WO2014002653A1 - 発光計測装置 - Google Patents
発光計測装置 Download PDFInfo
- Publication number
- WO2014002653A1 WO2014002653A1 PCT/JP2013/064267 JP2013064267W WO2014002653A1 WO 2014002653 A1 WO2014002653 A1 WO 2014002653A1 JP 2013064267 W JP2013064267 W JP 2013064267W WO 2014002653 A1 WO2014002653 A1 WO 2014002653A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- temperature
- constant temperature
- measuring device
- light
- plate
- Prior art date
Links
- 238000004020 luminiscence type Methods 0.000 title claims abstract description 35
- 238000005259 measurement Methods 0.000 claims abstract description 24
- 238000007664 blowing Methods 0.000 claims description 23
- 238000001514 detection method Methods 0.000 claims description 13
- 238000009423 ventilation Methods 0.000 claims description 7
- 238000007605 air drying Methods 0.000 claims 2
- 238000005415 bioluminescence Methods 0.000 abstract description 11
- 230000029918 bioluminescence Effects 0.000 abstract description 11
- 230000035945 sensitivity Effects 0.000 abstract description 9
- 230000003287 optical effect Effects 0.000 abstract description 2
- 239000007787 solid Substances 0.000 abstract 1
- 238000001816 cooling Methods 0.000 description 75
- 239000000523 sample Substances 0.000 description 56
- 239000002826 coolant Substances 0.000 description 51
- ZKHQWZAMYRWXGA-KQYNXXCUSA-J ATP(4-) Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O ZKHQWZAMYRWXGA-KQYNXXCUSA-J 0.000 description 24
- ZKHQWZAMYRWXGA-UHFFFAOYSA-N Adenosine triphosphate Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)C(O)C1O ZKHQWZAMYRWXGA-UHFFFAOYSA-N 0.000 description 24
- 230000005540 biological transmission Effects 0.000 description 21
- 238000000034 method Methods 0.000 description 18
- 238000010586 diagram Methods 0.000 description 14
- 229910052751 metal Inorganic materials 0.000 description 14
- 239000002184 metal Substances 0.000 description 14
- 239000003153 chemical reaction reagent Substances 0.000 description 13
- 239000000463 material Substances 0.000 description 12
- 230000007246 mechanism Effects 0.000 description 11
- 238000009833 condensation Methods 0.000 description 10
- 230000005494 condensation Effects 0.000 description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 8
- 230000008859 change Effects 0.000 description 8
- 229910052802 copper Inorganic materials 0.000 description 8
- 239000010949 copper Substances 0.000 description 8
- 238000009413 insulation Methods 0.000 description 8
- 230000005855 radiation Effects 0.000 description 8
- 229910001220 stainless steel Inorganic materials 0.000 description 8
- 239000010935 stainless steel Substances 0.000 description 8
- 241000894006 Bacteria Species 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 238000003860 storage Methods 0.000 description 6
- JCLFHZLOKITRCE-UHFFFAOYSA-N 4-pentoxyphenol Chemical compound CCCCCOC1=CC=C(O)C=C1 JCLFHZLOKITRCE-UHFFFAOYSA-N 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 108090000790 Enzymes Proteins 0.000 description 4
- 102000004190 Enzymes Human genes 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 4
- 238000011109 contamination Methods 0.000 description 4
- 239000000498 cooling water Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 230000017525 heat dissipation Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- 239000000112 cooling gas Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000001687 destabilization Effects 0.000 description 3
- 230000033001 locomotion Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000036962 time dependent Effects 0.000 description 3
- IGXWBGJHJZYPQS-SSDOTTSWSA-N D-Luciferin Chemical compound OC(=O)[C@H]1CSC(C=2SC3=CC=C(O)C=C3N=2)=N1 IGXWBGJHJZYPQS-SSDOTTSWSA-N 0.000 description 2
- CYCGRDQQIOGCKX-UHFFFAOYSA-N Dehydro-luciferin Natural products OC(=O)C1=CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 CYCGRDQQIOGCKX-UHFFFAOYSA-N 0.000 description 2
- BJGNCJDXODQBOB-UHFFFAOYSA-N Fivefly Luciferin Natural products OC(=O)C1CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 BJGNCJDXODQBOB-UHFFFAOYSA-N 0.000 description 2
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 2
- DDWFXDSYGUXRAY-UHFFFAOYSA-N Luciferin Natural products CCc1c(C)c(CC2NC(=O)C(=C2C=C)C)[nH]c1Cc3[nH]c4C(=C5/NC(CC(=O)O)C(C)C5CC(=O)O)CC(=O)c4c3C DDWFXDSYGUXRAY-UHFFFAOYSA-N 0.000 description 2
- 230000002528 anti-freeze Effects 0.000 description 2
- 239000005388 borosilicate glass Substances 0.000 description 2
- 230000003749 cleanliness Effects 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000013505 freshwater Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 2
- 238000000504 luminescence detection Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 1
- 229920003043 Cellulose fiber Polymers 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 241000254158 Lampyridae Species 0.000 description 1
- 108060001084 Luciferase Proteins 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 238000007743 anodising Methods 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- OYLGJCQECKOTOL-UHFFFAOYSA-L barium fluoride Chemical compound [F-].[F-].[Ba+2] OYLGJCQECKOTOL-UHFFFAOYSA-L 0.000 description 1
- 229910001632 barium fluoride Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000003390 bioluminescence detection Methods 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 239000007799 cork Substances 0.000 description 1
- 238000012136 culture method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000023077 detection of light stimulus Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- LIYGYAHYXQDGEP-UHFFFAOYSA-N firefly oxyluciferin Natural products Oc1csc(n1)-c1nc2ccc(O)cc2s1 LIYGYAHYXQDGEP-UHFFFAOYSA-N 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000005499 meniscus Effects 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- JJVOROULKOMTKG-UHFFFAOYSA-N oxidized Photinus luciferin Chemical compound S1C2=CC(O)=CC=C2N=C1C1=NC(=O)CS1 JJVOROULKOMTKG-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000002572 peristaltic effect Effects 0.000 description 1
- 239000008238 pharmaceutical water Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 235000002639 sodium chloride Nutrition 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 239000008215 water for injection Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/76—Chemiluminescence; Bioluminescence
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M1/00—Apparatus for enzymology or microbiology
- C12M1/34—Measuring or testing with condition measuring or sensing means, e.g. colony counters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J1/00—Photometry, e.g. photographic exposure meter
- G01J1/02—Details
- G01J1/0252—Constructional arrangements for compensating for fluctuations caused by, e.g. temperature, or using cooling or temperature stabilization of parts of the device; Controlling the atmosphere inside a photometer; Purge systems, cleaning devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/024—Arrangements for cooling, heating, ventilating or temperature compensation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/02—Mechanical
- G01N2201/023—Controlling conditions in casing
- G01N2201/0231—Thermostating
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/12—Circuits of general importance; Signal processing
- G01N2201/121—Correction signals
- G01N2201/1211—Correction signals for temperature
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/008—Mountings, adjusting means, or light-tight connections, for optical elements with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation
Definitions
- the present invention relates to luminescence detection for substances contained in a sample.
- the present invention relates to a weak luminescence detection apparatus for detecting chemiluminescence and bioluminescence of a substance contained in a sample with high sensitivity and high accuracy.
- CFU C olony- F orming U nit
- CFU is a unit representing the number of living bacteria (viable bacteria).
- aseptic water (pharmaceutical water) in pharmaceutical manufacturing facilities also has a cleanliness management standard defined by the pharmacopoeia, and it is necessary to operate with water for injection at less than 10 CFU / 100 mL. The method is used.
- the culture method it takes a long time to obtain the result because the agar medium is cultured in a thermostat for 2 to 3 days, and depending on the type of cells, it is cultured for 10 days or more and the number of generated colonies is counted visually. From such a background, development of a rapid measurement method for a contamination monitor is desired, and there are a method for detecting metabolic activity when viable bacteria proliferate, a method for detecting light using a substance in the fungus body, and the like. .
- ATP Adenosine triphosphate
- ATP method bioluminescence method
- results can be obtained within 1 hour, including the time required for sample preparation. . If the microbial contamination status can be ascertained within one hour, it is expected that line and product (including intermediates) will be checked and countermeasures will be taken between manufacturing work shifts, and the safety management system and shipping system will be significantly improved. Is done.
- the ATP method uses the luminescence reaction of fireflies to measure the number of ATP in the cell converted to the amount of light.
- the principle is that the luciferase enzyme incorporates the substrate luciferin and ATP molecules, and the amount of luminescence when the oxidized luciferin (oxyluciferin) transitions from the excited state to the ground state with the consumption of ATP is measured.
- a dispensing system having a cleaning function for preventing external contamination and a high-sensitivity photodetector have been installed in the same apparatus.
- a bioluminescence detection system has been reported that is placed in a space in which contaminants from the plant are suppressed, and it is now possible to measure ATP molecular weight equivalent to 1 amol.
- Patent Document 2 discloses a method of controlling the temperature by covering the photodetector with a cooling device.
- the light-receiving surface cooling and signal enhancement unit that accepts faint light are used as its means. Cooling is performed.
- the cooling of the light receiving surface composed of the incident window and the light receiving element often causes condensation, which causes light refraction and scattering. There was a problem of incurring a loss of light quantity.
- a quartz window with a defrost heater is attached in front of the incident window on the light receiving surface, and between the quartz window with the defrost heater and the light receiving surface for heat insulation. It becomes necessary to enclose the dry gas.
- this improves the signal-to-noise ratio (SN) ratio, but the light-receiving surface is moved away from the sample container containing the luminescent material, resulting in a trade-off relationship in which light recovery efficiency decreases.
- SN signal-to-noise ratio
- Many light with high directivity is effective in the above cooling mode, but detection of light with no directivity such as chemiluminescence or bioluminescence in a sample leads to a loss of incident light quantity.
- an object of the present invention is to provide a photodetector and system that can improve the SN ratio and can detect non-directional light emission such as chemiluminescence and bioluminescence with high sensitivity.
- a plate-like member that holds a holder of a container that holds a sample, a light detection unit that detects light emission in the sample, and the light detection
- the light emission measuring device includes a temperature control unit that controls the temperature of the unit and a blower unit that blows air on the light receiving surface of the light detection unit.
- bioluminescence can be measured highly sensitively and quantitatively by suppressing variations due to noise and temperature background of reagent background signals.
- FIG. 3 is an exploded view illustrating an example of a configuration inside a weak light emission measuring device main body according to the first embodiment. 3 is a cross-sectional view illustrating an example of a configuration inside a weak light emission measuring device main body according to Embodiment 1.
- FIG. FIG. 5 is a diagram showing an example of a configuration using an electronic cooling element for constant temperature control of the first plate-like member. It is a figure which shows an example of the structure which used the electronic cooling element for the constant temperature control of the photodetector. It is a figure which shows an example of a structure of cooling of a heat exhauster.
- FIG. 2 is a diagram illustrating an example of a constant temperature dry air supply system according to Embodiment 1.
- FIG. 6 is a diagram illustrating an example of a constant temperature dry air supply system according to Embodiment 3.
- FIG. 6 is a diagram illustrating an example of a constant temperature dry air supply system according to Embodiment 3.
- FIG. 6 is a plan view illustrating an example of a constant temperature dry air supply system according to Embodiment 4.
- FIG. 6 is a three-dimensional view illustrating an example of a constant temperature dry air supply system according to Embodiment 4.
- FIG. 6 is a plan view illustrating an example of a constant temperature dry air supply system according to Embodiment 4.
- FIG. 6 is a three-dimensional view illustrating an example of a constant temperature dry air supply system according to Embodiment 4.
- FIG. It is a figure which shows the time-dependent change of temperature until it reaches each preset temperature by Example 5, and the time-dependent change of the number of dark current pulses per second (Number of Dark pulse count: Nd). It is a figure which shows the average value in the temperature difference of the dark current pulse number (Number (of) Dark (pulse) count: (Nd)) per second by Example 5.
- FIG. It is a figure which shows the result of the weak pulse light measurement of 50Count-> Per-Second (CPS) when not using the temperature control by the constant temperature controller by Example 5.
- CPS CounterCount-> Per-Second
- FIG. 6 is a diagram showing a typical example of ATP luminescence measurement data according to Example 5.
- 3 is a flowchart illustrating an example of a measurement procedure for light emission measurement in the first embodiment.
- FIG. 1A, FIG. 1B, and FIG. 1C are an example which shows the structure in the mechanism chamber 5 of the weak light emission measuring device which concerns on Example 1.
- FIG. FIG. 1A is an external view of a system including a weak light emission measuring device main body 1, a compressor 2 that generates compressed air, and a control device 3 that controls the compressor 2.
- the weak light emission measuring device main body 1 is a light-shielded casing, and further includes a mechanism chamber 5 that houses various drive mechanisms and a control chamber 6 that houses various control devices.
- An opening / closing door 4 that opens and closes when the sample container 7 shown in FIG. 1B is set is provided.
- the internal device configuration is as shown in FIGS. 1B and 1C.
- FIG. 1B shows an exploded view
- FIG. 1C shows an assembled cross-sectional view
- the sample container 7 is set in the sample container holder 8.
- the sample container holder 8 is installed in the through-hole 10 part of the first plate-like member 9.
- a material having high thermal conductivity is selected as the material of the first plate member 9.
- the surface of the metal material is preferably coated on the black surface by anodizing so that the first plate-like member 9 does not accumulate or reflect light.
- the sample container holder 8 can be positioned simply by placing it on the first plate member 9.
- a frame that can be installed at a fixed position may be attached to the first plate-like member 9, or a round groove or a square groove that fits the bottom of the sample container holder 8 is the first plate-like shape. It may be carved into the member 9 and the sample container holder 8 may be fitted there.
- the sample container holder 8 has a structure in which the inside is hollowed into a cylindrical part, a conical part, and a hemispherical part (8a) for supporting the outer periphery of the sample container 7, and The upper and lower portions of the sample container holder 8 are structured to penetrate.
- the sample container 7 is inserted from a cylindrical opening having a small diameter at the top, and the umbrella structure 7a at the top of the container is used for fixing. Accordingly, the sample container is mounted in a state of being hung on the sample container holder 8. Further, when using the sample container 7 that does not have the umbrella structure 7a on the upper part of the container, a dedicated stopper or the like (not shown) that is attached to the sample container 7 may be prepared.
- the first plate-like member 9 has a light transmission window 11 having a transmittance of 90% or more in the visible light region, specifically, the wavelength of light of 300 nm to 650 nm, or 410 nm to 650 nm. By installing, the bottom of the sample container 7 may be held.
- the light transmission window 11 may have a flat plate shape or a lens shape.
- the material of the light transmission window 11 is preferably quartz glass, borosilicate glass, UV cut glass, calcium fluoride, lithium fluoride, barium fluoride, rock salt, zinc selenium, acrylic, polycarbonate, or the like.
- a lens shape is employed, biconvex, plano-convex, convex meniscus, cylindrical, etc. are preferable.
- cutting light with a wavelength of 410 nm or less is effective for cutting static noise light.
- a color filter that cuts 410 nm or less is used as the material of the light transmission window 11.
- a long pass filter, a colored glass filter, or the like that allows visible light of 410 nm or more to pass through may be used.
- these filters may be attached to the upper surface of the light transmission window 11 (on the sample container 7 side) or the lower surface of the light transmission window 11 (on the light detector 14 side).
- the first plate-like member 9 is a light shielding member, and has a structure in which a second plate-like member 12 that is also a light shielding member can be inserted.
- the inserted second plate-like member 12 can move in the y-axis direction in the top plate using the first actuator 13, and opens and closes the through hole 10 by the movement of the second plate-like member 12. Acts as a shutter.
- the first actuator 13 for example, an actuator controlled by power supply or air supply can be used.
- the second plate-like member 12 is not necessarily required if the light shielding property of the open / close window 4 is sufficient, but a high voltage is not applied to the photodetector 14 and the photodetector 16 is in an off state.
- a phenomenon of light accumulation is caused, which often causes fluctuations in dark current and the number of dark current pulses.
- the 2nd plate-shaped member 12 plays the role which suppresses it.
- the photodetector 14 is installed under the first plate member 9 with a small gap from the first plate member 9 and the light transmission window 11.
- the minute gap is preferably between 0.05 and 10 millimeters, and the narrower the gap, the higher the light incident efficiency on the light receiving surface 16.
- the position control means 15 may be used to store and control the position in the z-axis direction in order to accurately reproduce a minute gap.
- the sample container 7, the sample container holder 8, the through hole 10, the center of the light transmitting window 11, and the center of the light receiving surface 16 of the photodetector 14 are aligned so as to be on the same axis in the z-axis direction. This alignment is usually performed at the time of assembling the apparatus. Further, the distance between the photodetector 14 and the first plate-like member 9 and the light transmission window 11 attached to the first plate-like member 9 is strictly positioned at the time of assembling the apparatus, or the position control means 15 is used. These may be finely adjusted, and these can be controlled using an electric power supply or air supply type actuator.
- the movement control means 15 using a power supply type actuator is mainly composed of a rotary motor, a ball screw that converts the rotation of the motor into a linear motion, and a stage on which the photodetector 14 is installed.
- the light detection 14 on the stage that moves on the ball screw when the signal of the specified number of rotation pulses is given, with the origin defined by the sensor as the reference position, is repeated with an accuracy of ⁇ 10 microns or less. You can move to a position.
- the photodetector 14 on the stage is moved, and positioning is provided with a stopper plate or the like on a part of the member interlocking with the photodetector 14 In addition, the position is controlled by forcibly stopping the stopper plate.
- the photodetector 14 can be moved up and down by controlling the supply of compressed air with a valve.
- PMT photomultiplier tube
- I.I image intensifier
- PMT and I.I. I. Even if the sensitivity is not so high, a semiconductor element such as a photodiode may be used if the cost reduction of the apparatus is important.
- PMT photomultiplier tube
- I.I image intensifier
- the weak light emission measuring device main body 1 includes at least one constant temperature controller.
- the sample container holder 8 has a first constant temperature controller 17, the first plate member has a second constant temperature controller 18, and the photodetector 14 has a third constant temperature control.
- the constant temperature dry air blowing nozzle 23 is provided with a fourth constant temperature controller 24.
- the first thermostatic controller 17 is inserted or attached to the container holder 8.
- the first constant temperature controller 17 constantly monitors the temperature of the thermostat and the temperature of the container holder 8 controlled by the thermostat to a constant temperature on the container holder 8 which is a metal member such as aluminum, stainless steel or copper.
- a temperature measuring device for feeding back the amount of power supplied to the thermostat necessary for maintaining, specifically, a thermocouple and a thermistor are inserted or mounted. These are controlled by the first constant temperature controller driver 20 housed in the control room 3 of the weak light emission measuring device main body 1, and the temperature can be arbitrarily set via the control device 3.
- the first constant temperature controller 17 is operated by the first constant temperature control driver 20 so as to maintain a constant temperature in the range of room temperature to 40 ° C., for example.
- the second constant temperature controller 18 is inserted into or attached to the first plate-like member 9.
- the second constant temperature controller 18 keeps the first plate-like member 9 made of a metal material such as aluminum, stainless steel, or copper at a constant temperature.
- a temperature measuring machine necessary for constantly monitoring the temperature of the first plate-like member 9 temperature-controlled by a thermostat and feeding back the amount of power supplied to the thermostat required to maintain a constant temperature, specifically A thermocouple and a thermistor are inserted or mounted. These are controlled by the second constant temperature controller driver 21 housed in the control chamber 3 of the weak light emission measuring device main body 1, and the temperature can be arbitrarily set via the control device 3.
- the second constant temperature controller 18 operates to maintain a constant temperature in the range of 0 ° C. to 40 ° C., for example.
- the third constant temperature controller 19 is attached to the photodetector 14.
- the third constant temperature controller 19 keeps the photodetector 14 at a constant temperature via a metal member such as aluminum, stainless steel, or copper.
- a temperature measuring machine necessary for constantly monitoring the temperature of the photodetector 14 controlled by the thermostat and feeding back the amount of electric power supplied to the thermostat required to maintain a constant temperature, specifically, A thermocouple or thermistor is inserted or attached. These are controlled by the third constant temperature controller driver 22 housed in the control room 3 of the weak light emission measuring device main body 1, and the temperature can be arbitrarily set via the control device 3.
- the third constant temperature controller 17 operates to maintain a constant temperature in the range of 0 ° C. to 40 ° C., for example.
- the fourth constant temperature controller 24 is a means for keeping the temperature of the constant temperature dry air blowing nozzle 23 constant.
- the fourth constant temperature controller 24 maintains the constant temperature dry air blowing nozzle 23 at a constant temperature via a metal member such as aluminum, stainless steel, or copper.
- a temperature measuring machine necessary for constantly monitoring the temperature of the constant temperature dry air blowing nozzle 23 temperature-controlled by a constant temperature device and feeding back the amount of power supplied to the constant temperature device to maintain the constant temperature, specifically, , Thermocouple and thermistor are inserted or mounted. These are controlled by the fourth constant temperature controller driver 25 housed in the control room 3 of the weak light emission measuring device main body 1, and the temperature can be arbitrarily set via the control device 3.
- the fourth constant temperature controller 24 operates to maintain a constant temperature in the range of 0 ° C. to 40 ° C., for example.
- the temperature-controlled air (constant temperature dry air 26) supplied from the constant temperature dry air blowing nozzle 23 flows in parallel to the light receiving surface 16 of the photodetector 14. Install parallel to the surface direction.
- the constant temperature dry air 26 is preferably kept flowing before and during the luminescence measurement.
- the supply of the constant temperature dry air 26 is started simultaneously with the activation of the weak light emission measuring device main body 1 and the control device 3.
- the control device 3 is controlled so that the luminescence measurement cannot be started for the time until the temperature reaches the set temperature of the constant temperature dry air blowing nozzle 23 and becomes constant.
- the supply stop can be selected from the control device 3.
- the constant temperature dry air 26 is supplied from the first constant temperature controller 17, the second constant temperature controller 18, the third constant temperature controller 19, and the fourth constant temperature control. After the vessel 24 is stopped, each constant temperature controller is controlled to stop after reaching the temperature in the apparatus. Thereby, generation
- the control of the constant temperature dry air 26 there is a method in which the dry air is hermetically held in advance and the temperature is controlled by the third constant temperature controller 19 of the photodetector 14. Therefore, the thickness of the constant temperature dry air layer needs to be at least several mm.
- the constant temperature dry air 26 is constantly replaced, so the air capacity for heat insulation is effectively increased. Therefore, even if the gap between the light receiving surface 16 of the photodetector 14 and the light transmission window 11 is as narrow as about 0.1 mm, heat exchange can be performed efficiently.
- FIG. 3A is a diagram showing a supply system of constant temperature dry air 26.
- This air supply system is composed of a constant temperature dry air blowing nozzle 23, a fourth constant temperature controller 24, an air dryer 27, a first filter 28, a second filter 29, and the compressor 2.
- the air supplied from the compressor 2 first passes through the second filter 29 and the first filter 28 which are means for removing impurities such as dust and oil components, and then is an air dryer which is means for removing moisture. Pass 27.
- the dry air is controlled to have a constant temperature by the temperature control of the fourth constant temperature controller 24 and is supplied so as to flow parallel to the surface of the light receiving surface 16 of the photodetector 14.
- the constant temperature dry air 26 is a means for avoiding dew condensation on the light receiving surface 16 that occurs when the temperature is lower than the internal temperature of the mechanism chamber 5 of the weak light emission measuring device main body 1 and the temperature difference is large.
- the constant temperature dry air blowing nozzle 23 is used when the third constant temperature controller 19 among the first constant temperature controller 17, the second constant temperature controller 18, and the third constant temperature controller 19 is set to a room temperature or lower.
- the constant temperature dry air 26 supplied from the constant temperature dry air blowing nozzle 23 prevents condensation on the surface of the light receiving surface 16, avoids light scattering due to water droplets on the light receiving surface 16, and generates a signal of light due to loss of incident light amount. It is possible to suppress fluctuations.
- the sample container holder 8 whose temperature is adjusted by the first constant temperature controller 17 is installed on the heat insulating member 30 on the first plate-like member 9 (see FIG. 1B). 1C), the temperature of the sample container holder 8 and the temperature of the first plate member 9 can be controlled independently.
- the heat insulating member 30 has a through hole equal to or larger than the through hole 10, and a plate-like member wider than the bottom surface portion of the sample container holder 8 is suitable.
- the enzyme activity contributing to the luminescence reaction is high at 20 ° C. to 40 ° C., and the light generation efficiency is high.
- the cooling of the photodetector 14 and its light receiving surface 16 can reduce the dark current and the number of dark current pulses, and as a result the noise level is lowered. Therefore, it is necessary to adjust the temperature set values of the first constant temperature controller 17, the second constant temperature controller 18, and the third constant temperature controller 19 according to each application. It is effective to provide a heat insulating member 30 for heat insulation of one plate-like member 9, and air interposed between the sample container holder 8 and the first plate-like member 9 is used for heat insulation with respect to the photodetector 14. This is possible with air insulation.
- the material of the heat insulating member 30 is a resin-based material amount or a fiber-based material amount, and further a foaming system, such as urethane resin, phenol resin, polystyrene resin, EPS cellulose fiber, glass fiber, carbonized cork and the like.
- a configuration in which the heat insulating member 30 is not used is also preferable in the case where the efficiency is high even when the photoreaction temperature is room temperature or less, and the sample container holder 8, the first plate member 9, and the photodetector 14 are kept at the same temperature. You may control.
- the temperature of the photodetector 14 and the temperature of the light receiving surface 16 are set to the same temperature to prevent dew condensation, dark current, and the number of dark current pulses. Important in reduction. Therefore, in the present embodiment, it is preferable to use the same temperature as the set temperature of the fourth constant temperature controller 24 and the set temperature of the third constant temperature controller 19. Further, the cooling of the first plate-like member 9 by the second constant temperature controller 18 reduces the temperature gradient due to the temperature difference in the apparatus of the constant temperature dry air 26 discharged from the constant temperature dry air blowing nozzle 23, and the light receiving surface 16. The cooling efficiency is improved.
- FIG. 10 is a flowchart for explaining an example of a measurement procedure of luminescence measurement.
- the open / close door 4 of the weak light emission measuring device main body 1 is opened (S1001), and the sample container 7 stocked with the ATP solution is installed (S1002). After the installation, the door 4 is closed (S1003).
- the weak luminescence measuring device body 1 and the control device 3 are activated (S1004), and the first constant temperature controller 17, the second constant temperature controller 18, the third constant temperature controller 19, and the fourth constant temperature controller.
- the constant temperature control by 24 is started, and the supply of the constant temperature dry air 26 is started (S1005).
- HV is applied to the photodetector 14 (S1006).
- the second plate member 12 is moved (S1007), and the through hole 10 is opened, so that the light transmission window 11 is opened.
- the light receiving surface 16 and the sample container 7 are opposed to each other (S1008). Thereafter, measurement is started.
- the constant temperature dry air 26 continues to flow even during luminescence measurement.
- Measurement is started from before the luminescent reagent is dispensed from the dispenser, and the background light in the sample container 7 is measured (S1009).
- a luminescent reagent is dispensed from a dispenser (S1010).
- the luminescent reagent reacts with ATP in the sample container, and the luminescent reaction starts in the container.
- the ATP emission measurement is performed for a certain time (S1011)
- the HV of the photodetector 14 is turned off (S1012)
- the second plate member 12 is moved to the position before the measurement is started (S1013), and the through hole 10 is closed (S1014).
- the open / close door 4 of the weak light emission measuring device main body 1 is opened (S1015), and the sample container 7 is taken out (S1016). If it is desired to measure the next sample, it is newly installed in this step and the measurement flow described above is repeated.
- the open / close door 4 of the weak light emission measuring device main body 1 is closed (S1017). Then, the first constant temperature controller 17, the second constant temperature controller 18, the third constant temperature controller 19, and the fourth constant temperature controller 24 are stopped (S 1018), and then each constant temperature controller is installed in the apparatus. The constant temperature dry air 26 is stopped after the temperature becomes equal to the temperature (S1019). Finally, the weak light emission measuring device body 1 and the control device 3 are stopped (S1020).
- the photodetector is a sample containing a luminescent substance on its light receiving surface while keeping the sample container and reagents containing an enzyme that causes a luminescent reaction at a so-called optimum temperature of 20 ° C. or higher, which is said to have high activity. It is possible to prevent condensation due to the proximity of the container and cooling of the light receiving surface. And, at the same time as suppressing the variation due to the temperature of the background signal of the noise and reagent, it is possible to measure bioluminescence from extremely low concentration molecules with high sensitivity and quantitatively due to the proximity effect on the bottom surface of the measurement sample container. , It can measure the faint light of ATP emission in one bacterium with high sensitivity and high accuracy, and can measure microorganisms from one equivalent.
- FIG. 2A shows a configuration diagram of the second constant temperature controller 18 of the first plate-like member 9 when the first electronic cooling element is used.
- the second constant temperature controller 18 includes a cooling surface 31 of the first electronic cooling element, a heat radiation surface 33 of the first electronic cooling element, and a first heat exhauster 34, which will be described below with reference to FIG. 2A.
- the first cooling medium introduction port 35 and the first cooling medium discharge port 36 are configured.
- the heat of the heat radiation surface 33 of the first electronic cooling element is weakly emitted by the supply of cooling gas or cooling water. It is preferable to discharge from the measuring device body 1 to the control room 6 or outside.
- the first heat discharger 34 is a heat discharger attached to the heat radiation surface 33 of the first electronic cooling element used for cooling the first plate-like member 9, and the first cooling medium introduction port 35. And a first cooling medium discharge port 36.
- the first heat exhauster 34 is a plate-like member having high thermal conductivity, and it is preferable to use a metal such as aluminum, stainless steel, copper, gold, silver or the like.
- a flow path connecting the first cooling medium introduction port 35 and the first cooling medium discharge port 36 is formed inside the first heat exhauster 34, and the cooling medium flows through the path as will be described later.
- the path is as shown by the dotted line on the first heat exhauster 34 in FIG. 2D.
- FIG. 2B shows a configuration diagram of the third constant temperature controller 22 of the photodetector 14 when the second electronic cooling element is used.
- the third constant temperature controller 22 includes a first metal block 38, a second electronic cooling element cooling surface 37, a second electronic cooling element heat dissipation surface 39, which will be described below with reference to FIG. 2B.
- the second heat exhauster 40, the second cooling medium inlet 41, and the second cooling medium outlet 42 are configured.
- the heat taken away by the cooling is released from the cooling surface 37 of the second electronic cooling element in contact with the first metal block 38 that cools the photodetector 14. That is, the heat radiating surface 39 of the so-called second electronic cooling element.
- the heat of the heat radiation surface 39 of the second electronic cooling element is weakly emitted by the supply of cooling gas or cooling water. It is better to discharge from the measuring device body 1 to the outside.
- the second heat discharger 40 is a heat discharger attached to the heat radiation surface 33 of the second electronic cooling element used for cooling the photodetector 14, and includes the second cooling medium inlet 41 and the second cooling.
- a medium discharge port 42 is provided.
- the second heat exhauster 40 is a plate-like member having a high thermal conductivity, and it is preferable to use a metal such as aluminum, stainless steel, copper, gold, silver or the like.
- a flow path connecting the second cooling medium introduction port 41 and the second cooling medium discharge port 42 is formed inside the second heat exhauster 40, and the cooling medium flows through the path as will be described later. It becomes a structure and the said path
- FIG. 2C shows a configuration diagram of the fourth constant temperature controller 24 of the constant temperature dry air blowing nozzle 23 when the third electronic cooling element is used.
- the fourth constant temperature controller 24 is described below with reference to FIG. 2C
- the third heat exhauster 46, the third cooling medium inlet 47, and the third cooling medium outlet 48 are configured.
- the opposite surface of the cooling surface 44 of the third electronic cooling element in contact with the second metal block 43 that cools the constant temperature dry air blowing nozzle 23 releases the heat taken by the cooling. It becomes the heat radiating surface 45 of the so-called third electronic cooling element.
- the heat of the heat radiation surface 45 of the third electronic cooling element is weakly emitted by the supply of cooling gas or cooling water. It is better to discharge from the measuring device body 1 to the outside.
- the third heat exhauster 46 is a heat exhauster attached to the heat radiation surface 45 of the third electronic cooling element used for cooling the constant temperature dry air blowing nozzle 23, and includes a third cooling medium introduction port 47 and a third heat exhauster 47.
- the cooling medium discharge port 48 is provided.
- the third heat exhauster 46 is a plate-like member having high thermal conductivity, and it is preferable to use a metal such as aluminum, stainless steel, copper, gold, silver or the like.
- a flow path connecting the third cooling medium introduction port 47 and the second cooling medium discharge port 48 is formed inside the third heat exhauster 46, and the cooling medium flows through the path as will be described later. The path is as shown by the dotted line on the third heat exhauster 46 in FIG. 2D.
- FIG. 2D is a block diagram of a configuration in which a cooling medium is sent to the first heat exhauster 34, the second heat exhauster 40, and the third heat exhauster 46 of FIGS. 2A, 2B, and 2C and circulated.
- a typical example is shown.
- the cooling medium is guided from the cooling medium storage tank 50 to the flow paths of the first heat exhauster 34, the second heat exhauster 40, and the third heat exhauster 46 by using the circulation pump 49.
- the medium is fed back to the cooling medium storage tank 50 from the first cooling medium discharge port 36, the second cooling medium discharge port 42, and the third cooling medium discharge port 48 while taking heat away. If the temperature rises due to the heat taken by the cooling medium storage tank 50, the cooler 51 may be prepared and the cooling medium supply line may be kept constant.
- the circulation pump 49 is preferably a diaphragm pump or a peristatic pump.
- 49, 50, 51 are composed of the mechanism chamber 5 and the control chamber 6 of the weak light emission measuring device main body 1, but the circulation pump 49, the cooling medium storage tank 50, and the cooler 51 are installed in the control chamber 6. Or it is good to install outside the weak light emission measuring device main body 1.
- a liquid is used as the refrigerant, but a gas may be used.
- a liquid, particularly water is preferable in terms of high thermal conductivity.
- fresh water may be used, an antifreeze liquid containing ethylene glycol may be used.
- cooling medium circulation may be used as means for cooling the second constant temperature controller 18 and the third constant temperature controller 19.
- a cooling medium storage tank 50 and a cooler 51 are prepared, and a flow path connecting the cooling medium introduction port and the cooling medium discharge port to the first plate-like member 9 is connected to the first metal member 9 using a diaphragm pump or a peristaltic pump.
- a cooling medium inlet and a cooling medium outlet and a flow path connecting them are formed in the block 38, and a cooling medium inlet and a cooling medium outlet and a flow path connecting them are formed in the second metal block 43, as shown in FIG. 2D.
- the cooling medium may be circulated. When cooling with circulating water is used, an electronic cooling element is not required and the configuration is simplified.
- the cooling water may be fresh water.
- an antifreeze liquid containing ethylene glycol it is preferable to use an antifreeze liquid containing ethylene glycol.
- the second constant temperature controller 18, the third constant temperature controller 19, and the fourth constant temperature controller 24 have been described in terms of cooling.
- the temperature can also be raised.
- the temperature may be increased by circulating hot water or changing the polarity of the electronic cooling element. It may be necessary when the installation location of the device is low temperature.
- the polarity of the electronic cooling element is changed and heated. The presence or absence of condensation should be detected by installing a water leakage sensor.
- the cross-sectional shape of the flow path through which the cooling medium flows in the first heat exhauster 34, the second heat exhauster 40, and the third heat exhauster 46 may be any shape such as a circle, a square, a triangle, etc.
- the flow path length and the flow path are not particularly limited. However, the proportion of the internal flow volume to the total volume of the heat exhauster should be large. Specifically, (internal flow volume) / (total volume of the heat exhauster) is 1 / 3 or more is preferable.
- Example 3> 3B and 3C show a modified embodiment of the temperature control method for the constant temperature dry air 26. Unlike FIG. 3A, it is the form which does not utilize the constant temperature dry air nozzle 23.
- FIG. 3A shows a modified embodiment of the temperature control method for the constant temperature dry air 26. Unlike FIG. 3A, it is the form which does not utilize the constant temperature dry air nozzle 23.
- FIG. 3C shows a modified embodiment of the temperature control method for the constant temperature dry air 26. Unlike FIG. 3A, it is the form which does not utilize the constant temperature dry air nozzle 23.
- FIG. 3B shows that the first air flow passage 52 is formed inside the first plate-shaped member 9, and the dry air is caused to flow through the first plate-shaped member 9 whose temperature is adjusted by the second constant temperature controller 18.
- the temperature is adjusted to the same temperature as that of the first plate member 9 and the constant temperature dry air 26 is caused to flow in parallel to the light receiving surface 16. That is, after the air supplied from the compressor 2 passes through the second filter 29, the first filter 28, and the air dryer 27, the dry air passes through the air flow path 52 of the first plate member 9. By passing, the temperature is adjusted and the air is blown in parallel to the light receiving surface 16. Since the temperature adjustment of the constant temperature dry air 26 is performed by the second constant temperature controller 18 of the first plate-like member 9, the control mechanism is simple and simple, the constant temperature dry air blowing nozzle 23 and the fourth constant temperature control. The container 24 becomes unnecessary.
- FIG. 3C shows that the temperature transmission member of the third constant temperature controller 19 is effectively used, the second air passage 53 is formed in the temperature transmission member, and the dry air is introduced into the second air passage.
- the constant temperature dry air 26 is generated. That is, after the air supplied from the compressor 2 passes through the second filter 29, the first filter 28, and the air dryer 27, the dry air passes through the second air flow path 53, so that the temperature is increased. Adjustment is made and air is blown parallel to the light receiving surface 16. Since the temperature adjustment of the constant temperature dry air 26 is performed by the third constant temperature controller 19 of the first plate-like member 9, the control mechanism is simple and simple, the constant temperature dry air blowing nozzle 23 and the fourth constant temperature control. The container 24 becomes unnecessary.
- V (L / sec) (P ⁇ 3600) / (0.278 ⁇ C ⁇ d ⁇ ⁇ t) Equation (1)
- P is the amount of power supplied from the electronic cooling element (W) and C is the specific heat (kJ / (kg ⁇ ° C) )), D is density (kg / m3), and ⁇ t is temperature difference.
- kJ / (kg ⁇ ° C) the specific heat
- D density (kg / m3)
- ⁇ t temperature difference.
- the electric cooling element power supply amount P 50W
- the channel cross-sectional area the more efficiently it can be cooled.
- the cross section is 100 mm 2 with a side of 10 mm and 210 mm is passed in 1 minute, it can be sufficiently cooled.
- the fourth constant temperature controller according to the first embodiment is used. If the cross section is 100 mm 2 , the fourth constant temperature controller 24 may have a 210 mm temperature control unit.
- the light receiving area is about 500 mm 2
- the distance from the light transmitting window 11 is 0.05 mm
- a temperature gradient is generated as the distance from the vicinity of the outlet increases, and the temperature difference increases.
- the constant temperature dry air 26 may be supplied from a plurality of locations toward the center.
- FIG. 4A, FIG. 4B, FIG. 4C, and FIG. D are diagrams showing the structure of the portion of the first plate-like member 9 where the photodetector 14 is inserted and the positional relationship between the photodetector 14 and the light receiving surface 16.
- FIG. 4A and FIG. 4B are an example regarding the form which supplies the constant temperature dry air 26 from the 1st ventilation flow path 52 provided in the 1st plate-shaped member 9 shown in FIG. 3B.
- a counterbore 54 is formed on the first plate-shaped member 9, and the light transmission window 11 and the tip of the photodetector 14 are spaced from the gap formed by the outer wall of the tip of the photodetector 14 and the wall of the through hole 10. If the gap is slightly widened, the constant temperature dry air 26 can be actively sent from the first air flow path 52 into the space between the light receiving surface 16 and the first plate-like member 9 or the light transmission window 11. The constant temperature dry air 26 that has passed through the light receiving surface 16 flows out to the counterbore 54.
- FIG. 4A is a three-dimensional representation of the cross section of the first air passage 52, the through hole 10, and the counterbore 54 through which the constant temperature dry air 26 of the first plate-like member 9 flows.
- FIG. 4C and FIG. 4D are an example regarding the form which supplies the constant temperature dry air 26 from the 2nd ventilation flow path 53 in the temperature transmission member of the 3rd constant temperature controller 19 shown in FIG. 3C.
- a counterbore 54 is formed on the first plate-shaped member 9, and the light transmission window 11 and the tip of the photodetector 14 are spaced from the gap formed by the outer wall of the tip of the photodetector 14 and the wall of the through hole 10. If the gap is slightly widened, the constant temperature dry air 26 can be actively sent from the second air flow path 53 into the space between the light receiving surface 16 and the first plate-like member 9 or the light transmission window 11. The constant temperature dry air 26 that has passed through the light receiving surface 16 flows out to the counterbore 54.
- FIG. 4C shows that air flows in the direction shown by the arrow.
- FIG. 4D three-dimensionally represents a cross section of the second air passage 53, the through hole 10, and the counterbore 54 in the temperature transmission member of the third constant temperature controller 19.
- the arrow in FIG. 4B schematically represents the flow of the constant temperature dry air 26.
- FIG. 5 shows that the first constant temperature controller is set to 25 ° C. and the set temperature of the second constant temperature controller and the third constant temperature controller is set to 5 ° C. using the weak light emission measuring device of the present invention.
- the weak light emission measuring device of the present invention may include means for monitoring the temperature in the housing of the weak light emission measuring device main body 1.
- the unit of dark current pulse number (Nd value) is COUNT PER SECOND (count number / second), and represents the integrated value of the number of signal pulses per second.
- the integrated value of the number of signal pulses per second is continuously plotted from 0 to 3600 seconds.
- the temperature monitor results at that time are also superimposed on the graph (right axis).
- the constant temperature dry air 26 is supplied through the second air flow path 53 of the photodetector 14 and the flow rate is 1 ml / min.
- quartz glass was interposed between the sample container 7 and the photodetector 14. Since quartz glass has low thermal conductivity, it is easy to control the temperature of the sample container 7 and the light receiving surface 16 independently, and cooling of the sample container 7 can be avoided.
- the temperature 57 of the first plate member 9 reaches the set value of 5 ° C. after 500 seconds, and the temperature 58 of the photodetector reaches the set value of 5 ° C. after 1800 seconds (after 30 minutes).
- the Nd value 59 controlled to 5 ° C. for 1800 to 2160 seconds did not fluctuate, and the noise level was significantly lower than the noise level of the Nd value 55 without temperature control. Comparing the noise level at 25 ° C. and 5 ° C. with root mean square (RMS), the Nd value 55 without constant temperature control was 35.3 CPS, and the Nd value 59 with constant temperature control was 12.6 CPS. After 2160 seconds in FIG.
- FIG. 6 is a diagram showing the temperature dependence of the average value of the number of dark current pulses per second (Nd value) measured using the weak light emission measuring device of the present invention.
- the light receiving surface 16 of the photodetector 14 used in this example has an incident window made of borosilicate glass and a photocathode made of bialkali (Sb—Rb—Cs, Sb—K—Cs).
- the average dark count value was almost constant at 5 ° C. or lower.
- the incident window may be quartz glass or UV cut glass
- the types of photocathode are as follows, for example, Sb-Cs, multi-alkali (Sb-Na-K-Cs), GaAs (Cs), InGaAs (Cs ), InP / InGaAs (Cs), InP / InGaAsP (Cs), Ag-O-Cs, or the like.
- FIG. 7 shows an example showing the result that the reduction in the number of dark current pulses (Nd value) is effective in improving the detection sensitivity.
- FIG. 7 shows the result of temperature dependence when a standard light source that emits extremely weak light is emitted in a pulse manner using the weak light emission measuring device of the present invention. Without temperature control in FIG. 7A, the temperature is 25 ° C., but the 50 CPS optical signal (71, 72) is buried in noise and cannot be clearly observed. On the other hand, compared to the constant temperature of 20 ° C., that is, the temperature at the time of measurement in FIG. 7A, the light signals (73, 74) and the photodetector noise can be clearly distinguished only by the constant temperature control of about ⁇ 5 ° C. You can see that
- FIG. 8 shows the result of performing ATP bioluminescence measurement with the first plate-like member 9, the photodetector 14, and the light-receiving surface 16 kept constant using the weak luminescence measuring device of the present invention. It is the figure which showed the change of SN ratio with respect to the difference of.
- the experiment was performed according to the following procedure. The dispenser is introduced into the weak luminescence measuring device main body introduced into the apparatus, and first, the number of dark current pulses is measured for 30 seconds with an empty sample container installed.
- a reagent for luminescence of ATP is dispensed into an empty sample container with a dispenser, and after measuring the number of background light signal pulses of the reagent for 30 seconds, a sample solution containing 1 amol of ATP is put into the sample container 7. It dispensed and measured until the luminescence reaction was completed.
- the data showing all temporal changes of the dark current pulse number 61, the background light signal pulse number 62, and the light emission signal pulse number 63 is the ATP light emission time curve 60 which is a typical bioluminescence in FIG.
- the first constant temperature controller 17 is set to 25 ° C.
- the second constant temperature controller 17, the third constant temperature controller 19, and the fourth constant temperature controller 24 are set to 5 ° C.
- Nd Ns / (Ns + 2 (Nb + Nd) 1/2 formula (2)
- Nd is the number of dark current pulses
- Nb is the number of background light pulses of the reagent
- the Ns value is the peak value of the number of ATP emission signal pulses (emission signal pulse number 63).
- the ATP emission intensity was 50 CPS under any condition and did not change.
- the SN ratio increases as the temperature decreases.
- the SN ratio decreases as the Nb value increases as the background light value Nb of the reagent changes from 0 to 200.
- the background light of the Nb value reagent differs depending on the reagent.
- SYMBOLS 1 Weak light emission measuring device main body, 2 ... Compressor, 3 ... Control apparatus, 4 ... Opening / closing door, 5 ... Mechanism room, 6 ... Control room, 7 ... Sample container, 8 ... Sample container holder, 8a ... Sample container holder, 9 DESCRIPTION OF SYMBOLS 1st plate-shaped member, 10 ... Through-hole, 11 ... Light transmission window, 12 ... 2nd plate-shaped member, 13 ... 1st actuator, 14 ... Photo detector, 15 ... Position control means, 16 ... Light reception Surface, 17 ... first constant temperature controller, 18 ... second constant temperature controller, 19 ... third constant temperature controller, 20 ... first constant temperature controller driver, 21 ...
- second constant temperature controller driver 22 3rd constant temperature controller driver, 23 ... Constant temperature dry air blowing nozzle, 24 ... 4th constant temperature controller, 25 ... 4th constant temperature control driver, 26 ... Constant temperature dry air, 27 ... Air dryer, 28 ... 1st 29 ... second filter, 30 ... heat insulation Members 31 ... cooling surface of the first electronic cooling element, 33 ... heat dissipation surface of the first electronic cooling element, 34 ... first heat exhauster, 35 ... first cooling medium inlet port, 36 ... first Cooling medium discharge port, 37 ... cooling surface of second electronic cooling element, 38 ... first metal block, 39 ... heat dissipation surface of second electronic cooling element, 40 ... second heat exhauster, 41 ... second Cooling medium inlet, 42 ...
- second cooling medium outlet 43 ... second metal block, 44 ... cooling surface of third electronic cooling element, 45 ... radiating surface of third electronic cooling element, 46 ... 3rd heat exhaust device, 47 ... 3rd cooling medium introduction port, 48 ... 3rd cooling medium discharge port, 49 ... Circulation type pump, 50 ... Cooling medium storage tank, 51 ... Cooler, 52 ... 1st Air flow path, 53 ... second air flow path, 54 ... counterbored
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Electromagnetism (AREA)
- Plasma & Fusion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Sustainable Development (AREA)
- Medicinal Chemistry (AREA)
- Biomedical Technology (AREA)
- Microbiology (AREA)
- General Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
発光計測において、暗電流値または暗電流パルス数の低減と温度に対する暗電流値または暗電流パルス数のゆらぎを防ぎ、かつ光信号を高い立体角で取込み可能な、化学発光や生物発光のような指向性のない発光を高感度に検出することができる微弱発光検出装置を提供する。試料を収める容器のホルダを保持する板状部材と、前記試料中の発光を検出する光検出部と、前記光検出部の温度制御を行う温度制御部と、前記光検出部の受光面に送風を行う送風部と、を発光測定装置に備える。
Description
本発明は、試料に含まれる物質についての発光検出に関する。特に、試料に含まれる物質の化学発光や生物発光を高い感度と高い精度で検出するための微弱発光検出装置に関する。
医薬品製造施設では、薬局方で定められたバイオクリーンルーム室内環境の清浄度管理基準があり、空気1m3あたり、安全キャビネット内で1菌(CFU:Colony-Forming Unit)未満、その周辺区域で10 CFU未満に保つことが要求される。ここで、CFUとは生きている菌(生菌)の数を表す単位である。また、医薬品製造施設内の無菌水(製薬用水)にも薬局方で定められた清浄度管理基準があり、注射用水準水では10 CFU/100 mL未満で運営する必要があり、検査には培養法が用いられる。
しかし、培養法では、寒天培地を恒温機中にて2~3日間、菌体の種類によっては10日間以上培養して発生コロニー数を目視で数えるため、結果を得るのに時間がかかる。このような背景から、汚染モニタの迅速測定法の開発が望まれており、生菌が増殖する際の代謝活性を検出する方法、菌体内の物質を利用し光として検出する方法、等がある。
菌体内の物質を利用して光検出するAdenosine triphosphate(ATP)生物発光法(ATP法)は、培養工程が不要なため、試料調製にかかる時間を含めても、1時間以内で結果が得られる。微生物汚染状況が1時間以内に把握できるようになれば、製造の作業シフト間にも、ラインや製品(中間体も含む)のチェックと対策が図れ、安全管理体制と出荷体制が著しく向上すると期待される。
ATP法はホタルの発光反応を利用して、細胞内のATPの数を光の量に変換して測定する。その原理は、ルシフェラーゼ酵素に基質ルシフェリンとATP分子を取り込ませ、ATPの消費とともに酸化されたルシフェリン(オキシルシフェリン)が励起状態から基底状態に遷移するときの発光量を計測する。
このとき、ATP 1分子の消費が1フォトン(光子)生成に対応するため、光子発生数がATPの個数に比例する。生菌中にはエネルギー源として1アトモル(amol=10-18 mol)相当のATP分子が存在するため、測定試料に含まれていた生菌の総数を推定することができる。さらに、生物発光及び化学発光のうちで最も優れた量子効率(ΦBL:≒0.5)であることから、細胞1個を数10万個相当のフォトンとして検出できることになり、発光反応で細胞1個相当の光を検出することは原理的に可能な方法である。
しかしながら、ATP法の検出下限は計測装置の性能や環境中に存在するATPや菌体の混入の影響を受けることによるデータの揺らぎにより、一般的に102 amol(amol=10-18 mol
)程度と報告されている。それらのデータの揺らぎを防ぐ方法として、例えば、特許文献1に開示されるように、近年、外部汚染を防ぐ洗浄機能を具備した分注システムと高感度光検出器を同一装置内の遮光かつ外部からの汚染物質の抑制された空間に配置した生物発光検出システムが報告されており、1 amol相当のATP分子量の計測が可能になってきている。
)程度と報告されている。それらのデータの揺らぎを防ぐ方法として、例えば、特許文献1に開示されるように、近年、外部汚染を防ぐ洗浄機能を具備した分注システムと高感度光検出器を同一装置内の遮光かつ外部からの汚染物質の抑制された空間に配置した生物発光検出システムが報告されており、1 amol相当のATP分子量の計測が可能になってきている。
また、計測装置の性能を向上させるには、ランダムノイズ成分や暗電流パルス数の低減を行い、信号成分の揺らぎを抑え、微弱光の信号成分を高い確度で抽出し、検出感度を向上させる手段が採用されており、例えば、特許文献2では、光検出器を冷却装置で覆い、温度制御する方法が開示されている。
微弱光の検出では、暗電流、または暗電流パルス数の低減と、温度に対する暗電流、または暗電流パルス数のゆらぎを防ぐために、その手段として、微弱光を受け止める受光面の冷却と信号増強部の冷却が行われる。しかしながら、特許文献2で報告されているような方法等を例に挙げると、入射窓と受光素子で構成される受光面の冷却はしばしば結露を起こすことで、光の屈折散乱が発生し、入射光量の損失を招くという課題があった。
そのため、入射窓のくもりを防止するために、除霜ヒータ付きの石英窓を、受光面の入射窓の前段に装着し、断熱のため、除霜ヒータ付きの石英窓と受光面との間に乾燥ガスを封入する必要性が生じてしまう。これにより、もちろん、信号対ノイズ比(SN)比は向上するが、発光物質を含む試料容器から受光面が遠ざかることになり、光回収効率が減少するというトレードオフの関係になってしまうケースが多い。もちろん、指向性の高い光であれば、上記冷却形態で効果があるが、試料中の化学発光や生物発光のような指向性のない光に対する検出では入射光量の損失に繋がる。
また、光検出器のみの冷却ではなく、光検出器や試料容器をセットする部分を含む装置全体を冷却器に収納して、全体を冷却してしまう方法も考えられるが、測定対象物である試料容器や発光反応を起こす酵素が含まれた試薬類を20℃以下の環境にさらしてしまうと反応性が著しく低下するため、信号量が減少してしまう。そこで、本発明は、SN比を向上させ、かつ化学発光や生物発光のような指向性のない発光を高感度に検出することができる光検出器及びシステムを提供することを目的とする。
上述した課題の少なくとも一の課題を解決するための本発明の一態様として、試料を収める容器のホルダを保持する板状部材と、前記試料中の発光を検出する光検出部と、前記光検出部の温度制御を行う温度制御部と、前記光検出部の受光面に送風を行う送風部と、を発光測定装置に備える。
本発明により、ノイズや試薬の背景信号の温度由来によるばらつきを抑えることにより、生物発光を高感度かつ定量的に計測することが可能となる。
上記した以外の、課題、構成及び効果は、以下の実施例の説明により明らかにされる。
上記した以外の、課題、構成及び効果は、以下の実施例の説明により明らかにされる。
以下、添付図面を参照して本発明の実施例について説明する。ただし、本実施例は本発明を実現するための一例に過ぎず、本発明を限定するものではないことに注意すべきである。また、各図において共通の構成については同一の参照番号が付されている。
<実施例1>
図1A、図1B、図1Cは、実施例1に係る微弱発光計測装置の機構室5内の構成を示す1例である。図1Aは、微弱発光計測装置本体1と圧縮空気を生成するコンプレッサー2とそれを制御する制御装置3から構成されるシステムの外観図である。図1Aは、微弱発光計測装置本体1は、遮光された筐体であり、さらに、各種駆動機構を収容した機構室5と各種制御デバイスを収容した制御室6で構成される。図1Bに示すサンプル容器7をセットする際に開閉する開閉扉4を備えている。その内部の装置構成は、図1B、図1Cに示すとおりである。
図1A、図1B、図1Cは、実施例1に係る微弱発光計測装置の機構室5内の構成を示す1例である。図1Aは、微弱発光計測装置本体1と圧縮空気を生成するコンプレッサー2とそれを制御する制御装置3から構成されるシステムの外観図である。図1Aは、微弱発光計測装置本体1は、遮光された筐体であり、さらに、各種駆動機構を収容した機構室5と各種制御デバイスを収容した制御室6で構成される。図1Bに示すサンプル容器7をセットする際に開閉する開閉扉4を備えている。その内部の装置構成は、図1B、図1Cに示すとおりである。
図1Bは分解図を、図1Cは組み立て済みの断面図を示している。サンプル容器7は、サンプル容器ホルダ8にセットされる。サンプル容器ホルダ8は、第1の板状部材9の貫通孔10部に設置される。第1の板状部材9の材質には、熱伝導率の高い材質が選定される。例えば、アルミニウム、ステンレス、銅、金、銀などである。また、第1の板状部材9で光を蓄積、反射させないように、金属材質の表面は、アルマイト処理等により、黒色表面にコーティングしておくと良い。
サンプル容器ホルダ8は、それを第1の板状部材9に載せるだけで位置決めできるようになっている。例えば、定位置に設置できるような枠が第1の板状部材9に取付けられるようにしてもよく、または、サンプル容器ホルダ8の底部が収まるような丸溝や四角溝が第1の板状部材9に彫ってあり、そこにサンプル容器ホルダ8が嵌るようになっていてもよい。
図1B、図1Cに示されるように、サンプル容器ホルダ8は、内部がサンプル容器7の外周を支持するための円柱部と円錐部や半球状部(8a)にくり抜かれた構造で、かつ、サンプル容器ホルダ8の上部と下部は貫通する構造である。
サンプル容器7は、上部の径の小さい円柱の開口部から挿入し、その固定は、容器上部の傘構造7aを利用する。それにより、サンプル容器ホルダ8にぶら下がった状態でマウントされる。また、容器上部の傘構造7aを持たないサンプル容器7を使用する場合については、サンプル容器7に取付けられる専用のストッパ等(図示せず)を用意すればよい。また、貫通孔10部に可視光領域、具体的には光の波長が300nmから650nm、または410nmから650nmに対して透過率が90%以上の光透過窓11を第1の板状部材9に設置することで、サンプル容器7の底部を保持しても良い。
光透過窓11は、平板形状でも、レンズ形状でも良い。光透過窓11の材質は、石英ガラス、硼硅酸ガラス、UVカットガラス、フッ化カルシウム、フッ化リチウム、フッ化バリウム、岩塩、ジンクセレン、アクリル、ポリカーボネート、等が好適である。また、レンズ形状を採用する場合は、両凸、平凸、凸メニスカス、シリンドリカル、等が好適である。また、410nm以下の波長の光をカットすることは、静電気ノイズ光をカットするのに有効であり、この場合には光透過窓11に410nm以下をカットする色フィルターを光透過窓11の材質に貼りつけるか、または、光透過窓11に、410nm以上の可視光を通過させるロングパスフィルター、色ガラスフィルター、等を採用すれば良い。もちろん、これらのフィルターを光透過窓11の上面(サンプル容器7側)、もしくは、光透過窓11の下面(光検出器14側)に貼りつけて使用しても良い。
第1の板状部材9は遮光部材であり、内部に同じく遮光部材である第2の板状部材12が挿入できる構造になっている。挿入された第2の板状部材12は、第1のアクチュエータ13を使用して、天板内をy軸方向に移動でき、第2の板状部材12の移動により、貫通孔10を開閉するシャッターの役割を果たす。第1のアクチュエータ13は、例えば、電力供給もしくは、空気供給で制御するものを使用することができる。もちろん、第2の板状部材12は、開閉窓4の遮光性が十分であれば必ずしも必要ではないが、光検出器14に高電圧が印加されておらず、光検出器16がオフの状態でも、受光面16に光が当たることで蓄光という現象を引き起こし、これが、しばしば、暗電流や暗電流パルス数のゆらぎを生じさせる。第2の板状部材12はそれを抑制する役割を果たす。
光検出器14は、第1の板状部材9の下に、第1の板状部材9、光透過窓11と微小な隙間を持って設置される。微小な隙間は、0.05から10ミリメートルの間が好ましく、隙間が狭いほど、受光面16への光の入射効率が高くなる。
図1Cのように、微小な隙間を精度よく再現するために位置制御手段15を用いて、z軸方向の位置を記憶させて制御しても良い。サンプル容器7、サンプル容器ホルダ8、貫通孔10、光透過窓11の中心、光検出器14の受光面16の中心は、z軸方向の同一軸上にあるようにアライメントされている。なお、このアライメントは装置組立時に実行されるのが通常である。また、光検出器14と第1の板状部材9、第1の板状部材9に取り付けられた光透過窓11との間隔は、装置組立時に厳密に位置決めするか、位置制御手段15を用いて、微調整してもよく、これらは、電力供給、空気供給型のアクチュエータを用いて制御するものを使用することができる。
電力供給型のアクチュエータを使用した移動制御手段15は、主に、回転モータとモータの回転を直動に変換するボールねじと、光検出器14を設置するステージで構成されるものである。センサで予め定めておいた原点を基準位置として、指定した回転パルス数量の信号を与えられたときにボールねじ上を移動するステージ上の光検出14を、繰り返し±10ミクロン以下の精度で目的の位置に移動できる。
空気供給型のアクチュエータでは、0.1kPa以上の圧縮空気を供給することで、ステージ上の光検出器14を移動させ、位置決めは光検出器14と連動する部材の一部に止め板などを設置しておき、その止め板の物理的に強制的に止めて、位置を制御する。圧縮空気の供給をバルブで制御することで、光検出器14を上下に移動させることが可能である。
光検出器14は、一般的には光電子増倍管(Photomultiplier Tube: PMT)やイメージインテンシファイア(Image Intensifier: I.I.)を使用するのが感度の面で好適である。しかし、PMTやI.I.ほどの感度に満たなくとも、装置のコスト低減、等を重視する場合には、ホトダイオード等の半導体素子でも良い。ただし、本明細書では、これら光検出器14の一例としてPMTを使用した系のみについて記載する。
微弱発光計測装置本体1は、少なくとも1個以上の恒温制御器を備えている。図1B、図1Cでは、サンプル容器ホルダ8には第1の恒温制御器17を、第1の板状部材には第2の恒温制御器18を、光検出器14には第3の恒温制御器19を、恒温乾燥空気送風ノズル23には、第4の恒温制御器24を備えている。第1の恒温器制御器17は、容器ホルダ8に挿入または装着される。第1の恒温制御器17は、アルミニウム、ステンレス、銅、等の金属部材である容器ホルダ8に、恒温器と、恒温器で温調された容器ホルダ8の温度を常時モニタし、一定温度に保つために必要な恒温器への供給電力量のフィードバックを行うための温度測定機、具体的には、熱電対、サーミスタが挿入または装着されたものである。これらは、微弱発光計測装置本体1の制御室3に収容してある第1の恒温制御器ドライバ20により制御されるもので、制御装置3を介して任意に温度設定が可能である。第1の恒温制御器17は、第1の恒温制御ドライバ20により、例えば室温から40℃の範囲の一定温度に保つように動作する。
第2の恒温制御器18は、第1の板状部材9に挿入または装着される。第2の恒温制御器18は、アルミニウム、ステンレス、銅、等の金属材質部の第1の板状部材9を一定温度に保つ。恒温器で温調された第一の板状部材9の温度を常時モニタし、一定温度に保つために必要な恒温器への供給電力量のフィードバックを行うために必要な温度測定機、具体的には、熱電対、サーミスタが挿入または装着されたものである。これらは、微弱発光計測装置本体1の制御室3に収容してある第2の恒温制御器ドライバ21により制御されるもので、制御装置3を介して任意に温度設定が可能である。第2の恒温制御器18は、例えば0℃から40℃の範囲の一定温度に保つように動作する。
第3の恒温制御器19は、光検出器14に装着される。第3の恒温制御器19は、アルミニウム、ステンレス、銅、等の金属部材を介して、光検出器14を一定温度に保つ。恒温器で温調された光検出器14の温度を常時モニタし、一定温度に保つために必要な恒温器への供給電力量のフィードバックを行うために必要な温度測定機、具体的には、熱電対、サーミスタが挿入または装着されたものである。これらは、微弱発光計測装置本体1の制御室3に収容してある第3の恒温制御器ドライバ22により制御されるもので、制御装置3を介して任意に温度設定が可能である。第3の恒温制御器17は、例えば0℃から40℃の範囲の一定温度に保つように動作する。
第4の恒温制御器24は、恒温乾燥空気送風ノズル23の温度を一定に保つ手段である。第4の恒温制御器24は、アルミニウム、ステンレス、銅、等の金属部材を介して、恒温乾燥空気送風ノズル23を一定温度に保つ。恒温器で温調された恒温乾燥空気送風ノズル23の温度を常時モニタし、一定温度に保つために必要な恒温器への供給電力量のフィードバックのために必要な温度測定機、具体的には、熱電対、サーミスタが挿入または装着されたものである。これらは、微弱発光計測装置本体1の制御室3に収容してある第4の恒温制御器ドライバ25により制御されるもので、制御装置3を介して任意に温度設定が可能である。第4の恒温制御器24は、例えば0℃から40℃の範囲の一定温度に保つように動作する。
図1Cに示すように、恒温乾燥空気送風ノズル23から供給される温度制御された送風(恒温乾燥空気26)は、光検出器14の受光面16に対して平行に流れるよう、受光面16の面方向に対して、平行に設置する。恒温乾燥空気26は、発光計測前も発光計測中も流し続けるのが良い。具体的には、微弱発光計測装置本体1と制御装置3の起動と同時に恒温乾燥空気26の供給が開始される。温度が恒温乾燥空気送風ノズル23の設定温度に達し、一定になるまでの時間、発光計測は開始できないように制御装置3は制御される。もちろん、問題が生じた際の対応として、恒温乾燥空気26の供給を停止したい場合には、制御装置3から供給停止を選択可能である。
また、発光計測終了時、つまり装置停止の際には、恒温乾燥空気26は、第1の恒温制御器17、第2の恒温制御器18、第3の恒温制御器19、第4の恒温制御器24が停止した後に、各恒温制御器が装置内の温度と同等になってから停止するように制御される。これにより、結露の発生を防ぐことができる。恒温乾燥空気26の制御に関して、予め乾燥空気を密閉保持して光検出器14の第3の恒温制御器19により温度制御する方法もあるが、微弱発光計測装置1の装置内温度との断熱のためには、恒温乾燥空気層の厚みは、少なくとも数mm以上を必要とする。
一方で、本実施例のように開放系で流し続ける形態では、恒温乾燥空気26を常時入れ替えているため、断熱のための空気容量は実効的に大きくなる。よって、光検出器14の受光面16を光透過窓11との隙間が0.1mm程度と非常に狭くても効率よく熱交換が可能である。また、狭い領域へ平行に送風する層流送風を利用することは、空気の混合率が悪い点で好適である。混合率が悪いため、恒温乾燥空気26の供給領域内での空気との置換効率が高く、短時間で空気を置換できる。さらに、平行に送風する構成は、光透過窓11や、受光面16にかかる圧力も緩和できるという利点もある。
図3Aは恒温乾燥空気26の供給系を示す図である。この送風供給系は恒温乾燥空気送風ノズル23、第4の恒温制御器24、エアードライヤー27、第1のフィルター28、第2のフィルター29、コンプレッサー2で構成される。コンプレッサー2から供給された空気は、まず、ゴミや油成分等の不純物の除去の手段である第2のフィルター29、第1のフィルター28を通過し、次に、水分を除去する手段のエアードライヤー27を通過する。この乾燥空気は、第4の恒温制御器24の温調により、一定の温度に制御され、光検出器14の受光面16の面に平行に流れるよう供給される。
恒温乾燥空気26は、微弱発光計測装置本体1の機構室5の内部温度よりも低い温度で、かつ温度差が大きい場合に発生する受光面16の結露を回避するための手段である。恒温乾燥空気送風ノズル23は、第1の恒温制御器17、第2の恒温制御器18、第3の恒温制御器19のうち、特に第3の恒温制御器19を室温以下に設定する場合に重要で、恒温乾燥空気送風ノズル23から供給される恒温乾燥空気26は、受光面16の表面の結露を防ぎ、受光面16の水滴による光散乱を回避し、入射光量の損失による光の信号のゆらぎを抑えることを可能とする。
図1B、図1Cに示すように、第1の恒温制御器17により温度調整されたサンプル容器ホルダ8は、第1の板状部材9上の断熱部材30の上に設置されることで(図1C)、サンプル容器ホルダ8の温度と第1の板状部材9の温度を独立に制御できる。断熱部材30は、貫通孔10と等しいか、またはそれ以上の貫通孔を有するもので、サンプル容器ホルダ8の底面部よりも広い板状部材が好適である。また、図1Cに示すように、第1の板状部材9に断熱部材30を設置する凹みを設けておき、断熱部材30を嵌め込むと良い。
一般的に、化学発光、酵素を用いる生物発光では、20℃から40℃で発光反応に寄与する酵素活性が高く、光の発生効率が高い。一方で、光検出器14とその受光面16の冷却は暗電流や暗電流パルス数を低減でき、結果ノイズレベルが下がるため、低温にするのが好適である。よって、第1の恒温制御器17と第2の恒温制御器18と第3の恒温制御器19の温度設定値を各々の用途に合わせて、温度調整する必要があり、サンプル容器ホルダ8と第1の板状部材9の断熱の為に断熱部材30を設けることが有効であり、光検出器14に対する断熱は、サンプル容器ホルダ8と第1の板状部材9の間に介在する空気を用いる空気断熱によって可能となる。
断熱部材30の材質は、樹脂系材量または繊維系材量、さらに発砲系であり、ウレタン樹脂、フェノール樹脂、ポリスチレン樹脂、EPSセルロース繊維、ガラス繊維、炭化コルク、等である。もちろん、断熱部材30を敢えて使用しない形態も、光反応温度が室温以下でも効率が良い場合においては好適で、サンプル容器ホルダ8、第1の板状部材9、光検出器14を同じ温度で恒温制御しても良い。
第3の恒温制御器19で光検出器14を冷却する場合、光検出器14の温度と受光面16の温度を同様の温度にすることが、結露防止と、暗電流、暗電流パルス数の低減において重要である。そのため、第4の恒温制御器24の設定温度と第3の恒温制御器19の設定温度を同じ温度にする使い方が本実施例においては好適である。さらに、第2の恒温制御器18による第1の板状部材9の冷却は、恒温乾燥空気送風ノズル23から排出された恒温乾燥空気26の装置内温度差による温度勾配を低減させ、受光面16の冷却効率は向上する。
図10は、発光測定の測定手順の一例を説明するためのフローチャートである。まず、微弱発光計測装置本体1の開閉扉4を開き(S1001)、ATP溶液をストックしたサンプル容器7を設置する(S1002)。設置後、開閉扉4を閉める(S1003)。そして、微弱発光計測装置本体1と制御装置3の起動を行い(S1004)、第1の恒温制御器17、第2の恒温制御器18、第3の恒温制御器19、第4の恒温制御器24による恒温制御を開始するとともに、恒温乾燥空気26の供給を開始する(S1005)。次に、光検出器14にHVを印加する(S1006)。そして、恒温乾燥空気26の温度が恒温乾燥空気送風ノズル23の設定温度に達すると、第2の板状部材12を移動させ(S1007)、貫通孔10を開口させることで、光透過窓11を介して受光面16とサンプル容器7を対向させる(S1008)。その後、計測を開始する。恒温乾燥空気26は、発光計測中も流し続ける。
分注機から、発光試薬が分注される前から計測を開始し、サンプル容器7内の背景光測定を行う(S1009)。背景光測定をある一定時間行った後、分注機から発光試薬を分注する(S1010)。発光試薬とサンプル容器内のATPが反応し、容器内で発光反応が始まる。ATPの発光測定をある一定時間行った後(S1011)、光検出器14のHVをOFFし(S1012)、第2の板状部材12が計測開始前の位置に移動し(S1013)、貫通孔10は閉じられる(S1014)。次に測定済みのサンプル容器7を取り出すために、微弱発光計測装置本体1の開閉扉4を開き(S1015)、サンプル容器7を取り出す(S1016)。次のサンプルを測定したい場合は、この工程で、新たに設置し、上記説明した測定フローを繰り返す。
測定を終了する場合は、サンプル容器7を取り出した後、微弱発光計測装置本体1の開閉扉4を閉める(S1017)。そして、第1の恒温制御器17、第2の恒温制御器18、第3の恒温制御器19、第4の恒温制御器24が停止させ(S1018)、その後に、各恒温制御器が装置内の温度と同等になってから恒温乾燥空気26を停止させる(S1019)。最後に、微弱発光計測装置本体1と制御装置3の停止を行う(S1020)。
以上により、試料容器や発光反応を起こす酵素が含まれる試薬類を、活性が高いとされる20℃以上のいわゆる至適温度に保ちつつ、光検出器は、その受光面を発光物質を含む試料容器に近接させ、かつ、受光面の冷却による結露を防ぐことが可能となる。そして、ノイズや試薬の背景信号の温度由来によるばらつきを抑えると同時に、測定試料容器底面の近接効果により、極低濃度分子からの生物発光を高感度かつ定量的に計測することが可能となり、例えば、1細菌中のATP発光の微弱光を高感度かつ高精度に計測し、微生物を1個相当から測定できる。
<実施例2>
第2の恒温制御器18、第3の恒温制御器19、第4の恒温制御器24の設定温度を10℃以下に設定するには、第2の恒温制御器18、第3の恒温制御器19、第4の恒温制御器24に電子冷却素子(ペルチェ素子)を用いるのが好適である。図2Aは第1の電子冷却素子を用いたときの第1の板状部材9の第2の恒温制御器18の構成図を示している。ここで、第2の恒温制御器18は、図2Aを用いて以下に述べる、第1の電子冷却素子の冷却面31、第1の電子冷却素子の放熱面33、第1の熱排出器34、第1の冷却媒体導入口35、第1の冷却媒体排出口36によって構成される。
第2の恒温制御器18、第3の恒温制御器19、第4の恒温制御器24の設定温度を10℃以下に設定するには、第2の恒温制御器18、第3の恒温制御器19、第4の恒温制御器24に電子冷却素子(ペルチェ素子)を用いるのが好適である。図2Aは第1の電子冷却素子を用いたときの第1の板状部材9の第2の恒温制御器18の構成図を示している。ここで、第2の恒温制御器18は、図2Aを用いて以下に述べる、第1の電子冷却素子の冷却面31、第1の電子冷却素子の放熱面33、第1の熱排出器34、第1の冷却媒体導入口35、第1の冷却媒体排出口36によって構成される。
図2Aに示すように、電子冷却素子では、第1の電子冷却素子の冷却面31の第1の板状部材9と接触しない反対面は、冷却により奪った熱が放出される、いわゆる第1の電子冷却素子の放熱面33となる。微弱発光計測装置本体1の機構室5の温度上昇による恒温制御の不安定化を防ぐために、第1の電子冷却素子の放熱面33の熱は、冷却ガス、または冷却水の供給により、微弱発光計測装置本体1から制御室6や外部へ排出するのが良い。また、第1の熱排出器34は、第1の板状部材9の冷却に用いた第1の電子冷却素子の放熱面33に取り付けた熱排出器であり、第1の冷却媒体導入口35と第1の冷却媒体排出口36を備えている。第1の熱排出器34は熱伝導率の高い板状部材で、アルミニウム、ステンレス、銅、金、銀、等の金属を用いるのが好適である。
第1の熱排出器34の内部には第1の冷却媒体導入口35と第1の冷却媒体排出口36を結ぶ流路が形成されており、後述するように、当該経路に冷却媒体が流れる構成となっており、当該経路は、図2Dの第1の熱排出器34上の点線で示すとおりである。
図2Bは第2の電子冷却素子を用いたときの光検出器14の第3の恒温制御器22の構成図を示している。ここで、第3の恒温制御器22は、図2Bを用いて以下に述べる、第1の金属ブロック38、第2の電子冷却素子の冷却面37、第2の電子冷却素子の放熱面39、第2の熱排出器40、第2の冷却媒体導入口41、第2の冷却媒体排出口42によって構成される。
図2Bに示すように、電子冷却素子では、光検出器14を冷やす第1の金属ブロック38と接する第2の電子冷却素子の冷却面37の反対面は、冷却により奪った熱が放出される、いわゆる第2の電子冷却素子の放熱面39となる。微弱発光計測装置本体1の機構室5の温度上昇による恒温制御の不安定化を防ぐために、第2の電子冷却素子の放熱面39の熱は、冷却ガス、または冷却水の供給により、微弱発光計測装置本体1から外部へ排出するのが良い。
第2の熱排出器40は、光検出器14の冷却に用いた第2の電子冷却素子の放熱面33に取り付けた熱排出器であり、第2の冷却媒体導入口41と第2の冷却媒体排出口42を備えている。第2の熱排出器40は熱伝導率の高い板状部材で、アルミニウム、ステンレス、銅、金、銀、等の金属を用いるのが好適である。第2の熱排出器40の内部には第2の冷却媒体導入口41と第2の冷却媒体排出口42を結ぶ流路が形成されており、後述するように、当該経路に冷却媒体が流れる構成となっており、当該経路は、図2Dの第2の熱排出器40上の点線で示すとおりである。
図2Cは第3の電子冷却素子を用いたときの恒温乾燥空気送風ノズル23の第4の恒温制御器24の構成図を示している。ここで、第4の恒温制御器24は、図2Cを用いて以下に述べる、第2の金属ブロック43、第3の電子冷却素子の冷却面44、第3の電子冷却素子の放熱面45、第3の熱排出器46、第3の冷却媒体導入口47、第3の冷却媒体排出口48によって構成される。図2Cに示すように、電子冷却素子では、恒温乾燥空気送風ノズル23を冷やす第2の金属ブロック43と接する第3の電子冷却素子の冷却面44の反対面は、冷却により奪った熱が放出される、いわゆる第3の電子冷却素子の放熱面45となる。微弱発光計測装置本体1の機構室5の温度上昇による恒温制御の不安定化を防ぐために、第3の電子冷却素子の放熱面45の熱は、冷却ガス、または冷却水の供給により、微弱発光計測装置本体1から外部へ排出するのが良い。
第3の熱排出器46は、恒温乾燥空気送風ノズル23の冷却に用いた第3の電子冷却素子の放熱面45に取り付けた熱排出器であり、第3の冷却媒体導入口47と第3の冷却媒体排出口48を備えている。第3の熱排出器46は熱伝導率の高い板状部材で、アルミニウム、ステンレス、銅、金、銀、等の金属を用いるのが好適である。第3の熱排出器46の内部には第3の冷却媒体導入口47と第2の冷却媒体排出口48を結ぶ流路が形成されており、後述するように、当該経路に冷却媒体が流れる構成となっており、当該経路は、図2Dの第3の熱排出器46上の点線で示すとおりである。
図2Dは、図2A、図2B、図2Cの第1の熱排出器34、第2の熱排出器40、第3の熱排出器46に冷却媒体を送液し、循環させる構成のブロック図の典型例を示している。第1の熱排出器34、第2の熱排出器40、第3の熱排出器46の第1の冷却媒体導入口35、第2の冷却媒体導入口41、第3の冷却媒体導入口47に冷却媒体貯蔵槽50から循環型ポンプ49を用いて冷却媒体を誘導し、第1の熱排出器34、第2の熱排出器40、第3の熱排出器46の各々の流路に冷却媒体を送り、熱を奪いながら、第1の冷却媒体排出口36、第2の冷却媒体排出口42、第3の冷却媒体排出口48から冷却媒体貯蔵槽50に戻す。冷却媒体貯蔵槽50が奪った熱で温度上昇するのであれば、冷却器51を用意し、冷却媒体の供給ラインを恒温に保てば良い。
循環型ポンプ49はダイヤフラムポンプやペリスタティックポンプを用いるのが好適である。49、50、51は、微弱発光計測装置本体1の機構室5と制御室6で構成されているが、循環型ポンプ49、冷却媒体貯蔵槽50、冷却器51は、制御室6に設置するか、微弱発光計測装置本体1の外に設置するのが良い。上記は冷媒に液体を用いた例であるが、ガスを用いても良い。しかし、熱伝導率の高さの点で、液体、特に水の方が好適である。真水でも良いが、エチレングリコールを含ませた不凍液を使用しても良い。
一方で、第2の恒温制御器18、第3の恒温制御器19の冷却に冷却媒体循環のみを手段として用いても良い。冷却媒体貯蔵槽50と冷却器51を用意し、ダイヤフラムポンプやペリスタポンプを用いて、第1の板状部材9に冷却媒体導入口と冷却媒体排出口とそれらを結ぶ流路を、第1の金属ブロック38に冷却媒体導入口と冷却媒体排出口とそれらを結ぶ流路を、第2の金属ブロック43に冷却媒体導入口と冷却媒体排出口とそれらを結ぶ流路を、形成し、図2Dの実施例のとおり、冷却媒体を循環させれば良い。循環水による冷却を利用する場合には、電子冷却素子が不要になり、構成が単純になるが、温度制御の精度、安定性を重視する場合には、電子冷却素子を使用する方が好ましい。また、冷却用水は真水でも良いが、0℃付近で制御したい場合は、エチレングリコールを含ませた不凍液を使用するのが好適である。
これまで、第2の恒温制御器18、第3の恒温制御器19、第4の恒温制御器24について、冷却という観点で記述してきたが、もちろん、恒温という観点から一定温度にする上で、昇温も可能である。温水循環か、または、電子冷却素子の極性を変えることで、昇温すればよい。装置の設置場所が低温である場合に必要な場合もある。また、冷却による結露について、万が一結露が起こってしまった場合には、電子冷却素子の極性を変更し、加温する。結露の有無は漏水センサーを設置しておき、検知すると良い。
第1の熱排出器34、第2の熱排出器40、第3の熱排出器46内の冷却媒体が流れる流路の断面形状は丸、四角、三角等、何れの形状でも良く、また、流路長や流路の道筋も特に限定されない。ただし、熱排出器の全体積に対して、内部の流路体積が占める割合は大きい方が良く、具体的には、(内部の流路体積)/(熱排出器の全体積)は、1/3以上が好ましい。
<実施例3>
図3B、図3Cは、恒温乾燥空気26の温調方法の変形実施例を示している。図3Aと異なり、恒温乾燥空気ノズル23を利用しない形態である。
図3B、図3Cは、恒温乾燥空気26の温調方法の変形実施例を示している。図3Aと異なり、恒温乾燥空気ノズル23を利用しない形態である。
図3Bは、第1の板状部材9の内部に第1の送風流路52を形成し、第2の恒温制御器18で温度調整された第1の板状部材9内に乾燥空気を流すことで、第1の板状部材9と同じ温度に調整し、恒温乾燥空気26を受光面16に平行に流す方法である。つまり、コンプレッサー2から供給された空気が、第2のフィルター29、第1のフィルター28、エアードライヤー27を通過した後、この乾燥空気が第1の板状部材9の送風流路52の中を通過することで温度調整がなされて受光面16に平行に送風される。恒温乾燥空気26の温度調整を第1の板状部材9の第2の恒温制御器18で行うことになるため、制御機構は簡単シンプルになり、恒温乾燥空気送風ノズル23と第4の恒温制御器24が不要となる。
図3Cは、第3の恒温制御器19の温度伝達部材を有効活用し、温度伝達部材の中に第2の送風流路53を形成し、第2の送風流路へ乾燥空気を導入して、恒温乾燥空気26を生成する方法である。つまり、コンプレッサー2から供給された空気が、第2のフィルター29、第1のフィルター28、エアードライヤー27を通過した後、この乾燥空気が第2の送風流路53の中を通過することで温度調整がなされて受光面16に平行に送風される。恒温乾燥空気26の温度調整を第1の板状部材9の第3の恒温制御器19で行うことになるため、制御機構は簡単シンプルになり、恒温乾燥空気送風ノズル23と第4の恒温制御器24が不要となる。
ここで、冷却に必要な流速V(L/min)は、以下の式1により求められる。
V(L/sec) = (P×3600)/(0.278×C×d×Δt) 式(1)Pは電子冷却素子からの供給電力量(W)、Cは比熱(kJ/(kg・℃))、dは密度(kg/m3)、Δtは温度差である。以下、供給される乾燥空気の温度を25℃から5℃に下げる場合について考える。簡単のために、電子冷却素子の電力供給量P=50Wとし、その他のパラメータ、C=1.007、d=1.2、Δt=20として計算すると、2.1 mL/min以下で流路内を通せば良く、流路断面積が小さいほど、効率よく冷却できる。例えば、1辺10mmの断面100mm2で、210mmを1分間で通過させれば十分に冷却できる。実施例1の第4の恒温制御器を使用する場合でも同じで、断面が100mm2であれば、第4の恒温制御器24に210mmの温調部があれば良い。受光面16の直径が25mmの光検出器14を使用した場合、受光面積が約500mm2であり、光透過窓11との距離が0.05mmの場合で、受光面16と光透過窓11で形成される空間容積は25mm3(=25μl)、10mmの場合で、空間容積は5000mm3(5ml)となる。これらの体積空間全体を5℃に置換するに、0.05mmの時と10mmの時との比較で、供給流速を変える必要があり、200倍の差が生じる。また、容積が大きいほど、出口付近から離れるに従い温度勾配が生じ、温度差は大きくなる。そこで、この温度勾配をできるかぎり小さくするためには、恒温乾燥空気26の供給量を多くするか、第1の板状部材9の下面を冷やすことが効果的である。また、温度勾配をできるかぎり小さくするために、恒温乾燥空気26を複数の箇所から中心に向かって供給しても良い。
また、乾燥空気の温度を30℃から0℃に下げる場合で、電力供給量が低く20Wの場合では、その他のパラメータ、C=1.007、d=1.2、Δt=20として計算すると、0.6 mL/min以下で流路内を通せば良い。なお、上記の計算結果は光検出器14の受光面16の熱伝導率を考慮していない。可視光領域を測定する光検出器14の受光面16の表面材質に関しては、ガラスが一般的であり、実際には、その熱伝導率は0.55~0.75W/m・kを考慮する必要がある。しかしながら、受光面16の表面のガラス板は非常に薄いため、光電面材量の冷却において、熱伝導率による熱の伝達速度の材量依存はほぼ無視できる。また、光検出器14は第3の恒温制御器19により恒温乾燥空気26と同じ温度に制御するため、光検出器14の内部からの冷却も加わり、表面の材質の熱伝導率を考慮しなくても良い。
<実施例4>
本実施例では、受光面16と第1の板状部材9、または、第1の板状部材9の貫通孔10に装着される光透過窓11の隙間が狭い場合、積極的に受光面16へ恒温乾燥空気26を供給する手段について述べる。図4A、図4B、図4C、図Dは、第1の板状部材9の光検出器14が挿入される部分の構造と光検出器14と受光面16の位置関係を示す図である。図4A、図4Bは、図3Bで示した第1の板状部材9に設けられた第1の送風流路52から恒温乾燥空気26を供給する形態に関する1例である。第1の板状部材9にザグリ54を形成し、光検出器14の先端部の外壁と貫通孔10の壁で形成される隙間に対して、光透過窓11と光検出器14の先端の隙間を若干広くしておけば、積極的に、受光面16と第1の板状部材9、または光透過窓11の空間に恒温乾燥空気26を第1の送風流路52から送り込むことができ、受光面16を通り過ぎた恒温乾燥空気26は、ザグリ54へ流出する。
<実施例4>
本実施例では、受光面16と第1の板状部材9、または、第1の板状部材9の貫通孔10に装着される光透過窓11の隙間が狭い場合、積極的に受光面16へ恒温乾燥空気26を供給する手段について述べる。図4A、図4B、図4C、図Dは、第1の板状部材9の光検出器14が挿入される部分の構造と光検出器14と受光面16の位置関係を示す図である。図4A、図4Bは、図3Bで示した第1の板状部材9に設けられた第1の送風流路52から恒温乾燥空気26を供給する形態に関する1例である。第1の板状部材9にザグリ54を形成し、光検出器14の先端部の外壁と貫通孔10の壁で形成される隙間に対して、光透過窓11と光検出器14の先端の隙間を若干広くしておけば、積極的に、受光面16と第1の板状部材9、または光透過窓11の空間に恒温乾燥空気26を第1の送風流路52から送り込むことができ、受光面16を通り過ぎた恒温乾燥空気26は、ザグリ54へ流出する。
なお、図4Aの矢印で表わした恒温乾燥空気26は、その矢印で示した方向に空気が流れることを示す。図4Bは、第1の板状部材9の恒温乾燥空気26が流れる第1の送風流路52、貫通孔10、ザグリ54の断面を三次元的に表わしたものである。
図4C、図4Dは、図3Cで示した第3の恒温制御器19の温度伝達部材中の第2の送風流路53から恒温乾燥空気26を供給する形態に関する1例である。第1の板状部材9にザグリ54を形成し、光検出器14の先端部の外壁と貫通孔10の壁で形成される隙間に対して、光透過窓11と光検出器14の先端の隙間を若干広くしておけば、積極的に、受光面16と第1の板状部材9、または光透過窓11の空間に恒温乾燥空気26を第2の送風流路53から送り込むことができ、受光面16を通り過ぎた恒温乾燥空気26は、ザグリ54へ流出する。
なお、図4Cの矢印で表わした恒温乾燥空気26は、その矢印で示した方向に空気が流れることを示す。図4Dは、第3の恒温制御器19の温度伝達部材中の第2の送風流路53、貫通孔10、ザグリ54の断面を三次元的に表わしたものである。図4Bの矢印は、恒温乾燥空気26の流れを模式的に表わしたものである。
<実施例5>
図5は、本発明の微弱発光計測装置を用いて、第1の恒温制御器を25℃に設定し、第2の恒温制御器と第3の恒温制御器の設定温度を5℃に設定し、各設定温度に到達するまでの温度変化と1秒間毎の暗電流パルス数(Nd)の経時的な変化を示す図であり、サンプル容器の温度56、第1の板状部材の温度57、光検出器の温度58、該恒温制御を行った場合のNd値59、恒温制御なしの場合のNd値の典型値55、の経時変化をそれぞれ示している。装置内温度は、22℃から25℃の範囲で変動していた。本発明の微弱発光測定装置は、微弱発光測定装置本体1の筐体内の温度を監視する手段を備えていても良い。暗電流パルス数(Nd値)は、単位はCOUNT PER SECOND(カウント数/秒)であり、1秒間の信号パルス数の積算値を表すものである。ここでは、毎秒毎の信号パルス数の積算値を0~3600秒まで連続的にプロットしたものである。そのときの温度モニタの結果もグラフに重ね合わせている(右軸)。
<実施例5>
図5は、本発明の微弱発光計測装置を用いて、第1の恒温制御器を25℃に設定し、第2の恒温制御器と第3の恒温制御器の設定温度を5℃に設定し、各設定温度に到達するまでの温度変化と1秒間毎の暗電流パルス数(Nd)の経時的な変化を示す図であり、サンプル容器の温度56、第1の板状部材の温度57、光検出器の温度58、該恒温制御を行った場合のNd値59、恒温制御なしの場合のNd値の典型値55、の経時変化をそれぞれ示している。装置内温度は、22℃から25℃の範囲で変動していた。本発明の微弱発光測定装置は、微弱発光測定装置本体1の筐体内の温度を監視する手段を備えていても良い。暗電流パルス数(Nd値)は、単位はCOUNT PER SECOND(カウント数/秒)であり、1秒間の信号パルス数の積算値を表すものである。ここでは、毎秒毎の信号パルス数の積算値を0~3600秒まで連続的にプロットしたものである。そのときの温度モニタの結果もグラフに重ね合わせている(右軸)。
本実施例においては、恒温乾燥空気26は、光検出器14の第2の送風流路53を介して供給し、流速は1ml/minとした。また、サンプル容器7と光検出器14の間には、石英ガラスを介在させた。石英ガラスは熱伝導率が低いため、サンプル容器7と受光面16の温度を独立に制御しやすく、サンプル容器7の冷却を回避できる。
図5から、第1の板状部材9の温度57が500秒後に設定値の5℃に到達し、光検出器の温度58が1800秒後(30分後)に設定値の5℃に到達し、1800~2160秒の5℃に恒温制御したNd値59は、ゆらぎもなく、ノイズレベルは、恒温制御なしのNd値55のノイズレベルよりも著しく低下した。二乗平均平方根(Root Mean Square (RMS))で、25℃と5℃のノイズレベルを比較すると、恒温制御なしのNd値55では35.3CPS、恒温制御したNd値59は、12.6CPSであった。図5の2160秒後以降は、第2の恒温制御器と第3の恒温制御器の温度制御を解除しており、装置内温度である25℃に戻っていくにつれて、Nd値が上昇し、ノイズレベルが大きくなっていくのがわかる。本実験において、恒温乾燥空気26は光検出器14と第1の板状部材9の温度とほぼ同じであることは、暗電流パルス数から確認でき、実際に、受光面16と受光面16に結露は生じていなかった。
図6は、本発明の微弱発光計測装置を用いて測定した1秒間毎の暗電流パルス数(Nd値)の平均値の温度依存性を示す図である。本実施例で使用した光検出器14の受光面16は、入射窓が硼硅酸ガラス、光電面はバイアルカリ(Sb-Rb-Cs、Sb-K-Cs)で構成されたものであるが、5℃以下でダークカウント値の平均値はほぼ一定になった。もちろん、入射窓は、石英ガラス、UVカットガラスでも良く、光電面の種類は以下のもの、例えば、Sb-Cs、マルチアルカリ(Sb-Na-K-Cs)、GaAs(Cs)、InGaAs(Cs)、InP/InGaAs(Cs)、InP/InGaAsP(Cs)、Ag-O-Csなどでも良い。
暗電流パルス数(Nd値)の低減が検出感度の向上に有効である結果を示す例を図7に示す。図7は、本発明の微弱発光計測装置を用いて、極微弱光を発する標準光源をパルス的に光らせた時の温度依存性の結果である。図7Aの温度制御なしにおいて、ここでは25℃の時であるが、50CPSの光信号(71,72)がノイズに埋もれてしまい、明瞭に観察できない。一方、20℃の恒温、つまり、図7Aの測定時の温度と比較して、約―5℃の恒温制御だけでも、光の信号(73,74)と光検出器ノイズが明瞭に区別できるようになっているのがわかる。
図8は、本発明の微弱発光計測装置を用いて、第1の板状部材9と光検出器14と受光面16の温度を一定とし、ATPの生物発光測定を行った結果から、設定温度の違いに対するSN比の変化を示した図である。実験は以下のような手順で行った。分注機を装置内に導入した微弱発光計測装置本体に導入し、まず、空のサンプル容器を設置した状態で暗電流パルス数を30秒間測定する。次に、空のサンプル容器内へATPの発光用試薬を分注機で分注し、試薬の背景光信号パルス数を30秒間測定した後、ATPを1amol含むサンプル溶液をサンプル容器7内へ、分注し、発光反応が終了するまで測定した。暗電流パルス数61、背景光信号パルス数62、発光信号パルス数63の全ての経時変化を示したデータが、図9の典型的な生物発光であるATP発光経時曲線60である。図8は、第1の恒温制御器17を25℃に、第2の恒温制御器17と第3の恒温制御器19と第4の恒温制御器24は5℃から40℃に設定して行った結果を整理したものであり、整理するにあたり、式(2)を用いた。実験データをもとにSN比は以下の式で表わされる。
S/N = Ns/(Ns+2(Nb+Nd))1/2 式(2)
ここで、Ndは暗電流パルス数、Nbは、試薬の背景光パルス数、Ns値はATP発光信号パルス数のピーク値(発光信号パルス数63)である。
S/N = Ns/(Ns+2(Nb+Nd))1/2 式(2)
ここで、Ndは暗電流パルス数、Nbは、試薬の背景光パルス数、Ns値はATP発光信号パルス数のピーク値(発光信号パルス数63)である。
まず、ATP発光強度はどの条件においても50CPSであり、変化しなかった。しかし、図8にて示されるように、設定温度により、暗電流パルス数が変化するため、SN比が温度が低いほど向上しているのがわかる。また、試薬の背景光値Nbが0~200まで変化するとNb値が大きくなるに従い、SN比が低下することがわかる。Nb値の試薬の背景光は試薬によってことなり、ここでは、代表例として、Nb=0、10、20、30、50、100、150、200の例を挙げた。Nb値が何れの場合においても、光検出器14と受光面16の温度が低いほど、SN比が向上することが示された。また、Nb値が低いほど、光検出器と受光面の温度を下げることが有効であることが示された。
1…微弱発光計測装置本体、2…コンプレッサー、3…制御装置、4…開閉扉、5…機構室、6…制御室、7…サンプル容器、8…サンプル容器ホルダ、8a…サンプル容器ホルダ、9…第1の板状部材、10…貫通孔、11…光透過窓、12…第2の板状部材、13…第1のアクチュエータ、14…光検出器、15…位置制御手段、16…受光面、17…第1の恒温制御器、18…第2の恒温制御器、19…第3の恒温制御器、20…第1の恒温制御器ドライバ、21…第2の恒温制御器ドライバ、22…第3の恒温制御器ドライバ、23…恒温乾燥空気送風ノズル、24…第4の恒温制御器、25…第4の恒温制御ドライバ、26…恒温乾燥空気、27…エアードライヤー、28…第1のフィルター、29…第2のフィルター、30…断熱部材、31…第1の電子冷却素子の冷却面、33…第1の電子冷却素子の放熱面、34…第1の熱排出器、35…第1の冷却媒体導入口、36…第1の冷却媒体排出口、37…第2の電子冷却素子の冷却面、38…第1の金属ブロック、39…第2の電子冷却素子の放熱面、40…第2の熱排出器、41…第2の冷却媒体導入口、42…第2の冷却媒体排出口、43…第2の金属ブロック、44…第3の電子冷却素子の冷却面、45…第3の電子冷却素子の放熱面、46…第3の熱排出器、47…第3の冷却媒体導入口、48…第3の冷却媒体排出口、49…循環型ポンプ、50…冷却媒体貯蔵槽、51…冷却器、52…第1の送風流路、53…第2の送風流路、54…ザグリ凹
Claims (12)
- 試料を収める容器を保持するホルダと、
前記ホルダを保持する板状部材と、
前記容器の底面と対向して前記試料中の発光を検出する光検出部と、
前記光検出部の温度制御を行う第1の温度制御部と、
前記光検出部の受光面に送風を行う送風部と、
を備えることを特徴とする発光測定装置。 - 請求項1に記載の発光測定装置であって、
前記送風部は、
第2の温度制御部を備え、前記第2の温度制御部によって温度制御された空気を前記受光面に送風する、ことを特徴とする発光測定装置。 - 請求項2に記載の発光測定装置であって、
前記第2の温度制御部は、
前記空気の温度が前記光検出部の温度と同じになるように前記空気の温度制御を行う、ことを特徴とする発光測定装置。 - 請求項1に記載の発光測定装置であって、
前記送風部は、
空気を乾燥させる空気乾燥部を備え、前記空気乾燥部によって乾燥された空気を前記受光面に送風する、ことを特徴とする発光測定装置。 - 請求項1に記載の発光測定装置であって、
前記送風部は、
前記光検出部の受光面に平行に前記送風を行う、ことを特徴とする発光測定装置。 - 請求項1に記載の発光測定装置であって、
更に、前記板状部材の温度制御を行う第2の温度制御部を備え、
前記板状部材は、内部に流路を備え、
前記送風部は、前記第2の温度制御部によって温度制御された前記板状部材中の流路を介して前記送風を行う、ことを特徴とする発光測定装置。 - 請求項1に記載の発光測定装置であって、
更に、前記光検出器の温度制御を行う第2の温度制御部を前記光検出器の側面に備え、
前記第2の温度制御部は、内部に流路を備え、
前記送風部は、前記第2の温度制御部中の流路を介して前記送風を行う、ことを特徴とする発光測定装置。 - 請求項1に記載の発光測定装置であって、
更に、
前記板状部材の温度制御を行う第2の温度制御部と、
前記ホルダの温度制御を行う第3の温度制御部と、を備え、
前記第2の温度制御部の制御温度は、前記第3の温度制御部の制御温度よりも低い、ことを特徴とする発光測定装置。 - 請求項8に記載の発光測定装置であって、
更に、前記ホルダと、前記板状部材と、の間に断熱部材を備える、ことを特徴とする発光測定装置。 - 請求項1に記載の発光測定装置であって、
前記送風部から送風される空気の流速は毎分0.5ミリリットルから毎分3ミリリットルである、ことを特徴とする発光計測装置。 - 請求項1に記載の発光測定装置であって、
前記板状部材は貫通孔を有し、
前記光検出器の受光面は、前記貫通孔を介して前記容器の底面と対向する、ことを特徴とする発光計測装置。 - 請求項11に記載の発光測定装置であって、
前記貫通孔は、遮光部材によって開閉可能であり、発光計測時には開いた状態である、ことを特徴とする発光計測装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/411,271 US9683942B2 (en) | 2012-06-27 | 2013-05-22 | Luminescence measuring device |
EP13810806.3A EP2869064B1 (en) | 2012-06-27 | 2013-05-22 | Luminescence measuring device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-143686 | 2012-06-27 | ||
JP2012143686A JP5953141B2 (ja) | 2012-06-27 | 2012-06-27 | 発光計測装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014002653A1 true WO2014002653A1 (ja) | 2014-01-03 |
Family
ID=49782823
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/064267 WO2014002653A1 (ja) | 2012-06-27 | 2013-05-22 | 発光計測装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9683942B2 (ja) |
EP (1) | EP2869064B1 (ja) |
JP (1) | JP5953141B2 (ja) |
WO (1) | WO2014002653A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11604146B2 (en) | 2017-09-19 | 2023-03-14 | Beckman Coulter, Inc. | Analog light measuring and photon counting with a luminometer system for assay reactions in chemiluminescence measurements |
WO2023218662A1 (ja) * | 2022-05-13 | 2023-11-16 | 株式会社日立ハイテク | 光計測装置 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10186539B2 (en) * | 2014-10-13 | 2019-01-22 | Bio-Rad Laboratories, Inc. | Heated image sensor window |
WO2019013360A1 (ja) | 2017-07-14 | 2019-01-17 | 株式会社堀場アドバンスドテクノ | 生体試料分析装置 |
CN113906286B (zh) * | 2019-07-02 | 2024-09-20 | 株式会社堀场先进技术 | 生物体样品分析装置及生物体样品分析方法 |
US11619588B2 (en) * | 2020-10-26 | 2023-04-04 | K2R2 Llc | Portable analyzer |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3998592A (en) * | 1975-12-24 | 1976-12-21 | Ford Motor Company | Thermoelectric heat pump for chemiluminescence detectors |
JPH08285777A (ja) * | 1995-04-12 | 1996-11-01 | Hamamatsu Photonics Kk | 微弱光測定装置 |
JP2711679B2 (ja) * | 1988-07-14 | 1998-02-10 | 科学技術振興事業団 | 冷却型光電子検出装置 |
JPH11142242A (ja) | 1997-11-06 | 1999-05-28 | Nippon Applied Technology:Kk | 微弱発光分析装置 |
JP2008268019A (ja) | 2007-04-20 | 2008-11-06 | Hitachi Ltd | 化学発光計測装置 |
JP2010216839A (ja) * | 2009-03-13 | 2010-09-30 | Toyota Central R&D Labs Inc | 固体表面反応に由来する化学発光の有無の検出方法、固体表面反応に由来する化学物質種の同定方法及びそれらの方法に用いる固体表面反応に由来する化学発光の検出装置 |
US20110032614A1 (en) * | 2009-08-04 | 2011-02-10 | Carl Zeiss Microlmaging Gmbh | Optoelectronic detector assembly and method of operating same |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7423750B2 (en) * | 2001-11-29 | 2008-09-09 | Applera Corporation | Configurations, systems, and methods for optical scanning with at least one first relative angular motion and at least one second angular motion or at least one linear motion |
JP4658565B2 (ja) * | 2004-10-28 | 2011-03-23 | オリンパス株式会社 | 顕微鏡及び顕微鏡の加温方法 |
ES2700297T3 (es) * | 2010-11-10 | 2019-02-14 | Roche Diagnostics Hematology Inc | Aparato automático para preparar muestras biológicas para examinar |
-
2012
- 2012-06-27 JP JP2012143686A patent/JP5953141B2/ja active Active
-
2013
- 2013-05-22 EP EP13810806.3A patent/EP2869064B1/en active Active
- 2013-05-22 WO PCT/JP2013/064267 patent/WO2014002653A1/ja active Application Filing
- 2013-05-22 US US14/411,271 patent/US9683942B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3998592A (en) * | 1975-12-24 | 1976-12-21 | Ford Motor Company | Thermoelectric heat pump for chemiluminescence detectors |
JP2711679B2 (ja) * | 1988-07-14 | 1998-02-10 | 科学技術振興事業団 | 冷却型光電子検出装置 |
JPH08285777A (ja) * | 1995-04-12 | 1996-11-01 | Hamamatsu Photonics Kk | 微弱光測定装置 |
JPH11142242A (ja) | 1997-11-06 | 1999-05-28 | Nippon Applied Technology:Kk | 微弱発光分析装置 |
JP2008268019A (ja) | 2007-04-20 | 2008-11-06 | Hitachi Ltd | 化学発光計測装置 |
JP2010216839A (ja) * | 2009-03-13 | 2010-09-30 | Toyota Central R&D Labs Inc | 固体表面反応に由来する化学発光の有無の検出方法、固体表面反応に由来する化学物質種の同定方法及びそれらの方法に用いる固体表面反応に由来する化学発光の検出装置 |
US20110032614A1 (en) * | 2009-08-04 | 2011-02-10 | Carl Zeiss Microlmaging Gmbh | Optoelectronic detector assembly and method of operating same |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11604146B2 (en) | 2017-09-19 | 2023-03-14 | Beckman Coulter, Inc. | Analog light measuring and photon counting with a luminometer system for assay reactions in chemiluminescence measurements |
US11754504B2 (en) | 2017-09-19 | 2023-09-12 | Beckman Coulter, Inc. | System for analog light measuring and photon counting in chemiluminescence measurements |
WO2023218662A1 (ja) * | 2022-05-13 | 2023-11-16 | 株式会社日立ハイテク | 光計測装置 |
Also Published As
Publication number | Publication date |
---|---|
JP2014006213A (ja) | 2014-01-16 |
JP5953141B2 (ja) | 2016-07-20 |
EP2869064B1 (en) | 2018-11-21 |
EP2869064A1 (en) | 2015-05-06 |
EP2869064A4 (en) | 2016-03-02 |
US20150253250A1 (en) | 2015-09-10 |
US9683942B2 (en) | 2017-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5953141B2 (ja) | 発光計測装置 | |
JP5275522B2 (ja) | 空気中の生物由来の粒子を検出するための検出装置および検出方法 | |
JP5026849B2 (ja) | 化学発光計測装置 | |
US10288632B2 (en) | System for conducting the identification of bacteria in biological samples | |
JP2011097861A (ja) | 微生物検出装置および検出方法 | |
JP2011083214A (ja) | 微生物検出装置および検出方法 | |
WO2009157510A1 (ja) | 菌捕集担体カートリッジ、担体処理装置および菌の計測方法 | |
US20150177143A1 (en) | Particle detection device | |
US8901512B2 (en) | Particle detector | |
WO2009020982A1 (en) | Nano-microfluidic apparatus for continuous real-time analysis of targets in thin liquid films | |
FR2897873A1 (fr) | Procede d'analyse microbiologique rapide. | |
JP3839039B2 (ja) | パッシブ型放散フラックスサンプラ及びフラックス測定装置 | |
JP5015183B2 (ja) | 防曇性評価装置および防曇性評価方法 | |
JP4608507B2 (ja) | 高速微生物学的解析方法 | |
JP5466731B2 (ja) | 化学発光計測装置 | |
RU2383005C2 (ru) | Измеритель запыленности воздуха | |
TW201730544A (zh) | 光測量裝置 | |
JP2001514755A (ja) | 分光光度分析用キュベット | |
WO2023218662A1 (ja) | 光計測装置 | |
JP2020201140A (ja) | 吸光度計 | |
JP4080512B2 (ja) | パッシブ型放散フラックスサンプラ | |
JP2005333912A (ja) | 小型培養観察装置 | |
JPH0775552A (ja) | 培養装置 | |
US12130222B2 (en) | Condensation particle counters and methods of use | |
JP4153988B2 (ja) | 粒径分布測定装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13810806 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013810806 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14411271 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |