WO2014001733A1 - Procédé de diagnostic d'un système de stockage d'un gaz stocké par sorption sur un composé - Google Patents

Procédé de diagnostic d'un système de stockage d'un gaz stocké par sorption sur un composé Download PDF

Info

Publication number
WO2014001733A1
WO2014001733A1 PCT/FR2013/051521 FR2013051521W WO2014001733A1 WO 2014001733 A1 WO2014001733 A1 WO 2014001733A1 FR 2013051521 W FR2013051521 W FR 2013051521W WO 2014001733 A1 WO2014001733 A1 WO 2014001733A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
temperature
cell
compound
control device
Prior art date
Application number
PCT/FR2013/051521
Other languages
English (en)
Inventor
Jules-Joseph Van Schaftingen
Francois Dougnier
Dominique Madoux
Jean-Claude Habumuremyi
Original Assignee
Inergy Automotive Systems Research (Société Anonyme)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inergy Automotive Systems Research (Société Anonyme) filed Critical Inergy Automotive Systems Research (Société Anonyme)
Priority to US14/411,659 priority Critical patent/US20150160078A1/en
Priority to CN201380042415.9A priority patent/CN104540781A/zh
Priority to EP13744658.9A priority patent/EP2867168A1/fr
Publication of WO2014001733A1 publication Critical patent/WO2014001733A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/046Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium containing halogens, e.g. halides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K17/00Measuring quantity of heat
    • G01K17/06Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/005Electrical control of exhaust gas treating apparatus using models instead of sensors to determine operating characteristics of exhaust systems, e.g. calculating catalyst temperature instead of measuring it directly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/005Use of gas-solvents or gas-sorbents in vessels for hydrogen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/10Testing internal-combustion engines by monitoring exhaust gases or combustion flame
    • G01M15/102Testing internal-combustion engines by monitoring exhaust gases or combustion flame by monitoring exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/18Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an adsorber or absorber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/22Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a condensation chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/06Adding substances to exhaust gases the substance being in the gaseous form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/10Adding substances to exhaust gases the substance being heated, e.g. by heating tank or supply line of the added substance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/12Adding substances to exhaust gases the substance being in solid form, e.g. pellets or powder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1406Storage means for substances, e.g. tanks or reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1406Storage means for substances, e.g. tanks or reservoirs
    • F01N2610/142Controlling the filling of the tank
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/18Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
    • F01N2900/1806Properties of reducing agent or dosing system
    • F01N2900/1811Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention relates to a method for diagnosing a system for storing a gas, preferably mounted on board a motor vehicle.
  • the invention applies in particular, but not exclusively, to the diagnosis of an ammonia storage system.
  • the invention also applies, but not exclusively, to the diagnosis of a hydrogen storage system.
  • ammonia is, for example, intended to be injected into the exhaust line of a vehicle to reduce the amount of nitrogen oxides (NOx) in the exhaust gas.
  • NOx nitrogen oxides
  • the present invention applies to any other type of gas storage system mounted on board a vehicle and for which it is desired to obtain the pressure of the gas in the system and / or to obtain a diagnosis of the state operation of such a system. More generally, the invention applies to any type of gas (ammonia, hydrogen, etc.) that can be stored by sorption on a compound.
  • SCR selective catalytic reduction
  • NH3 ammonia
  • a precursor usually an aqueous solution of urea.
  • Embedded systems for storing, dispensing and dosing a standard urea solution such as that sold under the name Adblue®, a eutectic solution containing 32.5% urea in water have thus been placed on the market.
  • the storage system includes a reservoir designed to enclose the salt and a heater configured to heat the salt.
  • a heater configured to heat the salt.
  • An ammonia pressure is generated.
  • it is sought to obtain the ammonia pressure released to, for example, verify that it corresponds to a requested ammonia pressure and, where appropriate, perform corrective actions. It is also intended to detect the overheating of the salt heating device. This is all the more important if the reservoir (formed by one or more storage elements) is plastic material whose mechanical properties are quite sensitive to temperature.
  • a pressure sensor or a pressure regulator is used to measure the released ammonia pressure. But these sensor and pressure regulator are expensive and bulky (compared to a temperature sensor). Generally, to detect overheating of the salt heater, the system uses a temperature sensor. Thus, overheating is detected in a simple and effective manner. However, in certain cases it is desirable to have other diagnostic information available, in particular to ensure safe operation of the storage system and effective reduction of nitrogen oxides in the exhaust gas.
  • a method for diagnosing a system for storing a gas the gas being stored by sorption on a compound, the system being mounted on board a vehicle and comprising a reservoir capable of containing the compound and a control device adapted to control a heating device to raise the temperature of the compound so as to release the gas.
  • the control device is such that it obtains a set of information including at least one temperature measurement of the system, and then performs an estimation of the gas pressure in the system using a predetermined model of gas desorption kinetics.
  • the present invention proposes to use one or more temperature measurement (s) of the storage system to deduce the gas pressure in the system.
  • the temperature measurement (s) are obtained by means of one or more temperature sensors already present in the storage system.
  • the set of information that is used to estimate the pressure prevailing inside the storage system comprises one or more temperature measurement (s) performed at a current time (ie measurements instantaneous) and a history of temperature measurements, that is to say a set of temperature measurements made at times preceding the current time.
  • this set of information may comprise a functional history of these measurements.
  • such functional (function function) can be an integral of the type:
  • Tl is the temperature measurement
  • tl is the temperature measurement
  • a and B are constants
  • represents a time variable
  • the desorption kinetics model for a given gas stored by sorption on a given compound is usually known. If this model is not known, it can be obtained in a simple manner, for example by measuring the desorption curve of the gas during operation of the heater. With the help of the desorption kinetics model, it is possible to approach in a particularly precise manner the pressure actually prevailing in the storage system at the instant of the measurement of the temperature.
  • the method according to the invention thus makes it possible to calculate the pressure of the gas in the system in a very precise manner, without the use of a pressure sensor or a pressure regulator, which leads to a significant improvement in the assembly of the pressure system. storage and cost reduction of such a system.
  • control device is embedded in the vehicle, for example, in the form of a microprocessor.
  • control device is, for example, a computer (or server) located outside the vehicle, for example, in a laboratory.
  • the storage system may, for example, during a test phase, be mounted on a test bench.
  • the computer acting as a control device
  • the gas desorption kinetics model is, for example, stored in an accessible memory (ie readable) by the control device.
  • the gas may be of any type, preferably ammonia or hydrogen.
  • control device is configured to determine operating conditions of the system from the set of information, and to select the model used from among a plurality of predetermined models of gas desorption kinetics, as a function of operating conditions determined.
  • the control device selects the gas desorption kinetics model most suited to the operating conditions of the system.
  • the different models of gas desorption kinetics are, for example, stored in an accessible memory (i.e. readable) by the control device.
  • the set of information comprises, in addition to the temperature measurement (s), information (or history) relating to the power dissipated by the heating device, information (or a history) relating to atmospheric pressure, or information (or history) relating to the ambient temperature outside the vehicle.
  • This set of information is, for example, stored in an accessible memory (i.e. readable) by the control device.
  • the model used is a Clausius-Clapeyron relationship.
  • the model used is a pressure / temperature relationship governing gas sorption on the compound.
  • the Clausius-Clapeyron relationship used in the process according to the invention may be a theoretical (curve, table, formula, etc.) relationship, derived from the literature, preferably experimentally validated. Alternatively, this relation can be generated experimentally on models and / or prototypes.
  • control device is configured to detect at least one information concerning the operating state of the system by using the set of information and at least one of the following models:
  • a predetermined model of reservoir operation a predetermined model of operation of the heater.
  • the operating model of a given reservoir and the operating model of a given heating device are usually known. These models are, for example, theoretical curves, mappings or envelopes obtained experimentally for different operating states representative of both the operation of the tank and the heating device. In a preferred embodiment, all or part of the information in the set of information is compared to predefined threshold ranges to diagnose the operating state of the storage system.
  • the information concerning the operating state of the system may for example be a detection of the absence of temperature rise with respect to a high heating power setpoint.
  • the information concerning the operating state of the system may for example be a detection of an abnormally high temperature, that is to say a temperature which may be too critical for the long-term holding of the reservoir.
  • the information concerning the state of operation of the system may for example be a level of gas charge of the tank.
  • a list of the various possible operating states is pre-established and stored in an accessible memory (i.e. readable) by the control device.
  • said reservoir comprises a storage cell provided with at least one of the following sensors:
  • the sensor (s) can (be) mounted inside or outside (for example on the wall) of the cell. Some sensors can be mounted inside the cell and other sensors on the outside of it. The sensors are distributed on and / or in the cell depending in particular on the geometry of the cell and the diagnostic information that is desired.
  • the storage cell comprises a wall in which is formed at least one housing, each housing extending towards the inside of the cell and being configured to receive the sensor (s).
  • the same housing can contain one or more sensor (s).
  • the cell is made of plastic.
  • the cell is covered with at least one of the following materials:
  • the cell is covered with an additional heating device.
  • the cell comprises a thermal conductor network.
  • the reservoir comprises at least one other storage cell.
  • the reservoir may consist of a group of cells.
  • the process according to the invention is particularly well suited to the case where the reservoir comprises a compound, preferably a solid, on which a gas (ammonia, hydrogen, etc.) is bound by sorption, preferably by chemisorption.
  • a gas ammonia, hydrogen, etc.
  • It is usually an alkali metal, alkaline earth metal or transition metal chloride. It can be in the powdery state or in the form of agglomerates.
  • This compound is preferably an alkaline earth metal chloride, and very particularly preferably a chloride of Mg, Ba or Sr.
  • FIG. 1 illustrates the structural architecture of an SCR system comprising a gas storage system, according to a particular embodiment of the invention
  • FIG. 2 presents a particular embodiment of a diagnostic algorithm of the gas storage system of FIG. 1;
  • FIGS 3 to 17 illustrate examples of cells included in the gas storage system of Figure 1.
  • the gas sorbed on the compound is ammonia
  • the gas may be of any other type, including hydrogen.
  • the engine 1 of the vehicle is controlled by an electronic computer 2 (sometimes called ECU or Engine Control Unit).
  • the engine 1 cooperates with a system SCR 3.
  • the gases 11 are directed to an ammonia injection module 31, in which the ammonia 12 is mixed with the exhaust gas 11.
  • the ammonia / exhaust gas mixture 13 then passes through a catalyst SCR 32 which allows the reduction of nitrogen oxides (NOx) by ammonia.
  • the exhausted exhaust gas 14 is then directed to the exhaust outlet.
  • NOx nitrogen oxides
  • the SCR system 3 comprises an ammonia storage system.
  • the storage system 5 comprises a reservoir 54 in which is stored a compound 52, for example a solid (and preferably a salt).
  • the ammonia is stored by sorption on the solid 52.
  • the storage system 5 also comprises a control device 4 in charge of controlling a heater 53 (also called a driver) to heat the solid 52 so as to release the ammonia .
  • the heater 53 may be in the form of an electrical resistor.
  • the reservoir 54 is connected to a dosing module 51 ("dosing module") via a distribution conduit (referenced 903 in FIG. 9).
  • the metering module 51 is controlled by the control device 4.
  • the control device 4 is distinct from the electronic computer 2.
  • control device 4 can be integrated in the electronic computer 2.
  • control device 4 can be integrated in the control unit of the fuel system (sometimes called FSCU or Fuel System Control Unit).
  • the control device 4 according to the invention is able to estimate the ammonia pressure in the storage system 5. If a difference is found between the estimated pressure and a set pressure supplied by the electronic computer 2, the control device 4 can adjust the heating power of the heater 53 to compensate for this difference.
  • the tank 54 is equipped with a temperature measuring device 6.
  • FIGS. 1 and 2 A particular embodiment of a diagnostic algorithm, as implemented within the control device 4, will now be described with reference to FIGS. 1 and 2.
  • control device 4 obtains a set of information.
  • the temperature measuring device 6 may comprise a temperature sensor configured to measure the temperature at a particular point in the tank.
  • the control device 4 can receive an instantaneous temperature measurement from the temperature sensor.
  • the temperature measuring device 6 may comprise a plurality of temperature sensors arranged at several points of the tank.
  • the control device 4 receives a set of temperature measurements.
  • step E21 the control device 4 reads (and in this sense obtains) a history of temperature measurements stored, for example, in a memory.
  • control device 4 can also obtain temperature and ambient pressure information. These may include instantaneous temperature and pressure measurements, historical measurements of these measurements, functional (function function) or a combination of these measurement histories. For example, the control device 4 can obtain the average temperature measured on a sensor during the previous five minutes; or an average temperature calculated by weighting more recent times than times further back in time. From such information, the control device 4 can determine the operating conditions in which the storage system will evolve.
  • control device 4 is able to use a predetermined model of gas desorption kinetics.
  • This mathematical or experimental model can be, for example, stored in a memory.
  • the control device 4 is able to manage several models of gas desorption kinetics.
  • the desorption kinetics of a given gas may vary depending on environmental parameters such as, for example, the pressure and the ambient temperature, the humidity level, or the aging of the reservoir.
  • the desorption kinetics may also depend on the gas state of the system.
  • each model can be associated with a pressure / ambient temperature torque.
  • the control device 4 can select among the different predetermined models of gas desorption kinetics that which is associated with the temperature and ambient pressure measurements obtained in the previous step E21. In this way, we always make sure we have the best gas pressure estimate in the system.
  • control device 4 can use the set of information obtained in the previous step E21 (Instantaneous, historical, functional measurements, ...) in combination with predetermined models of operation of the reservoir 54 and the heater 53 to check the plausibility and criticality of the measured parameters, as well as the operating state of the system.
  • the control device 4 can detect a possible component malfunction (tank, driver, ...) or a possible risk, for example, an abnormally high temperature may degrade the integrity of the tank.
  • control device 4 estimates the pressure of the gas in the system on the basis of the set of information obtained and a predetermined (or preselected) model of gas desorption kinetics. Then, this pressure estimate can be stored in a memory, so as to be able to constitute a history of pressure estimates.
  • the model is a curve connecting the pressure of the gas to the temperature of the compound.
  • a curve can be deduced from the Clausius-Clapeyron relation.
  • the model comprises a table connecting a functional value to a pressure value.
  • this functional value can be obtained by calculating an integral function of the set of instantaneous measurements obtained in step E21.
  • the control device 4 can determine the difference between the estimated pressure and a setpoint pressure supplied, for example, by the electronic computer 2, and if necessary, adjust the heating power of the heater 53 to compensate for this difference. For example, if the pressure estimated by the control device 4 is greater than the set pressure, then the control device 4 generates a signal 42 such that it reduces the power supply of the heater 53.
  • the reservoir 54 comprises a plurality of storage cells communicating with one another and with at least one orifice communicating with the dosing module 51 via a distribution conduit (referenced 903 in FIG. 9).
  • a distribution conduit referenced 903 in FIG. 9.
  • reservoir is meant a container or enclosure defining at least one internal volume serving as a container for the compound.
  • the reservoir comprises at least one wall delimiting cells, ie cells. cavities capable of containing said compound. These cavities can have a shape any. Preferably, they all have the same shape. The shape and size of the cells are preferably adapted to fit at least a portion of the outer surface of the agglomerates.
  • the cells are made of plastic.
  • Thermoplastic materials give good results in the context of the invention, in particular because of the advantages of weight, mechanical and chemical resistance and easier implementation (which makes it possible to obtain complex shapes).
  • polyolefins polyvinyl halides
  • thermoplastic polyesters polyketones
  • polyamides polyphthalamides
  • a mixture of polymers or copolymers may also be used, as well as a mixture of polymeric materials with inorganic, organic and / or natural fillers such as, for example, but not limited to: carbon, salts and other inorganic derivatives, natural fibers, glass fibers and polymeric fibers.
  • multilayer structures consisting of stacked and solid layers comprising at least one of the polymers or copolymers described above.
  • the shape of the cells (all or part of them) and / or their embodiment and / or assembly is such that at least one active element of the system (fulfilling a useful function such as heating, cooling or mechanical reinforcement) can be inserted into or between them.
  • a heating element or a phase change material (MCP, or material storing or returning heat by changing phase according to the surrounding temperature) is advantageously inserted in or between the cells.
  • heating elements or phase change materials makes it possible to stabilize the temperature of the reagent contained in the cell and thus ensure a stable production of gas.
  • the use of differentiated heating between cells and / or different relative amounts of phase change material between cells allows to deplete or enrich some gas cells; for example, during a shutdown of the system (following for example a stopping of the vehicle), the gas load (ammonia for example) in the cells cooling faster (containing for example little or no phase change material) will increase at the expense of cooling more cells slowly (eg containing a lot of phase-change material). This can be particularly advantageous for ensuring a rapid release of the gas after stopping the vehicle, for example by activating at this time preferably the gas-rich cells.
  • the use of a temperature sensor per cell or group of cells makes it possible to drive each cell or cell group in temperature and therefore in pressure independently .
  • This temperature control of the different cells or group of cells makes it possible to ensure a transfer of gas from one cell or group of cells to another cell or another group of cells.
  • FIGS 3 to 17 schematically illustrate examples of cells each provided with a temperature measuring device according to a particular embodiment of the invention.
  • FIG. 3 illustrates a configuration in which the heating device 53 is placed in a housing, hereinafter referred to as a heating chimney, situated in the center of the cell 301.
  • the measuring device of FIG. temperature according to the invention comprises a single temperature sensor 302.
  • the temperature sensor 302 is mounted on the outer wall of the cell 301.
  • the temperature sensor can be mounted by any conventional mechanical means. In particular, clipping or gluing on the wall are well suited for a plastic cell.
  • the driver 53 is activated in order to desorb the gas (for example, ammonia, hydrogen, etc.) (stored by sorption on a compound), an increase in temperature is observed after a certain time.
  • the gas for example, ammonia, hydrogen, etc.
  • the fact of observing this increase in temperature makes it possible to ensure the plausibility of the signal of the sensor 302 and the good operation of the driver 53.
  • the plausibility of the signal of the sensor 302 and the good functioning of the driver 53 are determined using a predetermined model of operation of the sensor and a predetermined model of operation of the driver 53.
  • the control device continuously monitors the attainment of a predetermined temperature threshold (ie predetermined model of operation of the reservoir, this model may comprise several predetermined thresholds or temperature ranges). If the control device detects that the measured temperature is above this threshold temperature, so it cuts the heat. This prevents overheating of the SCR system.
  • a predetermined temperature threshold ie predetermined model of operation of the reservoir, this model may comprise several predetermined thresholds or temperature ranges.
  • the sensor signal 302 can regulate the heating so as to stabilize the pressure; an increase in gas consumption results in a drop in temperature which can be compensated by an appropriate action of the control device on the driver 53; conversely, a reduction in consumption results in an increase in temperature which can also be compensated.
  • the temperature sensor 302 may be replaced by a heat flow sensor.
  • FIG. 4 illustrates a configuration in which a temperature sensor 402 is mounted on the outer wall of the cell 401 and in the vicinity of the heating stack.
  • This arrangement is particularly advantageous for detecting any risk of overheating of the chimney to the right of the heating element.
  • a particularly interesting case is constituted by a temperature sensor 402 at the same time playing the role of driver PTC (Positive Thermal Coefficient) whose resistance increases with temperature thus ensuring both the measurement and the heating function.
  • PTC Physical Thermal Coefficient
  • FIG. 5 illustrates a configuration in which a temperature sensor 502 is mounted on the inner wall of the cell 501 and in the vicinity of the heating stack.
  • FIG. 6 illustrates a configuration in which a temperature sensor 602 extends inside the cell 601. This configuration has the advantage of allowing a more precise measurement of the temperature of the compound, and thus of obtaining a released pressure estimate more accurate.
  • the sensor may for example be directly placed in the compound during its placement in the cell.
  • FIG. 7 illustrates a configuration in which the temperature measuring device according to the invention comprises two temperature sensors 702 and 703.
  • the temperature sensor 702 is mounted on the outer wall of the cell 701 and the temperature sensor 703 is extends inside the cell 701.
  • Figure 8 illustrates a configuration in which the cell 801 comprises two housings 804 and 805 (or transverse chimneys) formed in its wall.
  • the housings 804 and 805 extend towards the heating stack so as to plunge into the compound.
  • the temperature measuring device according to the invention comprises two temperature sensors 802 and 803.
  • the housing 804 is configured to receive the temperature sensor 802, and the housing 805 is configured to receive the temperature sensor 803.
  • FIGS. 7 and 8 each implement a combination of two temperature sensors.
  • the combined use of two temperature sensors advantageously allows the control device to obtain temperature measurements from which it can estimate a heat flow. Such a heat flow if measured at specific points (for example at the periphery of the cell) makes it possible to evaluate the energy consumption.
  • one of the two temperature sensors may be replaced by a heat flow sensor.
  • the temperature measuring device may comprise a temperature sensor 902 mounted in the distribution duct 903 connecting the cell 901 to the dosing module (referenced 51 in the FIG. 1).
  • FIG. 10 illustrates an alternative embodiment of the configuration described above in relation with FIG. 3.
  • a layer 303 of thermally insulating material For example, sheets made of Neoprene material give good results.
  • the use of this layer 303 of insulating material advantageously makes it possible to avoid heat losses at the level of alveoli. This also makes it possible to reduce the disturbances on the temperature sensor 302, in particular the influence of the environment of the cells.
  • FIG. 11 illustrates another alternative embodiment of the configuration described above in relation to FIG. 3.
  • the quasi-totality of the outer wall of the cell 301 and the temperature sensor 302 (which is mounted on the outer wall of the cell) are covered with a layer 304 of phase change material (PCM).
  • the phase change temperature of the MCP material corresponds to the desorption temperature of the compound (i.e. salt) generating the pressure necessary for the exhaust of the vehicle (typically 2.8 bar absolute).
  • the use of this layer 304 of MCP material advantageously makes it possible to stabilize the temperature of the compound, and the pressure of the gas, for example around the desired value for this pressure.
  • the temperature rise curve has a plateau at the phase change temperature of the MCP, which makes it possible to easily diagnose the attainment of the desired temperature.
  • the temperature of the compound tends to fall and the MCP material then restores heat to the cell, thus stabilizing the temperature and pressure.
  • the MCP material stores heat.
  • the cells of Figures 4 to 9 may each be covered with a layer of insulating material and / or a layer of MCP material.
  • the temperature sensor 302 of FIG. 11 can be replaced by a heat flux sensor 305.
  • the heat flux sensor 305 makes it possible to measure the flux between the layer 304 of MCP material and the cell 301 and thus to determine to what extent the control device must compensate for energy losses.
  • the layer 304 of MCP material of FIG. 11 may itself be covered with a layer 306 of thermally insulating material. This makes it possible to further improve the performance of the by the reduced effect of environmental conditions. It goes without saying that a variant with flux sensor can also be considered.
  • the temperature sensor 302 may be placed between the layer 304 of MCP material and the layer 306 of insulating material.
  • FIG. 14 illustrates another alternative embodiment of the configuration described above in relation to FIG. 3.
  • a first P1 portion of cell is left bare (ie non-insulated) and a second portion P2 of cell is covered with a layer 307 of thermally insulating material.
  • a layer 307 of thermally insulating material allows during the shutdown of the system to cool more quickly the PI portion, and thus to allow a transfer of gas from the still hot portion P2 to the already colder PI portion.
  • FIG. 15 illustrates an alternative embodiment of the configuration described above in relation with FIG. 14.
  • a differential heating device 400 is placed in the heating stack.
  • the heating power can be concentrated in the zone containing the highest concentration of gas at startup, for example at the uninsulated PI portion.
  • This differential heating can for example be obtained simply by arranging a heating wire in the heating stack, for example in the form of a helicoid and by varying the pitch of this helicoid (for example, not smaller in the PI portion to be heated quickly ).
  • FIG. 16 illustrates an alternative embodiment of the configuration described above in relation to FIG. 15.
  • the cell comprises inside it a network of thermal conductors 600.
  • This network of thermal conductors 600 makes it possible to ensure a very fast heat transfer in the zone containing the highest concentration of gas at startup, for example at the level of the uninsulated PI portion.
  • the thermal conductors 600 are, for example, perforated discs or grids made of a good thermal conductor. These thermal conductors 600 are placed on or in the compound, such that they allow rapid radial heat transfer between the heating channel (i.e., heating stack) and the periphery of the cell at the portion P1.
  • FIG. 17 illustrates an alternative embodiment of the configuration described above in relation to FIG. 16.
  • the portion P1 of the cell is covered with an additional heating device 700.
  • the additional heating device 700 is mounted on the outer wall of the cell.
  • this additional heating device 700 can be mounted inside the cell.
  • the additional heating device 700 may be controlled independently or not from the other heating devices of the cell.
  • differential system presented above in connection with Figures 15 to 17 may be implemented at a group of cells, or between cell group.
  • This differential system can be optimized according to the temperature and heat transfer conditions prevailing in the vehicle environment. For example, uninsulated areas will be placed in rapidly cooling locations, while isolated areas will be placed in hot spots for a longer time when the vehicle is shut down.
  • control device is able to implement different heating strategies, and in particular the following:
  • a heating strategy applied to cells as described above consisting in maintaining the heating in certain areas of the cells or in certain cells or in certain groups of cells so as to transfer the gas to the zones cooling more rapidly;
  • a heating strategy generating, during driving or during certain particular taxiing phases during which the consumption of gas is low, a transfer of gas to particular areas of the entire storage system, for example heated in certain groups of cells and stopping the heating in others;
  • a PWM type signal whose periodicity is adapted to the characteristic thermal transfer time corresponding to the geometry and properties of the materials is particularly advantageous;
  • This state of charge in gas is derived from the relationship between the signals of the temperature sensor (s) and the time profile of the control or the heating commands of these cells: the desorption of the gas being endothermic, the heating pulsations are will have little effect on the outer wall and a temperature sensor placed close to it if the compound (ie salt) is heavily loaded;
  • a heating strategy based on a measurement of the heat flow in the vicinity of the outer wall of the cells or group of cells or of the storage system or in the vicinity of this wall;
  • a heating strategy based on a measurement of the heat flow and the temperature at the outer wall of the cells or group of cells or storage system
  • a heating strategy based on a measurement of the temperature located in a pocket (or housing) dug at any point in the wall of the cells or group of cells or of the plastic storage system and giving access to the temperature of the compound at somewhere.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

Il est proposé un procédé de diagnostic d'un système de stockage d'un gaz, le gaz étant stocké par sorption sur un composé, le système étant monté à bord d'un véhicule et comprenant un réservoir capable de contenir le composé et un dispositif de contrôle apte à commander un dispositif de chauffage pour faire monter en température le composé de manière à libérer le gaz. Le dispositif de contrôle est tel qu'il obtient (E21) un ensemble d'informations comprenant au moins une mesure de température du système, puis effectue une estimation (E22) de la pression du gaz dans le système en utilisant un modèle prédéterminé de cinétique de désorption du gaz.

Description

Procédé de diagnostic d'un système de stockage d'un gaz stocké par sorption sur un composé
DOMAINE DE L'INVENTION
L'invention concerne un procédé de diagnostic d'un système de stockage d'un gaz, de préférence monté à bord d'un véhicule à moteur.
L'invention s'applique notamment, mais non exclusivement, au diagnostic d'un système de stockage d'ammoniac.
L'invention s'applique également, mais non exclusivement, au diagnostic d'un système de stockage d'hydrogène.
Dans la suite de ce document, on s'attache à décrire le cas particulier d'un système de stockage d'ammoniac comportant des éléments de stockage en plastique. L'ammoniac est, par exemple, destiné à être injecté dans la ligne d'échappement d'un véhicule pour réduire la quantité d'oxydes d'azote (NOx) dans les gaz d'échappement. Bien entendu, la présente invention s'applique à tout autre type de système de stockage de gaz monté à bord d'un véhicule et pour lequel on cherche à obtenir la pression du gaz dans le système et/ou obtenir un diagnostic de l'état de fonctionnement d'un tel système. Plus généralement, l'invention s'applique à tout type de gaz (ammoniac, hydrogène, etc.) pouvant être stocké par sorption sur un composé.
ARRIERE PLAN TECHNOLOGIQUE
Les oxydes d'azote présents dans les gaz d'échappement des véhicules, notamment Diesel, peuvent être éliminés par la technique de réduction catalytique sélective (généralement appelée SCR ou «Sélective Catalytic Réduction»). Selon cette technique, des doses d'ammoniac (NH3) sont injectées dans la ligne d'échappement en amont d'un catalyseur sur lequel les réactions de réduction ont lieu. Actuellement, l'ammoniac est produit par décomposition thermique d'un précurseur, généralement une solution aqueuse d'urée. Des systèmes embarqués de stockage, distribution et dosage d'une solution d'urée normalisée (telle que celle commercialisée sous la dénomination Adblue®, solution eutectique à 32.5% d'urée dans l'eau) ont ainsi été mis sur le marché.
Une autre technique consiste à stocker l'ammoniac par sorption sur un sel, le plus souvent un chlorure de métal alcalino-terreux. Généralement dans ce cas, le système de stockage comprend un réservoir conçu pour renfermer le sel et un dispositif de chauffage configuré pour chauffer le sel. Ainsi, en chauffant le sel on libère l'ammoniac. Une pression d'ammoniac est donc générée. Dans un tel système de stockage d'ammoniac, on cherche à obtenir la pression d'ammoniac libéré pour, par exemple, vérifier qu'elle correspond à une pression d'ammoniac demandée et, le cas échéant, effectuer des actions de correction. On cherche également à détecter la surchauffe du dispositif de chauffage du sel. Ceci est d'autant plus important si le réservoir (formé par un ou plusieurs éléments de stockage) est en matériau plastique, dont les propriétés mécaniques sont assez sensibles à la température. Généralement, on utilise un capteur de pression ou un régulateur de pression pour mesurer la pression d'ammoniac libéré. Or ces capteur et régulateur de pression sont coûteux et encombrants (par rapport à un capteur de température). Généralement, pour détecter la surchauffe du dispositif de chauffage du sel, le système utilise un capteur de température. Ainsi, on détecte la surchauffe de manière simple et efficace. Toutefois, dans certains cas il est souhaitable de pouvoir disposer d'autres informations de diagnostic notamment pour garantir un fonctionnement sûr du système de stockage et une réduction efficace des oxydes d'azote dans les gaz d'échappement.
OBJECTIFS DE L'INVENTION
Il est donc souhaitable de fournir une technique de diagnostic d'un système de stockage d'un gaz, permettant d'obtenir la pression du gaz dans le système, sans utiliser de capteur de pression ou de régulateur de pression.
Il est aussi souhaitable d'obtenir une pluralité d'informations relatives au fonctionnement du système de stockage de gaz.
Il est également souhaitable de fournir une telle technique qui soit simple à mettre en œuvre, quels que soient les gaz et composés utilisés.
EXPOSE DE L'INVENTION
Dans un mode de réalisation particulier de l'invention, il est proposé un procédé de diagnostic d'un système de stockage d'un gaz, le gaz étant stocké par sorption sur un composé, le système étant monté à bord d'un véhicule et comprenant un réservoir capable de contenir le composé et un dispositif de contrôle apte à commander un dispositif de chauffage pour faire monter en température le composé de manière à libérer le gaz. Le dispositif de contrôle est tel qu'il obtient un ensemble d'informations comprenant au moins une mesure de température du système, puis effectue une estimation de la pression du gaz dans le système en utilisant un modèle prédéterminé de cinétique de désorption du gaz. Ainsi, la présente invention propose d'utiliser une ou plusieurs mesure(s) de température du système de stockage pour en déduire la pression du gaz dans le système. La ou les mesure(s) de température sont obtenues au moyen d'un ou plusieurs capteur(s) de température déjà présent(s) dans le système de stockage. Dans un mode de réalisation particulier, l'ensemble d'informations qui est utilisé pour estimer la pression régnant à l'intérieur du système de stockage comprend une ou plusieurs mesure(s) de température effectuée(s) à un instant courant (i.e. mesures instantanées) et un historique de mesures de température, c'est-à-dire un ensemble de mesures de température effectuées à des instants précédents l'instant courant. Dans une variante de réalisation, cet ensemble d'informations peut comprendre une fonctionnelle de l'historique de ces mesures. Par exemple, une telle fonctionnelle (fonction de fonction) peut être une intégrale du type :
Fonctionnelle l(t)= intégrale de (t-tl) à t de f(x) Tl(x) dx
avec par exemple f(x) = A * τ + B
où t désigne le temps, Tl est la mesure de température, tl, A et B sont des constantes, et τ représente une variable de temps.
On connaît usuellement le modèle de cinétique de désorption pour un gaz donné stocké par sorption sur un composé donné. Si ce modèle n'est pas connu, on peut l'obtenir de manière simple, par exemple, en mesurant la courbe de désorption du gaz pendant le fonctionnement du dispositif de chauffage. A l'aide du modèle de cinétique de désorption, on peut se rapprocher d'une manière particulièrement précise de la pression régnant effectivement dans le système de stockage à l'instant de la mesure de la température. Le procédé selon l'invention permet ainsi de calculer d'une manière très précise la pression du gaz dans le système, et ce sans utiliser de capteur de pression ou de régulateur de pression, ce qui conduit à une amélioration significative du montage du système de stockage et de la réduction du coût d'un tel système.
Dans un mode de réalisation préférentiel, le dispositif de contrôle est embarqué à bord du véhicule, par exemple, sous la forme d'un microprocesseur. Dans un autre mode de réalisation, le dispositif de contrôle est, par exemple, un ordinateur (ou un serveur) situé hors du véhicule, par exemple, dans un laboratoire. En effet, avant d'être monté définitivement sur le véhicule de destination, le système de stockage peut, par exemple, pendant une phase de test, être monté sur un banc de test. Par exemple, pendant cette phase de test, l'ordinateur (jouant le rôle de dispositif de contrôle) peut ajuster le modèle de cinétique de désorption du gaz à utiliser. Le modèle de cinétique de désorption du gaz est, par exemple, stocké dans une mémoire accessible (i.e. lisible) par le dispositif de contrôle.
Le gaz peut être de tout type, préférentiellement de l'ammoniac ou de l'hydrogène.
De façon avantageuse, le dispositif de contrôle est configuré pour déterminer des conditions de fonctionnement du système à partir de l'ensemble d'informations, et pour sélectionner le modèle utilisé parmi une pluralité de modèles prédéterminés de cinétique de désorption du gaz, en fonction des conditions de fonctionnement déterminées.
Pour estimer le plus précisément possible la pression du gaz dans le système, il est important de savoir dans quelles conditions le système fonctionne. En effet, les conditions de fonctionnement du système influent sur la désorption du gaz. C'est pourquoi, selon un mode de réalisation préférentiel de l'invention, le dispositif de contrôle choisit le modèle de cinétique de désorption du gaz le plus adapté aux conditions de fonctionnement du système. Les différents modèles de cinétique de désorption du gaz sont, par exemple, stockés dans une mémoire accessible (i.e. lisible) par le dispositif de contrôle. Dans un mode de réalisation particulier, l'ensemble d'informations comprend, en plus de la ou des mesure(s) de température, une information (ou un historique) relative à la puissance dissipée par le dispositif de chauffage, une information (ou un historique) relative à la pression atmosphérique, ou encore une information (ou un historique) relative à la température ambiante à l'extérieur du véhicule. Cet ensemble d'informations est, par exemple, stocké dans une mémoire accessible (i.e. lisible) par le dispositif de contrôle.
Avantageusement, le modèle utilisé est une relation de Clausius- Clapeyron.
Le modèle utilisé est une relation pression/température régissant la sorption du gaz sur le composé. La relation de Clausius-Clapeyron utilisée dans le procédé selon l'invention peut être une relation (courbe, table, formule...) théorique, issue de la littérature, de préférence validée expérimentalement. Alternativement, cette relation peut être générée expérimentalement sur des maquettes et/ou des prototypes.
De façon avantageuse, le dispositif de contrôle est configuré pour détecter au moins une information concernant l'état de fonctionnement du système en utilisant l'ensemble d'informations et au moins l'un des modèles suivants :
un modèle prédéterminé de fonctionnement du réservoir ; un modèle prédéterminé de fonctionnement du dispositif de chauffage.
On connaît usuellement le modèle de fonctionnement d'un réservoir donné et le modèle de fonctionnement d'un dispositif de chauffage donné. Ces modèles sont, par exemple, des courbes théoriques, des cartographies ou enveloppes obtenues de manière expérimentale pour différents états de fonctionnement représentatifs à la fois du fonctionnement du réservoir et du dispositif de chauffage. Dans un mode de réalisation préférentiel, on compare tout ou partie des informations de l'ensemble d'informations à des plages de seuil prédéfinies pour diagnostiquer l'état de fonctionnement du système de stockage.
L'information concernant l'état de fonctionnement du système peut par exemple être une détection de l'absence de hausse de température vis-à-vis d'une consigne de puissance de chauffe importante. L'information concernant l'état de fonctionnement du système peut par exemple être une détection d'une température anormalement élevée, c'est-à-dire une température pouvant se révéler trop critique pour la tenue à long terme du réservoir. L'information concernant l'état de fonctionnement du système peut par exemple être un niveau de charge en gaz du réservoir. Avantageusement, une liste des différents états de fonctionnement possibles est préalablement établie et stockée dans une mémoire accessible (i.e. lisible) par le dispositif de contrôle.
Selon une caractéristique avantageuse, ledit réservoir comprend une alvéole de stockage munie d'au moins l'un des capteurs suivants :
- un capteur de température ;
- un capteur de flux thermique
Le(s) capteur(s) peut(vent) être monté(s) à l'intérieur ou à l'extérieur (par exemple sur la paroi) de l'alvéole. Certains capteurs peuvent être montés à l'intérieur de l'alvéole et d'autres capteurs à l'extérieur de celle-ci. Les capteurs sont répartis sur et/ou dans l'alvéole en fonction notamment de la géométrie de l'alvéole et des informations de diagnostic que l'on souhaite obtenir.
De façon avantageuse, l'alvéole de stockage comprend une paroi dans laquelle est formé au moins un logement, chaque logement s 'étendant vers l'intérieur de l'alvéole et étant configuré pour recevoir le(s) capteur(s).
Le montage du ou des capteurs sur l'alvéole est donc simple. En effet, il suffit de le ou les insérer dans le ou les logement(s) prévu(s) à cet effet. Avantageusement, un même logement peut contenir un ou plusieurs capteur(s).
Dans un mode de réalisation préférentiel, l'alvéole est en matière plastique. De façon avantageuse, l'alvéole est recouverte d'au moins l'un des matériaux suivants :
- un matériau d'isolation thermique ;
- un matériau à changement de phase.
Avantageusement, l'alvéole est recouverte d'un dispositif de chauffage additionnel.
De façon avantageuse, l'alvéole comprend un réseau de conducteurs thermique.
Avantageusement, le réservoir comprend au moins une autre alvéole de stockage. Ainsi, le réservoir peut être constitué d'un groupe d'alvéoles.
Le procédé selon l'invention est notamment bien adapté au cas où le réservoir comprend un composé, de préférence un solide, sur lequel un gaz (ammoniac, hydrogène,...) est fixé par sorption, de préférence par chimisorption. Il s'agit généralement d'un chlorure de métal alcalin, alcalino-terreux ou de transition. Il peut être à l'état pulvérulent ou sous forme d'agglomérats. Ce composé est de préférence un chlorure de métal alcalino-terreux, et de manière tout particulièrement préférée, un chlorure de Mg, Ba ou Sr.
LISTE DES FIGURES
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description suivante, donnée à titre d'exemple indicatif et non limitatif, et des dessins annexés, dans lesquels :
la figure 1 illustre l'architecture structurelle d'un système SCR comprenant un système de stockage de gaz, selon un mode de réalisation particulier de l'invention ;
la figure 2 présente un mode de réalisation particulier d'un algorithme de diagnostic du système de stockage de gaz de la figure 1 ;
les figures 3 à 17 illustrent des exemples d'alvéoles comprises dans le système de stockage de gaz de la figure 1.
DESCRIPTION DETAILLEE
Ci-dessous, on décrit en relation avec les figures 1 à 17 des exemples de réalisation où le gaz stocké par sorption sur le composé est l'ammoniac. Bien entendu, dans une variante de réalisation le gaz peut être de tout autre type, et notamment de l'hydrogène.
Comme illustré sur la figure 1, le moteur 1 du véhicule est piloté par un calculateur électronique 2 (parfois appelé ECU ou Engine Control Unit). Le moteur 1 coopère avec un système SCR 3. A la sortie du moteur, les gaz d'échappement 11 sont dirigés vers un module d'injection 31 d'ammoniac, dans lequel l'ammoniac 12 est mélangé aux gaz d'échappement 11. Le mélange ammoniac/gaz d'échappement 13 traverse ensuite un catalyseur SCR 32 qui permet la réduction des oxydes d'azote (NOx) par l'ammoniac. Les gaz d'échappement dépollués 14 sont ensuite dirigés vers la sortie d'échappement.
Dans cet exemple de réalisation, le système SCR 3 comprend un système de stockage 5 d'ammoniac. Le système de stockage 5 comprend un réservoir 54 dans lequel est stocké un composé 52, par exemple un solide (et de préférence un sel). L'ammoniac est stocké par sorption sur le solide 52. Le système de stockage 5 comprend également un dispositif de contrôle 4 en charge de commander un dispositif de chauffage 53 (aussi appelé chauffeur) pour chauffer le solide 52 de manière à libérer l'ammoniac. Le dispositif de chauffage 53 peut être sous forme d'une résistance électrique. Le réservoir 54 est relié à un module de dosage 51 (« dosing module »), via un conduit de distribution (référencé 903 sur la figure 9). Le module de dosage 51 est piloté par le dispositif de contrôle 4. Dans l'exemple de réalisation illustré en figure 1, le dispositif de contrôle 4 est distinct du calculateur électronique 2. Dans une variante de réalisation, le dispositif de contrôle 4 peut être intégré au calculateur électronique 2. Dans une autre variante de réalisation, le dispositif de contrôle 4 peut être intégré dans l'unité de commande du système à carburant (parfois appelé FSCU ou Fuel System Control Unit). Le dispositif de contrôle 4 selon l'invention est apte à estimer la pression d'ammoniac dans le système de stockage 5. Si un écart est constaté entre la pression estimée et une pression de consigne fournie par le calculateur électronique 2, le dispositif de contrôle 4 peut ajuster la puissance de chauffe du dispositif de chauffage 53 pour compenser cet écart. Comme illustré sur la figure 1, le réservoir 54 est équipé d'un dispositif de mesure de température 6.
On décrit maintenant en relation avec les figures 1 et 2 un mode de réalisation particulier d'un algorithme de diagnostic, tel qu'implémenté au sein du dispositif de contrôle 4.
Lors d'une étape E21, le dispositif de contrôle 4 obtient un ensemble d'informations.
Dans un mode de réalisation particulier, le dispositif de mesure de température 6 peut comprendre un capteur de température configuré pour mesurer la température en un point déterminé du réservoir. Ainsi, à l'étape E21 le dispositif de contrôle 4 peut recevoir une mesure instantanée de température en provenance du capteur de température. Dans une variante de réalisation, le dispositif de mesure de température 6 peut comprendre une pluralité de capteurs de température disposés en plusieurs points du réservoir. Ainsi, dans cette variante, à l'étape E21 le dispositif de contrôle 4 reçoit un ensemble de mesures de température.
Dans une autre variante de réalisation, à l'étape E21 le dispositif de contrôle 4 lit (et dans ce sens obtient) un historique de mesures de température stocké, par exemple, dans une mémoire.
Avantageusement, à l'étape E21 le dispositif de contrôle 4 peut également obtenir des informations de température et de pression ambiante. Il peut s'agir de mesures de température et de pression instantanées, des historiques de ces mesures, des fonctionnelles (fonction de fonction) ou une combinaison de ces historiques de mesures. Ainsi par exemple, le dispositif de contrôle 4 peut obtenir la température moyenne mesurée sur un capteur durant les cinq minutes précédentes ; ou encore une température moyenne calculée en pondérant plus les instants récents que les instants plus reculés dans le temps. A partir de telles informations, le dispositif de contrôle 4 peut déterminer les conditions de fonctionnement dans lesquelles le système de stockage va évoluer.
Dans un mode de réalisation particulier, le dispositif de contrôle 4 est apte à utiliser un modèle prédéterminé de cinétique de désorption du gaz. Ce modèle mathématique ou expérimentale peut être, par exemple, stocké dans une mémoire.
Dans une variante de réalisation, le dispositif de contrôle 4 est apte à gérer plusieurs modèles de cinétique de désorption du gaz. En effet, la cinétique de désorption d'un gaz donné peut varier en fonction de paramètres environnementaux tels que, par exemple, la pression et la température ambiante, le taux d'humidité, ou encore le vieillissement du réservoir. La cinétique de désorption peut aussi dépendre de l'état de charge en gaz du système. Par exemple, chaque modèle peut être associé à un couple pression/température ambiante. Ainsi, dans une étape optionnelle (non représentée) le dispositif de contrôle 4 peut sélectionner parmi les différents modèles prédéterminés de cinétique de désorption du gaz celui qui est associé aux mesures de température et de pression ambiante obtenues à l'étape E21 précédente. De cette façon, on s'assure de toujours avoir la meilleure estimation de pression du gaz dans le système.
Dans une autre étape optionnelle (non représentée), le dispositif de contrôle 4 peut utiliser l'ensemble d'informations obtenu à l'étape E21 précédente (mesures instantanées, historiques, fonctionnelles,...) en combinaison avec des modèles prédéterminés de fonctionnement du réservoir 54 et du dispositif de chauffage 53 pour vérifier la plausibilité et la criticité des paramètres mesurés, ainsi que l'état de fonctionnement du système. Par exemple, le dispositif de contrôle 4 peut détecter un éventuel dysfonctionnement de composant (réservoir, chauffeur,...) ou un éventuel risque, par exemple, une température anormalement élevée pouvant dégrader l'intégrité du réservoir.
Ensuite, lors d'une étape E22, le dispositif de contrôle 4 estime la pression du gaz dans le système sur base de l'ensemble d'informations obtenu et d'un modèle prédéterminé (ou présélectionné) de cinétique de désorption du gaz. Puis, cette estimation de pression peut être stockée dans une mémoire, de manière à pouvoir constituer un historique des estimations de pression.
Dans un mode de réalisation particulier, le modèle est une courbe reliant la pression du gaz à la température du composé. Par exemple, une telle courbe peut être déduite de la relation de Clausius-Clapeyron.
Dans une variante de réalisation, le modèle comprend une table reliant une valeur de fonctionnelle à une valeur de pression. Par exemple, cette valeur de fonctionnelle peut être obtenue en calculant une fonction intégrale de l'ensemble des mesures instantanées obtenu à l'étape E21.
Enfin, à titre d'exemple, lors d'une étape E23, le dispositif de contrôle 4 peut déterminer l'écart entre la pression estimée et une pression de consigne fournie, par exemple, par le calculateur électronique 2, et le cas échéant, ajuster la puissance de chauffe du dispositif de chauffage 53 pour compenser cet écart. Par exemple, si la pression estimée par le dispositif de contrôle 4 est supérieure à la pression de consigne, alors le dispositif de contrôle 4 génère un signal 42 tel qu'il diminue la puissance d'alimentation du dispositif de chauffage 53.
Dans un mode de réalisation préférentiel, le réservoir 54 comprend une pluralité d'alvéoles de stockage communiquant entre elles et avec au moins un orifice communiquant avec le module de dosage 51, via un conduit de distribution (référencé 903 sur la figure 9). Un tel réservoir est, par exemple, décrit dans la demande co-pendante EP 11183413.1 au nom de la demanderesse, dont le contenu à cet effet est incorporé par référence dans la présente demande.
Par « réservoir », on entend désigner un récipient ou enceinte délimitant au moins un volume interne servant de contenant au composé. De préférence, le réservoir comprend au moins une paroi délimitant des alvéoles c.à.d. des cavités susceptibles de contenir ledit composé. Ces cavités peuvent avoir une forme quelconque. De préférence, elles ont toutes la même forme. La forme et la taille des alvéoles sont de préférence adaptées pour pouvoir épouser au moins une partie de la surface externe des agglomérats.
De préférence, les alvéoles sont en matière plastique. Les matières thermoplastiques donnent de bons résultats dans le cadre de l'invention, notamment en raison des avantages de poids, de résistance mécanique et chimique et de mise en œuvre facilitée (ce qui permet justement d'obtenir des formes complexes).
En particulier, on peut utiliser des polyoléfines, des polyhalogénures de vinyle, des polyesters thermoplastiques, des polycétones, des polyamides, des polyphtalamides et leurs copolymères. Un mélange de polymères ou de copolymères peut aussi être utilisé, de même qu'un mélange de matières polymériques avec des charges inorganiques, organiques et/ou naturelles comme, par exemple, mais non limitativement : le carbone, les sels et autres dérivés inorganiques, les fibres naturelles, les fibres de verre et les fibres polymériques. Il est également possible d'utiliser des structures multicouches constituées de couches empilées et solidaires comprenant au moins un des polymères ou copolymères décrits supra.
D'excellents résultats ont été obtenus avec du polyphtalamide chargé en fibres de verre.
De préférence, la forme des alvéoles (toutes ou partie d'entre elles) et/ou leur mode de réalisation et/ou d'assemblage est tel qu'au moins un élément actif du système (remplissant une fonction utile telle que chauffage, refroidissement ou renfort mécanique) puisse être inséré dans ou entre elles. Par exemple, un élément chauffant ou un matériau à changement de phase (MCP, ou matériau stockant ou restituant de la chaleur en changeant de phase selon la température qui l'environne) est avantageusement inséré dans ou entre les alvéoles.
L'usage d'éléments chauffants ou de matériaux à changement de phase permet de stabiliser la température du réactif contenu dans l'alvéole et d'assurer ainsi une production stable de gaz. De plus, l'utilisation de chauffe différenciée entre alvéoles et/ou de quantités relatives différentes de matériaux à changement de phase entre alvéoles permet d'appauvrir ou d'enrichir certaines alvéoles en gaz; par exemple, lors d'un arrêt du système (suite par exemple à un arrêt du véhicule), la charge en gaz (ammoniac par exemple) dans les alvéoles refroidissant plus vite (contenant par exemple peu ou pas de matériau à changement de phase) augmentera au détriment des alvéoles refroidissant plus lentement (contenant par exemple beaucoup de matériau à changement de phase). Ceci peut être particulièrement intéressant pour assurer une mise à disposition rapide du gaz après un arrêt du véhicule, par exemple en activant à ce moment préférentiellement les alvéoles riches en gaz.
Dans la variante de l'invention selon laquelle le réservoir comprend plusieurs alvéoles, l'utilisation d'un capteur de température par alvéole ou groupe d'alvéoles permet de piloter en température et donc en pression chaque alvéole ou groupe d'alvéoles de manière indépendante. Ce pilotage en température des différentes alvéoles ou groupe d'alvéoles permet d'assurer un transfert de gaz d'une alvéole ou d'un groupe d'alvéoles vers une autre alvéole ou un autre groupe d'alvéoles.
Les figures 3 à 17 illustrent schématiquement des exemples d'alvéoles munies chacune d'un dispositif de mesure de température selon un mode de réalisation particulier de l'invention.
La figure 3 illustre une configuration dans laquelle le dispositif de chauffage 53 est placé dans un logement, appelé par la suite cheminée de chauffe, situé au centre de l'alvéole 301. Dans l'exemple de la figure 3, le dispositif de mesure de température selon l'invention comprend un seul capteur de température 302. Le capteur de température 302 est monté sur la paroi extérieure de l'alvéole 301. Le capteur de température peut être monté par tout moyen mécanique conventionnel. En particulier, le clipsage ou le collage sur la paroi conviennent bien pour une alvéole en plastique. Dans ce cas, lorsque le chauffeur 53 est activé en vue de faire désorber le gaz (par exemple, de l'ammoniac, de l'hydrogène,...) (stocké par sorption sur un composé), une augmentation de température est observée après un certain délai. Selon un aspect avantageux de l'invention, le fait d'observer cette augmentation de température permet d'assurer la plausibilité du signal du capteur 302 et le bon fonctionnement du chauffeur 53. La plausibilité du signal du capteur 302 et le bon fonctionnement du chauffeur 53 sont déterminés en utilisant un modèle prédéterminé de fonctionnement du capteur et un modèle prédéterminé de fonctionnement du chauffeur 53.
Selon un autre aspect avantageux de l'invention, le dispositif de contrôle surveille en permanence l'atteinte d'un seuil de température prédéterminé (i.e. modèle prédéterminé de fonctionnement du réservoir, ce modèle pouvant comprendre plusieurs seuils ou plages de température prédéterminés). Si le dispositif de contrôle détecte que la température mesurée est supérieure à ce seuil de température, alors il coupe la chauffe. On évite ainsi toute surchauffe du système SCR. Selon un autre aspect avantageux de l'invention, en analysant l'évolution de la température en fonction du temps il est possible d'estimer le contenu en gaz du composé (par exemple, un sel) séparant le chauffeur 53 du capteur de température 302. En effet, le contenu en gaz affecte le transfert thermique au sein du composé, en particulier la désorption du gaz étant endothermique, un contenu élevé en gaz dans le composé tend à retarder l'élévation de température au niveau du capteur 302. Lorsque la consommation du gaz est stable, le signal du capteur 302 permet de réguler la chauffe de manière à stabiliser la pression ; une augmentation de la consommation de gaz se traduit par une chute de température laquelle peut être compensée par une action appropriée du dispositif de contrôle sur le chauffeur 53 ; à l'inverse, une réduction de consommation se traduit par une augmentation de température qui peut également être compensée. Dans une variante de réalisation, le capteur de température 302 peut être remplacé par un capteur de flux thermique.
La figure 4 illustre une configuration dans laquelle un capteur de température 402 est monté sur la paroi extérieure de l'alvéole 401 et au voisinage de la cheminée de chauffe. Cette disposition est particulièrement avantageuse pour détecter tout risque de surchauffe de la cheminée au droit de l'élément chauffant. Un cas particulièrement intéressant est constitué par un capteur de température 402 jouant en même temps le rôle de chauffeur de type PTC (Positive Thermal Coefficient) dont la résistance augmente avec la température assurant ainsi à la fois la mesure et la fonction de chauffe. Ces chauffeurs de type PTC offrent également l'avantage de limiter la puissance de chauffe au fur et à mesure que la température s'élève, ce qui réduit le risque de surchauffe.
Dans une variante avantageuse (non illustrée), il est proposé d'utiliser un dispositif de chauffe ayant lui-même une caractéristique PTC. De cette façon, il est possible d'assurer à la fois la chauffe de l'alvéole et la mesure de température.
La figure 5 illustre une configuration dans laquelle un capteur de température 502 est monté sur la paroi intérieure de l'alvéole 501 et au voisinage de la cheminée de chauffe.
Les configurations des figures 4 et 5 présentent l'avantage de permettre une détection rapide des risques de surchauffe. La sécurité du système SCR est donc améliorée. La figure 6 illustre une configuration dans laquelle un capteur de température 602 s'étend à l'intérieur de l'alvéole 601. Cette configuration présente l'avantage de permettre une mesure plus précise de la température du composé, et donc d'obtenir une estimation de pression libérée plus précise. Le capteur peut être par exemple directement placé dans le composé lors de son placement dans l'alvéole.
La figure 7 illustre une configuration dans laquelle le dispositif de mesure de température selon l'invention comprend deux capteurs de température 702 et 703. Le capteur de température 702 est monté sur la paroi extérieure de l'alvéole 701 et le capteur de température 703 s'étend à l'intérieur de l'alvéole 701.
La figure 8 illustre une configuration dans laquelle l'alvéole 801 comprend deux logements 804 et 805 (ou cheminées transversales) formés dans sa paroi. Les logements 804 et 805 s'étendent vers la cheminée de chauffe de manière à plonger dans le composé. Dans cet exemple, le dispositif de mesure de température selon l'invention comprend deux capteurs de température 802 et 803. Le logement 804 est configuré pour recevoir le capteur de température 802, et le logement 805 est configuré pour recevoir le capteur de température 803.
Les configurations des figures 7 et 8 mettent chacune en œuvre une combinaison de deux capteurs de température. L'utilisation combinée de deux capteurs de température permet avantageusement au dispositif de contrôle d'obtenir des mesures de température à partir desquelles il peut estimer un flux thermique. Un tel flux thermique s'il est mesuré en des points précis (par exemple à la périphérie de l'alvéole) permet d'évaluer la consommation énergétique. Dans une variante de réalisation, l'un des deux capteurs de température peut être remplacé par un capteur de flux thermique.
Comme illustré dans l'exemple de la figure 9, le dispositif de mesure de température selon l'invention peut comprendre un capteur de température 902 monté dans le conduit de distribution 903 reliant l'alvéole 901 au module de dosage (référencé 51 sur la figure 1).
La figure 10 illustre une variante de réalisation de la configuration décrite ci-dessus en relation avec la figure 3. Dans cette variante, la quasi-totalité de la paroi extérieure de l'alvéole 301 et le capteur de température 302 (qui est monté sur la paroi extérieure de l'alvéole) sont recouverts d'une couche 303 de matériau isolant thermiquement. Par exemple des feuilles en matériau Néoprène donnent de bons résultats. L'utilisation de cette couche 303 de matériau isolant permet avantageusement d'éviter les déperditions calorifiques au droit des alvéoles. Cela permet en outre de réduire les perturbations sur le capteur de température 302, en particulier l'influence de l'environnement des alvéoles.
La figure 11 illustre une autre variante de réalisation de la configuration décrite ci-dessus en relation avec la figure 3. Dans cette variante, la quasi-totalité de la paroi extérieure de l'alvéole 301 et le capteur de température 302 (qui est monté sur la paroi extérieure de l'alvéole) sont recouverts d'une couche 304 de matériau à changement de phase (MCP). Dans un mode de réalisation préférentiel, la température de changement de phase du matériau MCP correspond à la température de désorption du composé (i.e. sel) générant la pression nécessaire à l'échappement du véhicule (typiquement 2.8 bar absolu). L'utilisation de cette couche 304 de matériau MCP permet avantageusement de stabiliser la température du composé, et la pression du gaz, par exemple autour de la valeur désirée pour cette pression. Dans cette variante, la courbe d'élévation de température présente un palier à la température de changement de phase du MCP, ce qui permet de diagnostiquer aisément l'atteinte de la température désirée. De plus, en cas de consommation importante de gaz, la température du composé tend à chuter et le matériau MCP restitue alors de la chaleur à l'alvéole, stabilisant ainsi la température et la pression. En cas de consommation faible au contraire, le matériau MCP emmagasine de la chaleur.
D'autres variantes de réalisation peuvent être imaginées sans sortir du cadre de la présente invention, par exemple en combinant les éléments des différents modes de réalisation décrits ci-dessus en relation avec les figures 3 à 11.
En particulier, les alvéoles des figures 4 à 9 peuvent être chacune recouverte d'une couche de matériau isolant et/ou d'une couche de matériau MCP.
Par ailleurs, et comme illustré sur la figure 12, le capteur de température 302 de la figure 11 peut être remplacé par un capteur de flux thermique 305. Dans l'exemple de la figure 12, le capteur de flux thermique 305 permet de mesurer le flux entre la couche 304 de matériau MCP et l'alvéole 301 et ainsi de déterminer dans quelle mesure le dispositif de contrôle doit compenser les pertes d'énergie.
Comme illustré sur la figure 13, la couche 304 de matériau MCP de la figure 11 peut être elle-même recouverte d'une couche 306 de matériau isolant thermiquement. Ceci permet d'améliorer encore les performances du système de par l'effet réduit des conditions environnementales. Il va de soi qu'une variante avec capteur de flux peut également être envisagée.
Dans une variante de réalisation de la figure 13, le capteur de température 302 peut être placé entre la couche 304 de matériau MCP et la couche 306 de matériau isolant.
La figure 14 illustre une autre variante de réalisation de la configuration décrite ci-dessus en relation avec la figure 3. Dans cette variante, une première portion PI d'alvéole est laissée nue (i.e. non isolée) et une deuxième portion P2 d'alvéole est recouverte d'une couche 307 de matériau isolant thermiquement. Ainsi, une telle configuration permet lors de l'arrêt du système de refroidir plus rapidement la portion PI, et donc de permettre un transfert de gaz depuis la portion P2 encore chaude vers la portion PI déjà plus froide.
La figure 15 illustre une variante de réalisation de la configuration décrite ci-dessus en relation avec la figure 14. Dans cette variante, un dispositif de chauffe différentielle 400 est placé dans la cheminée de chauffe. Ainsi, pour permettre un démarrage rapide, la puissance de chauffe peut être concentrée dans la zone contenant la plus forte concentration de gaz au démarrage, par exemple au niveau de la portion PI non isolée. Cette chauffe différentielle peut par exemple être obtenue simplement en disposant un fil chauffant dans la cheminée de chauffe, par exemple sous forme d'hélicoïde et en faisant varier le pas de cette hélicoïde (par exemple, pas plus petit dans la portion PI à chauffer rapidement).
La figure 16 illustre une variante de réalisation de la configuration décrite ci-dessus en relation avec la figure 15. Dans cette variante, l'alvéole comprend en son sein un réseau de conducteurs thermique 600. Ce réseau de conducteurs thermique 600 permet d'assurer un transfert thermique très rapide dans la zone contenant la plus forte concentration de gaz au démarrage, par exemple au niveau de la portion PI non isolée. Les conducteurs thermique 600 sont, par exemple, des disques troués ou des grilles constitués d'un bon conducteur thermique. Ces conducteurs thermique 600 sont placés sur ou dans le composé, de telle sorte qu'ils permettent un transfert thermique radial rapide entre le canal chauffant (i.e. cheminée de chauffe) et la périphérie de l'alvéole au niveau de la portion Pl.
La figure 17 illustre une variante de réalisation de la configuration décrite ci-dessus en relation avec la figure 16. Dans cette variante, la portion PI de l'alvéole est recouverte d'un dispositif de chauffage additionnel 700. De cette façon, on renforce la chauffe au niveau de la portion Pl. Dans l'exemple de la figure 17, le dispositif de chauffage additionnel 700 est monté sur la paroi extérieure de l'alvéole. Bien entendu, dans un autre mode de réalisation, ce dispositif de chauffage additionnel 700 peut être monté à l'intérieur de l'alvéole. Le dispositif de chauffage additionnel 700 peut être commandé de manière indépendante ou non du ou des autres dispositifs chauffants de l'alvéole.
On note que le système différentiel présenté ci-dessus en relation avec les figures 15 à 17 peut être mis en œuvre au niveau d'un groupe d'alvéoles, voire entre groupe d'alvéoles. Ce système différentiel peut être optimisé en fonction des conditions de température et de transfert thermique prévalant dans l'environnement véhicule. Par exemple, les zones non isolées seront placées à des endroits refroidissant rapidement, alors que les zones isolées seront placées dans des endroits restant chauds plus longtemps lors de l'arrêt du véhicule.
Au vu de la description des figures 1 à 17 ci-dessus, le dispositif de contrôle selon l'invention est apte à mettre en œuvre différentes stratégies de chauffe, et notamment les suivantes :
une stratégie de chauffe appliquée à des alvéoles telles que décrites ci- dessus consistant à maintenir la chauffe dans certaines zones des alvéoles ou dans certaines alvéoles ou dans certains groupes d'alvéoles de manière à transférer le gaz vers les zones se refroidissant plus rapidement ;
une stratégie de chauffe générant, lors du roulage ou lors de certaines phases particulières de roulage durant lesquelles la consommation de gaz est faible, un transfert de gaz vers des zones particulières de l'ensemble du système de stockage, par exemple chauffe dans certains groupes d'alvéoles et arrêt de la chauffe dans d'autres ;
une stratégie de chauffe permettant d'éviter la surchauffe de la cheminée de chauffe (en plastique) et consistant, par exemple, à hacher ou moduler la puissance de chauffe de manière à permettre l'évacuation de l'énergie thermique dans le composé par conduction. Un signal de type PWM dont la périodicité est adaptée au temps caractéristique du transfert thermique correspondant à la géométrie et propriétés des matériaux est particulièrement avantageux ;
une stratégie de chauffe basée sur l'état de charge en gaz des alvéoles ou portions d'alvéoles en plastique. Cet état de charge en gaz est dérivé de la relation entre les signaux du ou des capteurs de température et profil temporel de la commande ou des commandes de chauffe de ces alvéoles : la désorption du gaz étant endothermique, les pulsations de chauffe se traduiront par peu d'effet au niveau de la paroi externe et d'un capteur de température placé à proximité de celle-ci si le composé (i.e. sel) est fortement chargé ;
une stratégie de chauffe basée sur une mesure du flux thermique au droit de la paroi externe des alvéoles ou groupe d'alvéoles ou du système de stockage ou à proximité de cette paroi ;
une stratégie de chauffe basée sur une mesure du flux thermique et de la température au droit de la paroi externe des alvéoles ou groupe d'alvéoles ou du système de stockage ;
une stratégie de chauffe basée sur une mesure de la température localisée dans une poche (ou logement) creusée à un endroit quelconque de la paroi des alvéoles ou groupe d'alvéoles ou du système de stockage en plastique et donnant accès à la température du composé à un endroit quelconque.

Claims

R E V E N D I C A T I O N S
1. Procédé de diagnostic d'un système de stockage (5) d'un gaz, le gaz étant stocké par sorption sur un composé, le système étant monté à bord d'un véhicule et comprenant un réservoir (54) capable de contenir le composé et un dispositif de contrôle (4) apte à commander un dispositif de chauffage (53) pour faire monter en température le composé de manière à libérer le gaz, caractérisé en ce que le dispositif de contrôle obtient (E21) un ensemble d'informations comprenant au moins une mesure de température du système, puis effectue une estimation (E22) de la pression du gaz dans le système en utilisant un modèle prédéterminé de cinétique de désorption du gaz ; le réservoir comprenant une alvéole de stockage munie d'au moins l'un des capteurs suivants :
- un capteur de température ;
- un capteur de flux thermique.
2. Procédé selon la revendication 1, caractérisé en ce que le dispositif de contrôle est configuré pour déterminer des conditions de fonctionnement du système à partir de l'ensemble d'informations, et pour sélectionner le modèle utilisé parmi une pluralité de modèles prédéterminés de cinétique de désorption du gaz, en fonction des conditions de fonctionnement déterminées.
3. Procédé selon l'une quelconque des revendications 1 et 2, caractérisé en ce que le modèle utilisé est une relation de Clausius-Clapeyron.
4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le dispositif de contrôle est configuré pour détecter au moins une information concernant l'état de fonctionnement du système en utilisant l'ensemble d'informations et au moins l'un des modèles suivants :
un modèle prédéterminé de fonctionnement du réservoir ;
un modèle prédéterminé de fonctionnement du dispositif de chauffage.
5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que l'alvéole de stockage comprend une paroi dans laquelle est formé au moins un logement, chaque logement s'étendant vers l'intérieur de l'alvéole et étant configuré pour recevoir le(s) capteur(s).
6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que l'alvéole est en matière plastique.
7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que l'alvéole est recouverte d'au moins l'un des matériaux suivants :
- un matériau d'isolation thermique ;
- un matériau à changement de phase.
8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que l'alvéole est recouverte d'un dispositif de chauffage additionnel.
9. Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce que l'alvéole comprend un réseau de conducteurs thermique.
10. Procédé selon l'une quelconque des revendications 1 à 9, caractérisé en ce que ledit réservoir comprend au moins une autre alvéole de stockage.
11. Procédé selon l'une quelconque des revendications 1 à 10, caractérisé en ce que le composé est un solide.
12. Procédé selon l'une quelconque des revendications 1 à 11, caractérisé en ce que le gaz est de l'ammoniac.
13. Procédé selon l'une quelconque des revendications 1 à 11, caractérisé en ce que le gaz est de l'hydrogène.
PCT/FR2013/051521 2012-06-29 2013-06-28 Procédé de diagnostic d'un système de stockage d'un gaz stocké par sorption sur un composé WO2014001733A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/411,659 US20150160078A1 (en) 2012-06-29 2013-06-28 Method for diagnosing a system for storing a gas stored by sorption on a compound
CN201380042415.9A CN104540781A (zh) 2012-06-29 2013-06-28 通过收附被存储在化合物上的气体的存储系统的诊断方法
EP13744658.9A EP2867168A1 (fr) 2012-06-29 2013-06-28 Procédé de diagnostic d'un système de stockage d'un gaz stocké par sorption sur un composé

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1256289A FR2992726B1 (fr) 2012-06-29 2012-06-29 Procede de diagnostic d'un systeme de stockage d'un gaz stocke par sorption sur un compose.
FR1256289 2012-06-29

Publications (1)

Publication Number Publication Date
WO2014001733A1 true WO2014001733A1 (fr) 2014-01-03

Family

ID=47294937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2013/051521 WO2014001733A1 (fr) 2012-06-29 2013-06-28 Procédé de diagnostic d'un système de stockage d'un gaz stocké par sorption sur un composé

Country Status (5)

Country Link
US (1) US20150160078A1 (fr)
EP (1) EP2867168A1 (fr)
CN (1) CN104540781A (fr)
FR (1) FR2992726B1 (fr)
WO (1) WO2014001733A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106764409B (zh) * 2017-01-18 2020-09-15 吉林省众鑫汽车装备有限公司 固体氨氨气补给系统及具有该系统的车辆
DE102018121267A1 (de) * 2018-08-31 2020-03-05 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Betrieb eines Kraftfahrzeugs sowie Kraftfahrzeug
JP7070472B2 (ja) * 2019-03-01 2022-05-18 株式会社デンソー 温度センサ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1977817A1 (fr) * 2007-03-30 2008-10-08 Amminex A/S Système pour stocker de l'ammoniac et pour libérer de l'ammoniac d'un matériel de stockage, et procédé de stockage et de libération d'ammoniac
EP2361883A1 (fr) * 2010-02-25 2011-08-31 Amminex A/S Procédé pour déterminer le degré de saturation de matériaux de stockage d'ammoniac solide dans des conteneurs
EP2428490A1 (fr) * 2010-09-10 2012-03-14 Aaqius & Aaqius S.A. Système pour réduire la quantité de NOx dans les gaz d'échappement d'un véhicule à moteur
WO2012056131A1 (fr) * 2010-10-28 2012-05-03 Peugeot Citroën Automobiles SA Procede de recharge d'un de recharge en ammoniac d'une cartouche comportant un sel susceptible d'absorber de l'ammoniac gazeux

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7306924B2 (en) * 2000-04-17 2007-12-11 Purdue Research Foundation Biosensor and related method
JP2002326810A (ja) * 2001-05-01 2002-11-12 Nkk Corp 金属ハロゲン化物を用いたアンモニアの分離方法および装置
DE102006061370A1 (de) * 2006-12-22 2008-06-26 Amminex A/S Verfahren und Vorrichtung zur Ammoniakspeicherung und -zufuhr unter Verwendung von in-situ-Wiedersättigung einer Zufuhreinheit
GB0700640D0 (en) * 2007-01-12 2007-02-21 Iti Scotland Ltd Detecting analytes
FR2921104B1 (fr) * 2007-09-14 2009-11-13 Inergy Automotive Systems Res Methode pour le chauffage d'un systeme scr a l'aide d'elements chauffants resistifs
US8591848B2 (en) * 2007-11-09 2013-11-26 Fuel Tech, Inc. Selective catalytic NOx reduction process and control system
DE102008002612A1 (de) * 2008-06-24 2009-12-31 Robert Bosch Gmbh Abgasnachbehandlungseinrichtung für eine Brennkraftmaschine
DE102009060288A1 (de) * 2009-12-23 2011-06-30 Volkswagen AG, 38440 Verfahren zum Betreiben eines Ammoniakspeichersystems eines SCR-Katalysatorsystems sowie Ammoniakspeichersystem

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1977817A1 (fr) * 2007-03-30 2008-10-08 Amminex A/S Système pour stocker de l'ammoniac et pour libérer de l'ammoniac d'un matériel de stockage, et procédé de stockage et de libération d'ammoniac
EP2361883A1 (fr) * 2010-02-25 2011-08-31 Amminex A/S Procédé pour déterminer le degré de saturation de matériaux de stockage d'ammoniac solide dans des conteneurs
EP2428490A1 (fr) * 2010-09-10 2012-03-14 Aaqius & Aaqius S.A. Système pour réduire la quantité de NOx dans les gaz d'échappement d'un véhicule à moteur
WO2012056131A1 (fr) * 2010-10-28 2012-05-03 Peugeot Citroën Automobiles SA Procede de recharge d'un de recharge en ammoniac d'une cartouche comportant un sel susceptible d'absorber de l'ammoniac gazeux

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2867168A1

Also Published As

Publication number Publication date
FR2992726B1 (fr) 2015-05-29
CN104540781A (zh) 2015-04-22
US20150160078A1 (en) 2015-06-11
EP2867168A1 (fr) 2015-05-06
FR2992726A1 (fr) 2014-01-03

Similar Documents

Publication Publication Date Title
US8539914B2 (en) Method for operating an engine with a fuel reformer
US8783018B2 (en) Reductant storage sensing system and method
US9010087B1 (en) Method and system for NOx sensor degradation
US9217350B2 (en) Method and system for reductant injector degradation
US8303174B2 (en) Temperature sensor plausibility diagnosis unit and plausibility diagnosis method and internal combustion engine exhaust purification apparatus
RU2606286C2 (ru) Способ управления нагревательным устройством датчика твердых частиц (варианты), система и способ регенерации датчика твердых частиц
EP2447495B1 (fr) Procédé de contrôle d'un système de réduction catalytique sélective pour un véhicule et véhicule correspondant
FR2963097A1 (fr) Procede de mesure de la temperature d'un milieu et capteur de temperature pour la mise en oeuvre du procede
WO2014001733A1 (fr) Procédé de diagnostic d'un système de stockage d'un gaz stocké par sorption sur un composé
US20180223756A1 (en) Thermal management of aftertreatment systems
FR2982316A1 (fr) Procede de regeneration d'un filtre a particules pour vehicule automobile hybrideprocede de regeneration d'un filtre a particules pour vehicule automobile hybride
EP2695858B1 (fr) Système de stockage et de délivrance d'ammoniac gazeux
FR2989728A1 (fr) Procede de diagnostic d'une soupape de dosage et dispositif pour sa mise en oeuvre
FR2928867A1 (fr) Dispositif et procede de chauffage d'un habitacle de vehicule automobile, en particulier un vehicule electrique.
WO2019053361A1 (fr) Procédé de prévention d'un risque de gel dans un dispositif d'alimentation en agent réducteur d'un système de réduction catalytique sélective
FR2996168A1 (fr) Dispositif de calcul d'une temperature de substitution du liquide de refroidissement d'un moteur thermique equipe d'un rechauffeur additionnel
WO2014001732A1 (fr) Dispositif de mesure de pression d'un gaz dans un système de dépollution ou de stockage d'énergie
EP2545261B1 (fr) Procede de regulation de la temperature de regeneration d'un filtre a particules
FR2990174A1 (fr) Procede d'estimation de la charge d'un canister ainsi que procede et dispositif de determination de necessite d'une purge du canister pour un vehicule hybride
WO2014167125A1 (fr) Structure de stockage d'ammoniac et systemes associes
EP2538051A1 (fr) Procédé pour déterminer la quantité d'un agent réducteur dans un réservoir
WO2014023836A1 (fr) Jaugeage de l'autonomie d'un système de stockage et de délivrance d'ammoniac gazeux
WO2019215398A1 (fr) Surveillance dynamique du débit d'additif liquide injecté dans un système de traitement des gaz d'échappement d'un véhicule automobile
FR2989997A1 (fr) Procede de determination d'une quantite d'agent reducteur transferee pendant un intervalle de temps vers une cartouche de stockage auxiliaire d'un systeme de reduction catalytique
FR3068387A1 (fr) Procede de determination du passage a l’etat sans presence d’eau liquide dans une ligne d’echappement comportant un organe de depollution

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13744658

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14411659

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013744658

Country of ref document: EP