment of the present invention.
  • Figure 66 is a schematic view showing the original principle of the photo-response response characteristic test detecting and measuring device according to the embodiment of the present invention.
  • Figure 77 is a schematic view showing the optical path of Figure 66;
  • FIG. 88 is a schematic view showing the original principle of the light and light response response characteristic detecting and measuring device according to another embodiment of the present invention.
  • Figure 99 is a schematic view showing the optical path of Figure 88;
  • Figure 1100 is a schematic view showing the optical photoelectron detection light metering path of Figure 88;
  • Figure 1111 is a schematic diagram showing the original principle of the work of Figure 1100;
  • FIG. 1122 is a schematic view showing the original principle of the photo-response response characteristic characteristic detecting and measuring device according to another embodiment of the present invention
  • 14 is a schematic diagram of the working principle of FIG. 13
  • FIG. 15 is a schematic structural view of a prior art nano-patterning system, wherein
  • FIG. 1 is a structural block diagram of a nano-patterning system of the present invention.
  • the nano-patterning system of the present invention comprises a power source 1, a control device 2 and a measuring device 3, the control device 2 is connected to the measuring device 3, and the control device 2 and the measuring device 3 are respectively connected to the power source 1
  • the measuring device 3 includes an electron beam gun 31, a vacuum chamber 32, a vacuum system 33, a sample stage 34, and a photoresponsive characteristic detecting device 35.
  • the vacuum system 33 is connected to the vacuum chamber 32, and the electron beam gun 31 is connected.
  • sample stage 34 is disposed in the vacuum chamber 32, and the electron beam gun 31 is disposed corresponding to the sample stage 34, because the composition, structure, function and the like of other parts of the nano-patterning system are relatively mature.
  • the prior art will not be described herein. Only the optical response characteristic detecting device 35 of the present invention will be described in detail below.
  • FIG. 2 is a schematic structural diagram of an optical response characteristic detecting apparatus according to an embodiment of the present invention.
  • the photo-responsiveness detecting device 35 of the nano-patterning system of the present invention is used in a nano-patterning system to detect the photoresponses of micro- and nano-patterned materials or devices in real-time and in-situ micro-machining and probing of micro- and nano-patterned devices.
  • the characteristics include a light emitter 351, an introduction fiber 352, a light detector 353, a CCD imaging device 354, and a precision conductive fiber 355, and the light emitter 351 is connected to the introduction fiber 352 through the precision conductive fiber 355,
  • the photodetector 353 is connected to the CCD imaging device 354 through the precision conductive fiber 355, and the introduction fiber 352 and the photodetector 353 are respectively disposed on the nanometer corresponding to the sample stage 34 of the nano-patterning system.
  • the introduction fiber 352 is used to introduce a light beam emitted by the light emitter 351 onto the sample 4 of the sample stage 34, the light detector 353 is used to collect the sample The reflected light of 4 is disposed relative to the introduction fiber 352 to collect the reflected light of the sample 4.
  • a spectrometer 356 can also be included, which is coupled to the photodetector 353 via the precision conducting fiber 355.
  • an electrode probe 357 that is coupled to a voltage source 37 or a current source 38 via an electrode probe arm 358, the electrode probe 357 having a connected position and a disconnected position with the sample 4, respectively.
  • the electrode probe 357 and the sample 4 constitute a closed circuit at the connection position to complete detection of the photoexcitation, light absorption, light emission, and photoelectric conversion characteristics of the sample 4.
  • FIG. 3 is a schematic structural view of a combiner according to an embodiment of the present invention
  • FIG. 4 is a schematic structural view of a combiner according to still another embodiment of the present invention.
  • the electrode probe arm 358 and the guide The incoming optical fiber 352 and/or the photodetector 353 are respectively mounted in the vacuum chamber 32 by a combiner 359 for controlling the lead-in optical fiber 352 and/or the photodetector 353 and the The movement and positioning of the electrode probe 357 arm 358.
  • the electrode probe arm 358 and the combiner 359 can precisely control the movement and position of the lead fiber 352 and the electrode probe 357.
  • the electrode probe arm 358 can also be provided with a sleeve.
  • the electrode probe arm 358 located in the sleeve can be Free contraction movement.
  • the combiner 359 can be the structure shown in FIG. 3, and the lead-in fiber 352 and the electrode probe arm 358 are mounted in the holder 3591.
  • the lead-in fiber 352 and the electrode probe arm 358 are respectively connected to a power device for displacement, or
  • the holder 3591 is coupled to a power unit for displacement.
  • the combiner 359 preferably includes a fixing frame 3591 and a fiber slide rail 3592 mounted on the fixing frame 3591, a driving motor 3593, and a transmission mechanism 3594. Referring to FIG. 4, the electrode probe arm 358 is installed.
  • the introduction optical fiber 352 is mounted on the optical fiber slide 3592, and the precision conductive optical fiber 355 connected to the optical detector 353 is mounted on the optical fiber slide 3592, and the optical fiber slide 3592 passes.
  • the transmission mechanism 3594 is coupled to the drive motor 3593.
  • the electrode probe 357 is a four-way electrode probe 357, and a pair of probes A, B of the four-way electrode probe 357 are connected to the voltage source 37, and the other of the four-way electrode probes 357
  • the probes (:, D are connected to the current source 38.
  • FIG. 5 is a schematic structural diagram of an optical response characteristic detecting apparatus according to another embodiment of the present invention.
  • the light response characteristic detecting device 35 further includes a spherical mirror 350 for condensing the reflected light of the sample 4, the spherical mirror 350 being a high-precision spherical mirror having a high condensing ability, and the spherical mirror 350 is disposed at the nanometer
  • the distance below the electron beam gun 31 of the graphical system and the distance from the photodetector 353 is smaller than the focal radius of the spherical mirror 350.
  • the spherical mirror 350 is provided with a micron-sized aperture 3501 to ensure that the electron beam passes through the spherical mirror 350.
  • the sample 4 was micromachined and/or imaged.
  • a high-precision minute spherical mirror 350 is mounted under the electron beam gun 31 for collecting the light emitted or reflected by the sample 4.
  • the spherical mirror 350 is a reflective image, such as an inverted, magnified virtual image or an inverted, reduced real image.
  • a small hole is opened above the spherical mirror 350 to ensure that the electron beam can be micromachined (e.g., electronically exposed) and imaged (e.g., electronically scanned by electron microscopy) of the sample 4 through the spherical mirror 350.
  • the added spherical mirror 350 does not affect the above operation.
  • EBL direct beam exposure
  • SEM scanning imaging
  • the introduction optical fiber 352 and the photodetector 353 are mounted under the spherical mirror 350.
  • the position of the photodetector 353 and the spherical mirror 350 must be smaller than the focal radius of the spherical mirror 350.
  • the imaging position of the mirror 350 is within the focal radius of the spherical mirror 350, so the position of the photodetector 353 cannot be farther away from the focal radius, and the detecting surface size of the photodetector 353 is preferably 1 cm 2 , and the highest resolution of the space is preferably 1 Micrometers, so that after the spherical mirror 350 is condensed, the surface of the sample 4 can still be resolved.
  • the photodetector 353 After detecting the light, the photodetector 353 conducts the light using the precision conducting fiber 355, so that the light to be measured is incident on the spectrometer 356 by the joint, and the optical platform in the spectrometer 356 is designed to adopt a crossover Czerny-Turner beam splitting structure, and the incident light is reflected.
  • Collimation collimation collimation after the plane reflection grating is split, the incident light is divided into monochromatic light arranged in a certain wavelength order, and then focused by the imaging objective lens, and then projected onto the photosensitive surface of the CCD array for detection, with a charge coupled device ( The CCD) array acts as a detector for transient acquisition and real-time output via a computer.
  • the light emitter 351 is composed of an input interface, a light source, a driving circuit, a monitoring circuit, a control circuit, and the like, and the core thereof is a light source and a driving circuit.
  • monochromatic light of different frequencies is emitted by the light source of the light emitter 351.
  • the introduction fiber 352 is placed above the sample 4, and the electrode probe 357 is used to fix and manipulate the spatial position and orientation of the introduction fiber 352. At the same time, no new noise can be introduced during the introduction of the beam to ensure the monochromaticity of the beam into the fiber 352.
  • the light source of the light emitter 351 emits monochromatic light
  • it is incident on the surface of the sample 4 along the introduction fiber 352, and is imaged by the spherical mirror 350, and is collected by the photodetector 353.
  • the introduction fiber 352 and the photodetector 353 can irradiate and detect a part of the unit device of the sample 4, and continuously move the sample 4 platform back and forth, the optical properties of the device unit of the entire sample 4 can be measured.
  • the monochromatic light is emitted from the light source of the light emitter 351, it is irradiated on the surface of the experimental sample 4, collected by the photodetector 353, and then introduced into the spectrometer 356 by the precision conducting optical fiber 355, and the micron and nano patterned materials are studied by spectral analysis or The properties of the device in terms of photoexcitation, light absorption, light emission, and photoelectric conversion characteristics.
  • FIG. 6 is a schematic diagram of the principle of the optical response characteristic detecting apparatus according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of the optical path of FIG.
  • the lead-in fiber 352 is moved over the sample 4, and a four-inch standard silicon or metal sheet (micron and nano-patterned material or device) sample 4 is placed on the sample stage 34, and the light emitter 351 is turned on, and the light is emitted.
  • the light source of the device 351 emits light and introduces the light beam by the introduction optical fiber 352. As shown in FIG.
  • the light is introduced into the optical fiber 352, so that the emitted light of the standard silicon wafer or the metal piece of the sample 4 is totally incident into the spherical mirror 350, and is concentrated by the spherical mirror 350.
  • adjust the light detector 353, collect the spherical surface
  • the light converged by the mirror 350, the photodetector 353 is connected to the CCD imaging device 354 via an optical fiber, and then photographed by the CCD imaging device 354 to observe the surface of a standard silicon wafer or metal sheet (micron and nanopatterned material or device) of the sample 4. feature.
  • FIG. 8 is a schematic diagram showing the principle of the optical response characteristic detecting apparatus according to still another embodiment of the present invention
  • FIG. 9 is a schematic diagram of the optical path of FIG. 8
  • FIG. 10 is a schematic diagram of the optical detecting optical path of FIG.
  • Figure 11 is a schematic diagram of the working principle of Figure 10.
  • the electrode probe arm 358 and the bonder 359 are adjusted such that the lead-in fiber 352 is moved over the sample 4, and a four-inch standard wafer or sheet of metal (micron and nanopatterned material or device sample 4) is placed on the sample stage 34.
  • the light emitter 351 After the light emitter 351 is turned on, the light source of the light emitter 351 emits light and the light beam is introduced by the introduction fiber 352.
  • the electrode probe arm 358 and the combiner 359 are continuously adjusted to make the light emitted from the standard silicon wafer or the metal sheet. All are incident into the spherical mirror 350, condensed by the spherical mirror 350, and at the same time, the photodetector 353 is adjusted to collect the light concentrated by the spherical mirror 350.
  • the photodetector 353 is connected to the CCD imaging device 354 through the precision conducting optical fiber 355, and then passes through the CCD imaging device. 354 photographing, observing the surface characteristics of standard silicon or metal sheets (micron and nano-patterned materials or devices). After the above operation, another electrode probe 357 is placed, as shown in Fig.
  • the photodetector 353 is connected to the spectrometer 356.
  • the electrode probe 357 is connected to a standard silicon or metal piece (micron and nano-patterned material or device) , forming a closed circuit, as shown in FIG. 11, the probe A and the probe B are respectively connected to the current source 38, and the probe C and the probe D are respectively connected to the voltage source 37, so that the micro- and nano-patterning are measured by the four-terminal circuit method.
  • the light emitter 351 is turned on to cause its light source to illuminate, and the light beam is irradiated onto the standard silicon wafer or metal sheet (micron and nanopatterned material or device) through the introduction optical fiber 352, and the photodetector 353 and the standard silicon are adjusted.
  • the wavelength of the reflected light is matched by a sheet or sheet of metal (micron and nano-patterned material or device), and the standard silicon or metal sheet (micron and nano-patterned material or device) is completed by spectral analysis and observation of current and voltage changes in the circuit.
  • FIG. 12 is a schematic diagram of the optical response characteristic detecting device according to another embodiment of the present invention
  • FIG. 13 is a schematic diagram of the photoelectric detecting optical path of FIG. 12
  • FIG. 14 is a schematic diagram of the working principle of FIG.
  • the electrode probe arm 358 and the bonder 359 are adjusted such that the lead-in fiber 352 moves over the sample 4, the electrode probe 357 is in the off position, the sample 4 is not connected to the circuit, and the four-inch standard silicon or metal piece (micron) And the nano-patterned material or device) is placed on the sample stage 34, and after the light emitter 351 is turned on, the light source is illuminated And the light beam is introduced by the introduction fiber 352, as shown in FIG.
  • the electrode probe arm 358 and the combiner 359 are continuously adjusted, and the other electrode probe arm 358 and the combiner 359 are adjusted, so that the standard silicon or metal piece emits light. Incident is incident on photodetector 353, which is coupled to CCD imaging device 354 by precision conductive fiber 355, and then photographed by CCD imaging device 354 to observe the surface of standard silicon or metal sheets (micron and nanopatterned materials or devices) Characteristic, after the above operation is completed, the electrode probe 357 is placed, or when the electrode probe 357 is already on the sample 4, the electrode probe 357 is inserted into the circuit, as shown in Fig. 14, the probe A and the probe B are respectively connected.
  • the probe C and the probe D are respectively connected to the voltage source 37, so that the micro- and nano-patterned materials or electrical properties of the device are measured by the four-terminal circuit method, and the photodetector 353 is connected to the spectrometer 356 while the standard is A silicon or metal piece (micron and nanopatterned material or device) is inserted into the circuitry, the light emitter 352 is turned on to cause its source to illuminate, and the beam is incident on the micron and through the introduction fiber 352.
  • Figure 15 is a schematic diagram of the structure of a prior art nano-patterning system (patent number is
  • the measuring device 3 may further include a broadband signal testing and analyzing device 36.
  • the broadband signal testing and analyzing device 36 includes a signal transmitting device, the signal transmitting device is disposed corresponding to the sample stage 34, and the signal transmitting device includes a high frequency probe arm and/or a low frequency probe arm, a probe arm moving mechanism, and a probe, the high frequency probe arm and/or the low frequency probe arm being coupled to the probe arm moving mechanism, the probe Mounted at the front end of the high frequency probe arm and/or low frequency probe arm, the electrode probe arm 358 is integrated with the high frequency probe arm and/or the low frequency probe arm, respectively.
  • the detection system of the present invention is even smaller and suitable for use in integrated systems such as electron beam exposure (EBL) and scanning electron microscopy (SEM).
  • EBL electron beam exposure
  • SEM scanning electron microscopy
  • the invention can position micro and nano patterned devices by means of scanning electron microscope (SEM) auxiliary imaging function, and then perform some optical properties detection, including optical excitation, light absorption, light emission and photoelectric conversion characteristics. And research.
  • the invention utilizes a high-precision spherical mirror with micro-holes, a fiber-optic probe system which is introduced into an optical fiber, a light emitter and a photodetector, and can be used for micro-machining and measuring micro- and nano-patterned materials or devices. And nano-patterned devices for the detection of optoelectronic properties, in particular for real-time and in-situ detection of micro- and nano-patterned materials or devices for photoexcitation, light absorption, light emission and photoelectric conversion properties.
  • the invention has wide applicability of detection technology and can be extended in systems such as electron beam exposure machine (EBL), scanning electron microscope (SEM), scanning tunneling microscope (STM), magnetic atomic force microscope (MFM/AFM), etc. Important application value.

Abstract

一种光响应特性检测装置(35),该光响应特性检测装置(35)包括光发射器(351)、导入光纤(352)、光探测器(353)、CCD成像设备(354)和精密传导光纤(355),该光发射器(351)通过该精密传导光纤(355)与该导入光纤(352)连接,该光探测器(353)通过该精密传导光纤(355)与该CCD成像设备(354)连接,该导入光纤(352)及该光探测器(353)均对应于纳米图形化系统的样品台(34)设置于纳米图形化系统的真空腔(32)内,该导入光纤(352)用于将该光发射器(351)发出的光束导入至样品台(34)的样品上,该光探测器(353)用于采集该样品的反射光,该光探测器(353)相对于该导入光纤(352)设置以采集样品(4)的反射光。一种包括该光响应特性检测装置(35)的纳米图形化系统,该纳米图形化系统包括电源(1)、控制装置(2)和测量装置(3),该测量装置(3)包括电子束枪(31)、真空腔(32)、真空系统(33)、样品台(34)和光响应特性检测装置(35)。

Description

一种纳米图形化系统及其光响应特性检测装置 技术领域
本发明涉及一种纳米图形化系统,特别是一种适用于磁电高频特性测量系 统中的一种光激发和光探测的纳米图形化系统及其光响应特性检测装置。 背景技术
导入光纤、 光纤发射器、 光纤探测器、 精密球面镜集合光技术、 光学 CCD 照相技术以及光谱分析方法已经广泛应用于各类工程测量技术中,同时也是高 精度物理实验研究重要手段。上述光学仪器和光学实验技术方法在研究物质和 光的相互作用以及原子分子的结构中是极为重要的研究手段。
基于光学系统,在微米和纳米器件的图形化和测量系统中, 需要对微米和 纳米图形化器件的各个阶段进行表征。在微米和纳米图形化器件的微加工过程 中, 可以对微加工过程进行跟踪探测, 同时在测量过程中, 微米和纳米图形化 器件的光学性质也能体现和反映该器件的基本物理属性, 这样可以对微米和 纳米图形化器件进行实时的原位探测。最重要的是,通过光谱分析的方法对微 米和纳米图形化材料或器件进行光激发、光吸收、光发射和光电转换特性等方 面的测量研究, 有望能发现微米和纳米图形化材料或器件的新效应。
为了解决以上的问题, 在专利号为 " 201120265595. 5 " , 名称为 "纳米图 形化和超宽频电磁特性测量系统"的中国实用新型专利中公开了在纳米图形化 和超宽频电磁特性测量系统中, 由光纤导入光束, 实现对被测纳米材料和器件 的光辐照和光激发的方法和装置,但该装置中没有涉及对微米和纳米图形化器 件进行光激发、光吸收、光发射和光电转换特性等方面光响应特性测试的具体 方法及结构设计。 发明公开
本发明所要解决的技术问题是提供一种能在微米和纳米图形化器件的图 形化和测量系统中进行表面特征和 /或光电特性实时和原位检测的纳米图形化 系统及其光响应特性检测装置。
为了实现上述目的,本发明提供了一种纳米图形化系统的光响应特性检测 装置,用于纳米图形化系统在微米和纳米图形化器件微加工和探测中, 实时和 原位探测微米和纳米图形化材料或器件的光响应特性, 其中, 包括光发射器、 导入光纤、 光探测器、 CCD成像设备和精密传导光纤, 所述光发射器通过所述 精密传导光纤与所述导入光纤连接,所述光探测器通过所述精密传导光纤与所 述 CCD成像设备连接,所述导入光纤及所述光探测器均对应于所述纳米图形化 系统的样品台设置于所述纳米图形化系统的真空腔内,所述导入光纤用于将所 述光发射器发出的光束导入至所述样品台的样品上,所述光探测器用于采集所 述样品的反射光,所述光探测器相对于所述导入光纤设置以采集所述样品的反 射光。
上述的纳米图形化系统的光响应特性检测装置, 其中, 还包括光谱仪, 所 述光谱仪通过所述精密传导光纤与所述光探测器连接。
上述的纳米图形化系统的光响应特性检测装置, 其中, 还包括电极探针, 所述电极探针通过电极探针臂与电压源或电流源连接,所述电极探针与所述样 品分别具有一连接位置和一断开位置,所述电极探针与所述样品在连接位置时 组成闭合电路。
上述的纳米图形化系统的光响应特性检测装置, 其中,所述电极探针臂与 所述导入光纤和 /或所述光探测器分别通过结合器安装在所述真空腔内, 所述 结合器用于控制所述导入光纤和 /或所述光探测器及所述电极探针臂的运动和 定位。
上述的纳米图形化系统的光响应特性检测装置, 其中,所述结合器包括固 定架及安装在所述固定架上的光纤滑轨、驱动电机及传动机构,所述电极探针 臂安装在所述固定架上, 所述光纤安装在所述光纤滑轨上,所述光纤滑轨通过 所述传动机构与所述驱动电机连接。
上述的纳米图形化系统的光响应特性检测装置, 其中,所述电极探针为四 路电极探针,所述四路电极探针的一对探针与所述电压源连接, 所述四路电极 探针的另一对探针与所述电流源连接。
上述的纳米图形化系统的光响应特性检测装置, 其中, 还包括用于会聚所 述样品的反射光的球面镜,所述球面镜设置在所述纳米图形化系统的电子束枪 下方且与所述光探测器的距离小于所述球面镜的焦半径,所述球面镜上设置有 微米级小孔以保证电子束穿过所述球面镜对所述样品进行微加工和 /或成像。 为为了了更更好好地地实实现现上上述述目目的的,, 本本发发明明还还提提供供了了一一种种纳纳米米图图形形化化系系统统,,包包括括电电 源源、、控控制制装装置置和和测测量量装装置置,, 所所述述控控制制装装置置与与所所述述测测量量装装置置连连接接,, 所所述述控控制制装装置置 和和所所述述测测量量装装置置分分别别与与所所述述电电源源连连接接,, 所所述述测测量量装装置置包包括括电电子子束束枪枪、、 真真空空腔腔、、 真真空空系系统统、、 样样品品台台和和光光响响应应特特性性检检测测装装置置,, 所所述述真真空空系系统统与与所所述述真真空空腔腔连连接接,,
55 所所述述电电子子束束枪枪及及样样品品台台均均设设置置在在所所述述真真空空腔腔内内,,所所述述电电子子束束枪枪对对应应于于所所述述样样品品 台台设设置置,, 其其中中,,所所述述光光响响应应特特性性检检测测装装置置为为上上述述的的纳纳米米图图形形化化系系统统的的光光响响应应特特 性性检检测测装装置置。。
上上述述的的纳纳米米图图形形化化系系统统,, 其其中中,,所所述述测测量量装装置置还还包包括括宽宽频频信信号号测测试试分分析析装装 置置,,所所述述宽宽频频信信号号测测试试分分析析装装置置包包括括信信号号传传输输装装置置,,所所述述信信号号传传输输装装置置对对应应于于 1100 所所述述样样品品台台设设置置,, 所所述述信信号号传传输输装装置置包包括括高高频频探探针针臂臂和和 //或或低低频频探探针针臂臂、、 探探针针 臂臂移移动动机机构构和和探探针针,, 所所述述高高频频探探针针臂臂和和 //或或低低频频探探针针臂臂与与所所述述探探针针臂臂移移动动机机构构 连连接接,, 所所述述探探针针安安装装在在所所述述高高频频探探针针臂臂和和 //或或低低频频探探针针臂臂的的前前端端,, 所所述述电电极极探探 针针臂臂分分别别与与所所述述高高频频探探针针臂臂和和 //或或低低频频探探针针臂臂集集成成于于一一体体。。
以以下下结结合合附附图图和和具具体体实实施施例例对对本本实实用用新新型型进进行行详详细细描描述述,,但但不不作作为为对对本本实实 1155 用用新新型型的的限限定定。。 附附图图简简要要说说明明
图图 11为为本本发发明明的的纳纳米米图图形形化化系系统统结结构构框框图图;;
图图 22为为本本发发明明一一实实施施例例的的光光响响应应特特性性检检测测装装置置结结构构示示意意图图;;
2200 图图 33为为本本发发明明一一实实施施例例的的结结合合器器结结构构示示意意图图;;
图图 44为为本本发发明明又又一一实实施施例例的的结结合合器器结结构构示示意意图图;;
图图 55为为本本发发明明另另一一实实施施例例的的光光响响应应特特性性检检测测装装置置结结构构示示意意图图;;
图图 66为为本本发发明明一一实实施施例例的的光光响响应应特特性性检检测测装装置置原原理理示示意意图图;;
图图 77为为图图 66的的光光路路示示意意图图;;
2255 图图 88为为本本发发明明又又一一实实施施例例的的光光响响应应特特性性检检测测装装置置原原理理示示意意图图;;
图图 99为为图图 88的的光光路路示示意意图图;;
图图 1100为为图图 88的的光光电电探探测测光光路路示示意意图图;;
图图 1111为为图图 1100的的工工作作原原理理示示意意图图;;
图图 1122为为本本发发明明又又一一实实施施例例的的光光响响应应特特性性检检测测装装置置原原理理示示意意图图;; 图 14为图 13的工作原理示意图; 图 15为一现有技术的纳米图形化系统结构示意图 其中, 附图标记
Figure imgf000006_0001
2
3
31 电子束枪
32 真空腔
33 ;统
34 样品台
35 光响应特性
351 光发射器
352 导入光纤
353 光探测器
354 CCD成像设备
355 精密传导光纤
356 光谱仪
357 电极探针
358 电极探针臂
359 έ±人口銜獎
3591 固定架
3592 光纤滑轨
3593 驱动电机
3594 传动机构
350 球面镜
3501 微米级小孔
36 宽频信号测试分析装置
37 电压源
38 电流源
4 ρ
样 A、 B、 C、 D 探针 实现本发明的最佳方式
下面结合附图对本发明的结构原理和工作原理作具体的描述:
参见图 1, 图 1为本发明的纳米图形化系统结构框图。本发明的纳米图形化 系统, 包括电源 1、 控制装置 2和测量装置 3, 所述控制装置 2与所述测量装置 3 连接,所述控制装置 2和所述测量装置 3分别与所述电源 1连接,所述测量装置 3 包括电子束枪 31、真空腔 32、真空系统 33、样品台 34和光响应特性检测装置 35, 所述真空系统 33与所述真空腔 32连接,所述电子束枪 31及样品台 34均设置在所 述真空腔 32内,所述电子束枪 31对应于所述样品台 34设置, 因该纳米图形化系 统的其他部分的组成、 结构、 功能等均为较成熟的现有技术, 在此不做赘述, 下面仅对本发明的光响应特性检测装置 35予以详细说明。
参见图 2, 图 2为本发明一实施例的光响应特性检测装置结构示意图。本发 明的纳米图形化系统的光响应特性检测装置 35,用于纳米图形化系统在微米和 纳米图形化器件微加工和探测中,实时和原位探测微米和纳米图形化材料或器 件的光响应特性, 包括光发射器 351、 导入光纤 352、 光探测器 353、 CCD成像设 备 354和精密传导光纤 355,所述光发射器 351通过所述精密传导光纤 355与所述 导入光纤 352连接,所述光探测器 353通过所述精密传导光纤 355与所述 CCD成像 设备 354连接, 所述导入光纤 352及所述光探测器 353均对应于所述纳米图形化 系统的样品台 34设置于所述纳米图形化系统的真空腔 32内, 所述导入光纤 352 用于将所述光发射器 351发出的光束导入至所述样品台 34的样品 4上,所述光探 测器 353用于采集所述样品 4的反射光, 所述光探测器 353相对于所述导入光纤 352设置以采集所述样品 4的反射光。 本实施例中, 还可包括光谱仪 356, 所述 光谱仪 356通过所述精密传导光纤 355与所述光探测器 353连接。 还包括电极探 针 357, 所述电极探针 357通过电极探针臂 358与电压源 37或电流源 38连接, 所 述电极探针 357与所述样品 4分别具有一连接位置和一断开位置,所述电极探针 357与所述样品 4在连接位置时组成闭合电路以完成对样品 4的光激发、光吸收、 光发射和光电转换特性等方面的检测。
参见图 3及图 4, 图 3为本发明一实施例的结合器结构示意图, 图 4为本发明 又一实施例的结合器结构示意图。 本实施例中, 所述电极探针臂 358与所述导 入光纤 352和 /或所述光探测器 353分别通过结合器 359安装在所述真空腔 32内, 所述结合器 359用于控制所述导入光纤 352和 /或所述光探测器 353及所述电极 探针 357臂 358的运动和定位。电极探针臂 358与结合器 359可以精确控制导入光 纤 352和电极探针 357的运动和位置, 该电极探针臂 358外也可设置一套管, 位 于套管中的电极探针臂 358可以自由收缩运动。该结合器 359可为图 3所示结构, 将导入光纤 352及电极探针臂 358安装在固定架 3591内, 该导入光纤 352及电极 探针臂 358分别与一动力装置连接以实现位移, 或者该固定架 3591与一动力装 置连接以实现位移。 本实施例中, 所述结合器 359优选包括固定架 3591及安装 在所述固定架 3591上的光纤滑轨 3592、驱动电机 3593及传动机构 3594, 参见图 4, 所述电极探针臂 358安装在所述固定架 3591上, 所述导入光纤 352安装在所 述光纤滑轨 3592上,连接所述光探测器 353的精密传导光纤 355安装在光纤滑轨 3592上, 所述光纤滑轨 3592通过所述传动机构 3594与所述驱动电机 3593连接。 优选所述电极探针 357为四路电极探针 357, 所述四路电极探针 357的一对探针 A、 B与所述电压源 37连接, 所述四路电极探针 357的另一对探针 (:、 D与所 述电流源 38连接。
参见图 5, 图 5为本发明另一实施例的光响应特性检测装置结构示意图。在 本实施例中, 该光响应特性检测装置 35还包括用于会聚所述样品 4的反射光的 球面镜 350, 该球面镜 350为具有高聚光能力的高精度球面镜, 所述球面镜 350 设置在所述纳米图形化系统的电子束枪 31下方且与所述光探测器 353的距离小 于所述球面镜 350的焦半径,所述球面镜 350上设置有微米级小孔 3501以保证电 子束穿过所述球面镜 350对所述样品 4进行微加工和 /或成像。 本实施例在电子 束枪 31下安装一个高精密微小的球面镜 350, 用于汇聚样品 4发射或反射的光。 球面镜 350是反射成像, 像可以是倒立、 放大的虚像或倒立、 缩小的实像。 同 时,在球面镜 350上方开设一个小孔, 这样可以保证电子束可以通过球面镜 350 对样品 4进行微加工 (如电子曝光)和成像 (如电子扫描电镜成像)。 所加设的球 面镜 350并不会影响上述操作。 同时, 由于开设的小孔较小, 不会影响球面镜 350聚光后所成的像。 这样既可以保证光学系统的操作, 同时, 又不影响电子 束在样品 4表面上的直写曝光 (EBL)或扫描成像 (SEM)的操作。
在球面镜 350的下方安装导入光纤 352和光探测器 353, 安装光探测器 353 的位置与球面镜 350的距离必须小于球面镜 350的焦半径, 由光学原理可知, 球 面镜 350的成像位置在球面镜 350的焦半径以内, 因此光探测器 353的位置不能 远离焦半径之外, 同时光探测器 353的探测表面尺寸优选为 1平方厘米, 空间最 高分辨率优选为 1微米, 这样在球面镜 350进行聚光后, 仍然可以分辨样品 4的 表面。光探测器 353在探测到光后, 运用精密传导光纤 355进行传导, 这样被测 光由接头入射到光谱仪 356内, 光谱仪 356内的光学平台设计采用交叉式 Czerny-Turner分光结构, 入射光经反射准直镜准直, 平面反射式光栅分光后, 将入射光分成按一定波长顺序排列的单色光,再由成像物镜聚焦后,投射到 CCD 阵列的光敏面上进行检测, 以电荷耦合器件 (CCD)阵列作为检测器, 可进行瞬 态采集, 并通过计算机实时输出。
光发射器 351由输入接口、 光源、 驱动电路、 监控电路、 控制电路等构成, 其核心是光源及驱动电路。 本发明中, 要利用光发射器 351的光源发出不同频 率的单色光。 在样品 4上方安置导入光纤 352, 并由电极探针 357来固定和操控 导入光纤 352的空间位置和方向。同时在导入光束的过程中不能引入新的噪音, 以保证光束在导入光纤 352中的单色性。光发射器 351的光源发出单色光后, 沿 着导入光纤 352照射到样品 4的表面, 并通过球面镜 350成像, 由光探测器 353 采集。 当导入光纤 352和光探测器 353可以对样品 4某一部分单元器件进行辐照 和探测后, 前后左右连续移动样品 4平台, 就可以对整个样品 4的器件单元进行 光学性质的测量。 由光发射器 351的光源发出单色光后, 照射在实验样品 4的表 面, 通过光探测器 353收集后, 由精密传导光纤 355导入光谱仪 356中, 通过光 谱分析研究微米和纳米图形化材料或器件的光激发、光吸收、光发射和光电转 换特性等方面的性质。
下面通过几个具体实施例对本发明的光响应特性检测装置的工作过程予 以说明:
实施例 1
参见图 6及图 7,图 6为本发明一实施例的光响应特性检测装置原理示意图, 图 7为图 6的光路示意图。首先将导入光纤 352移动到样品 4的上方, 把四英寸的 标准硅片或金属片(微米和纳米图形化材料或器件)样品 4放在样品台 34上, 开 启光发射器 351后, 光发射器 351的光源发光并由导入光纤 352把光束导入, 如 图 7所示, 移动导入光纤 352, 使得样品 4的标准硅片或金属片的发射光全部入 射到球面镜 350内, 通过球面镜 350聚光, 同时, 调节光探测器 353, 采集球面 镜 350所会聚的光,光探测器 353通过光纤与 CCD成像设备 354连接,然后通过 CCD 成像设备 354照相, 观测样品 4的标准硅片或金属片(微米和纳米图形化材料或 器件)的表面特征。
实施例 2
参见图 8、 图 9、 图 10及图 11, 图 8为本发明又一实施例的光响应特性检测 装置原理示意图, 图 9为图 8的光路示意图, 图 10为图 8的光电探测光路示意图, 图 11为图 10的工作原理示意图。调整电极探针臂 358与结合器 359, 使得导入光 纤 352移动到样品 4的上方, 把四英寸的标准硅片或金属片(微米和纳米图形化 材料或器件样品 4)放在样品台 34上, 开启光发射器 351后, 光发射器 351的光源 发光并由导入光纤 352把光束导入, 如图 9, 继续调整电极探针臂 358与结合器 359,使得标准硅片或金属片的发射光全部入射到球面镜 350内,通过球面镜 350 聚光, 同时, 调节光探测器 353, 采集球面镜 350所会聚的光, 光探测器 353通 过精密传导光纤 355与 CCD成像设备 354连接, 然后通过 CCD成像设备 354照相, 观测标准硅片或金属片(微米和纳米图形化材料或器件)的表面特征,完成上述 操作后, 放入另一个电极探针 357, 如图 10, 光探测器 353连接好光谱仪 356, 同时把电极探针 357与标准硅片或金属片 (微米和纳米图形化材料或器件)接入 连接位置, 形成闭合电路, 如图 11, 探针 A、 探针 B分别接入电流源 38, 探针 C、 探针 D分别接入电压源 37, 这样利用四端电路法测量微米和纳米图型化材料或 器件电学性质, 开启光发射器 351使得其光源发光, 光束通过导入光纤 352辐照 到标准硅片或金属片(微米和纳米图形化材料或器件)上, 调节光探测器 353与 标准硅片或金属片 (微米和纳米图形化材料或器件)反射光的波长匹配,通过光 谱分析和观测电路中的电流、 电压变化, 完成标准硅片或金属片(微米和纳米 图形化材料或器件)的光电实验,研究标准硅片或金属片(微米和纳米图形化材 料或器件)进行光激发、 光吸收、 光发射和光电转换特性等方面。
实施例 3
参见图 12—图 14,图 12为本发明又一实施例的光响应特性检测装置原理示 意图, 图 13为图 12的光电探测光路示意图, 图 14为图 13的工作原理示意图。调 整电极探针臂 358与结合器 359, 使得导入光纤 352移动到样品 4的上方, 电极探 针 357位于断开位置, 样品 4不接入电路, 把四英寸的标准硅片或金属片(微米 和纳米图形化材料或器件)放在样品台 34上, 开启光发射器 351后, 其光源发光 并由导入光纤 352把光束导入, 如图 13, 继续调整电极探针臂 358与结合器 359, 同时调节另一个电极探针臂 358与结合器 359,使得标准硅片或金属片的发射光 全部入射到光探测器 353, 光探测器 353通过精密传导光纤 355与 CCD成像设备 354连接, 然后通过 CCD成像设备 354照相,观测标准硅片或金属片(微米和纳米 图形化材料或器件)的表面特征, 完成上述操作后, 放入电极探针 357, 或者当 电极探针 357已在样品 4上时, 把电极探针 357接入电路中, 如图 14, 探针 A、 探 针 B分别接入电流源 38, 探针 C、 探针 D分别接入电压源 37, 这样利用四端电路 法测量微米和纳米图型化材料或器件电学性质, 光探测器 353连接好光谱仪 356 , 同时把标准硅片或金属片(微米和纳米图形化材料或器件)接入到电路系 统中, 开启光发射器 352使得其光源发光, 光束通过导入光纤 352辐照到微米和 纳米图型化材料或器件, 调节光探测器 353与微米和纳米图型化材料或器件反 射光的波长匹配, 通过光谱分析和观测电路中的电流、 电压变化, 完成微米和 纳米图型化材料或器件的光电实验,研究微米和纳米图型化材料或器件进行的 光激发、 光吸收、 光发射和光电转换特性等方面。
参见图 15, 图 15为一现有技术的纳米图形化系统结构示意图 (专利号为
" 201120265595. 5 " , 名称为 "纳米图形化和超宽频电磁特性测量系统 "的中 国实用新型专利的附图 4)。 其中, 所述测量装置 3还可包括宽频信号测试分析 装置 36,所述宽频信号测试分析装置 36包括信号传输装置,所述信号传输装置 对应于所述样品台 34设置, 所述信号传输装置包括高频探针臂和 /或低频探针 臂、 探针臂移动机构和探针, 所述高频探针臂和 /或低频探针臂与所述探针臂 移动机构连接, 所述探针安装在所述高频探针臂和 /或低频探针臂的前端, 所 述电极探针臂 358分别与所述高频探针臂和 /或低频探针臂集成于一体。
与现有技术的光学探测系统相比, 本发明的探测系统更加微小, 适合用于 电子束曝光 (EBL)和扫描电子显微镜 (SEM)等综合系统中。 本发明可以借助扫 描电子显微镜 (SEM)的辅助成像功能, 对微米和纳米图形化器件进行定位、 然 后实施一些光学性质的检测, 包括光激发、光吸收、光发射和光电转换特性等 方面的观测和研究。
当然, 本发明还可有其它多种实施例, 在不背离本发明精神及其实质的情 况下, 熟悉本领域的技术人员当可根据本发明作出各种相应的改变和变形,但 这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。 工业应用性
本发明利用开设微米小孔的高精密球面镜、导入光纤、光发射器以及光探 测器等构成的光纤探针系统,可以在微米和纳米图形化材料或器件的微加工及 测量过程中,对微米和纳米图形化器件进行光电性质方面的探测,特别是能实 现对微米和纳米图形化材料或器件进行光激发、光吸收、光发射和光电转换特 性等方面的实时和原位检测。本发明具有探测技术的广泛适用性, 能扩展用于 电子束曝光机 (EBL)、 扫描电子显微镜(SEM)、 扫描隧道显微镜(STM)、 磁力原 子力显微镜 (MFM/AFM) )等系统中, 具有重要的应用价值。

Claims

权利要求书
1、 一种纳米图形化系统的光响应特性检测装置, 用于纳米图形化系统在 微米和纳米图形化器件微加工和探测中,实时和原位探测微米和纳米图形化材 料或器件的光响应特性, 其特征在于, 包括光发射器、 导入光纤、 光探测器、 CCD成像设备和精密传导光纤, 所述光发射器通过所述精密传导光纤与所述导 入光纤连接, 所述光探测器通过所述精密传导光纤与所述 CCD成像设备连接, 所述导入光纤及所述光探测器均对应于所述纳米图形化系统的样品台设置于 所述纳米图形化系统的真空腔内,所述导入光纤用于将所述光发射器发出的光 束导入至所述样品台的样品上, 所述光探测器用于采集所述样品的反射光,所 述光探测器相对于所述导入光纤设置以采集所述样品的反射光。
2、 如权利要求 1所述的纳米图形化系统的光响应特性检测装置, 其特征 在于,还包括光谱仪,所述光谱仪通过所述精密传导光纤与所述光探测器连接。
3、 如权利要求 2所述的纳米图形化系统的光响应特性检测装置, 其特征 在于,还包括电极探针,所述电极探针通过电极探针臂与电压源或电流源连接, 所述电极探针与所述样品分别具有一连接位置和一断开位置,所述电极探针与 所述样品在连接位置时组成闭合电路。
4、 如权利要求 3所述的纳米图形化系统的光响应特性检测装置, 其特征 在于, 所述电极探针臂与所述导入光纤和 /或所述光探测器分别通过结合器安 装在所述真空腔内, 所述结合器用于控制所述导入光纤和 /或所述光探测器及 所述电极探针臂的运动和定位。
5、 如权利要求 4所述的纳米图形化系统的光响应特性检测装置, 其特征 在于,所述结合器包括固定架及安装在所述固定架上的光纤滑轨、驱动电机及 传动机构, 所述电极探针臂安装在所述固定架上, 所述导入光纤安装在所述光 纤滑轨上, 所述光纤滑轨通过所述传动机构与所述驱动电机连接。
6、 如权利要求 3所述的纳米图形化系统的光响应特性检测装置, 其特征 在于,所述电极探针为四路电极探针, 所述四路电极探针的一对探针与所述电 压源连接, 所述四路电极探针的另一对探针与所述电流源连接。
7、 如权利要求 1所述的纳米图形化系统的光响应特性检测装置, 其特征 在于, 还包括用于会聚所述样品的反射光的球面镜,所述球面镜设置在所述纳 米图形化系统的电子束枪下方且与所述光探测器的距离小于所述球面镜的焦 半径,所述球面镜上设置有微米级小孔以保证电子束穿过所述球面镜对所述样 品进行微加工和 /或成像。
8、 如权利要求 2所述的纳米图形化系统的光响应特性检测装置, 其特征 在于, 还包括用于会聚所述样品的反射光的球面镜,所述球面镜设置在所述纳 米图形化系统的电子束枪下方且与所述光探测器的距离小于所述球面镜的焦 半径,所述球面镜上设置有微米级小孔以保证电子束穿过所述球面镜对所述样 品进行微加工和 /或成像。
9、 如权利要求 3所述的纳米图形化系统的光响应特性检测装置, 其特征 在于, 还包括用于会聚所述样品的反射光的球面镜,所述球面镜设置在所述纳 米图形化系统的电子束枪下方且与所述光探测器的距离小于所述球面镜的焦 半径,所述球面镜上设置有微米级小孔以保证电子束穿过所述球面镜对所述样 品进行微加工和 /或成像。
10、如权利要求 4所述的纳米图形化系统的光响应特性检测装置, 其特征 在于, 还包括用于会聚所述样品的反射光的球面镜,所述球面镜设置在所述纳 米图形化系统的电子束枪下方且与所述光探测器的距离小于所述球面镜的焦 半径,所述球面镜上设置有微米级小孔以保证电子束穿过所述球面镜对所述样 品进行微加工和 /或成像。
11、如权利要求 5所述的纳米图形化系统的光响应特性检测装置, 其特征 在于, 还包括用于会聚所述样品的反射光的球面镜,所述球面镜设置在所述纳 米图形化系统的电子束枪下方且与所述光探测器的距离小于所述球面镜的焦 半径,所述球面镜上设置有微米级小孔以保证电子束穿过所述球面镜对所述样 品进行微加工和 /或成像。
12、如权利要求 6所述的纳米图形化系统的光响应特性检测装置, 其特征 在于, 还包括用于会聚所述样品的反射光的球面镜,所述球面镜设置在所述纳 米图形化系统的电子束枪下方且与所述光探测器的距离小于所述球面镜的焦 半径,所述球面镜上设置有微米级小孔以保证电子束穿过所述球面镜对所述样 品进行微加工和 /或成像。
13、 一种纳米图形化系统, 包括电源、 控制装置和测量装置, 所述控制装 置与所述测量装置连接, 所述控制装置和所述测量装置分别与所述电源连接, 所述测量装置包括电子束枪、真空腔、 真空系统、样品台和光响应特性检测装 置,所述真空系统与所述真空腔连接, 所述电子束枪及样品台均设置在所述真 空腔内, 所述电子束枪对应于所述样品台设置, 其特征在于, 所述光响应特性 检测装置为上述的权利要求 1所述的纳米图形化系统的光响应特性检测装置。
14、 一种纳米图形化系统, 包括电源、 控制装置和测量装置, 所述控制装 置与所述测量装置连接, 所述控制装置和所述测量装置分别与所述电源连接, 所述测量装置包括电子束枪、真空腔、 真空系统、样品台和光响应特性检测装 置,所述真空系统与所述真空腔连接, 所述电子束枪及样品台均设置在所述真 空腔内, 所述电子束枪对应于所述样品台设置, 其特征在于, 所述光响应特性 检测装置为上述的权利要求 3所述的纳米图形化系统的光响应特性检测装置。
15、 一种纳米图形化系统, 包括电源、 控制装置和测量装置, 所述控制装 置与所述测量装置连接, 所述控制装置和所述测量装置分别与所述电源连接, 所述测量装置包括电子束枪、真空腔、 真空系统、样品台和光响应特性检测装 置,所述真空系统与所述真空腔连接, 所述电子束枪及样品台均设置在所述真 空腔内, 所述电子束枪对应于所述样品台设置, 其特征在于, 所述光响应特性 检测装置为上述的权利要求 5所述的纳米图形化系统的光响应特性检测装置。
16、 一种纳米图形化系统, 包括电源、 控制装置和测量装置, 所述控制装 置与所述测量装置连接, 所述控制装置和所述测量装置分别与所述电源连接, 所述测量装置包括电子束枪、真空腔、 真空系统、样品台和光响应特性检测装 置,所述真空系统与所述真空腔连接, 所述电子束枪及样品台均设置在所述真 空腔内, 所述电子束枪对应于所述样品台设置, 其特征在于, 所述光响应特性 检测装置为上述的权利要求 6所述的纳米图形化系统的光响应特性检测装置。
17、 一种纳米图形化系统, 包括电源、 控制装置和测量装置, 所述控制装 置与所述测量装置连接, 所述控制装置和所述测量装置分别与所述电源连接, 所述测量装置包括电子束枪、真空腔、 真空系统、样品台和光响应特性检测装 置,所述真空系统与所述真空腔连接, 所述电子束枪及样品台均设置在所述真 空腔内, 所述电子束枪对应于所述样品台设置, 其特征在于, 所述光响应特性 检测装置为上述的权利要求 7所述的纳米图形化系统的光响应特性检测装置。
18、 如权利要求 17所述的纳米图形化系统, 其特征在于, 所述测量装置 还包括宽频信号测试分析装置, 所述宽频信号测试分析装置包括信号传输装 置,所述信号传输装置对应于所述样品台设置,所述信号传输装置包括高频探 针臂和 /或低频探针臂、探针臂移动机构和探针,所述高频探针臂和 /或低频探 针臂与所述探针臂移动机构连接, 所述探针安装在所述高频探针臂和 /或低频 探针臂的前端, 所述电极探针臂分别与所述高频探针臂和 /或低频探针臂集成 于一体。
19、 一种纳米图形化系统, 包括电源、 控制装置和测量装置, 所述控制装 置与所述测量装置连接, 所述控制装置和所述测量装置分别与所述电源连接, 所述测量装置包括电子束枪、真空腔、 真空系统、样品台和光响应特性检测装 置,所述真空系统与所述真空腔连接, 所述电子束枪及样品台均设置在所述真 空腔内, 所述电子束枪对应于所述样品台设置, 其特征在于, 所述光响应特性 检测装置为上述的权利要求 11 所述的纳米图形化系统的光响应特性检测装 置。
20、 一种纳米图形化系统, 包括电源、 控制装置和测量装置, 所述控制装 置与所述测量装置连接, 所述控制装置和所述测量装置分别与所述电源连接, 所述测量装置包括电子束枪、真空腔、 真空系统、样品台和光响应特性检测装 置,所述真空系统与所述真空腔连接, 所述电子束枪及样品台均设置在所述真 空腔内, 所述电子束枪对应于所述样品台设置, 其特征在于, 所述光响应特性 检测装置为上述的权利要求 12 所述的纳米图形化系统的光响应特性检测装 置。
PCT/CN2012/078760 2012-07-05 2012-07-17 一种纳米图形化系统及其光响应特性检测装置 WO2014005358A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210231008.XA CN103529643B (zh) 2012-07-05 2012-07-05 一种纳米图形化系统及其光响应特性检测装置
CN201210231008.X 2012-07-05

Publications (1)

Publication Number Publication Date
WO2014005358A1 true WO2014005358A1 (zh) 2014-01-09

Family

ID=49881276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/078760 WO2014005358A1 (zh) 2012-07-05 2012-07-17 一种纳米图形化系统及其光响应特性检测装置

Country Status (2)

Country Link
CN (1) CN103529643B (zh)
WO (1) WO2014005358A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI752659B (zh) * 2019-10-04 2022-01-11 日商日本麥克隆尼股份有限公司 光探針、光探針陣列、檢查系統及檢查方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105973942B (zh) * 2016-05-10 2019-01-25 国家纳米科学中心 一种同步电学调控与材料瞬态吸收谱测量的装置及方法
CN107091622B (zh) * 2017-06-24 2020-01-10 福建省南安市清信石材有限公司 一种纳米分辨率的应变测试设备及方法
CN110579699A (zh) * 2019-09-20 2019-12-17 武汉电信器件有限公司 一种芯片测试装置

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4278353A (en) * 1980-04-11 1981-07-14 Bell Telephone Laboratories, Incorporated Optical inspection of gold surfaces
US6119510A (en) * 1998-08-31 2000-09-19 Lucent Technologies Inc. Process for determining characteristics of suspended particles
US6128081A (en) * 1996-11-22 2000-10-03 Perceptron, Inc. Method and system for measuring a physical parameter of at least one layer of a multilayer article without damaging the article and sensor head for use therein
US6200737B1 (en) * 1995-08-24 2001-03-13 Trustees Of Tufts College Photodeposition method for fabricating a three-dimensional, patterned polymer microstructure
CN1458540A (zh) * 2002-05-14 2003-11-26 精密量具株式会社 光学元件的调心方法及其装置
CN1521496A (zh) * 2003-01-30 2004-08-18 中国科学院长春光学精密机械与物理研 在溶胶-凝胶法制备纳米材料中对纳米粒径实时监测装置
CN1527139A (zh) * 2003-03-07 2004-09-08 Asml 光刻装置及器件制造方法
CN1890603A (zh) * 2003-12-01 2007-01-03 伊利诺伊大学评议会 用于制造三维纳米级结构的方法和装置
US7256886B2 (en) * 2004-07-22 2007-08-14 University Of Maryland At Baltimore County Surface enhanced Raman spectroscopic nano-imaging probe and uses therefor
CN101226143A (zh) * 2007-08-15 2008-07-23 武汉市天虹仪表有限责任公司 一种长光程大气监测仪
CN101299024A (zh) * 2008-05-08 2008-11-05 北京大学 基于光纤和纳米操纵器的纳米材料光学表征方法及其系统
CN101515558A (zh) * 2006-03-30 2009-08-26 西安电子科技大学 在线检测薄膜生长率和应力的方法
CN101793675A (zh) * 2010-03-26 2010-08-04 北京理工大学 一种薄膜应力在线测试系统
CN202710465U (zh) * 2012-07-05 2013-01-30 中国科学院物理研究所 一种纳米图形化系统及其光响应特性检测装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3330947B2 (ja) * 1993-04-15 2002-10-07 株式会社ジャパンエナジー 全反射型屈折率センサ
US6977184B1 (en) * 2001-10-31 2005-12-20 Lam Research Corporation Method and apparatus for nitride spacer etch process implementing in situ interferometry endpoint detection and non-interferometry endpoint monitoring
JP2004205311A (ja) * 2002-12-25 2004-07-22 Mitsubishi Electric Corp 反射スペクトルの測定方法および反射スペクトル測定装置
US7791727B2 (en) * 2004-08-16 2010-09-07 Asml Netherlands B.V. Method and apparatus for angular-resolved spectroscopic lithography characterization
US7791724B2 (en) * 2006-06-13 2010-09-07 Asml Netherlands B.V. Characterization of transmission losses in an optical system
US7633689B2 (en) * 2007-07-18 2009-12-15 Asml Holding N.V. Catadioptric optical system for scatterometry
CN202189227U (zh) * 2011-07-26 2012-04-11 中国科学院物理研究所 纳米图形化和超宽频电磁特性测量系统

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4278353A (en) * 1980-04-11 1981-07-14 Bell Telephone Laboratories, Incorporated Optical inspection of gold surfaces
US6200737B1 (en) * 1995-08-24 2001-03-13 Trustees Of Tufts College Photodeposition method for fabricating a three-dimensional, patterned polymer microstructure
US6128081A (en) * 1996-11-22 2000-10-03 Perceptron, Inc. Method and system for measuring a physical parameter of at least one layer of a multilayer article without damaging the article and sensor head for use therein
US6119510A (en) * 1998-08-31 2000-09-19 Lucent Technologies Inc. Process for determining characteristics of suspended particles
CN1458540A (zh) * 2002-05-14 2003-11-26 精密量具株式会社 光学元件的调心方法及其装置
CN1521496A (zh) * 2003-01-30 2004-08-18 中国科学院长春光学精密机械与物理研 在溶胶-凝胶法制备纳米材料中对纳米粒径实时监测装置
CN1527139A (zh) * 2003-03-07 2004-09-08 Asml 光刻装置及器件制造方法
CN1890603A (zh) * 2003-12-01 2007-01-03 伊利诺伊大学评议会 用于制造三维纳米级结构的方法和装置
US7256886B2 (en) * 2004-07-22 2007-08-14 University Of Maryland At Baltimore County Surface enhanced Raman spectroscopic nano-imaging probe and uses therefor
CN101515558A (zh) * 2006-03-30 2009-08-26 西安电子科技大学 在线检测薄膜生长率和应力的方法
CN101226143A (zh) * 2007-08-15 2008-07-23 武汉市天虹仪表有限责任公司 一种长光程大气监测仪
CN101299024A (zh) * 2008-05-08 2008-11-05 北京大学 基于光纤和纳米操纵器的纳米材料光学表征方法及其系统
CN101793675A (zh) * 2010-03-26 2010-08-04 北京理工大学 一种薄膜应力在线测试系统
CN202710465U (zh) * 2012-07-05 2013-01-30 中国科学院物理研究所 一种纳米图形化系统及其光响应特性检测装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI752659B (zh) * 2019-10-04 2022-01-11 日商日本麥克隆尼股份有限公司 光探針、光探針陣列、檢查系統及檢查方法

Also Published As

Publication number Publication date
CN103529643A (zh) 2014-01-22
CN103529643B (zh) 2017-01-18

Similar Documents

Publication Publication Date Title
JP5702770B2 (ja) 電子顕微鏡における光学的プロービング
CN101799482A (zh) 一种近场光镊与afm探针的纳操作装置
US5859364A (en) Scanning probe microscope
CN102809672A (zh) 超分辨共聚焦光学显微镜与扫描探针显微镜联用系统
CN104006891A (zh) 纳米尺度光场相位分布测量装置
EP2795346B1 (en) Optical and atomic force microscopy integrated system for multi-probe spectroscopy measurements applied in a wide spatial region with an extended range of force sensitivity.
WO2014005358A1 (zh) 一种纳米图形化系统及其光响应特性检测装置
CN112485235B (zh) 具备超快时间分辨光谱能力的透射电子显微镜样品杆系统和应用
CN109187438A (zh) 后置分光瞳激光共焦布里渊-拉曼光谱测试方法及装置
JP4009197B2 (ja) 走査型近接場光学顕微鏡
JP4498081B2 (ja) 散乱型近接場顕微鏡およびその測定方法
CN113008849B (zh) 紫外-近红外宽波段微区光致发光光谱测试装置
US20210278435A1 (en) Photodetector for scanning probe microscope
CN218122019U (zh) 一种基于扫描探针显微镜的原位光电测试系统
CN207439353U (zh) 基于局域自旋特性的超灵敏位移传感系统
CN109211874A (zh) 后置分光瞳激光共焦拉曼光谱测试方法及装置
CN113533294B (zh) 基于纳米间隙电极对下的时域、空域和谱域单分子表征装置
CN202710465U (zh) 一种纳米图形化系统及其光响应特性检测装置
JP4929106B2 (ja) 近接場ファイバープローブ、及び近接場光学顕微鏡
JP4448534B2 (ja) 走査型プローブ顕微鏡
JPH0954099A (ja) 走査型プローブ顕微鏡
KR101493836B1 (ko) 광전류 및 광전압을 측정하고 이미징하는 장치
JP4064856B2 (ja) 走査型プローブ顕微鏡
KR100808753B1 (ko) 전기장 벡터 측정 기구 및 방법, 그리고 이 측정 기구를포함하는 현미경
JP2006112988A (ja) プローブ型光測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12880635

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12880635

Country of ref document: EP

Kind code of ref document: A1