WO2014002564A1 - 風計測コヒーレントライダ装置 - Google Patents

風計測コヒーレントライダ装置 Download PDF

Info

Publication number
WO2014002564A1
WO2014002564A1 PCT/JP2013/060483 JP2013060483W WO2014002564A1 WO 2014002564 A1 WO2014002564 A1 WO 2014002564A1 JP 2013060483 W JP2013060483 W JP 2013060483W WO 2014002564 A1 WO2014002564 A1 WO 2014002564A1
Authority
WO
WIPO (PCT)
Prior art keywords
spectrum
frequency
signal
noise spectrum
noise
Prior art date
Application number
PCT/JP2013/060483
Other languages
English (en)
French (fr)
Inventor
勝治 今城
俊平 亀山
論季 小竹
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US14/391,252 priority Critical patent/US9599714B2/en
Priority to CN201380027771.3A priority patent/CN104335068B/zh
Priority to EP13810413.8A priority patent/EP2866050B1/en
Priority to JP2014522455A priority patent/JP5868504B2/ja
Publication of WO2014002564A1 publication Critical patent/WO2014002564A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/50Systems of measurement based on relative movement of target
    • G01S17/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/95Lidar systems specially adapted for specific applications for meteorological use
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the present invention relates to a wind measurement coherent lidar apparatus that transmits and receives laser light having a single frequency to the atmosphere and detects wind speed from a received signal obtained by heterodyne detection, and in particular, changes in temperature and power of local light.
  • the present invention relates to a wind measurement coherent lidar device that can accurately measure the peak frequency and width of a reception spectrum even when the noise level of the reception system fluctuates.
  • the coherent lidar device for wind measurement pulsed light is irradiated in the atmosphere to receive scattered light from the aerosol.
  • the Doppler shift generated by the movement of the aerosol is obtained by heterodyne detection of the seed light and scattered light of the transmission pulse light, and the wind in the laser irradiation direction is measured.
  • a signal after heterodyne detection is subjected to FFT processing, derived from the peak frequency, and further, the wind speed width (degree of turbulence in the wind speed field) is derived from the frequency width.
  • a conventional wind measurement lidar apparatus for example, an apparatus described in Patent Document 1 is known. In this device, wind speed measurement at a low SN ratio is performed with high accuracy by using foresight information of the wind speed field.
  • a single frequency continuous wave light called local light and scattered light from aerosol etc. floating in the atmosphere are received and heterodyne detected, and the peak value in the frequency domain of the received signal Is calculated by calculating the center of gravity, and the wind speed in the atmosphere is measured from the frequency shift amount.
  • the level of the noise spectrum at the time of frequency analysis varies due to a gain variation due to a power variation of continuous wave light or a temperature variation of the optical receiver.
  • Patent Document 1 when the level fluctuation of the noise spectrum occurs, an error occurs in the peak frequency position to be detected when calculating the center of gravity in the frequency domain, and the measured wind speed value is affected as an offset error. There was a problem of affecting.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a wind measurement coherent rider device that can perform wind speed measurement with high accuracy even when noise spectrum level fluctuations occur. .
  • the wind measurement coherent rider device is a wind measurement coherent rider device that transmits and receives laser light having a single frequency to the atmosphere and detects the wind speed from the received signal obtained by heterodyne detection.
  • a noise spectrum recording means for recording a noise spectrum in a state; a noise spectrum difference means for subtracting a noise spectrum from a spectrum of a received signal; and a signal spectrum obtained by subtracting a noise spectrum from a frequency peak position of a received signal.
  • Offset correction means that performs offset correction for noise levels at different frequencies, frequency shift analysis means that performs signal processing on the signal spectrum after offset correction and measures frequency shift, and wind speed detection based on the frequency shift amount Wind speed conversion means for performing .
  • the wind measurement coherent lidar apparatus of the present invention records a noise spectrum in the absence of a received signal, subtracts this noise spectrum from the spectrum of the received signal, and makes a predetermined difference from the frequency peak position with respect to this signal spectrum. Since the offset correction is performed with respect to the noise level at a frequency that is different from the above value, the wind speed can be measured with high accuracy even when the noise spectrum level fluctuates.
  • FIG. 1 It is a block diagram which shows the wind measurement coherent rider apparatus by Embodiment 1 of this invention. It is explanatory drawing (the 1) which shows the operation
  • FIG. 1 is a configuration diagram showing a wind measurement coherent rider apparatus according to Embodiment 1 of the present invention.
  • the light source 1 is connected to the optical distributor 2, and the optical distributor 2 is connected to the pulse modulator 3 and the optical coupler 6.
  • the pulse modulator 3 is connected to an optical circulator 4, and the optical circulator 4 is connected to an optical antenna 5 and an optical coupler 6.
  • the optical coupler 6 is further connected to the optical receiver 7.
  • the optical receiver 7 is connected to an analog-digital converter (hereinafter referred to as an A / D converter) 8, and the A / D converter 8 is connected to a fast Fourier analysis device (hereinafter referred to as an FFT device) 9.
  • the FFT device 9 is connected to a noise spectrum difference device 10, and the noise spectrum difference device 10 is connected to an offset correction device 11.
  • the offset correction device 11 is connected to the frequency shift analysis device 12, and the frequency shift analysis device 12 is connected to the wind speed conversion device 13.
  • FIG. 1 As indicated by a bold line, between the light source 1 and the optical distributor 2, between the optical distributor 2 and the pulse modulator 3, between the optical distributor 2 and the optical coupler 6, and the pulse modulator. 3 and optical circulator 4, optical circulator 4 and optical antenna 5, optical circulator 4 and optical coupler 6, optical coupler 6 and optical receiver 7 are connected by an optical line such as an optical fiber cable. .
  • an optical line such as an optical fiber cable.
  • the optical receiver 7 and the A / D converter 8 between the A / D converter 8 and the FFT device 9, and between the FFT device 9 and the noise spectrum difference device 10.
  • an electric circuit such as an electric signal cable. Connect with.
  • the light source 1 has a function of transmitting continuous wave light having a single frequency
  • the optical distributor 2 divides the light from the light source 1 into two parts, one for the pulse modulator 3 and the other for the optical coupler 6. It is a distributor.
  • the pulse modulator 3 is a modulator that applies a predetermined frequency shift to input light and further applies pulse modulation.
  • the optical circulator 4 has a function of sending the optical signal from the pulse modulator 3 to the optical antenna 5 and sending the optical signal from the optical antenna 5 to the optical coupler 6.
  • the optical antenna 5 is a transmission / reception antenna for transmitting an optical signal from the optical circulator 4 to the atmosphere and transmitting scattered light from the atmosphere to the optical circulator 4 as received light.
  • the optical coupler 6 is an optical multiplexer for combining the optical signals from the optical distributor 2 and the optical circulator 4 and sending them to the optical receiver 7.
  • the optical receiver 7 is a receiver for converting the optical signal from the optical coupler 6 into an electrical signal by heterodyne detection and sending it to the A / D converter 8.
  • the A / D converter 8 is a circuit that performs analog / digital conversion on the received electrical signal of the optical receiver 7, and the FFT device 9 is a device that performs frequency analysis of the received electrical signal by fast Fourier transform.
  • the noise spectrum difference device 10 is a device that constitutes a noise spectrum recording means for recording a noise spectrum in the absence of a received signal, and a noise spectrum difference means for subtracting the noise spectrum from the spectrum of the received signal.
  • the noise spectrum difference device 10 is configured to record in advance a received spectrum in a state in which scattered light is not received as a noise spectrum and take a difference in the noise spectrum from the received spectrum in a received state.
  • the offset correction apparatus 11 is an apparatus that constitutes an offset correction unit that performs offset correction on a noise level having a frequency that is a predetermined value away from the frequency peak position of the received signal with respect to the signal spectrum obtained by subtracting the noise spectrum.
  • the offset correction device 11 is configured to perform offset correction on the signal spectrum obtained by subtracting the noise spectrum so that the noise level at a frequency position sufficiently away from the frequency peak position becomes zero.
  • the frequency shift analysis device 12 is a device that constitutes frequency shift analysis means for performing signal processing on the signal spectrum after offset correction and measuring the frequency shift.
  • the frequency shift analyzer 12 is configured to perform a peak detection process, a centroid calculation process, and the like on the signal spectrum after the offset correction, and measure the frequency shift amount.
  • the wind speed conversion device 13 constitutes wind speed conversion means for detecting the wind speed based on the frequency shift amount, and is configured to convert the frequency shift amount into a wind speed value and output it.
  • a continuous wave light having a single frequency is transmitted from the light source 1, and after the optical signal is distributed by the optical distributor 2, one is transmitted to the pulse modulator 3 and the other is transmitted to the optical coupler 6.
  • the pulse modulator 3 applies a predetermined frequency shift to the input light and further pulsates with a modulation signal having a predetermined pulse width and repetition period.
  • This pulsed optical signal is transmitted to the atmosphere via the optical circulator 4 and the optical antenna 5.
  • the optical signal transmitted to the atmosphere is scattered by a scatterer such as an aerosol floating in the atmosphere, and the scattered light is received as received light by the optical antenna 5.
  • the received light is sent to the optical coupler 6 via the optical antenna 5 and the optical circulator 4.
  • the continuous wave light from the optical distributor 2 and the received light are combined and sent to the optical receiver 7.
  • a method of giving a predetermined frequency shift to the light input by the pulse modulator 3 and further pulsing with a modulation signal having a predetermined pulse width and repetition period is shown.
  • a configuration may be adopted in which an acousto-optic element or the like that gives a predetermined frequency shift is inserted between the optical distributor 2 and the optical coupler 6 by pulsing with a modulation signal having a period.
  • the continuous wave light and the received light are subjected to heterodyne detection and converted to a received signal which is an electric signal region.
  • the frequency of the received signal has the same value as the Doppler frequency shift corresponding to the wind speed.
  • the A / D converter 8 performs A / D conversion of the received signal from the optical receiver 7, and sends this digital signal to the FFT device 9.
  • the FFT device 9 performs FFT on the received digital signal to obtain a received spectrum.
  • the noise spectrum difference device 10 in the process of transmitting continuous wave light from the above-described light source 1 and obtaining the received spectrum by the FFT device 9, for example, the received spectrum in a state in which no scattered light is received without irradiating laser light.
  • the spectrum is recorded in advance as a spectrum, and the difference from the reception spectrum when the scattered light is received is performed in the dB region to obtain the signal spectrum. Furthermore, the intensity level is converted into a linear region.
  • the noise spectrum to be recorded in advance may be measured with a time resolution corresponding to one shot of the laser pulse, or may be measured by integrating n times.
  • FIG. 2 and 3 are explanatory diagrams showing the operation in the case of offset correction based on the difference in noise spectrum.
  • 2 and the left end in FIG. 3 show the same figure after linear transformation.
  • the leftmost diagram in FIG. 2 shows an example of a reception spectrum (noise spectrum) when the scattered light is not received and a reception spectrum when the scattered light is received.
  • 2 and 3 (a) shows a case where the noise level of the reception spectrum is substantially the same as the pre-recorded noise spectrum, and (b) shows a reception spectrum with respect to the pre-recorded noise spectrum.
  • C) is an example in which the noise level of the received spectrum is smaller than the previously recorded noise spectrum. These fluctuations are caused by temperature changes and light source power changes.
  • the “shape” of the noise spectrum is corrected, and a signal spectrum in which an offset is superimposed on the relative intensity of 0 dB can be obtained.
  • the intensity of the noise spectrum is higher than the signal spectrum, it is possible to prevent erroneous detection of the peak frequency of the noise spectrum in the measurement of the peak frequency position in the offset correction device 11 and the frequency shift analysis device 12 described later.
  • the signal spectrum in the linear region obtained by the noise spectrum difference device 10 has an offset. Further, when the intensity level of the noise spectrum varies with respect to the noise spectrum recorded in advance, the offset amount varies.
  • the offset correction apparatus 11 measures the approximate peak frequency position by applying a correlation filter of the signal spectrum shape to the signal spectrum in the linear region, and obtains an offset amount at a frequency position sufficiently away from the frequency position. The offset amount is subtracted from the signal spectrum. As a result, an offset-corrected signal spectrum is obtained.
  • FIG. 4 is a diagram showing the derivation principle of the peak frequency and the offset amount and the offset correction in the offset correction device 11, and (a), (b), and (c) show the same cases as those in FIGS. Yes.
  • deriving the offset amount first, a correlation value is calculated using a filter corresponding to the signal spectrum shape. At this time, the frequency having the maximum correlation value is set to an approximate peak frequency. Next, a frequency that is ⁇ ⁇ n (n is an integer of 1 or more) times from the frequency peak position is referred to as an offset value from the frequency width ⁇ of the correlation waveform at this time, and correction is performed.
  • the derivation of the offset amount at a frequency position sufficiently away from the frequency peak position it may be obtained from a time average value at one point or from an average value of a certain frequency width.
  • an offset amount may be calculated in a predetermined frequency band for a frequency position sufficiently away from the frequency peak position, or an offset amount may be calculated at a position away from the measured frequency peak position by a predetermined frequency. Also good. Further, based on the measured frequency peak position, it may be selected whether to measure an offset amount at a frequency position far away from the high frequency side or to measure an offset amount at a frequency position far away from the low frequency side.
  • the frequency shift analyzer 12 obtains a signal peak frequency by calculating the center of gravity of the signal spectrum after the offset correction, and the wind speed converter 13 calculates a wind speed value from the laser frequency and the peak frequency.
  • the center of gravity calculation may be performed in the entire frequency region, or may be performed only around the frequency peak position obtained by the offset correction device 11 in order to reduce the signal processing load.
  • the centroid calculation is affected by the noise, and the true value of the frequency peak position
  • the frequency peak is detected at a position deviated from the above. That is, an error occurs in the frequency shift amount to be measured, and accurate wind speed measurement cannot be performed.
  • the center of gravity of the signal peak position is generally It is derived from the first moment of the signal spectrum defined by
  • fg is a gravity center position
  • f is a frequency
  • x is an amplitude at each frequency. Therefore, when the offset is large with respect to the amplitude of the signal spectrum, the center of gravity position cannot be accurately derived. That is, an error occurs in the frequency shift amount to be measured, and accurate wind speed measurement cannot be performed.
  • the signal is obtained by subtracting the noise spectrum from the reception spectrum even when the noise spectrum has frequency characteristics and the noise spectrum intensity level varies.
  • the frequency peak position of the signal spectrum can be detected with high accuracy by the centroid calculation. That is, the frequency shift amount can be measured accurately, and high-precision wind speed measurement is possible.
  • the signal spectrum is derived by subtracting the noise spectrum from the received spectrum, and offset from the signal spectrum in the linear region.
  • the frequency width of the signal spectrum can be accurately detected from the second moment defined by. Thereby, it becomes possible to estimate the disturbance of the wind velocity field to be measured.
  • the noise level and the signal level are recorded for each measurement. Therefore, even when the noise level fluctuates, It is possible to accurately derive the noise ratio (hereinafter referred to as reception S / N ratio).
  • reception S / N ratio the noise ratio
  • the noise is white noise
  • the reception signal-to-noise ratio is low, the signal intensity varies greatly, and the frequency peak position detection accuracy also varies. Therefore, it is possible to obtain an index related to the reliability and accuracy with respect to the frequency peak position (wind speed value) detected from the reception SN ratio.
  • the wind measurement is performed by transmitting and receiving laser light having a single frequency to the atmosphere and detecting the wind speed from the received signal obtained by heterodyne detection.
  • a noise spectrum recording means for recording a noise spectrum in the absence of a received signal
  • a noise spectrum difference means for subtracting the noise spectrum from the spectrum of the received signal
  • a signal spectrum obtained by subtracting the noise spectrum An offset correction unit that performs offset correction on a noise level at a frequency that is a predetermined value away from the frequency peak position of the received signal
  • a frequency shift analysis unit that performs signal processing on the signal spectrum after the offset correction and measures a frequency shift
  • Wind speed detection based on the amount of frequency shift Since a calculation means, it is possible to perform the wind speed measured with high accuracy even when the level variation of the noise spectrum occurs.
  • any component of the embodiment can be modified or any component of the embodiment can be omitted within the scope of the invention.
  • the wind measurement coherent lidar device records a noise spectrum in the absence of a received signal, subtracts the noise spectrum from the spectrum of the received signal, and from the frequency peak position with respect to the signal spectrum. It is configured to perform offset correction for noise levels at frequencies away from a predetermined value, and even when noise spectrum level fluctuations occur, wind speed can be measured with high accuracy, so wind measurement that measures the wind speed in the atmosphere Suitable for use as a coherent rider device.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

 雑音スペクトル差分装置10は、受信信号がない状態での雑音スペクトルを記録し、受信信号のスペクトルから雑音スペクトルを差分する。オフセット補正装置11は、雑音スペクトル差分装置10で雑音スペクトルを差分した信号スペクトルに対して、受信信号の周波数ピーク位置から所定の値離れた周波数の雑音レベルに対するオフセット補正を行う。周波数シフト解析装置12は、オフセット補正後の信号スペクトルに対して信号処理を行い、周波数シフトを測定する。風速換算装置13は、周波数シフト解析装置12で測定した周波数シフト量に基づいて風速検出を行う。

Description

風計測コヒーレントライダ装置
 本発明は、単一周波数からなるレーザ光を大気中に対し送受し、ヘテロダイン検波により得られた受信信号より風速検出を行う風計測コヒーレントライダ装置に関し、特に、温度変化やローカル光のパワーの変化等により、受信系の雑音レベルが変動した場合においても、受信スペクトルのピーク周波数や幅を正確に測定することができる風計測コヒーレントライダ装置に関する。
 風計測用コヒーレントライダ装置では、パルス光を大気中照射して、エアロゾルからの散乱光を受光する。送信パルス光のシード光と散乱光とのヘテロダイン検波により、エアロゾルの移動によって生じるドップラーシフトを求め、レーザ照射方向の風を計測する。ドップラーシフトは、ヘテロダイン検波後の信号をFFT処理し、そのピーク周波数から導出し、さらに周波数幅から風速幅(風速場の乱れ度合い)を導出する。
 従来の風計測用のライダ装置として、例えば、特許文献1に記載の装置が知られている。この装置では、風速場の先見情報を利用し、低SN比での風速測定を高精度で行う。
特開2009-162678号公報
 一般的な風計測用コヒーレントライダ装置では、ローカル光と呼ばれる単一周波数の連続波光と大気中に浮遊するエアロゾル等からの散乱光を受光してヘテロダイン検波し、その受信信号の周波数領域におけるピーク値を重心演算により導出し、その周波数シフト量から大気中の風速を測定する。このとき、連続波光のパワー変動や光受信機の温度変動による利得変化により、周波数解析時の雑音スペクトルのレベルが変動する。上記従来の特許文献1に記載のライダ装置では、雑音スペクトルのレベル変動が生じた場合には、周波数領域における重心演算時に、検出するピーク周波数位置に誤差が生じ、風速測定値にオフセット誤差として影響を及ぼすという問題があった。
 この発明は上記のような課題を解決するためになされたもので、雑音スペクトルのレベル変動が生じた場合でも高精度に風速測定を行うことのできる風計測コヒーレントライダ装置を得ることを目的とする。
 この発明に係る風計測コヒーレントライダ装置は、単一周波数からなるレーザ光を大気中に対し送受し、ヘテロダイン検波により得られた受信信号より風速検出を行う風計測コヒーレントライダ装置において、受信信号がない状態での雑音スペクトルを記録する雑音スペクトル記録手段と、受信信号のスペクトルから雑音スペクトルを差分する雑音スペクトル差分手段と、雑音スペクトルを差分した信号スペクトルに対して、受信信号の周波数ピーク位置から所定の値離れた周波数の雑音レベルに対するオフセット補正を行うオフセット補正手段と、オフセット補正後の信号スペクトルに対して信号処理を行い、周波数シフトを測定する周波数シフト解析手段と、周波数シフト量に基づいて風速検出を行う風速換算手段とを備えたものである。
 この発明の風計測コヒーレントライダ装置は、受信信号がない状態での雑音スペクトルを記録して、この雑音スペクトルを受信信号のスペクトルから差分し、かつ、この信号スペクトルに対して、周波数ピーク位置から所定の値離れた周波数の雑音レベルに対するオフセット補正を行うようにしたので、雑音スペクトルのレベル変動が生じた場合でも高精度に風速測定を行うことができる。
この発明の実施の形態1による風計測コヒーレントライダ装置を示す構成図である。 この発明の実施の形態1による風計測コヒーレントライダ装置の雑音スペクトルの差分からオフセット補正の動作を示す説明図(その1)である。 この発明の実施の形態1による風計測コヒーレントライダ装置の雑音スペクトルの差分からオフセット補正の動作を示す説明図(その2)である。 この発明の実施の形態1による風計測コヒーレントライダ装置のオフセット値の導出とオフセットの補正を示す説明図である。
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、この発明の実施の形態1による風計測コヒーレントライダ装置を示す構成図である。
 図1に示す風計測コヒーレントライダ装置において、光源1は光分配器2と接続し、光分配器2はパルス変調器3と光カプラ6に接続する。パルス変調器3は光サーキュレータ4に接続し、光サーキュレータ4は光アンテナ5と光カプラ6に接続する。光カプラ6はさらに光受信機7に接続する。光受信機7はアナログ-ディジタル変換器(以下、A/D変換器という)8に接続し、A/D変換器8は高速フーリエ解析装置(以下、FFT装置という)9に接続する。FFT装置9は雑音スペクトル差分装置10に接続し、雑音スペクトル差分装置10はオフセット補正装置11に接続する。オフセット補正装置11は周波数シフト解析装置12に接続し、周波数シフト解析装置12は風速換算装置13に接続する。
 また、図1において、太線で示しているように、光源1と光分配器2の間、光分配器2とパルス変調器3の間、光分配器2と光カプラ6の間、パルス変調器3と光サーキュレータ4の間、光サーキュレータ4と光アンテナ5の間、光サーキュレータ4と光カプラ6の間、光カプラ6と光受信機7の間は光ファイバケーブルのような光回線で接続する。
 一方、図1中、細線で示しているように、光受信機7とA/D変換器8の間、A/D変換器8とFFT装置9の間、FFT装置9と雑音スペクトル差分装置10の間、雑音スペクトル差分装置10とオフセット補正装置11の間、オフセット補正装置11と周波数シフト解析装置12の間、周波数シフト解析装置12と風速換算装置13の間は電気信号ケーブルのような電気回路で接続する。
 光源1は単一周波数からなる連続波光を送信する機能を有し、光分配器2は光源1からの光を2分し、一方をパルス変調器3に、他方を光カプラ6に送るための分配器である。パルス変調器3は、入力した光に対して、所定の周波数シフトを与え、さらにパルス変調をかける変調器である。光サーキュレータ4は、パルス変調器3からの光信号を光アンテナ5に送ると共に、光アンテナ5からの光信号を光カプラ6に送る機能を有している。光アンテナ5は、光サーキュレータ4からの光信号を大気中に送信し、また、大気中からの散乱光を受信光として光サーキュレータ4に送るための送受信アンテナである。光カプラ6は光分配器2と光サーキュレータ4からの光信号を合波し、光受信機7に送るための光合波器である。光受信機7は、光カプラ6からの光信号をヘテロダイン検波により電気信号に変換し、A/D変換器8に送るための受信機である。
 A/D変換器8は光受信機7の受信電気信号をアナログ/デジタル変換する回路であり、FFT装置9は、高速フーリエ変換により受信電気信号の周波数解析を行う装置である。雑音スペクトル差分装置10は、受信信号がない状態での雑音スペクトルを記録する雑音スペクトル記録手段と、受信信号のスペクトルから雑音スペクトルを差分する雑音スペクトル差分手段を構成する装置である。この雑音スペクトル差分装置10では、散乱光を受光しない状態の受信スペクトルを雑音スペクトルとして予め記録し、受光した状態の受信スペクトルから雑音スペクトルの差分をとるよう構成されている。オフセット補正装置11は、雑音スペクトルを差分した信号スペクトルに対して、受信信号の周波数ピーク位置から所定の値離れた周波数の雑音レベルに対するオフセット補正を行うオフセット補正手段を構成する装置である。このオフセット補正装置11は、雑音スペクトルを差分した信号スペクトルに対して、周波数ピーク位置から十分離れた周波数位置での雑音レベルがゼロとなるようオフセット補正を行うよう構成されている。周波数シフト解析装置12は、オフセット補正後の信号スペクトルに対して信号処理を行い、周波数シフトを測定する周波数シフト解析手段を構成する装置である。この周波数シフト解析装置12は、オフセット補正後の信号スペクトルに対してピーク検出処理や重心演算処理等を行い、周波数シフト量を測定するよう構成されている。風速換算装置13は、周波数シフト量に基づいて風速検出を行う風速換算手段を構成するもので、周波数シフト量から風速値に変換し、出力するよう構成されている。
 次に、実施の形態1の風計測コヒーレントライダ装置の動作について説明する。
 光源1から、単一周波数からなる連続波光を送信し、この光信号を光分配器2により分配した後、一方をパルス変調器3に、もう一方を光カプラ6に送信する。パルス変調器3では、入力した光に対して所定の周波数シフトを与え、さらに所定のパルス幅と繰り返し周期からなる変調信号によりパルス化する。このパルス化された光信号を光サーキュレータ4、光アンテナ5を介して大気中に送信する。大気中に送信された光信号は、大気中に浮遊するエアロゾル等の散乱体により散乱され、この散乱光を光アンテナ5により受信光として受信する。この際、エアロゾル等の散乱体が風に乗って移動しているため、受信光には風速に相当するドップラーシフト周波数が生じている。上記受信光を、光アンテナ5、光サーキュレータ4、を介して光カプラ6に送る。光カプラ6において、光分配器2からの連続波光と上記受信光を合波し、光受信機7に送る。
 ここで、パルス変調器3により入力した光に対して所定の周波数シフトを与え、さらに所定のパルス幅と繰り返し周期からなる変調信号によりパルス化する方法を示しているが、所定のパルス幅と繰り返し周期からなる変調信号によりパルス化し、光分配器2と光カプラ6の間に、所定の周波数シフトを与える音響光学素子等を挿入する構成としてもよい。
 光受信機7では、上記連続波光と上記受信光とをヘテロダイン検波して電気信号領域である受信信号に変換する。このとき、受信信号の周波数は、風速に相当するドップラー周波数シフトと同じ値となる。次に、A/D変換器8において、光受信機7からの受信信号のA/D変換を行い、このディジタル信号をFFT装置9に送る。FFT装置9では、受信ディジタル信号に対してFFTを行い、受信スペクトルを求める。
 雑音スペクトル差分装置10では、上述した光源1から連続波光を送信し、FFT装置9で受信スペクトルを求める過程において、例えばレーザ光を照射せずに、散乱光を受光しない状態での受信スペクトルを雑音スペクトルとして予め記録しておき、散乱光を受光した場合の受信スペクトルとの差分をdB領域にて実施し、信号スペクトルを求める。さらに強度レベルを線形領域に変換する。
 ここで、予め記録する雑音スペクトルは、レーザパルス1ショットに相当する時間分解能での測定でもよいし、n回積算して測定してもよい。
 図2および図3は、雑音スペクトルの差分からオフセット補正の場合の動作を示す説明図である。なお、図2における右端の図と図3における左端の図は線形変換後の同じ図を示している。
 図2における左端の図は、散乱光を受光しないときの受信スペクトル(雑音スペクトル)と散乱光を受光した場合の受信スペクトルの例を示す。また、図2および図3において、(a)は予め記録した雑音スペクトルに対して、受信スペクトルの雑音レベルがほぼ同じレベルである場合、(b)は予め記録した雑音スペクトルに対して、受信スペクトルの雑音レベルが大きい場合、(c)は予め記録した雑音スペクトルに対して、受信スペクトルの雑音レベルが小さい場合の例である。これらの変動は、温度変化や光源のパワー変化により生じる。
 雑音スペクトル差分装置10により、受信スペクトルから雑音スペクトルが差分されると、雑音スペクトルの“形状”が補正され、相対強度0dBにオフセットが重畳された信号スペクトルを得ることができる。これにより、信号スペクトルより雑音スペクトルの強度が高い場合、後述するオフセット補正装置11や周波数シフト解析装置12におけるピーク周波数位置の測定において、雑音スペクトルのピーク周波数を誤検知することを防ぐことができる。
 雑音スペクトル差分装置10で得られた線形領域での信号スペクトルはオフセットをもち、さらに、雑音スペクトルの強度レベルが予め記録した雑音スペクトルに対して変動した場合、前記オフセット量は変動する。オフセット補正装置11では、前記線形領域における信号スペクトルに対して、信号スペクトル形状の相関フィルタをかけておおよそのピーク周波数位置を測定し、その周波数位置から十分離れた周波数位置においてオフセット量を求め、このオフセット量を信号スペクトルから差分する。これにより、オフセット補正された信号スペクトルを得る。
 図4は、オフセット補正装置11におけるピーク周波数とオフセット量の導出原理とオフセット補正について示す図であり、(a),(b),(c)は図2および図3と同様の場合を示している。オフセット量の導出においては、先ず、信号スペクトル形状相当のフィルタを用いて相関値を算出する。このとき相関値が最大となる周波数をおおよそのピーク周波数とする。次に、このときの相関波形の周波数幅Δνより、周波数ピーク位置からΔν×n(nは1以上の整数)倍離れた周波数をオフセット値として参照し、補正する。
 ここで、周波数ピーク位置から十分に離れた周波数位置でのオフセット量の導出に関して、一点の時間平均値から求めてもよいし、一定の周波数幅の平均値より求めてもよい。また、周波数ピーク位置から十分に離れた周波数位置に関して、予め定めた周波数帯でオフセット量を算出してもよいし、測定された周波数ピーク位置から所定の周波数離れた位置でオフセット量を算出してもよい。また、測定された周波数ピーク位置に基づいて、高周波側に離れた周波数位置のオフセット量を測定するか、低周波側に離れた周波数位置のオフセット量を測定するかを選択する場合もある。
 次に、周波数シフト解析装置12では、上記オフセット補正後の信号スペクトルに対し、重心演算により信号ピーク周波数を求め、さらに風速換算装置13により、レーザ周波数と前記ピーク周波数から、風速値を算出する。
 ここで、重心演算を行う周波数範囲に関して、全周波数領域で実施してもよいし、信号処理負荷を軽減するため、オフセット補正装置11で求めた周波数ピーク位置周辺のみで実施してもよい。
 ここで、雑音スペクトルが周波数特性を持っており、雑音スペクトルを差分しない受信スペクトルを線形変換し、重心演算により周波数ピークを検出した場合、重心演算が雑音の影響を受け、周波数ピーク位置の真値に対してずれた位置で周波数ピークを検出してしまう。つまり、測定する周波数シフト量に誤差が生じ、正確な風速測定ができない。
 また、受信スペクトルから雑音スペクトルを差分して信号スペクトルを導出しても、雑音スペクトルの強度レベルに変動があった場合、線形領域における前記信号スペクトルにオフセットが生じる。ここで、信号ピーク位置の重心は一般的に、
Figure JPOXMLDOC01-appb-I000001
で定義される信号スペクトルの1次モーメントより導出する。ここで、fgは重心位置、fは周波数、xは各周波数における振幅である。したがって、信号スペクトルの振幅に対して前記オフセットが大きい場合には、重心位置が正確に導出することができない。つまり、測定する周波数シフト量に誤差が生じ、正確な風速測定ができない。
 これに対し、実施の形態1の風計測用コヒーレントライダ装置では、雑音スペクトルに周波数特性があり、かつ雑音スペクトルの強度レベルに変動があった場合でも、受信スペクトルより雑音スペクトルを差分することにより信号スペクトルを導出し、さらに線形領域における信号スペクトルに対してオフセット補正を行うことにより、重心演算により高精度に信号スペクトルの周波数ピーク位置を検出することができる。つまり、周波数シフト量を正確に測定でき、高精度な風速測定が可能となる。
 さらに、雑音スペクトルに周波数特性があり、かつ雑音スペクトルの強度レベルに変動があった場合でも、受信スペクトルより雑音スペクトルを差分することにより信号スペクトルを導出し、さらに線形領域における信号スペクトルに対してオフセット補正を行うことにより、
Figure JPOXMLDOC01-appb-I000002
で定義される2次モーメントより、信号スペクトルの周波数幅を正確に検出することができる。これにより、測定する風速場の乱れを推定することが可能となる。
 また、実施の形態1の風計測用コヒーレントライダ装置では、雑音レベルと信号レベル(受信信号の周波数ピークレベル)を測定毎に記録するため、雑音レベルが変動した場合でも、測定時の受信信号対雑音比(以下、受信SN比)を正確に導出することができる。一般的に、雑音が白色雑音である場合、受信SN比が低ければ、信号強度のばらつきが大きくなり、周波数ピーク位置の検出精度にもばらつきが生じる。そのため、受信SN比から検出した周波数ピーク位置(風速値)に対する信頼性や精度に関する指標を得ることが可能となる。
 以上説明したように、実施の形態1の風計測コヒーレントライダ装置によれば、単一周波数からなるレーザ光を大気中に対し送受し、ヘテロダイン検波により得られた受信信号より風速検出を行う風計測コヒーレントライダ装置において、受信信号がない状態での雑音スペクトルを記録する雑音スペクトル記録手段と、受信信号のスペクトルから雑音スペクトルを差分する雑音スペクトル差分手段と、雑音スペクトルを差分した信号スペクトルに対して、受信信号の周波数ピーク位置から所定の値離れた周波数の雑音レベルに対するオフセット補正を行うオフセット補正手段と、オフセット補正後の信号スペクトルに対して信号処理を行い、周波数シフトを測定する周波数シフト解析手段と、周波数シフト量に基づいて風速検出を行う風速換算手段とを備えたので、雑音スペクトルのレベル変動が生じた場合でも高精度に風速測定を行うことができる。
 なお、本願発明はその発明の範囲内において、実施の形態の任意の構成要素の変形、もしくは実施の形態の任意の構成要素の省略が可能である。
 この発明に係る風計測コヒーレントライダ装置は、受信信号がない状態での雑音スペクトルを記録して、この雑音スペクトルを受信信号のスペクトルから差分し、かつ、この信号スペクトルに対して、周波数ピーク位置から所定の値離れた周波数の雑音レベルに対するオフセット補正を行うように構成し、雑音スペクトルのレベル変動が生じた場合でも高精度に風速測定を行うことができるので、大気中の風速を測定する風計測コヒーレントライダ装置として用いるのに適している。
 1 光源、2 光分配器、3 パルス変調器、4 光サーキュレータ、5 光アンテナ、6 光カプラ、7 光受信機、8 A/D変換器、9 FFT装置、10 雑音スペクトル差分装置、11 オフセット補正装置、12 周波数シフト解析装置、13 風速換算装置。

Claims (1)

  1.  単一周波数からなるレーザ光を大気中に対し送受し、ヘテロダイン検波により得られた受信信号より風速検出を行う風計測コヒーレントライダ装置において、
     前記受信信号がない状態での雑音スペクトルを記録する雑音スペクトル記録手段と、
     前記受信信号のスペクトルから前記雑音スペクトルを差分する雑音スペクトル差分手段と、
     前記雑音スペクトルを差分した信号スペクトルに対して、前記受信信号の周波数ピーク位置から所定の値離れた周波数の雑音レベルに対するオフセット補正を行うオフセット補正手段と、
     前記オフセット補正後の信号スペクトルに対して信号処理を行い、周波数シフトを測定する周波数シフト解析手段と、
     前記周波数シフト量に基づいて風速検出を行う風速換算手段とを備えたことを特徴とする風計測コヒーレントライダ装置。
PCT/JP2013/060483 2012-06-25 2013-04-05 風計測コヒーレントライダ装置 WO2014002564A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/391,252 US9599714B2 (en) 2012-06-25 2013-04-05 Wind measurement coherent lidar
CN201380027771.3A CN104335068B (zh) 2012-06-25 2013-04-05 风测量相干雷达装置
EP13810413.8A EP2866050B1 (en) 2012-06-25 2013-04-05 Wind measurement coherent lidar device
JP2014522455A JP5868504B2 (ja) 2012-06-25 2013-04-05 風計測コヒーレントライダ装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-142086 2012-06-25
JP2012142086 2012-06-25

Publications (1)

Publication Number Publication Date
WO2014002564A1 true WO2014002564A1 (ja) 2014-01-03

Family

ID=49782742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/060483 WO2014002564A1 (ja) 2012-06-25 2013-04-05 風計測コヒーレントライダ装置

Country Status (5)

Country Link
US (1) US9599714B2 (ja)
EP (1) EP2866050B1 (ja)
JP (1) JP5868504B2 (ja)
CN (1) CN104335068B (ja)
WO (1) WO2014002564A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020026920A1 (ja) * 2018-08-01 2020-02-06 三菱電機株式会社 レーザレーダ装置
WO2020246269A1 (ja) * 2019-06-06 2020-12-10 三菱電機株式会社 コヒーレントライダ装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3008803B1 (fr) * 2013-07-17 2016-11-11 Thales Sa Procede et dispositif de mesure de la vitesse d'un aeronef par effet doppler
US11112502B2 (en) * 2016-04-05 2021-09-07 Mitsubishi Electric Corporation Laser radar system
CN108594256B (zh) * 2018-04-16 2021-10-12 夏和娣 一种基于脉冲编码技术的相干激光雷达
CN109342763A (zh) * 2018-10-22 2019-02-15 国家海洋局第海洋研究所 一种基于三轴激光的全光纤风速测量系统
US11940565B2 (en) 2019-08-20 2024-03-26 Luminar Technologies, Inc. Coherent pulsed lidar system
US11556000B1 (en) 2019-08-22 2023-01-17 Red Creamery Llc Distally-actuated scanning mirror
US20220043115A1 (en) 2020-08-10 2022-02-10 Luminar, Llc Master-oscillator power-amplifier (mopa) light source with optical isolator
CN113176581B (zh) * 2021-03-15 2021-12-31 北京华信科创科技有限公司 一种多普勒脉冲激光测风装置、方法及系统
CN115951328B (zh) * 2023-03-10 2023-05-16 中国人民解放军国防科技大学 基于概率密度约束的测风激光雷达风速估计方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001174216A (ja) * 1999-12-20 2001-06-29 Ricoh Co Ltd 走査位置測定装置
JP2001208836A (ja) * 2000-01-28 2001-08-03 Mazda Motor Corp 物体位置検出装置
WO2006030502A1 (ja) * 2004-09-15 2006-03-23 Mitsubishi Denki Kabushiki Kaisha 光波レーダ装置
JP2009162678A (ja) 2008-01-09 2009-07-23 Mitsubishi Electric Corp レーザレーダ装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61205878A (ja) * 1985-03-08 1986-09-12 Nec Corp レ−ダ−信号処理装置
JPH10171497A (ja) * 1996-12-12 1998-06-26 Oki Electric Ind Co Ltd 背景雑音除去装置
US6577265B2 (en) * 2001-01-10 2003-06-10 University Corporation For Atmospheric Research Multi-stage processing for efficient and accurate spectral moment estimation
GB0411097D0 (en) 2004-05-19 2004-06-23 Qinetiq Ltd Laser radar device and method
KR100716984B1 (ko) 2004-10-26 2007-05-14 삼성전자주식회사 복수 채널 오디오 신호의 잡음 제거 방법 및 장치
JP2006153878A (ja) * 2005-11-25 2006-06-15 Omron Corp 侵入物検知装置および電波反射器
CN101138507B (zh) 2006-09-05 2010-05-12 深圳迈瑞生物医疗电子股份有限公司 多普勒血流声音信号的处理方法及装置
JP5061623B2 (ja) * 2007-01-30 2012-10-31 株式会社デンソー レーダ装置
JP4356758B2 (ja) * 2007-03-20 2009-11-04 株式会社デンソー Fmcwレーダ
JP5627176B2 (ja) * 2008-12-01 2014-11-19 三菱電機株式会社 光波レーダ装置
JP5637756B2 (ja) 2010-07-21 2014-12-10 日本電産エレシス株式会社 レーダ装置、位置速度検出方法、及びプログラム
CN102323574B (zh) * 2011-06-25 2013-03-06 中国航天科工集团第二研究院二十三所 一种风廓线雷达信号处理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001174216A (ja) * 1999-12-20 2001-06-29 Ricoh Co Ltd 走査位置測定装置
JP2001208836A (ja) * 2000-01-28 2001-08-03 Mazda Motor Corp 物体位置検出装置
WO2006030502A1 (ja) * 2004-09-15 2006-03-23 Mitsubishi Denki Kabushiki Kaisha 光波レーダ装置
JP2009162678A (ja) 2008-01-09 2009-07-23 Mitsubishi Electric Corp レーザレーダ装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020026920A1 (ja) * 2018-08-01 2020-02-06 三菱電機株式会社 レーザレーダ装置
JPWO2020026920A1 (ja) * 2018-08-01 2020-10-22 三菱電機株式会社 レーザレーダ装置
WO2020246269A1 (ja) * 2019-06-06 2020-12-10 三菱電機株式会社 コヒーレントライダ装置

Also Published As

Publication number Publication date
US20150331110A1 (en) 2015-11-19
EP2866050A4 (en) 2015-12-09
EP2866050B1 (en) 2018-08-01
EP2866050A1 (en) 2015-04-29
JPWO2014002564A1 (ja) 2016-05-30
CN104335068B (zh) 2016-04-06
US9599714B2 (en) 2017-03-21
JP5868504B2 (ja) 2016-02-24
CN104335068A (zh) 2015-02-04

Similar Documents

Publication Publication Date Title
JP5868504B2 (ja) 風計測コヒーレントライダ装置
JP6177338B2 (ja) 風計測ライダ装置
JP7074311B2 (ja) 光学的距離測定装置および測定方法
CN106052842B (zh) 可消衰落噪声的分布式光纤振动传感系统及其解调方法
EP2198323B9 (en) Time delay estimation
EP2966426B1 (en) Optical fiber temperature distribution measuring device
JP6893137B2 (ja) 光ファイバ振動検知センサおよびその方法
US20230073827A1 (en) Signal processing methods for an optical detection system
KR20120096941A (ko) 고정밀 거리 측정 장치
EP3452849B1 (en) Phase noise compensation system, and method
JP7010147B2 (ja) 振動分布測定システム、振動波形解析方法、振動波形解析装置、および解析プログラム
JPWO2018070442A1 (ja) 光角度変調測定装置及び測定方法
US20220149934A1 (en) Device for measuring optical frequency reflection and measurement method thereof
US9025138B2 (en) Method for suppressing an echo signal
JP2007187473A (ja) 歪み測定装置、方法、プログラムおよび記録媒体
EP2972555B1 (en) System and method for increasing coherence length in lidar systems
JP2014174069A (ja) レーザ測距装置
WO2022259437A1 (ja) 振動測定器及び振動測定方法
CN114720998A (zh) 基于模态分解的非接触式动态位移测量系统
KR101359344B1 (ko) Fmcw 기반 거리 측정 장치
JP2008051523A (ja) レーダ装置および距離測定方法
KR101105033B1 (ko) 확장형 칼만필터를 이용한 헤테로다인 레이저 간섭계 오차 보정 장치
JP7298471B2 (ja) 光コヒーレントセンサ及び光コヒーレントセンシング方法
JP2010276372A (ja) Fm−cwレーダ装置および数値補正方法
JP7380382B2 (ja) 測距計

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380027771.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13810413

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014522455

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14391252

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013810413

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE