WO2014002734A1 - 荷電粒子線装置 - Google Patents

荷電粒子線装置 Download PDF

Info

Publication number
WO2014002734A1
WO2014002734A1 PCT/JP2013/065910 JP2013065910W WO2014002734A1 WO 2014002734 A1 WO2014002734 A1 WO 2014002734A1 JP 2013065910 W JP2013065910 W JP 2013065910W WO 2014002734 A1 WO2014002734 A1 WO 2014002734A1
Authority
WO
WIPO (PCT)
Prior art keywords
charged particle
particle beam
detector
sample
electromagnetic field
Prior art date
Application number
PCT/JP2013/065910
Other languages
English (en)
French (fr)
Inventor
牧野 浩士
秀之 数見
山崎 実
譲 水原
美紀 伊澤
Original Assignee
株式会社 日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立ハイテクノロジーズ filed Critical 株式会社 日立ハイテクノロジーズ
Priority to US14/410,999 priority Critical patent/US9627171B2/en
Priority to KR1020147031484A priority patent/KR101759186B1/ko
Publication of WO2014002734A1 publication Critical patent/WO2014002734A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/153Electron-optical or ion-optical arrangements for the correction of image defects, e.g. stigmators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/244Detectors; Associated components or circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/24485Energy spectrometers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/2449Detector devices with moving charges in electric or magnetic fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2803Scanning microscopes characterised by the imaging method
    • H01J2237/2806Secondary charged particle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2809Scanning microscopes characterised by the imaging problems involved
    • H01J2237/281Bottom of trenches or holes

Definitions

  • the present invention relates to a charged particle beam apparatus that performs observation, measurement, inspection, etc. of fine objects such as semiconductor devices and liquid crystals, and is particularly suitable for observation, measurement, inspection, etc. of high aspect structures such as deep grooves and deep holes.
  • the present invention relates to a charged particle beam apparatus.
  • circuit pattern dimension management is positioned as an indispensable technology for yield improvement and quality control.
  • a CD-SEM Cross-Dimension Scanning Electron Microscopy
  • the CD-SEM realizes high spatial resolution with a low energy electron beam, and can measure the dimension of the circuit pattern in the lateral direction (in-plane direction of the circuit pattern) with sub-nm accuracy.
  • Patent Document 1 discloses an orthogonal electromagnetic field generator (hereinafter referred to as an ExB deflector or an ExB type filter) that deflects electrons emitted from a specimen out of the axis of the electron beam without deflecting the electron beam emitted from the electron source. Is sometimes disclosed). Patent Document 1 further describes that another ExB deflector for canceling out the aberration generated by the ExB deflector is provided. Patent Document 2 discloses a scanning electron microscope that cancels out aberrations that occur when a beam is deflected using an ExB deflector.
  • an ExB deflector or an ExB type filter
  • the position sensitivity detector is arranged on the image plane of the signal electrons to visualize (image) the signal electrons, and further, the position sensitivity detector is arranged on the diffraction plane of the signal electrons. It is described that direction information is reflected in an image.
  • the aspect ratio (depth of structure / width of structure) of structures to be observed, measured, and inspected by a scanning electron microscope or the like is becoming larger.
  • the electrons emitted from the bottom of the structure are very important for knowing the bottom information, but some of the electrons emitted from the bottom (such as secondary electrons) collide with the side walls of the structure.
  • the ideal optical axis beam Since the beam is irradiated to a position separated from the beam trajectory when the beam is not deflected, the focusing action of the objective lens acts to deflect the secondary electrons emitted from the sample.
  • Patent Documents 1 to 3 do not disclose any technique for selectively detecting such electrons.
  • a charged particle beam apparatus which aims to make information based on charged particles emitted from the bottom of a high aspect structure more obvious, regardless of the above-described deflection action.
  • a charging device comprising: a deflector that deflects a charged particle beam emitted from a charged particle source; and a detector that detects a charged particle obtained by scanning the charged particle beam.
  • a particle beam apparatus comprising: a first orthogonal electromagnetic field generator that deflects charged particles emitted from a sample; and a second that further deflects the charged particles deflected by the first orthogonal electromagnetic field generator.
  • a charged particle beam apparatus comprising: an orthogonal electromagnetic field generator; an opening forming member having a passage opening for the charged particle beam; and a third orthogonal electromagnetic field generator for deflecting the charged particles that have passed through the opening forming member.
  • a charged particle beam apparatus provided with an aberration corrector (for example, a fourth orthogonal electromagnetic field generator) on the charged particle source side from a third orthogonal electromagnetic field generator is proposed.
  • an aberration corrector for example, a fourth orthogonal electromagnetic field generator
  • the schematic block diagram of a scanning electron microscope The figure which shows an example of the scanning electron microscope which selectively detects the high angle electron among the electrons discharge
  • the figure which shows an example of an aberration corrector The figure which shows an example of an aberration corrector.
  • a circuit pattern having an aspect ratio of 10 or more is processed in a flash memory gate and an aspect ratio is 30 or more in a contact hole.
  • CD-SEM Cross-sectional Electron Microscopy
  • An ExB filter is an orthogonal electromagnetic field generator having, for example, an electrode that generates a deflection electric field for secondary electrons and a magnetic pole that generates a magnetic field orthogonal to the electric field. Since the deflection can be made in the direction opposite to the deflection direction, the deflection action of the deflection electric field on the electron beam can be canceled while maintaining the deflection action of the secondary electrons.
  • ExB type filter is an extremely effective technology for realizing high spatial resolution with low acceleration.
  • the detector collectively captures signal electrons emitted from the sample, the contrast of the image is uniquely determined by the acceleration voltage.
  • the ExB filter shown above is effective for separating signal electrons, but it suppresses the energy dispersion of signal electrons generated by operating the filter and detects signal electrons from different emission positions at a constant incident angle. In order to lead to a vessel, it is necessary to provide a plurality of ExB type filters.
  • the information on the bottom can be made more apparent as the difference in detection efficiency between the bottom and the sample surface is suppressed. Therefore, if there is a member that selectively allows high-angle electrons to pass therethrough and blocks low-angle electrons, the above object can be achieved.
  • a first orthogonal electromagnetic field generator that deflects charged particles emitted from a sample, and a second that further deflects the charged particles deflected by the first orthogonal electromagnetic field generator.
  • Charged particle beam apparatus comprising: an orthogonal electromagnetic field generator; an aperture forming member having a passage opening for the charged particle beam; and a third orthogonal electromagnetic field generator for deflecting the charged particles that have passed through the aperture forming member Will be described.
  • Electrons emitted from other than the intersection of the ideal optical axis and the sample surface are deflected off-axis by the deflection action of the lens.
  • the first orthogonal electromagnetic field generator deflects the charged particles toward the ideal optical axis
  • the second orthogonal electromagnetic field generator is disposed closer to the charged particle source than the first orthogonal electromagnetic field generator.
  • the trajectory of the charged particles deflected by the first orthogonal electromagnetic field generator is deflected so as to be parallel to the ideal optical axis.
  • the opening forming member disposed on the charged particle source side from the second orthogonal electromagnetic field generator has a passage opening for the charged particle beam, it is deflected by the second orthogonal electromagnetic field generator to generate the ideal light.
  • high-angle charged particles selectively pass through the passage opening. That is, since the high-angle electrons 901 and 903 illustrated in FIG. 9 selectively pass through, it is possible to form an image having a relatively bright bottom.
  • the third orthogonal electromagnetic field generator deflects the charged particles that have passed through the opening forming member toward the detection surface of the detector or the conversion plate, thereby selecting the height selected by the angle discrimination. Angled charged particles can be detected with high efficiency.
  • an aberration corrector for example, a fourth orthogonal electromagnetic field generator
  • a plurality of orthogonal electromagnetic waves including the third orthogonal electromagnetic field generator are provided. It becomes possible to cancel the aberration generated by the field generator.
  • the four-stage orthogonal electromagnetic field generator is provided, the lower two-stage orthogonal electromagnetic field generator is caused to perform orbital deflection for angle discrimination of charged particles, and the upper two-stage orthogonal electromagnetic field generator.
  • the configuration that executes the deflection for detecting charged particles and the cancellation of the aberration generated by the lower quadrature electromagnetic field generator reveals information based on the charged particles emitted from the bottom of the hole, regardless of the irradiation position of the beam. In addition, it is possible to achieve both high resolution of the apparatus.
  • a detector that mainly detects electrons obtained by irradiating a specimen with an electron beam, and an opening that is disposed between the detector and the deflector and has a passage opening for the electron beam.
  • the aberration generated by the secondary signal deflector is arranged on the electron source side from the detector.
  • a scanning electron microscope having a function of correcting with two ExB filters will be described.
  • ExB type filters that control only the trajectory of signal electrons without disposing on the optical axis of the primary electron beam are arranged.
  • Aberrations generated by these ExB filters are canceled by one ExB filter disposed on the detector.
  • canceling out aberrations with one ExB filter placed on the detector can greatly reduce the space, and ExB that cancels out aberrations does not need to deflect signal electrons.
  • a structured structure can be adopted.
  • the trajectory of the signal electrons is mainly controlled by the ExB filter, and when passing through the signal electron limiting plate, the aberration generated by the ExB filter is canceled by one ExB filter disposed on the detector.
  • FIG. 1 is a schematic configuration diagram of an SEM type semiconductor measuring device.
  • the measuring apparatus is roughly divided into an SEM casing 1, a sample chamber 2, a casing control section 3, a signal processing section 4, a stage control section 5, a wafer transfer section 8, and a vacuum exhaust section 9, all of which are consoles. 6 can be controlled.
  • the console 6 has a large-capacity storage medium 7 capable of storing recipes, measurement results, and acquired scanned images. Based on the data recorded on the storage medium 7, the console 6 operates and manages the data.
  • the vacuum is maintained in the SEM casing 1 and the sample chamber 2 by the exhaust pump included in the vacuum exhaust section 9, and the vacuum exhaust section 9 is controlled from the console 6 according to the purpose, and the SEM casing 1 and the sample chamber 2 are controlled. 2.
  • the sample preparation chamber 10 can be exhausted or leaked.
  • the SEM housing 1 includes an electron source 11, an extraction electrode 12, an anode electrode 13, a condenser lens 14, an ExB filter a15, a conversion plate 16, a detector a17, an ExB filter b18, a signal electronic limiting plate 19, a detector b20, An ExB filter c21, an ExB filter d22, a deflector 23, an objective lens 24, and a height sensor 25 are included.
  • the primary electron beam is extracted by the potential difference between the electron source 11 and the extraction electrode 12.
  • the primary electron beam is converged by the condenser lens 14 so as to pass through a hole provided in the center of the conversion plate 16 and the signal electron limiting plate 19.
  • the primary electron beam is converged on the sample 26 by the objective lens 24 after the trajectory is changed by the deflector 23 so as to scan a desired region on the sample 26 two-dimensionally.
  • a voltage for decelerating the primary electron beam is applied to the sample 26 installed in the sample chamber 2 from a retarding power source in the housing control unit 3.
  • the signal electrons emitted from the sample 26 are accelerated to energy corresponding to the voltage applied to the sample 26, pass through the objective lens 24 and the deflector 23, and collide with the signal electron limiting plate 19 and the conversion plate 16.
  • This is supplemented by the detector b20 and the detector a17.
  • the above is a general configuration of the SEM casing, but in this embodiment, since the two scanning images differing in the scanning direction by about 180 degrees are compared, the scanning signal needs to be accurately inverted between the two scanning images. There is.
  • the sample chamber 2 includes a stage 27, an insulating material 28, a sample folder 29, and a mirror 30.
  • the sample folder 29 and the grounded stage 27 are electrically insulated by an insulating material 28, and the sample 26 and the mirror 30 are electrically grounded to the sample folder 29.
  • a high voltage can be applied to the sample folder 29 from the outside of the sample chamber 2 via a feedthrough.
  • the stage 27 is driven two-dimensionally in a direction perpendicular to the central axis of the SEM housing 1 by the stage driving device 31 in the stage control unit 5, so that the entire region of the sample 26 can be moved to the central axis of the SEM housing 1. Can be moved directly underneath.
  • the mirror 30 is attached to the sample folder 29 in order to measure the position of the sample 26, and the laser is measured from the laser length measuring device 32 in the stage control unit 5 through a glass window that partitions the vacuum of the sample chamber 2. Therefore, a laser image measuring device 32 measures the position of the sample 26, and a scanned image at a desired position can be obtained even with a semiconductor pattern in which fine patterns are integrated.
  • the wafer transfer unit 8 includes a transfer control unit 33 and a transfer robot 34.
  • the transfer control unit 33 controls the transfer robot 34 based on a control signal from the console 6, and transfers the sample 26 installed in the wafer transfer unit 8 to the sample preparation chamber 10.
  • the sample 26 is transferred stepwise from the wafer transfer unit 8 to the sample preparation chamber 10 and the sample chamber 2, and a valve 35 is provided between each unit.
  • the console 6 controls the valve 35 and the vacuum exhaust unit 9, and can automatically transport the sample 26 so that the vacuum in the sample chamber 2 can be maintained constantly even during the transport operation.
  • the housing control unit 3 operates the electron source 11 and various lenses included in the SEM housing 1 based on a control signal sent from the console 6.
  • the housing control unit 3 includes a housing control power source 36, an aberration correction power source 37, a signal electron trajectory control power source 38, a primary electron trajectory control power source 39, and a retarding power source 40.
  • the housing control power supply 36 can supply a constant voltage or a constant current to the electron source 11, the condenser lens 14, and the objective lens 24, and can irradiate the primary electron beam converged on the sample 26.
  • the primary electron trajectory control power supply 39 can supply a voltage or a current to the deflector 23 and scan the primary electron beam at a desired location on the sample 26.
  • the operation of the retarding power supply 40 is described in the above (sample chamber and wafer transfer unit).
  • the operation of the signal electron trajectory control power supply 38 will be described later in (Signal electron trajectory control method).
  • the operation of the aberration correction power source 37 will be described later in (Aberration correction control method).
  • the signal processing unit 4 forms a scanned image of the sample 26 based on a control signal sent from the console 6.
  • the signal processing unit 4 includes an image memory 42, an image processing unit 43, and a signal processing unit 44.
  • the console 6 sends a scanning signal to the primary electron trajectory control power source 39 to form a scanning image, and the signal processing unit 4 samples the signals detected by the detector a17 and the detector b20 in synchronization with the scanning signal.
  • the signals detected by the respective detectors are independently amplified and converted into digital signals by a level adjusting circuit 41 provided individually, and then stored in the memory 42 in the signal processing unit 4.
  • the purpose of individually providing the level adjustment circuit 41 is to realize optimum signal amplification even when the signal amount is greatly different between the detector a17 and the detector b20.
  • Each scanned image stored in the memory 42 is subjected to arithmetic processing such as addition and subtraction in the image processing unit 43 and is sent to the signal processing unit 44.
  • the signal processing unit 44 outputs a signal waveform (line profile) of a predetermined region from the scanned image that has been subjected to arithmetic processing, and extracts information related to the shape of the sample from the waveform.
  • the signal processing unit 44 can output not only the scanning image obtained by the arithmetic processing but also the scanning waveform acquired by each detector independently, and can output information on the shape. As described above, by providing a function of appropriately combining the scanned images obtained by the respective detectors, it is possible to measure a desired region with high accuracy.
  • FIGS. 2 and 3 are excerpts of a part of the SEM housing 1 in the schematic configuration diagram of the SEM type semiconductor measuring device.
  • FIG. 2 shows the principle of angle discrimination of signal electrons by the signal electron limiting plate 19, and the signal electrons emitted from the sample 26 move from the sample 26 toward the objective lens 24 along the central axis 100 of the SEM housing 1. proceed.
  • the signal electron restricting plate 19 is an opening forming member having an electron beam passage opening, and the signal electrons 111 emitted at a large elevation angle collide with the signal electron restricting plate 19 to detect the generated tertiary electrons 120 as a detector. b20 captures.
  • the signal electrons 110 emitted at a small elevation angle pass through the signal electron limiting plate 19, are bent by the ExB filter b 18, collide with the conversion plate 16, and the generated tertiary electrons are captured by the detector a 17.
  • the signal electron capturing elevation angle can be limited by the size of the opening of the signal electron limiting plate 19.
  • the signal electrons 110 emitted at a small elevation angle and the signal electrons 111 emitted at a large elevation angle are independently detected, and the level adjustment circuit 41 at the subsequent stage performs amplification suitable for each signal amount, thereby allowing the three-dimensional structure of the sample to be determined. It can be visualized more clearly.
  • FIG. 3 shows a case where the emission position of the signal electrons is deviated from the central axis 100 of the SEM casing in the configuration of FIG. 2, and when the primary electron beam is deflected by the deflector 23, the signal electrons are centered on the central axis. Draw a trajectory far from 100.
  • FIG. 3A shows a case where only the deflector 23 is operated. The central trajectory 101 of the signal electrons emitted off the central axis 100 is the convergence field of the objective lens 24 and the deflection of the deflector 23. The orbit is bent in the field. Then, most of the signal electrons collide with the signal electron limiting plate 19 and are captured by the detector b20. In this case, since the signal electrons collide at a position far away from the opening of the signal electron limiting plate 19, the function of limiting the angle by the opening is not utilized.
  • FIG. 3B shows a case where the ExB type filter c21 and the ExB type filter d22 are interlocked as signal electron trajectory control in the case of (a).
  • both the ExB filter c21 and the ExB filter d22 are adjusted in strength of electric field and magnetic field so as not to change the trajectory of the primary electron beam, the emission position of the signal electrons is shown in FIG. And no different.
  • the trajectory of the signal electrons bent in the field of the objective lens 24 and the deflector 23 is such that the central trajectory 101 of the signal electrons is perpendicular to the signal electron limiting plate 19 and the optical system Since the two ExB filters are adjusted so as to overlap with the central axis 100, the same angle discrimination function as in FIG. 2 can be exhibited.
  • ExB type filters As described above, by arranging ExB type filters in multiple stages and interlocking with the deflection signal, it becomes possible to discriminate the emission angle of the signal electrons with high accuracy even when the primary electron beam is deflected.
  • Control method for aberration correction The influence of the aberration exerted by the ExB filter on the primary electron beam is chromatic aberration caused by the difference in the deflection action between the electric field and the magnetic field, and produces blur in the deflection direction.
  • the size of this blur is determined by the amount of movement of the ExB filter and the distance to the crossover of the primary electron beam, and the amount of blur increases as the amount of movement increases and the distance to the crossover increases.
  • FIG. 4 and 5 show a method of canceling out the aberration generated by the ExB filters arranged in multiple stages with one ExB filter.
  • FIG. 4 shows a crossover 102 between the operating multistage ExB filters.
  • FIG. 5 shows the case where there is a crossover 102 between the operating multi-stage ExB filters.
  • Each drawing shows an excerpt in the vicinity of the ExB type filter of the SEM housing 1 in the schematic configuration diagram of the SEM type semiconductor measuring device, the control power supply related thereto, and the processing of the console 6.
  • the primary electron beam passes through the openings of the conversion plate 16 and the signal electron limiting plate 19, and forms a crossover under the ExB filter d22.
  • the amount of operation of each ExB filter that controls the trajectory of the signal electrons is as follows: ExV filter b18 is (Vxb, Vyb), ExB filter c21 is (Vxc, Vyc), and ExB filter d22 is (Vxd, Vyd).
  • ExV filter b18 is (Vxb, Vyb)
  • ExB filter c21 is (Vxc, Vyc)
  • ExB filter d22 is (Vxd, Vyd).
  • the distance from each ExB type filter to the crossover 102 is L2, L3, and L4
  • the magnitude of chromatic aberration generated by each ExB type filter is proportional to the following equation.
  • the above equation is normalized by the distance L1 from the ExB type filter a15 used for correction to the crossover 102, and added to synthesize the chromatic aberration of the ExB type filter from b to d.
  • (DVx, dVy) in the above equation is a combination of chromatic aberration generated by d from the ExB filter b, and chromatic aberration generated by operating the ExB filter a15 in the opposite polarity to (dVx, dVy) as shown in the following equation. Can be countered.
  • the formulas so far have been described focusing on the operating voltage of electrostatic deflection of the ExB type filter.
  • the operation amount of another electromagnetic deflection constituting the ExB filter that has been omitted above it is necessary to determine the operation amount so as to satisfy the Wien condition that does not change the trajectory of the primary electron beam.
  • the Wien condition can be determined by determining the electrostatic deflection voltage and the electromagnetic deflection current so that the field of view of the scanned image does not move, or by adjusting the electrostatic deflection so that the optical axis does not deviate from the current center axis of the objective lens.
  • the voltage and current of electromagnetic deflection may be determined.
  • the present embodiment can be effective only when all ExB deflectors operate to satisfy the Wien condition.
  • signal electrons can be discriminated with a high degree of freedom and high accuracy in addition to high spatial resolution.
  • the aberration generated by the multi-stage ExB filter is corrected by one ExB filter disposed on the detector.
  • the ExB filter can be optimized by specializing in aberration correction.
  • Astigmatism occurs due to insufficient assembly accuracy of the electrostatic deflector and electromagnetic deflector and the passage of the primary electron beam away from the center of the ExB filter.
  • FIG. 6 shows a schematic configuration of an ExB filter for correcting aberration, where (a) shows wiring for electrostatic deflection and (b) shows wiring for electromagnetic deflection. Actually, (a) and (b) should be drawn overlappingly, but for convenience, electrostatic deflection and electromagnetic deflection are shown separately in the figure. Here, correction of astigmatism generated by the ExB filter will be described.
  • the ExB type filter shown in FIG. 6 combines an XY electromagnetic deflector 46 with an electrostatic octupole type electrostatic deflector 45.
  • the electrostatic deflector 45 is connected to a voltage control circuit 48 in the aberration correction power source 37, and deflects by applying a predetermined voltage from the voltage control circuit 48 to each deflection electrode based on a control signal from the console 6. Field can be generated.
  • the electromagnetic deflector 46 is connected to a current control circuit 47 of the aberration correction power source 37. Based on a control signal from the console 6, the electromagnetic deflector 46 deflects by flowing a predetermined current from the current control circuit 47 to each deflection coil. Field can be generated.
  • each correction component can be superimposed by adding the voltage of each correction component to the chromatic aberration correction voltage previously shown in the voltage control circuit 48 based on the control signal from the console 6.
  • optical axis misalignment due to the superimposition of the correction function may be a problem.
  • This optical axis deviation is a phenomenon that occurs because the primary electron beam is deflected by the electrostatic field when the primary electron beam does not pass through the center of the electrostatic field that corrects astigmatism.
  • the ExB filter does not operate so as to satisfy the Wien condition described above, even if astigmatism can be corrected, off-axis aberration that occurs due to not passing through the central axis of the objective lens 24 occurs.
  • astigmatism returns an optical axis shift due to correction, and therefore the aligner is linked to correction of astigmatism.
  • This aligner may be electrostatic deflection or electromagnetic deflection, and the aligner may be interlocked so that the field of view of the scanned image does not move by the astigmatism correction operation (hereinafter, this interlock is referred to as stigma alignment).
  • this stigma alignment is superimposed on the electromagnetic deflection of the ExB filter.
  • the stigma alignment can be superimposed by adding the stigma alignment current to the current determined by the current control circuit 47 based on the Wien condition described above based on the control signal from the console 6.
  • FIG. 6 the operation of the present embodiment has been described by taking an ExB type filter combining an 8-pole electrostatic deflector and XY electromagnetic deflection as an example.
  • this operation can also be realized with a 12-pole or 4-pole electrostatic deflector.
  • the above-described operation is realized by setting the electromagnetic deflector to 8 poles and winding the aligner coil on the astigmatism correction coil. can do.
  • the aberration generated by a plurality of ExB filters that control the trajectory of signal electrons is corrected by a single ExB filter arranged on the detector.
  • the advantage of using this configuration is that it is not necessary to mount an ExB type filter for correcting aberration in a pair with respect to the ExB type filter that deflects signal electrons, and a significant space saving can be realized.
  • the ExB filter can be optimized for aberration correction.
  • FIG. 7 shows a schematic configuration when a four-pole electrostatic deflector is used.
  • the electromagnetic deflector has eight poles as described above, and an aligner coil is superimposed on an astigmatism correction coil. It is rolled up.
  • 7A shows the wiring for electrostatic deflection
  • FIG. 7B shows the wiring for electromagnetic deflection
  • FIG. 7C shows the wiring for astigmatism correction.
  • (a), (b), and (c) should be drawn in an overlapping manner, but they are shown separately for convenience.
  • the electrostatic deflector 45 and the electromagnetic deflector 46 are separated by a vacuum partition wall 49.
  • the electrostatic deflector 45 is disposed in the vacuum and the electromagnetic deflector 46 is disposed in the atmosphere.
  • the electromagnetic deflector 46 that generates heat by operation is not disposed in the vacuum, so that the vacuum does not deteriorate.
  • the configuration of the ExB filter is an example of an optimum configuration that can be realized for the first time by specializing in aberration correction and reducing the inner diameter of the electrostatic deflector 45.
  • a voltage control circuit 48 in the aberration correction power source 37 is connected to the electrostatic deflector 45 in FIG. 7A.
  • a predetermined voltage is applied from the voltage control circuit 48 to each deflection electrode.
  • a deflection field can be generated by applying a voltage.
  • a current control circuit 47 of the aberration correction power source 37 is connected to the aligner coil 50 wound around the electromagnetic deflector 46 in FIG. 7B, and each current control circuit 47 controls the current control circuit 47 based on a control signal from the console 6.
  • a deflection field can be generated by passing a predetermined current through the deflection coil.
  • the astigmatism correction coil 51 wound around the electromagnetic deflector 46 in FIG. 7C is connected to the astigmatism correction current control circuit 52 of the aberration correction power source 37, and the control signal from the console 6 is received. Based on this, a field for correcting astigmatism can be generated by causing a predetermined current to flow from the astigmatism correction current control circuit 52 to each coil.
  • the ExB filter for correcting aberration described in this embodiment When the ExB filter for correcting aberration described in this embodiment is disposed at a position where signal electrons pass, the orbit of the signal electrons is deflected by the correction operation of chromatic aberration and the correction operation of astigmatism. The effect described in the electron trajectory control method) cannot be exhibited.
  • an ExB filter for aberration correction By disposing an ExB filter for aberration correction on the detector, it becomes possible to discriminate signal electrons with a high degree of freedom and high accuracy in addition to high spatial resolution, which is the object of the present invention for the first time.
  • FIG. 8 is a diagram showing an example of a scanning electron microscope equipped with microchannel plates 801 and 802 that amplify and detect electrons emitted from a sample as detectors.
  • the microchannel plate 802 is an opening forming member having an electron beam passage opening.
  • a signal detected by the microchannel plate 802 is amplified by an amplifier 804 and stored as an image signal or signal waveform information in an image memory provided in the control device 805.
  • the high-angle electrons that have passed through the microchannel plate 802 are deflected off-axis by the ExB filter b18 and are captured by the microchannel plate 801.
  • the signal detected by the microchannel plate 801 is amplified by the amplifier 803 and stored in the image memory.
  • the image signal stored in the image memory can be displayed on the display device 806, and the control device 805 adjusts the amplification factors of the outputs of the upper detector and the lower detector to form a composite image. It also becomes an arithmetic unit.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

 本発明は、高アスペクトの構造物の底部から放出される荷電粒子に基づく情報をより顕在化する荷電粒子線装置の提供を目的とする。上記目的を達成するために、試料から放出された荷電粒子を偏向する第1の直交電磁界発生器と、当該第1の直交電磁界発生器によって偏向された前記荷電粒子を更に偏向する第2の直交電磁界発生器と、荷電粒子ビームの通過開口を有する開口形成部材と、当該開口形成部材を通過した前記荷電粒子を偏向する第3の直交電磁界発生器を備えた荷電粒子線装置を提案する。

Description

荷電粒子線装置
 本発明は、半導体デバイスや液晶等の微細な対象物の観察、測定、検査等を行う荷電粒子線装置に係り、特に深溝や深孔のような高アスペクト構造の観察、測定、検査等に好適な荷電粒子線装置に関する。
 半導体装置の製造ラインでは回路パターンの寸法管理が歩留り向上、品質管理に不可欠な技術として位置付けられている。この寸法管理には、荷電粒子線装置の一態様であって高い空間分解能を実現する電子顕微鏡を応用したCD-SEM(Critical-Dimension Scanning Electron Microscopy)が用いられる。CD-SEMは低エネルギーの電子線で高い空間分解能を実現し、回路パターンの横方向(回路パターンの面内方向)の寸法を、サブnmの精度で計測できる。
 特許文献1には、電子源から放出される電子ビームを偏向させることなく、試料から放出される電子を電子ビームの軸外に偏向する直交電磁界発生器(以下、ExB偏向器やExB形フィルタと称する場合がある)が開示されている。特許文献1には更にExB偏向器によって発生する収差を相殺するためのもう1つのExB偏向器を設けることが説明されている。また、特許文献2にはビームを偏向したときに生ずる収差をExB偏向器を用いて相殺する走査電子顕微鏡が開示されている。特許文献3には、位置感度検出器を信号電子の像面に配置することによって、信号電子を可視化(画像化)し、更に位置感度検出器を信号電子の回折面に配置することによって得られる方向情報を画像に反映させることが説明されている。
特許第2821153号公報 特許第3932894号公報(対応米国特許USP6,864,482) 特開2004-134387号公報(対応米国特許USP7,105,814)
 昨今の半導体デバイス等の更なる微細化に伴って、走査電子顕微鏡等の観察、測定、検査対象となる構造物のアスペクト比(構造物の深さ/構造物の幅)がより大きくなりつつある。構造物の底部から放出される電子は、底部の情報を知る上で非常に重要なものであるが、底部から放出された電子(二次電子等)の中には構造物の側壁に衝突し、試料表面まで昇って来れないものがある。更に高い分解能が要求される電子顕微鏡では、対物レンズの焦点距離を極力短焦点化する必要があるが、試料から放出される電子をより大きく曲げてしまうことになる。また、電子ビームの走査領域(視野(Field Of View:FOV))を、偏向器による偏向によって移動させることで、視野移動の高速化を実現するビームシフトを行う場合、ビームの理想光軸(ビームを偏向しない場合のビーム軌道)から離間した位置にビームを照射することになるため、対物レンズの集束作用は、試料から放出される二次電子等を偏向するように作用することになる。
 高アスペクトの構造物の底部から放出される電子に基づく試料情報を顕在化するためには、上記のような偏向作用を考慮しつつ、理想光軸との相対角が狭い方向に放出される電子を選択的に検出することが望ましいが、特許文献1乃至3にはそのような電子を選択的に検出する手法についての何ら開示がない。
 以下に、上述のような偏向作用によらず、高アスペクトの構造物の底部から放出される荷電粒子に基づく情報をより顕在化することを目的とする荷電粒子線装置を提案する。
 上記目的を達成するための一態様として、以下に荷電粒子源から放出される荷電粒子ビームを偏向する偏向器と、前記荷電粒子ビームの走査によって得られる荷電粒子を検出する検出器を備えた荷電粒子線装置であって、試料から放出された荷電粒子を偏向する第1の直交電磁界発生器と、当該第1の直交電磁界発生器によって偏向された前記荷電粒子を更に偏向する第2の直交電磁界発生器と、前記荷電粒子ビームの通過開口を有する開口形成部材と、当該開口形成部材を通過した前記荷電粒子を偏向する第3の直交電磁界発生器を備えた荷電粒子線装置を提案する。
 更に、他の態様として第3の直交電磁界発生器より前記荷電粒子源側に収差補正器(例えば第4の直交電磁界発生器)を備えた荷電粒子線装置を提案する。
 上記構成によれば、対物レンズ等の偏向作用等によらず、高アスペクト構造物の底部から放出される情報を顕在化することが可能となる。
走査電子顕微鏡の概略構成図。 試料から放出された電子の内、高アングルの電子を選択的に検出する走査電子顕微鏡の一例を示す図。 ExB形フィルタ(直交電磁界発生器)による電子の偏向軌道の一例を示す図。 収差補正器の一例を示す図。 収差補正器の一例を示す図。 収差補正用ExB形フィルタの一例を示す図。 収差補正用ExB形フィルタの一例を示す図。 低アングル電子の上側検出器への到達を制限するための遮蔽材として、下側検出器を採用した走査電子顕微鏡の一例を示す図。 試料表面から放出される電子と、ホール底から放出される電子の軌道を示す図。
 近年、半導体デバイスの構造は、更なる高集積化を実現するため、プレーナー構造に加え、Fin-FETに代表される3次元構造が適用されている。高集積化されたデバイスの回路パターンは数10nmまで微細化され、そのアスペクト比は近年飛躍的に深化している。
 例えば、Flashメモリのゲートではアスペクト比が10以上、コンタクトホールではアスペクト比が30以上の回路パターンが加工されている。これまで、半導体の製造ラインでは、プロセスの状態を管理するため、サブnmの精度でパターンの寸法を計測できるCD-SEM(Critical Dimension Scanning Electron Microscopy)が用いられてきた。しかし、パターンの高アスペクト化に伴い、パターン底部に対しても高精度な計測が要求され、非破壊で如何にして高精度な計測を実現するかが大きな課題となっている。
 以下に説明する実施例では、第1に高アスペクトの構造物の底部から放出される電子に基づく情報を顕在化する荷電粒子線装置について説明する。また、CD-SEMでは低加速で高い空間分解能を実現するため、試料直上で電子線を減速させるリターディングと、収差の小さい短焦点の対物レンズが不可欠である。また、リターディングで加速された信号電子を効率的に検出するためExB形フィルタを用いることが望ましい。ExB形フィルタとは、例えば二次電子に対する偏向電界を発生させる電極と、当該電界に直交する磁界を発生させる磁極を持つ直交電磁界発生器であり、発生する磁界によって電子ビームを二次電子の偏向方向と逆の方向に偏向させることができるため、二次電子の偏向作用を維持しつつ、偏向電界の電子ビームに対する偏向作用を相殺することができる。
 ExB形フィルタは、低加速で高い空間分解能を実現するために極めて有効な技術である。但し、試料から放出された信号電子を検出器が一括して補足するため、画像のコントラストは加速電圧で一意に決まってしまう。
 一方、電子顕微鏡の上面観察画像から試料の3次元の情報を反映させるために、これまで信号電子の放出角度を選択して検出する技術がある。しかしながら、信号電子の放出角度やエネルギーの情報を維持したまま信号電子を検出する必要があり、如何にして信号電子を高精度に分離するかが重要となる。信号電子を分離するには、先に示したExB形フィルタが有効だが、フィルタを動作させることで発生する信号電子のエネルギー分散を抑制したり、出射位置の異なる信号電子を一定の入射角度で検出器に導くには、ExB形フィルタを複数段設ける必要がある。
 今後、高アスペクト比を有する微細な回路パターンを計測するためには、高い空間分解能に加え、自由度が高く且つ高精度に信号電子を弁別する技術が不可欠である。しかし、高い空間分解能を目的に対物レンズを短焦点化すると、信号電子に対し対物レンズは拡大レンズとして作用するため、信号電子は大きく発散して検出器に到達し、ExB形フィルタを強く動作させる必要がある。一方、信号電子の弁別を目的に強くExB形フィルタを動作させると、収差の影響で高い空間分解能を維持するのが難しくなる。
 以下に説明する実施例では第2に、高い空間分解能と、自由度が高く高精度な信号弁別を両立することで、高アスペクト比を有する微細な回路パターン等を観察、測定、検査できる走査電子顕微鏡について説明する。
 高アスペクトの構造物の底部から放出される電子に基づく情報を顕在化するためには、放出方向の理想光軸との相対角が小さい電子(高アングル電子)を選択的に検出する必要がある。図9に例示するように、高アスペクトの構造物(ホール905)の底部906から放出される電子の内、高アングル電子901は試料表面に脱出できる。反対に相対角が大きい低アングル電子902は構造物の側壁に衝突してしまう。このように電子901は検出することができるが、電子902を検出することは困難である。一方、構造物表面907から放出される電子903、904は相対角の大小に寄らず高効率に検出することができる。即ち、構造物の底部は、電子902が検出できない分、検出効率が劣り、結果として試料表面と比較すると底部が暗い画像が形成されることになる。
 一方、高アングル電子を選択的に検出することができれば、底部と試料表面との検出効率の差が抑制される分、底部の情報をより顕在化することが可能となる。そこで高アングルの電子を選択的に通過させ、低アングルの電子を遮断できる部材があれば、上記目的を達成することができる。
 そのために以下の実施例では、試料から放出された荷電粒子を偏向する第1の直交電磁界発生器と、当該第1の直交電磁界発生器によって偏向された前記荷電粒子を更に偏向する第2の直交電磁界発生器と、前記荷電粒子ビームの通過開口を有する開口形成部材と、当該開口形成部材を通過した前記荷電粒子を偏向する第3の直交電磁界発生器を備えた荷電粒子線装置について説明する。
 理想光軸と試料面の交点以外から放出される電子は、レンズの偏向作用によって、軸外に偏向されることになる。第1の直交電磁界発生器によって、当該荷電粒子を理想光軸に向かって偏向すると共に、第1の直交電磁界発生器より荷電粒子源側に配置される第2の直交電磁界発生器によって、第1の直交電磁界発生器によって偏向された荷電粒子の軌道が理想光軸に平行となるように偏向する。更に第2の直交電磁界発生器より荷電粒子源側に配置された開口部形成部材は、荷電粒子ビームの通過開口を備えているため、第2の直交電磁界発生器によって偏向され、理想光軸に沿って移動する荷電粒子のうち、高アングルの荷電粒子が選択的に上記通過開口を通過することになる。即ち、図9に例示した高アングル電子901、903が選択的に通過することになるため、相対的に底部が明るい画像を形成することが可能となる。
 一旦、角度弁別のために理想光軸に沿うように荷電粒子を偏向することにより、今度はビームを通過させるために設けられた検出器や変換板に設けられた開口を抜けてしまうことになるため、角度弁別後は第3の直交電磁界発生器によって、開口部形成部材を通過した荷電粒子を検出器の検出面、或いは変換板に向かって偏向することによって、角度弁別によって選択された高アングルの荷電粒子を高効率に検出することが可能となる。
 更に、第3の直交電磁界発生器より前記荷電粒子源側に収差補正器(例えば第4の直交電磁界発生器)を備えることによって、第3の直交電磁界発生器を含む複数の直交電磁界発生器にて発生する収差をキャンセルすることが可能となる。
 以上のように4段の直交電磁界発生器を設け、下段の2段の直交電磁界発生器に荷電粒子の角度弁別のための軌道偏向を実行させ、上段の2段の直交電磁界発生器に荷電粒子検出のための偏向と、下段の直交電磁界発生器によって生ずる収差のキャンセルを実行させる構成は、ビームの照射位置に依らず、ホール底から放出された荷電粒子に基づく情報を顕在化と、装置の高分解能化の両立を実現することが可能となる。
 以下に説明する実施例では、主に電子ビームの試料への照射によって得られる電子を検出する検出器と、当該検出器と偏向器との間に配置され、前記電子ビームの通過開口を有する開口形成部材と、前記試料から放出された電子を偏向する二次信号偏向器を備えた走査電子顕微鏡において、前記二次信号偏向器が発生する収差を、前記検出器より電子源側に配置した1つのExB形フィルタで補正する機能を備えた走査電子顕微鏡について説明する。上記構成とすることにより、高アスペクト構造の底を、高精度に計測することが可能となる。
 高い空間分解能に加え、自由度が高く且つ高精度に信号電子を弁別するため、1次電子線の光軸には作用せず、信号電子の軌道だけを制御するExB形フィルタを複数配置し、それらのExB形フィルタが発生する収差を検出器の上に配置した1つのExB形フィルタで打ち消す。このように、検出器の上に配置した1つのExB形フィルタで収差を打ち消すことで、大幅なスペース削減ができる他、収差を打ち消すExBは信号電子を偏向する必要がないため、収差打ち消しに特化した構造を採用することができる。
 本実施例では主に、信号電子の軌道をExB形フィルタで制御し、信号電子制限板を通過させる際、ExB形フィルタが発生する収差を検出器の上に配置した1つのExB形フィルタで打ち消す例について説明する。初めに、構成および原理を示す。
 図1は、SEM式半導体計測装置の概略構成図である。以下、本実施例のSEM式半導体計測装置の基本的な構成について説明する。計測装置は、大きく分けて、SEM筐体1、試料室2、筐体制御部3、信号処理部4、ステージ制御部5、ウェーハ搬送部8、真空排気部9で構成され、これら全てをコンソール6で制御できるよう構成されている。コンソール6はレシピや計測結果、取得した走査像を記憶できる大容量のストレージ媒体7を持ち、このストレージ媒体7に記録されたデータを元に、装置の動作や、データの管理を行う。ここでSEM筐体1、試料室2は真空排気部9に含まれる排気ポンプにより真空が維持されており、目的に応じてコンソール6から真空排気部9を制御し、SEM筐体1及び試料室2、試料準備室10の排気やリークをすることができる。以下、各部位について構成とその部位が果たす機能について順を追って説明する。
(SEM筐体1)
 SEM筐体1は、電子源11、引出電極12、アノード電極13、コンデンサレンズ14、ExB形フィルタa15、変換板16、検出器a17、ExB形フィルタb18、信号電子制限板19、検出器b20、ExB形フィルタc21、ExB形フィルタd22、偏向器23、対物レンズ24、高さセンサ25で構成される。SEM筺体1では、電子源11と引出電極12との間の電位差で1次電子線を引き出す。1次電子線は、変換板16並びに信号電子制限板19の中央に設けられた穴を通過するようコンデンサレンズ14で収束させられる。
 その後、1次電子線は試料26上の所望の領域を2次元的に走査するよう偏向器23で軌道を変えられてから対物レンズ24で試料26上に収束して照射される。ここで、試料室2に設置された試料26には、筺体制御部3内のリターディング電源から1次電子線を減速させる電圧が印加されている。試料26から放出された信号電子は試料26に印加された電圧に応じたエネルギーまで加速され、対物レンズ24、偏向器23を通過し、信号電子制限板19、並びに変換板16に衝突してから、検出器b20並びに検出器a17で補足される。上記は、SEM筐体の一般的な構成だが、本実施例では走査方向が約180度異なる2枚の走査像を比較するため、2枚の走査像で走査信号が正確に反転している必要がある。
(試料室2、並びにウェーハ搬送部8)
 試料室2はステージ27、絶縁材28、試料フォルダ29、ミラー30で構成される。試料フォルダ29と接地されたステージ27とは、絶縁材28で電気的に絶縁されており、試料26、ミラー30は、試料フォルダ29に対し電気的に接地されている。試料フォルダ29には試料室2の外部からフィードスルーを介し高電圧を印加することができる。また、ステージ制御部5内のステージ駆動装置31により、ステージ27はSEM筐体1の中心軸に対し垂直方向に2次元的に駆動することで、試料26全ての領域をSEM筺体1の中心軸の直下に移動させることができる。なお、ミラー30は試料26の位置を計測するため、試料フォルダ29に取り付けられており、ステージ制御部5内にあるレーザ測長装置32から試料室2の真空を隔壁するガラス窓を介してレーザが照射できる構成となっており、レーザ測長装置32で試料26の位置を計測することで、微細なパターンが集積された半導体パターンでも、所望の位置の走査像を得ることができる。
 ウェーハ搬送部8は搬送制御部33と搬送ロボット34で構成される。ウェーハ搬送部8は、コンソール6からの制御信号に基づき搬送制御部33が搬送ロボット34を制御し、ウェーハ搬送部8に設置された試料26を、試料準備室10に搬送する。ここで、試料26はウェーハ搬送部8から試料準備室10、そして試料室2へと段階的に搬送されるが、各部の間にはバルブ35が設けられている。コンソール6はバルブ35と真空排気部9を制御し、搬送の動作中も試料室2の真空が常に維持できるよう、試料26を自動で搬送することができる。
(筺体制御部3)
 筐体制御部3は、コンソール6から送られる制御信号に基づき、SEM筐体1に含まれる電子源11や各種レンズを動作させる。筺体制御部3には、筺体制御電源36、収差補正電源37、信号電子軌道制御電源38、1次電子軌道制御電源39、リターディング電源40で構成される。筺体制御電源36は、電子源11、コンデンサレンズ14、並びに対物レンズ24に定電圧または定電流を供給し、試料26に収束した1次電子線を照射することができる。1次電子軌道制御電源39は、偏向器23に電圧または電流を供給し、試料26の所望の箇所に1次電子線を走査することができる。リターディング電源40の動作については、前述の(試料室、並びにウェーハ搬送部)に記載。信号電子軌道制御電源38の動作については、後述の(信号電子の軌道制御方法)に記載。収差補正電源37の動作については、後述の(収差補正の制御方法)に記載。
(信号処理部4)
 信号処理部4は、コンソール6から送られる制御信号に基づき、試料26の走査像を形成する。信号処理部4は、画像メモリ42、画像処理部43、信号処理部44で構成される。コンソール6は、走査像を形成するため1次電子軌道制御電源39に走査信号を送り、信号処理部4は検出器a17、並びに検出器b20で検出した信号を走査信号に同期してサンプリングする。各々の検出器で検出された信号は、個別に設けられたレベル調整回路41で独立に増幅されデジタル信号に変換されてから、信号処理部4内のメモリ42に格納される。
 ここで、レベル調整回路41を個別に備える目的は、検出器a17と、検出器b20で信号量が大きく異なる場合においても、最適な信号増幅を実現するためである。メモリ42に格納された各々の走査像は、画像処理部43で加算、減算等の演算処理が施され、信号処理部44に送られる。信号処理部44では演算処理された走査像の中から、所定の領域の信号波形(ラインプロファイル)を出力し、その波形から試料の形状に関する情報を抽出する。なお、信号処理部44では演算処理した走査像だけでなく、各々の検出器で取得した走査像に対して独立に信号波形を出力し、形状に関する情報を出力することもできる。このように、各々の検出器で得られた走査像を適切に組み合わせる機能を持たせることで、所望の領域について高精度に計測することができる。
(信号電子の軌道制御方法)
 次に信号電子の軌道制御について図2並びに図3を用いて説明する。図2、並びに図3は、SEM式半導体計測装置の概略構成図の中のSEM筺体1の一部を抜粋したものである。図2は、信号電子制限板19による信号電子の角度弁別の原理を示しており、試料26から放出された信号電子はSEM筺体1の中心軸100に沿って試料26から対物レンズ24の方へ進行する。信号電子制限板19は、電子ビーム通過開口を備えた開口部形成部材であり、大きな仰角で放出された信号電子111は、信号電子制限板19に衝突し、発生した3次電子120を検出器b20が捕捉する。一方、小さな仰角で放出された信号電子110は、信号電子制限板19を通過しExB形フィルタb18で曲げられ変換板16に衝突し、発生した3次電子を検出器a17が捕捉する。以上のように、信号電子の放出角度を弁別して検出する技術では、信号電子制限板19の開口の大きさで信号電子の取り込み仰角を制限することができる。小さな仰角で放出された信号電子110と大きな仰角で放出された信号電子111を独立に検出し、後段のレベル調整回路41が各々の信号量に適した増幅をすることで、試料の立体構造をより鮮明に可視化することができる。
 図3は、図2の構成で信号電子の出射位置がSEM筐体の中心軸100から離軸した場合を示しており、偏向器23で1次電子線を偏向した場合、信号電子は中心軸100から大きく離れた軌道を描く。図3(a)は偏向器23だけが動作した場合を示しており、中心軸100から離軸して出射する信号電子の中心軌道101は、対物レンズ24の収束場と、偏向器23の偏向場で軌道が曲げられる。そして、信号電子のほとんどが信号電子制限板19に衝突し、検出器b20で捕捉させる。この場合、信号電子制限板19の開口から大きく離れた位置に信号電子が衝突するため、開口による角度制限の機能は活かされない。
 図3(b)は、(a)の場合に信号電子軌道制御としてExB形フィルタc21、ExB形フィルタd22を連動させた場合を示している。ここで、ExB形フィルタc21、ExB形フィルタd22は、いずれも1次電子線の軌道を変えないよう電場と磁場の強さが調整されているため、信号電子の出射位置は図3(a)と変わらない。しかし、図3(b)の場合、対物レンズ24と偏向器23の場で曲げられた信号電子の軌道は、その信号電子の中心軌道101が信号電子制限板19に対し垂直、且つ光学系の中心軸100と重なるよう、2つのExB形フィルタで調整されるため、図2と同様の角度弁別の機能を発揮することができる。
 このようにExB形フィルタを多段で配置し、偏向信号に連動させることで、1次電子線を偏向した場合でも高精度に信号電子の放出角度を弁別することが可能になる。
(収差補正の制御方法)
 1次電子線に対しExB形フィルタが及ぼす収差の影響は、電場と磁場の偏向作用の違いに起因した色収差であり、偏向方向にボケを生みだす。このボケの大きさは、ExB形フィルタの動作量と1次電子線のクロスオーバまでの距離で決まり、動作量が大きく、且つクロスオーバまでの距離が長いほどボケは大きくなる。この色収差を打ち消すためには、別のExB形フィルタで逆方向のボケを発生させる必要があり、ExB形フィルタの動作量とクロスオーバまでの距離の積が、各々のExB形フィルタで正負反転するよう調整することで色収差を打ち消すことができる。
 以下、図を用いて上述したような収差を打ち消す制御方法について説明する。図4、並びに図5は、多段に配置したExB形フィルタが発生する収差を1つのExB形フィルタで打ち消す方法を示しており、図4は動作する多段のExB形フィルタの間にクロスオーバ102がない場合で、図5は動作する多段のExB形フィルタの間にクロスオーバ102がある場合を示している。それぞれの図は、SEM式半導体計測装置の概略構成図の中で、SEM筺体1のExB形フィルタ近傍の抜粋と、それに関連する制御電源並びにコンソール6の処理を示している。
 図4では、1次電子線は変換板16と信号電子制限板19の開口を通過し、ExB形フィルタd22の下にクロスオーバを形成している。ここで、信号電子の軌道を制御する各ExBフィルタの動作量を、ExB形フィルタb18は(Vxb,Vyb)、ExB形フィルタc21は(Vxc,Vyc)、ExB形フィルタd22は(Vxd,Vyd)とし、各ExB形フィルタからクロスオーバ102までの距離をL2、L3、L4とすると、各々のExB形フィルタが発生する色収差の大きさは以下の式に比例する。
Figure JPOXMLDOC01-appb-M000001
 上記の式を補正に用いるExB形フィルタa15からクロスオーバ102までの距離L1で規格化し、足し合わせることでbからdのExB形フィルタの色収差を合成することができる。
Figure JPOXMLDOC01-appb-M000002
 上式の(dVx,dVy)がExB形フィルタbからdが発生する色収差の合成で、以下の式のようにExB形フィルタa15を(dVx,dVy)と逆極性に動作させることで発生する色収差を打ち消すことができる。
Figure JPOXMLDOC01-appb-M000003
 図5についても同様だが、クロスオーバ102が動作する多段のExB形フィルタの間にあるため、ExB形フィルタとクロスオーバの位置関係で合成する際に動作方向を反転させる必要がある。これは、クロスオーバ102がExB形フィルタの上にある場合と下にある場合でクロスオーバ102の移動方向が反転するためである。この場合、bからdのExB形フィルタが発生する色収差を合成すると以下の式になる。
Figure JPOXMLDOC01-appb-M000004
 上式では、ExB形フィルタb18とExB形フィルタc21の間にクロスオーバ102があるため、第2項と第3項に-1がかけられている。図4の場合と同様に、この合成した色収差を打ち消すためには、ExB形フィルタa15を(dVx,dVy)と逆極性に動作させることで発生する色収差を打ち消すことができる。
Figure JPOXMLDOC01-appb-M000005
 以上の制御を正確に行うためには、各ExB形フィルタを正確に動作させるだけでなく、クロスオーバ102の位置を正確に知る必要がある。この場合、クロスオーバ102は図1中のコンデンサレンズ14の励磁で決まるため、あらかじめコンデンサレンズ14の励磁とコンデンサレンズ14からクロスオーバ102までの距離をデータベース又は関数式としてコンソール6に記憶させておく必要がある。コンデンサレンズ14と各ExB形フィルタまでの距離は筺体の設計で決まるので、上記のデータベース又は関係式を持つことで、多段に配置したExB形フィルタが発生する収差を1つのExB形フィルタで打ち消すことができる。これまでの式はExB形フィルタの静電偏向の動作電圧について着目して記述してきた。上述で割愛してきたExB形フィルタを構成するもう1つの電磁偏向の動作量については、1次電子線の軌道を変えないウィーン条件を満たすよう動作量を決める必要がある。ウィーン条件の決め方は、走査像の視野が動かないよう、静電偏向の電圧と電磁偏向の電流を決めても良いし、対物レンズの電流中心軸から光軸がずれないよう、静電偏向の電圧と電磁偏向の電流を決めても良い。本実施例は、全てのExB形偏向器がこのウィーン条件を満たすよう動作することで初めて効果を発揮することができる。
 本実施例で示した技術を適用することで、高い空間分解能に加え、自由度が高く且つ高精度に信号電子を弁別することができる。
(収差打ち消し用のExB形フィルタ)
 本実施例では、多段のExB形フィルタが発生する収差を検出器の上に配置した1つのExB形フィルタで補正する。この構成を用いることで、信号電子を偏向するExB形フィルタに対し、1対で収差補正用のExB形フィルタを搭載する必要がなくなり、大幅なスペース削減を実現できる。また、検出器の上に補正用のExB形フィルタを配置することから、そのExB形フィルタを収差補正に特化して最適化することができる。前述の(収差補正の制御方法)では、ExB形フィルタが発生する色収差のみに着目して説明したが、非点収差に対しても積極的に補正をすることができる。非点収差は、静電偏向器や電磁偏向器の組み立て精度の不足や、1次電子線がExB形フィルタの中心から離軸して通過することが原因で発生する。
 図6は収差補正用のExB形フィルタの概略構成を示したもので、(a)は静電偏向の配線、(b)は電磁偏向の配線を示している。実際は(a)、(b)は重ねて描くべきだが、便宜上静電偏向と電磁偏向を分けて図に示している。ここでは、ExB形フィルタが発生する非点収差の補正について説明する。図6に示したExB形フィルタは静電8極形の静電偏向器45にXYの電磁偏向器46を組み合わせている。静電偏向器45は、収差補正電源37内の電圧制御回路48に繋げられており、コンソール6からの制御信号に基づき、電圧制御回路48から各偏向電極に所定の電圧を印加することで偏向場を発生させることができる。また、電磁偏向器46は、収差補正電源37の電流制御回路47に繋げられており、コンソール6からの制御信号に基づき、電流制御回路47から各偏向コイルに所定の電流を流すことで、偏向場を発生させることができる。このExB形フィルタで非点収差を補正するためには、静電8極偏向器に非点収差のX方向補正成分105とY方向補正成分106を重畳することで実現できる。各補正成分は、コンソール6からの制御信号に基づき、電圧制御回路48で先に示した色収差の補正電圧に、各補正成分の電圧を足しこむことで重畳することができる。
 静電偏向に非点収差の補正機能を重畳する場合、補正機能を重畳したことによる光軸のずれが問題になる場合がある。この光軸のずれは、非点収差を補正する静電場の中心を1次電子線が通らない場合、静電場で1次電子線が偏向されるため発生してしまう現象である。この場合、先に説明したウィーン条件を満たすようExB形フィルタが動作しないため、非点収差が補正できても、対物レンズ24の中心軸を通らないことで発生する軸外収差が発生する。一般的に非点収差は、補正による光軸のずれを戻すため、非点収差の補正にアライナを連動させる。このアライナは静電偏向でも電磁偏向でも良く、非点補正の動作で走査像の視野が動かなくなるよう、アライナが連動すれば良い(以下、この連動をスティグマアライメントとする)。本実施例ではこのスティグマアライメントをExB形フィルタの電磁偏向に重畳する。スティグマアライメントは、コンソール6からの制御信号に基づき、電流制御回路47で先に示したウィーン条件から決まる電流に、スティグマアライメントの電流を足しこむことで重畳することができる。
 図6では、8極の静電偏向器とXYの電磁偏向を組み合わせたExB形フィルタを例に本実施例の動作を説明した。しかし、この動作は12極、又は4極の静電偏向器でも実現可能である。この場合、静電偏向器で非点収差を補正することができないため、電磁偏向器を8極にし、非点補正用のコイルにアライナ用のコイルを重ねて巻くことで、上述の動作を実現することができる。
 本実施例では、信号電子の軌道を制御する複数のExB形フィルタが発生する収差を検出器の上に配置した1つのExB形フィルタで補正する。この構成を用いる利点は、先に説明したように、信号電子を偏向するExB形フィルタに対し、1対で収差補正用のExB形フィルタを搭載する必要がなくなり、大幅なスペース削減を実現できること。そして、検出器の上に補正用のExB形フィルタを配置することで、そのExB形フィルタを収差補正に特化して最適化することができることである。
 収差を補正するExB形フィルタは、大きく広がった信号電子を通過させる必要がないため、静電偏向器の内径を小さくすることができる。図7は、4極の静電偏向器を用いた場合の概略構成を示したもので、電磁偏向器は先に述べたよう8極で、非点補正用のコイルにアライナ用のコイルを重ねて巻いてある。図7で、(a)は静電偏向の配線、(b)は電磁偏向の配線、(c)は非点補正の配線を示している。実際は(a)、(b)、(c)を重ねて描くべきだが、便宜上分けて図に示している。また、図7に示したExB形フィルタでは、静電偏向器45と電磁偏向器46を真空隔壁49で隔てている。この構成では、静電偏向器45は真空中、電磁偏向器46は大気中に配置されるが、動作により発熱を伴う電磁偏向器46を真空中に配置しないことで、真空が劣化しないという大きな利点がある。このExB形フィルタの構成は、収差補正に特化し、静電偏向器45の内径を小さくすることで、初めて実現できる最適な構成の一例である。図7(a)の静電偏向器45には、収差補正電源37内の電圧制御回路48が繋げられており、コンソール6からの制御信号に基づき、電圧制御回路48から各偏向電極に所定の電圧を印加することで偏向場を発生させることができる。図7(b)の電磁偏向器46に巻かれたアライナコイル50には、収差補正電源37の電流制御回路47が繋げられており、コンソール6からの制御信号に基づき、電流制御回路47から各偏向コイルに所定の電流を流すことで、偏向場を発生させることができる。また、図7(c)の電磁偏向器46に巻かれた非点補正コイル51には、収差補正電源37の非点補正用電流制御回路52が繋げられており、コンソール6からの制御信号に基づき、非点補正用電流制御回路52から各コイルに所定の電流を流すことで、非点を補正する場を発生させることができる。
 本実施例で説明した収差補正用のExB形フィルタを信号電子が通過する位置に配置した場合、色収差の補正動作、並びに非点収差の補正動作で信号電子の軌道が偏向されるため、(信号電子の軌道制御方法)で説明した効果を発揮することができない。収差補正用のExB形フィルタを検出器の上に配置することで、初めて本発明の目的である、高い空間分解能に加え、自由度が高く且つ高精度な信号電子の弁別が可能になる。
 次に、多段のExBフィルタを備えた走査電子顕微鏡の他の例について説明する。図8は、試料から放出される電子を増幅して検出するマイクロチャンネルプレート801、802を検出器として備えた走査電子顕微鏡の一例を示す図である。本例の場合、マイクロチャンネルプレート802が、電子ビーム通過開口を備えた開口部形成部材となる。マイクロチャンネルプレート802によって検出された信号は、増幅器804によって増幅され、制御装置805内に設けられた画像メモリに画像信号、或いは信号波形情報として記憶される。また、マイクロチャンネルプレート802を通過した高アングルの電子は、ExB形フィルタb18によって軸外に偏向され、マイクロチャンネルプレート801によって捕捉される。マイクロチャンネルプレート801によって検出された信号は、増幅器803によって増幅され、画像メモリに記憶される。画像メモリに記憶された画像信号は表示装置806に表示可能であり、また制御装置805は、上段の検出器と下段の検出器の出力の増幅率を調整して、合成画像を形成するための演算装置ともなる。
 以上のように検出器自体を角度弁別用の遮蔽部材として用いることによっても、高アングル電子を選択的に検出することが可能となる。
1 SEM筐体
2 試料室
3 筐体制御部
4、44 信号処理部
5 ステージ制御部
6 コンソール
7 ストレージ媒体
8 ウェーハ搬送部
9 真空排気部
10 試料準備室
11 電子源
12 引出電極
13 アノード電極
14 コンデンサレンズ
15 ExB形フィルタa
16 変換板
17 検出器a
18 ExB形フィルタb
19 信号電子制限板
20 検出器b
21 ExB形フィルタc
22 ExB形フィルタd
23 偏向器
24 対物レンズ
25 高さセンサ
26 試料
27 ステージ
28 絶縁材
29 試料フォルダ
30 ミラー
31 ステージ駆動装置
32 レーザ測長装置
33 搬送制御部
34 搬送ロボット
35 バルブ
36 筺体制御電源
37 収差補正電源
38 信号電子軌道制御電源
39 1次電子軌道制御電源
40 リターディング電源
41 レベル調整回路
42 メモリ
43 画像処理部
45 静電偏向器
46 電磁偏向器
47 電流制御回路
48 電圧制御回路
49 真空隔壁
50 アライナコイル
51 非点補正コイル
52 非点補正用電流制御回路
100 中心軸
101 信号電子の中心軌道
102 クロスオーバ
105 非点収差のX方向補正成分
106 非点収差のY方向補正成分
110、111 信号電子
120 3次電子

Claims (17)

  1.  荷電粒子源から放出される荷電粒子ビームを偏向する偏向器と、前記荷電粒子ビームの走査によって得られる荷電粒子を検出する検出器を備えた荷電粒子線装置において、
     試料から放出された荷電粒子を偏向する第1の直交電磁界発生器と、当該第1の直交電磁界発生器によって偏向された前記荷電粒子を更に偏向する第2の直交電磁界発生器と、前記荷電粒子ビームの通過開口を有する開口形成部材と、当該開口形成部材を通過した前記荷電粒子を偏向する第3の直交電磁界発生器を備えたことを特徴とする荷電粒子線装置。
  2.  請求項1において、
     前記開口部形成部材は、前記試料から放出される荷電粒子の衝突によって二次電子を発生させる変換板であることを特徴とする荷電粒子線装置。
  3.  請求項2において、
     前記検出器は、前記変換板から放出される電子を検出することを特徴とする荷電粒子線装置。
  4.  請求項1において、
     前記開口部形成部材は、前記試料から放出される荷電粒子を検出する検出器であることを特徴とする荷電粒子線装置。
  5.  請求項1において、
     前記第3の直交電磁界発生器より前記荷電粒子源側に、収差補正器を配置したことを特徴とする荷電粒子線装置。
  6.  請求項5において、
     前記収差補正器は、第4の直交電磁界発生器であって、前記第1の収差補正器、第2の収差補正器、及び第3の収差補正器が生じさせる収差を相殺するように制御されることを特徴とする荷電粒子線装置。
  7.  請求項1において、
     前記第1の直交電磁界発生器と前記第2の直交電磁界発生器は、前記偏向器による前記荷電粒子線の偏向状態に応じて、前記試料から放出される荷電粒子に対する偏向状態を変化させることを特徴とする荷電粒子線装置。
  8.  請求項7において、
     前記第1の直交電磁界発生器と第2の直交電磁界発生器は、前記試料から放出される荷電粒子の軌道が、前記荷電粒子ビームの理想光軸と平行となるように、当該荷電粒子を偏向することを特徴とする荷電粒子線装置。
  9.  荷電粒子源と、前記荷電粒子源から放出される荷電粒子ビームの照射位置を偏向する偏向器と、前記荷電粒子ビームの試料への照射によって得られる二次信号を検出する第1の検出器と、前記第1の検出器と前記偏向器との間に、前記荷電粒子ビームの通過開口を有する開口形成部材を配置し、前記通過開口に向かって前記二次信号を偏向する2つ以上の二次信号偏向器を備えた荷電粒子線装置において、
     前記2つ以上の二次信号偏向器によってもたらされる前記荷電粒子ビームの収差を、前記第1の検出器より前記荷電粒子源方向に配置した1つの収差補正器で補正することを特徴とする荷電粒子線装置。
  10.  請求項9において、
     前記2つ以上の二次信号偏向器、並びに前記1つの収差補正器が静電場と静磁場を重畳させた偏向器であることを特徴とする荷電粒子線装置。
  11.  請求項9において、
     前記2つ以上の二次信号偏向器、並びに前記1つの収差補正器が静電場と静磁場を重畳させた偏向器であり、且つ静電場と静磁場が荷電粒子ビームを偏向せず、前記二次信号のみ偏向することを特徴とする荷電粒子線装置。
  12.  請求項9において、
     前記荷電粒子ビームが形成するクロスオーバの距離と、前記二次信号偏向器の動作量に応じて、前記収差補正器の動作量を設定することを特徴とする荷電粒子線装置。
  13.  請求項9において、
     前記収差補正器が補正する収差が、前記2つ以上の二次信号偏向器の発生する色収差であることを特徴とする荷電粒子線装置。
  14.  請求項9において、
     前記収差補正器が補正する収差が、前記2つ以上の二次信号偏向器の発生する非点収差であり、且つ前記非点収差の補正で前記荷電粒子ビームが偏向されないよう、前記荷電粒子ビームの軌道を校正する機能を備えていることを特徴とする荷電粒子線装置。
  15.  請求項9において、
     前記開口形成部材と前記第1の検出器の間にエネルギーフィルタを備えていることを特徴とする荷電粒子線装置。
  16.  請求項9において、
     前記開口形成部材より前記試料側に第2の検出器を備えていることを特徴とする荷電粒子線装置。
  17.  請求項9において、
     前記第1の検出器と第2の検出器の信号を用いて前記試料の形状を計測することを特徴とする荷電粒子線装置。
PCT/JP2013/065910 2012-06-28 2013-06-10 荷電粒子線装置 WO2014002734A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/410,999 US9627171B2 (en) 2012-06-28 2013-06-10 Charged particle beam device
KR1020147031484A KR101759186B1 (ko) 2012-06-28 2013-06-10 하전 입자선 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-144901 2012-06-28
JP2012144901A JP6002470B2 (ja) 2012-06-28 2012-06-28 荷電粒子線装置

Publications (1)

Publication Number Publication Date
WO2014002734A1 true WO2014002734A1 (ja) 2014-01-03

Family

ID=49782899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065910 WO2014002734A1 (ja) 2012-06-28 2013-06-10 荷電粒子線装置

Country Status (4)

Country Link
US (1) US9627171B2 (ja)
JP (1) JP6002470B2 (ja)
KR (1) KR101759186B1 (ja)
WO (1) WO2014002734A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018160695A (ja) * 2014-01-10 2018-10-11 三菱電機株式会社 電子ビーム加工機
TWI753374B (zh) * 2019-03-08 2022-01-21 日商日立全球先端科技股份有限公司 荷電粒子束裝置
JP2022525905A (ja) * 2019-03-27 2022-05-20 エーエスエムエル ネザーランズ ビー.ブイ. マルチビーム検査装置における二次ビームのアライメントのためのシステム及び方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9330884B1 (en) * 2014-11-11 2016-05-03 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Dome detection for charged particle beam device
KR101693536B1 (ko) * 2015-11-23 2017-01-06 한국표준과학연구원 하전입자선 장치
WO2017168709A1 (ja) * 2016-03-31 2017-10-05 株式会社日立製作所 荷電粒子線応用装置
US11451043B1 (en) 2016-10-27 2022-09-20 State Farm Mutual Automobile Insurance Company Systems and methods for utilizing electricity monitoring devices to mitigate or prevent structural damage
KR102288146B1 (ko) 2017-03-06 2021-08-11 주식회사 히타치하이테크 하전입자선 장치
KR20200020921A (ko) * 2017-07-28 2020-02-26 에이에스엠엘 네델란즈 비.브이. 단일-빔 또는 멀티-빔 장치에서의 빔 분리기의 분산을 보상하기 위한 시스템들 및 방법들
JP6932050B2 (ja) * 2017-09-01 2021-09-08 株式会社日立ハイテク 走査電子顕微鏡
KR102608530B1 (ko) * 2019-04-19 2023-12-04 주식회사 히타치하이테크 하전 입자선 장치
WO2023139631A1 (ja) * 2022-01-18 2023-07-27 株式会社日立ハイテク 荷電粒子線装置及び荷電粒子線装置におけるビームの偏向方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10302705A (ja) * 1997-04-25 1998-11-13 Hitachi Ltd 走査電子顕微鏡
JP2002367552A (ja) * 2001-06-12 2002-12-20 Hitachi Ltd 荷電粒子線装置
JP2004342341A (ja) * 2003-05-13 2004-12-02 Hitachi High-Technologies Corp ミラー電子顕微鏡及びそれを用いたパターン欠陥検査装置
JP2006332038A (ja) * 2005-04-28 2006-12-07 Hitachi High-Technologies Corp 荷電粒子ビームを用いた検査方法及び検査装置
JP2012003902A (ja) * 2010-06-15 2012-01-05 Hitachi High-Technologies Corp 走査型電子顕微鏡及びその制御方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2821153B2 (ja) * 1988-11-24 1998-11-05 株式会社日立製作所 荷電粒子線応用装置
WO2001033603A1 (fr) 1999-10-29 2001-05-10 Hitachi, Ltd. Appareil a faisceau electronique
DE10236738B9 (de) 2002-08-09 2010-07-15 Carl Zeiss Nts Gmbh Elektronenmikroskopiesystem und Elektronenmikroskopieverfahren
EP1517353B1 (en) * 2003-09-11 2008-06-25 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Charged particle beam energy width reduction system for charged particle beam system
US7462828B2 (en) 2005-04-28 2008-12-09 Hitachi High-Technologies Corporation Inspection method and inspection system using charged particle beam
US8067732B2 (en) * 2005-07-26 2011-11-29 Ebara Corporation Electron beam apparatus
JP4825530B2 (ja) * 2006-02-06 2011-11-30 株式会社日立ハイテクノロジーズ パターン欠陥検査方法および装置
JP4881661B2 (ja) * 2006-06-20 2012-02-22 株式会社日立ハイテクノロジーズ 荷電粒子線装置
JP4920385B2 (ja) * 2006-11-29 2012-04-18 株式会社日立ハイテクノロジーズ 荷電粒子ビーム装置、走査型電子顕微鏡、及び試料観察方法
JP4977509B2 (ja) * 2007-03-26 2012-07-18 株式会社日立ハイテクノロジーズ 走査電子顕微鏡
JP5502595B2 (ja) * 2010-05-18 2014-05-28 日本電子株式会社 球面収差補正装置および球面収差補正方法
JP5548159B2 (ja) * 2010-11-05 2014-07-16 株式会社アドバンテスト 欠陥レビュー装置及び欠陥レビュー方法
US20130292568A1 (en) * 2010-12-16 2013-11-07 Daisuke Bizen Scanning electron microscope and length measuring method using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10302705A (ja) * 1997-04-25 1998-11-13 Hitachi Ltd 走査電子顕微鏡
JP2002367552A (ja) * 2001-06-12 2002-12-20 Hitachi Ltd 荷電粒子線装置
JP2004342341A (ja) * 2003-05-13 2004-12-02 Hitachi High-Technologies Corp ミラー電子顕微鏡及びそれを用いたパターン欠陥検査装置
JP2006332038A (ja) * 2005-04-28 2006-12-07 Hitachi High-Technologies Corp 荷電粒子ビームを用いた検査方法及び検査装置
JP2012003902A (ja) * 2010-06-15 2012-01-05 Hitachi High-Technologies Corp 走査型電子顕微鏡及びその制御方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018160695A (ja) * 2014-01-10 2018-10-11 三菱電機株式会社 電子ビーム加工機
TWI753374B (zh) * 2019-03-08 2022-01-21 日商日立全球先端科技股份有限公司 荷電粒子束裝置
JP2022525905A (ja) * 2019-03-27 2022-05-20 エーエスエムエル ネザーランズ ビー.ブイ. マルチビーム検査装置における二次ビームのアライメントのためのシステム及び方法
JP7265646B2 (ja) 2019-03-27 2023-04-26 エーエスエムエル ネザーランズ ビー.ブイ. マルチビーム検査装置における二次ビームのアライメントのためのシステム及び方法

Also Published As

Publication number Publication date
KR101759186B1 (ko) 2017-07-18
KR20150001809A (ko) 2015-01-06
JP6002470B2 (ja) 2016-10-05
US9627171B2 (en) 2017-04-18
JP2014010928A (ja) 2014-01-20
US20150357153A1 (en) 2015-12-10

Similar Documents

Publication Publication Date Title
JP6002470B2 (ja) 荷電粒子線装置
US10522327B2 (en) Method of operating a charged particle beam specimen inspection system
JP6641011B2 (ja) 複数の荷電粒子ビームの装置
KR100885940B1 (ko) 하전입자선에 의한 검사장치 및 그 검사장치를 사용한장치제조방법
US9601302B2 (en) Inspection apparatus
US8378299B2 (en) Twin beam charged particle column and method of operating thereof
US9035249B1 (en) Multi-beam system for high throughput EBI
US7157703B2 (en) Electron beam system
KR102145469B1 (ko) 검사 장치
TWI417928B (zh) 電子線裝置、電子線檢查裝置及曝光條件決定方法
JP5948084B2 (ja) 走査電子顕微鏡
WO2016125864A1 (ja) 検査装置
US8759761B2 (en) Charged corpuscular particle beam irradiating method, and charged corpuscular particle beam apparatus
JPH11238484A (ja) 投射方式の荷電粒子顕微鏡および基板検査システム
US20150228452A1 (en) Secondary electron optics and detection device
JP5519421B2 (ja) 走査型電子顕微鏡及びその制御方法
JP2004342341A (ja) ミラー電子顕微鏡及びそれを用いたパターン欠陥検査装置
JP7278983B2 (ja) マルチビーム走査透過荷電粒子顕微鏡
JP2012230919A (ja) 荷電粒子線の照射方法及び荷電粒子線装置
JP2008193119A (ja) 荷電粒子線による検査装置及びその検査装置を用いたデバイス製造方法
JP2007048754A (ja) 荷電粒子線による検査装置及びその検査装置を用いたデバイス製造方法
JP2007184283A (ja) 荷電粒子線装置及び方法
JP4505674B2 (ja) パターン検査方法
JP4110042B2 (ja) 基板検査装置、基板検査方法および半導体装置の製造方法
JP4011608B2 (ja) 荷電粒子ビーム光学装置、及び荷電粒子ビーム制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13808769

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147031484

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14410999

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13808769

Country of ref document: EP

Kind code of ref document: A1