WO2014000991A1 - Speicherstruktur einer elektrischen energiespeicherzelle - Google Patents

Speicherstruktur einer elektrischen energiespeicherzelle Download PDF

Info

Publication number
WO2014000991A1
WO2014000991A1 PCT/EP2013/060526 EP2013060526W WO2014000991A1 WO 2014000991 A1 WO2014000991 A1 WO 2014000991A1 EP 2013060526 W EP2013060526 W EP 2013060526W WO 2014000991 A1 WO2014000991 A1 WO 2014000991A1
Authority
WO
WIPO (PCT)
Prior art keywords
fabric
oxide
storage
green sheet
inert material
Prior art date
Application number
PCT/EP2013/060526
Other languages
English (en)
French (fr)
Inventor
Marco Cologna
Carsten Schuh
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2014000991A1 publication Critical patent/WO2014000991A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • H01M4/801Sintered carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/02Pretreatment of the fibres or filaments
    • C22C47/04Pretreatment of the fibres or filaments by coating, e.g. with a protective or activated covering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/20Making alloys containing metallic or non-metallic fibres or filaments by subjecting to pressure and heat an assembly comprising at least one metal layer or sheet and one layer of fibres or filaments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5212Organic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/346Titania or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/348Zirconia, hafnia, zirconates or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/62Forming laminates or joined articles comprising holes, channels or other types of openings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a memory structure of an electrical energy storage cell according to the preamble of patent claim 1.
  • ROB Rechargeable Oxide Batteries
  • the object of the invention is to provide a storage structure of an electrical energy storage cell which, compared to the prior art, has a higher long-term stability and withstands a higher number of cycles of charging and discharging operations.
  • the solution of the problem consists in a method for producing a memory structure of a metal-air energy storage cell having the features of patent claim 1.
  • the method according to the invention according to claim 1 comprises the following steps:
  • Producing a green sheet providing the green sheet with an organic-based fabric, laminating at least two green sheets with fabric to form a laminate, and then heat-treating the laminate with thermal decomposition of the organic components.
  • the fabric is either applied to the green sheet or already filled with a slurry forming at least one raw material of the green sheet when the green sheet is drawn. Depending on the tissue then lies in the green sheet or between two green sheets in the layer composite.
  • the memory structure 2 is connected to a storage electrode 20, whereby oxygen ions exchange via a gaseous carrier medium between the storage structure 2 and the storage electrode 20. Due to the macroscopic pore channels 42, the gaseous medium can pass unhindered into an active storage material 6, which forms the main component of the storage structure 2, at a high flow rate.
  • the heat-treated layer composite is applied vertically. lent a tissue plane cut.
  • the fabric is coated with an inert material.
  • Ceramic inert materials based on zirconium oxide, yttrium-reinforced zirconium oxide, yttrium oxide, calcium oxide, magnesium oxide, titanium oxide, aluminum oxide or mixed phases thereof have proved particularly suitable for coating with the inert material.
  • a slip is produced from said inert materials or a further inert material, with which the fabric is soaked or immersed. The application of an inert material on the surface of the fabric causes the edges of the macroscopic pore channels to be at the edges
  • Inert material deposits as a porous layer and prevents diffusion of the active storage material in the direction of the storage electrode.
  • inert is understood to mean that a chemical equilibrium between the inert material and a possible reactant is so slow that at the prevailing operating temperatures there are no reactions which have a lasting effect on the functionality of the storage structure.
  • This is understood in particular to be an inert behavior with respect to a gaseous or liquid reactant, which in turn enters into a reaction with the storage material.
  • this is understood to mean an inert behavior with respect to the storage material per se, in particular zirconium oxide, calcium oxide, magnesium oxide, yttrium oxide, aluminum oxide or mixtures of these ceramic inert materials or materials as inert storage material. Lien, which are built on the basis of the materials mentioned, are used.
  • the green film Before the green film is provided with the fabric, in a preferred embodiment of the invention, it is coated with a laminating aid; it has proven particularly advantageous to use the slurry used to produce the green sheet as a laminating aid to form an intimate bond between the green sheets to be laminated themselves and the inserted fabric.
  • the memory structure comprises an active storage material which is based on iron or iron oxide.
  • the iron oxide is usually present during production of the storage structure in the form of Fe 2 O 3 (iron (III) oxide).
  • iron oxide is usually present during production of the storage structure in the form of Fe 2 O 3 (iron (III) oxide).
  • iron (III) oxide) iron oxide
  • the active storage material is present in particular in the form of a redox pair, which consists of iron and iron oxide, wherein the proportion of the respective components is dependent on the state of charge of the electrical storage cell.
  • FIG. 2 shows a schematic representation of a film drawing machine
  • FIG. 3 a schematic representation of the lamination process
  • FIG. 4 shows a schematic representation of the thermal decomposition process
  • FIG. 5 shows a plan view of a storage structure with vertical macroscopic pore channels
  • FIG. 6 shows a cross section through a storage structure in the installed state in an energy storage cell
  • FIG. 7 shows a cross section through a memory structure with pore channels, which run horizontally in an installed position of the memory structure with respect to a storage electrode and
  • FIG. 8 shows a plan view of a memory structure according to FIG. 7.
  • a common structure of a ROB is that at a positive electrode 16, which is also referred to as the air electrode 16, a process gas, in particular air, is blown through a gas supply 14, wherein during discharge (circuit on the right side of the image) the air deoxygenated becomes.
  • the oxygen passes in the form of oxygen ions 0 2 " through a voltage applied to the positive electrode solid electrolyte 18 to a negative
  • Electrode 20 which is also referred to as a storage electrode. This is via a gaseous redox couple, e.g. a hydrogen-water vapor mixture with the porous storage medium in the channel structure in combination.
  • a gaseous redox couple e.g. a hydrogen-water vapor mixture with the porous storage medium in the channel structure in combination.
  • a storage structure 2 of porous material on the negative electrode as the energy storage medium, which contains a functionally active oxidizable material as an active storage material 6, preferably in the form of iron and iron oxide.
  • the oxygen ions transported by the solid electrolyte 18, after being discharged at the negative electrode are in the form of water vapor through pore channels of the porous storage structure 2 comprising the active storage material 6 , transported.
  • the metal or the metal oxide iron / iron oxide
  • This mechanism of oxygen transport via a redox pair is called a shuttle mechanism.
  • iron as oxidizable material ie as active storage material 6
  • quiescent voltage about 1 V as the redox couple H 2 / H 2 O at a partial pressure ratio of 1, otherwise it yields there is an increased resistance to oxygen transport through the diffusing components of this redox couple.
  • the diffusion of the oxygen ions through the solid electrolyte 18 requires a high operating temperature of 600 to 900 ° C of the described ROB, but also for the optimum composition of the redox pair H 2 / H 2 0 in equilibrium with the memory material, this temperature range is advantageous.
  • the active memory material With the steady cycles of oxidation and reduction, the active storage material tends to to sunder and / or coarsen. Sintering means that the individual grains merge more and more with each other through diffusion processes, the reactive specific surface area decreases and the continuously open pore structure required for gas transport disappears.
  • Roughening means that individual grains grow at the expense of other grains, with the number density and the reactive specific surface area of the grains decreasing.
  • the redox couple H 2 / H 2 0 can no longer reach the active surface of the active storage material 6, so that even after a partial discharge of the memory, the internal resistance of the battery is very high, which prevents further technically meaningful discharge.
  • An advantage of the ROB is that it can be modularly extended almost infinitely modularly due to its smallest unit, namely the memory cell. Thus, a small battery for stationary home use as well as a large-scale system for storing the energy of a
  • FIG. 2 shows a film drawing apparatus 24 which comprises a conveyor belt 26, wherein a film slip 30 is stored in a storage container 28.
  • the film slip 30 is placed on the conveyor belt 26 and smoothed by a doctor blade 32.
  • a heat treatment of the smooth-drawn film slip 30 is optionally carried out in a heat treatment device 34.
  • the now rather stiff, dry green sheet is cut by a cutting tool 36 into individual parts. These cut-to-length pieces are referred to below as green sheet 7.
  • FIG. 3 shows how several layers of green foil pieces are laminated with organic tissues 8 embedded therebetween. The resulting laminate is referred to as layer composite 9.
  • Figure 3 alternately follows one Layer green film 7 and a fabric 8, which may be provided in principle also advantageously with a film slip 30 or with another laminating aid, so that it can better lienieren between the individual Grünfo- 7 lamination.
  • it may also be expedient to place the fabric 8 on the conveyor belt 26 and to cast the film slip 30 directly over the fabric 8 and thus to pour the fabric 8 directly into the green film.
  • a pressure is exerted on the laminate at an elevated temperature, which is illustrated by the double arrow with the letter P.
  • the layer composite shown in this way which may otherwise also have a greater length than that shown schematically in FIG. 3 or FIG. 2, is now placed in a second heat treatment device 38, which is designed to be at atmospheric and with respect to the temperature spectrum in such a way that burn out of the organic components 40, in particular the organic components of the fabric 8, takes place.
  • the component thus obtained will now be referred to as memory structure 2.
  • the memory structure 2 has macroscopic pore channels 42, which are present where the tissue 8 has been located in the layer composite 9.
  • FIG. 6 shows an installation position of a memory structure 2 'according to FIG. 5 in an energy storage cell 4.
  • FIG. 6 shows the position of the storage electrode 20 as well as the solid electrolyte 18 and the air electrode 16. With respect to the storage electrode 20, the macroscopic pore channels 42 in the storage structure 2 'are perpendicular.
  • a shuttlegas in particular the gas mixture H 2 / H 2 O, can pass through the macroscopic pore channels from the storage electrode 20 to the active storage material 6 in a simple manner and without obstruction to flow.
  • the fabric 8, not shown here coated with a slurry comprising an inert material 11 based on zirconia. This coating remains after burnout and thermal decomposition of the organic tissue 8 at the edges of the pore channels 42, so that this zirconium oxide porous ceramic layer, opposite to the Shuttlegas and the other taking place in the memory structure or in the memory cell 4 electrochemical Processes is inert, deposited.
  • the inert material which is not shown here, forms a very thin, porous layer at the edges of the macroscopic pore channels 42.
  • the inert material 11 acts as a diffusion barrier for the active storage material 6, which otherwise might tend towards the storage cell 20 To move diffusion processes. This would cause the macroscopic pore channels 42 to become clogged.
  • the term macroscopic pore channels is understood to mean that, in contrast to pore channels, which of course are already present in the active storage material alone by the pressing process and by the grain geometry, a significantly larger pore structure is present. By significantly larger is meant here that the macroscopic pore channels have at least a diameter of 50 ⁇ , optionally up to a diameter of up to 2 mm.
  • Pores, which are located in the interior of the active storage material 6, have a production-related diameter of about 3 ⁇ to 20 ⁇ on.
  • the pore diameter of the macroscopic pore channels 42 can be adjusted in particular by the thickness of the tissue 8 used.
  • the macroscopic pore channels 42, which are formed by the tissue 8, extend in such a way that they pass through all areas of the active storage material 6, so that even with an increasing sintering of the active storage material 6, ie, decreasing pores in the active storage material 6, always only short distances in the active storage material 6 through the Shuttlegas H 2 / H 2 0 must be covered.
  • the macroscopic pore channels thus form a dense network, comparable to a motorway network, in which only short distances on narrow, interparticular pore channels analogous to DorfStra day must be covered. It is always ensured by this measure that the active storage material with sufficient shuttlegas is also supplied when the pore channels in the active storage material by the zuzessive sintering increasingly close.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Hybrid Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung einer Speicherstruktur einer Metall-Luft Energiespeicherzelle, umfassend folgende Schritte: - Herstellen einer Grünfolie, - Versehen der Grünfolie mit einem Gewebe auf organischer Basis, - Laminieren von mindestens zwei Grünfolien mit dem Gewebe zu einem Schichtverbund, - Wärmebehandlung des Schichtverbundes mit thermischer Zersetzung der organischen Bestandteile.

Description

Beschreibung
Speicherstruktur einer elektrischen Energiespeicherzelle Die Erfindung betrifft eine Speicherstruktur einer elektrischen Energiespeicherzelle nach dem Oberbegriff des Patentanspruchs 1.
Überschüssige elektrische Energie, die beispielsweise aus er- neuerbaren Energiequellen hervorgeht, lässt sich nur im bedingten Umfang im Stromnetz speichern. Dies gilt auch für überschüssige Energie, die dann bei fossilen Kraftwerken anfällt, wenn diese im optimalen wirtschaftlichen Lastbereich laufen, vom Verbraucher jedoch aus dem Netz nicht abgerufen wird. Für die Zwischenspeicherung dieser überschüssigen Energien in größeren Mengen gibt es verschiedene Großspeichervorrichtungen. Eine davon ist zum Beispiel ein Pumpspeicherkraftwerk. Auf dem Batteriesektor besteht ein Ansatz für einen elektrischen Energiespeicher darin, sogenannte Rechar- geable Oxide Batteries (ROB) , also Hochtemperatur-Metall -
Luft-Batterien einzusetzen. Bei diesen Batterien wird ein metallbasiertes Speichermedium je nach Batteriezustand (geladen oder entladen) reduziert oder oxidiert. Bei einer Vielzahl dieser zyklischen Lade- und Entlade-, also Reduktions- und Oxidationsvorgangen des Speichermediums neigt dieses Medium bei den anliegenden vergleichsweise hohen Betriebstemperaturen einer solchen Batterie, die üblicherweise zwischen 600°C und 900°C liegen, dazu, dass die geforderte Mikrostruktur, insbesondere die Porenstruktur des Speichermediums und die Partikelgrößenverteilung des aktiven Speichermaterials, durch Sinterprozesse zerstört wird. Dies führt zu einer Alterung und anschließend zu einem Versagen der Batterie.
Die Aufgabe der Erfindung besteht darin, eine Speicherstruk- tur einer elektrischen Energiespeicherzelle bereitzustellen, die gegenüber dem Stand der Technik eine höhere Langzeitbeständigkeit aufweist und einer höheren Zyklenzahl von Lade- und Entladevorgängen stand hält. Die Lösung der Aufgabe besteht in einem Verfahren zur Herstellung einer Speicherstruktur einer Metall-Luft- Energiespeicherzelle mit den Merkmalen des Patentanspruchs 1.
Das erfindungsgemäße Verfahren gemäß Anspruch 1 umfasst dabei folgende Schritte:
Herstellen einer Grünfolie, Versehen der Grünfolie mit einem Gewebe auf organischer Basis, Laminieren von mindestens zwei Grünfolien mit Gewebe zu einem Schichtverbund und eine anschließende Wärmebehandlung des Schichtverbundes mit thermischer Zersetzung der organischen Bestandteile. Unter Versehen der Grünfolie mit einem Gewebe wird dabei verstanden, dass das Gewebe entweder auf die Grünfolie aufgebracht wird oder beim Ziehen der Grünfolie bereits mit einem Schlicker, der mindestens einen Ausgangsstoff der Grünfolie bildet, befüllt wird. Je nachdem liegt dann das Gewebe in der Grünfolie oder zwischen zwei Grünfolien im Schichtverbund vor .
Nach der thermischen Zersetzung der organischen Bestandteile, insbesondere der organischen Bestandteile des Gewebes, blei- ben makroskopische Porenkanäle in der Schichtstruktur bestehen, die vormals während des Herstellungsprozesses durch das Gewebe ausgefüllt waren. Beim Einlegen der Speicherstruktur in die Energiespeicherzelle steht die Speicherstruktur 2 mit einer Speicherelektrode 20 in Verbindung, wobei es zum Aus- tausch von Sauerstoffionen über ein gasförmiges Trägermedium zwischen der Speicherstruktur 2 und der Speicherelektrode 20 kommt. Durch die makroskopischen Porenkanäle 42 kann das gasförmige Medium mit einer hohen Strömungsgeschwindigkeit ungehindert in ein aktives Speichermaterial 6, das den Hauptbe- standteil der Speicherstruktur 2 bildet, gelangen.
In einer weiteren bevorzugten Ausgestaltungsform der Erfindung wird der wärmebehandelte Schichtverbund senkrecht bezüg- lieh einer Gewebeebene geschnitten. Das führt dazu, dass die makroskopischen Porenkanäle 42 in Einbaulage der Speicherstruktur 2 in der Energiespeicherzelle so orientiert sind, dass sie bezüglich der Speicherelektrode 20 im Wesentlichen senkrecht verlaufen und das gasförmige Medium zum Transport der Sauerstoffionen schnell in das Innere der Speicherstruktur transportiert werden kann.
In einer weiteren vorteilhaften Ausgestaltungsform der Erfin- dung wird das Gewebe mit einem Inertmaterial beschichtet. Bei der Beschichtung mit dem Inertmaterial haben sich insbesondere keramische Inertmaterialien auf der Basis von Zirkonoxid, yttriumverstärktem Zirkonoxid, Yttriumoxid, Calciumoxid, Magnesiumoxid, Titanoxid, Aluminiumoxid oder Mischphasen hieraus bewährt. Es wird in einer vorteilhaften Ausgestaltungsform der Erfindung aus den genannten Inertmaterialien oder einem weiteren Inertmaterial ein Schlicker hergestellt, mit dem das Gewebe getränkt bzw. eingetaucht wird. Die Anwendung eines Inertmaterials auf der Oberfläche des Gewebes führt dazu, dass an Rändern der makroskopischen Porenkanäle sich das
Inertmaterial als poröse Schicht ablagert und eine Diffusion des aktiven Speichermaterials in Richtung der Speicherelektrode unterbindet . Unter dem Begriff inert wird verstanden, dass sich ein chemisches Gleichgewicht zwischen dem inerten Material und einem möglichen Reaktanden so langsam einstellt, dass es bei den vorherrschenden Betriebstemperaturen zu keinen Reaktionen kommt, die die Funktionalität der Speicherstruktur nachhaltig beeinflussen. Darunter wird insbesondere ein inertes Verhalten gegenüber einem gasförmigen oder flüssigen Reaktanden verstanden, der wiederum eine Reaktion mit dem Speichermaterial eingeht. Außerdem wird hierunter ein inertes Verhalten gegenüber dem Speichermaterial an sich verstanden, insbeson- dere kommen als inertes Speichermaterial Zirkonoxid, Calciumoxid, Magnesiumoxid, Yttriumoxid, Aluminiumoxid oder Mischungen aus diesen keramischen inerten Materialien oder Materia- lien, die auf der Basis der genannten Materialien aufgebaut sind, zum Einsatz.
Vor dem Versehen der Grünfolie mit dem Gewebe wird dieses in einer bevorzugten Ausgestaltungsform der Erfindung mit einer Laminierhilfe beschichtet, dabei hat es sich insbesondere als vorteilhaft herausgestellt, den Schlicker, der zur Herstellung der Grünfolie verwendet wird, als Laminierhilfe zu verwenden, um eine innige Verbindung zwischen den zu laminieren- den Grünfolien selbst als auch dem eingelegten Gewebe zu erzielen .
In einer weiteren Ausgestaltungsform der Erfindung weist die Speicherstruktur ein aktives Speichermaterial auf, das auf der Basis von Eisen oder Eisenoxid besteht. Das Eisenoxid liegt üblicherweise bei einer Herstellung der Speicherstruktur in Form von Fe203 (Eisen ( III ) -Oxid) vor, während des Betriebes des Speicherzelle ändert sich in der Regel die Oxida- tionsstufe des Eisens, weshalb der Betrieb der Speicherzelle mit den Verbindungen FeO (Eisen ( II ) -Oxid) und/oder Fe304 (Ei- sen(II, III) -Oxid) erfolgt. Das aktive Speichermaterial liegt insbesondere in Form eines Redoxpaares vor, das aus Eisen und Eisenoxid besteht, wobei der Anteil der jeweiligen Komponenten abhängig vom Ladezustand der elektrischen Speicherzelle ist.
Weitere Merkmale der Erfindung und weitere Vorteile werden anhand der folgenden Figuren näher erläutert. Bei der Figurenbeschreibung handelt es sich um beispielhafte Ausgestal- tungsformen der Erfindung, die keine Einschränkung des
Schutzbereiches darstellen.
Dabei zeigen: Figur 1 eine schematische Darstellung der Wirkungsweise einer elektrischen Speicherzelle,
Figur 2 eine schematische Darstellung einer Folienziehanlage, Figur 3 eine schematische Darstellung des Laminierprozesses ,
Figur 4 eine schematische Darstellung des thermischen Zerset- zungsprozesses,
Figur 5 eine Draufsicht auf eine Speicherstruktur mit senkrechten makroskopischen Porenkanälen, Figur 6 einen Querschnitt durch eine Speicherstruktur im eingebauten Zustand in einer Energiespeicherzelle,
Figur 7 einen Querschnitt durch eine Speicherstruktur mit Porenkanälen, die in einer Einbaulage der Speicherstruktur be- züglich einer Speicherelektrode waagerecht verlaufen und
Figur 8 eine Draufsicht auf eine Speicherstruktur gemäß Figur 7. Anhand von Figur 1 soll zunächst schematisch die Wirkungsweise einer Rechargeable Oxide Batterie (ROB) beschrieben werden, insoweit dies für die vorliegende Beschreibung der Erfindung notwendig ist. Ein üblicher Aufbau einer ROB besteht darin, dass an einer positiven Elektrode 16, die auch als Luftelektrode 16 bezeichnet wird, ein Prozessgas, insbesondere Luft, über eine Gaszufuhr 14 eingeblasen wird, wobei beim Entladen (Stromkreis auf der rechten Bildseite) der Luft Sauerstoff entzogen wird. Der Sauerstoff gelangt in Form von Sauerstoffionen 02" durch einen an der positiven Elektrode anliegenden Feststoffelektrolyten 18 zu einer negativen
Elektrode 20, die auch als Speicherelektrode bezeichnet wird. Diese steht über ein gasförmiges Redoxpaar, z.B. ein Wasserstoff-Wasserdampf-Gemisch mit dem porösen Speichermedium in der Kanalstruktur in Verbindung. Würde an der negativen
Elektrode 20 eine dichte Schicht des aktiven Speichermaterials vorliegen, so würde die Ladekapazität der Batterie schnell erschöpft werden. Aus diesem Grund ist es zweckmäßig, an der negativen Elektrode als Energiespeichermedium eine Speicherstruktur 2 aus porösem Material einzusetzen, das ein funktional wirkendes oxi- dierbares Material als ein aktives Speichermaterial 6, bevor- zugt in Form von Eisen und Eisenoxid enthält.
Über ein beim Betriebszustand der Batterie gasförmiges Redoxpaar, beispielsweise H2/H20, werden die, durch den Festkörperelektrolyten 18 transportierten Sauerstoffionen nach ihrer Entladung an der negativen Elektrode in Form von Wasserdampf durch Porenkanäle der porösen Speicherstruktur 2, die das aktive Speichermaterial 6 umfasst, transportiert. Je nachdem, ob ein Entlade- oder Ladevorgang vorliegt, wird das Metall bzw. das Metalloxid (Eisen/Eisenoxid) oxidiert oder reduziert und der hierfür benötigte Sauerstoff durch das gasförmige Redoxpaar H2/H20 angeliefert oder zum Festkörperelektrolyten 18 bzw. zur negativen Elektrode 20 zurück transportiert. Dieser Mechanismus des Sauerstofftransportes über ein Redoxpaar wird als Shuttlemechanismus bezeichnet.
Der Vorteil des Eisens als oxidierbares Material, also als aktives Speichermaterial 6, besteht darin, dass es bei seinem Oxidationsprozess in etwa dieselbe Ruhespannung von etwa 1 V aufweist wie das Redoxpaar H2/H20 bei einem Partialdruckver- hältnis von 1, andernfalls ergibt sich ein erhöhter Widerstand für den Sauerstofftransport durch die diffundierenden Komponenten dieses Redoxpaares .
Die Diffusion der Sauerstoffionen durch den Feststoffelektro- lyten 18 benötigt eine hohe Betriebstemperatur von 600 bis 900 °C der beschriebenen ROB, aber auch für die optimale Zusammensetzung des Redoxpaares H2/H20 im Gleichgewicht mit dem Speichermaterial ist dieser Temperaturbereich vorteilhaft. Hierbei ist nicht nur die Struktur der Elektroden 16 und 20 und des Elektrolyten 18 einer hohen thermischen Belastung ausgesetzt, sondern auch die Speicherstruktur 2, die das aktive Speichermaterial 6 umfasst. Bei den stetigen Zyklen von Oxidation und Reduktion neigt das aktive Speichermaterial da- zu, zu versintern und/oder zu vergröbern. Versintern bedeutet, dass die einzelnen Körner immer mehr miteinander durch Diffusionsprozesse verschmelzen, die reaktive spezifische Oberfläche sinkt und die für den Gastransport erforderliche durchgehend offene Porenstruktur verschwindet. Vergröbern bedeutet, dass einzelne Körner auf Kosten anderer Körner wachsen, wobei die Anzahldichte und die reaktive spezifische Oberfläche der Körner abnimmt. Bei einer geschlossenen Porenstruktur kann das Redoxpaar H2/H20 die aktive Oberfläche des aktiven Speichermaterials 6 nicht mehr erreichen, so dass bereits nach einer Teilentladung des Speichers der Innenwiderstand der Batterie sehr hoch wird, was eine weitere technisch sinnvolle Entladung verhindert. Ein Vorteil der ROB besteht darin, dass sie durch ihre kleinste Einheit, nämlich die Speicherzelle, modular nahezu unbegrenzt erweiterbar ist. Somit ist eine kleine Batterie für den stationären Hausgebrauch ebenso darstellbar wie eine großtechnische Anlage zur Speicherung der Energie eines
Kraftwerkes.
Anhand der Figuren 2 bis 4 wird ein Herstellungsverfahren zur Herstellung einer Speicherstruktur exemplarisch beschrieben. In Figur 2 ist eine Folienziehvorrichtung 24 dargestellt, die ein Förderband 26 umfasst, wobei in einem Vorratsbehälter 28 ein Folienschlicker 30 bevorratet ist. Der Folienschlicker 30 wird auf das Förderband 26 gegeben und durch ein Rakel 32 glattgezogen. In einem weiteren Schritt wird in einer Wärmebehandlungsvorrichtung 34 gegebenenfalls eine Wärmebehandlung des glattgezogenen Folienschlickers 30 durchgeführt. Die nun recht steife, trockene Grünfolie wird durch ein Schneidewerkzeug 36 in Einzelteile zerschnitten. Diese abgelängten Stücke werden im Weiteren als Grünfolie 7 bezeichnet. In Figur 3 ist dargestellt, wie mehrere Lagen an Grünfolienstücken mit dazwischen eingelagerten organischen Geweben 8 laminiert werden. Das so erhaltene Laminat wird als Schichtverbund 9 bezeichnet . In Figur 3 folgt abwechselnd eine Schicht Grünfolie 7 und ein Gewebe 8, das grundsätzlich in vorteilhafter Weise ebenfalls mit einem Folienschlicker 30 oder mit einem anderen Laminierhilfsmittel versehen sein kann, so dass es sich besser zwischen die einzelnen Grünfo- lien 7 einlaminieren lässt. Grundsätzlich kann es auch zweckmäßig sein, das Gewebe 8 auf dem Förderband 26 aufzulegen und den Folienschlicker 30 direkt über das Gewebe 8 zu gießen und somit das Gewebe 8 direkt in die Grünfolie mit einzugießen. Beim Laminierprozess wird gegebenenfalls unter erhöhter Tem- peratur auf den Schichtverbund ein Druck ausgeübt, der durch den Doppelpfeil mit dem Buchstaben P veranschaulicht ist.
Der so dargestellte Schichtverbund, der im Übrigen auch eine größere Länge aufweisen kann als dies schematisch in Figur 3 bzw. Figur 2 dargestellt ist, wird nun in eine zweite Wärmebehandlungsvorrichtung 38 gegeben, die atmosphärisch und bezüglich des Temperaturspektrums derart ausgestaltet ist, dass ein Ausbrennen der organischen Bestandteile 40, insbesondere der organischen Bestandteile des Gewebes 8, erfolgt. Das so erhaltene Bauteil wird nun als Speicherstruktur 2 bezeichnet. Die Speicherstruktur 2 weist dabei makroskopische Porenkanäle 42 auf, die dort vorliegen, wo das Gewebe 8 im Schichtverbund 9 gelegen hat. Nun gibt es noch die Möglichkeit, eine Vielzahl von Grünfolien und Gewebeschichten im Schichtverbund 9 so übereinander zu legen, dass der Schichtverbund 9 so dick wird, dass, wenn er senkrecht zu einer Gewebeebene 10 geschnitten wird, eine ausreichend große Grundfläche aufweist, dass so eine weitere Speicherstruktur 2' gebildet werden kann, die in Figur 5 abgebildet ist und bezüglich einer Speicherelektrode im Wesentlichen senkrecht stehende makroskopische Porenkanäle 42 aufweist . In Figur 6 ist eine Einbaulage einer Speicherstruktur 2' gemäß Figur 5 in einer Energiespeicherzelle 4 dargestellt. In Figur 6 ist die Lage der Speicherelektrode 20 sowie des Festkörperelektrolyten 18 und der Luftelektrode 16 dargestellt, bezüglich der Speicherelektrode 20 verlaufen die makroskopischen Porenkanäle 42 in der Speicherstruktur 2' senkrecht. Ein Shuttlegas, insbesondere das Gasgemisch H2/H20, kann durch die makroskopischen Porenkanäle von der Speicherelekt- rode 20 in einfacher Weise und ohne Strömungshinderung zum aktiven Speichermaterial 6 gelangen. In einer vorteilhaften Ausgestaltungsform der Erfindung wird das Gewebe 8, hier nicht dargestellt, mit einem Schlicker, der ein Inertmaterial 11 auf der Basis von Zirkonoxid umfasst, beschichtet. Diese Beschichtung bleibt nach dem Ausbrennen und thermischen Zersetzen des organischen Gewebes 8 an den Rändern der Porenkanäle 42 bestehen, so dass diese poröse keramische Schicht auf Basis von Zirkonoxid, das gegenüber dem Shuttlegas und dem anderen in der Speicherstruktur bzw. in der Speicherzelle 4 stattfindenden elektrochemischen Prozessen inert ist, abgelagert. Das hier nicht dargestellte Inertmaterial bildet eine sehr dünne, poröse Schicht an den Rändern der makroskopischen Porenkanäle 42. Das inerte Material 11 wirkt dabei als eine Diffusionssperre für das aktive Speichermaterial 6, das an- sonsten dazu neigen könnte, sich in Richtung der Speicherzelle 20 durch Diffusionsprozesse zu bewegen. Dies würde dazu führen, dass die makroskopischen Porenkanäle 42 verstopfen würden . Unter dem Begriff makroskopische Porenkanäle wird verstanden, dass im Gegensatz zu Porenkanälen, die selbstverständlich auch im aktiven Speichermaterial allein bereits durch den Pressvorgang und durch die Korngeometrie gegeben sind, eine deutlich größere Porenstruktur vorhanden ist. Unter deutlich größer wird hier verstanden, dass die makroskopischen Porenkanäle mindestens einen Durchmesser von 50 μπι, gegebenenfalls bis zu einem Durchmesser von bis zu 2 mm aufweisen. Poren, die sich im Inneren des aktiven Speichermaterials 6 befinden, weisen herstellungsbedingt einen Durchmesser von etwa 3 μπι bis 20 μπι auf. Der Porendurchmesser der makroskopischen Porenkanäle 42 kann insbesondere durch die Dicke des verwendeten Gewebes 8 eingestellt werden. Die makroskopischen Porenkanäle 42, die durch das Gewebe 8 gebildet werden, verlaufen in der Art, dass sie möglichst alle Bereiche des aktiven Speichermaterials 6 durchziehen, so dass auch bei einer zunehmenden Versinterung des aktiven Speichermaterials 6, d.h. kleiner werdenden Poren im aktiven Speichermaterial 6, stets nur kurze Wege im aktiven Speichermaterial 6 durch das Shuttlegas H2/H20 zurückgelegt werden müssen. Die makroskopischen Porenkanäle bilden somit ein dichtes Netz, vergleichbar mit einem Autobahnnetz, bei dem nur kurze Wege auf engen, interpartikularen Porenkanälen analog zu DorfStraßen zurückgelegt werden müssen. Es wird durch diese Maßnahme stets gewährleistet, dass das aktive Speichermaterial mit genügend Shuttlegas auch dann versorgt wird, wenn die Porenkanäle im aktiven Speichermaterial durch die zukzessive Versinterung zunehmend enger werden.

Claims

Patentansprüche
Verfahren zur Herstellung einer Speicherstruktur (2 ) einer Metall-Luft Energiespeicherzelle (4), umfassend folgende Schritte:
- Herstellen einer Grünfolie (7) ,
- Versehen der Grünfolie (7) mit einem Gewebe (8) auf organischer Basis,
- Laminieren von mindestens zwei Grünfolien (7) mit dem Gewebe (8) zu einem Schichtverbund (9),
- Wärmebehandlung des Schichtverbundes mit thermischer Zersetzung organischer Bestandteile.
Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der wärmebehandelte Schichtverbund (9) senkrecht bezüglich einer Gewebeebene (10) geschnitten wird.
Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Gewebe (8) mit einem Inertmaterial (11) beschichtet wird.
Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass das Inertmaterial (11) in Form von Zirkonoxid, yttriumverstärktem Zirkonoxid, Yttriumoxid, Calciumoxid, Magnesiumoxid, Titanoxid, Aluminiumoxid, oder Mischphasen hieraus, vorliegt.
Verfahren nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass das Gewebe (8) zur Beschichtung mit dem
Inertmaterial (11) in einen das Inertmaterial (11) enthaltenden Schlicker getaucht wird.
Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass vor dem Versehen der Grünfolie (7) mit dem Gewebe (8) dieses mit einer Laminier- hilfe beschichtet wird.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass das Gewebe (8) mit dem Folienziehschlicker als Lami- nierhilfe beschichtet wird. 8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Speicherstruktur (2) ein aktives Speichermaterial (6) umfasst, das auf der Basis von Eisen oder Eisenoxid besteht.
PCT/EP2013/060526 2012-06-29 2013-05-22 Speicherstruktur einer elektrischen energiespeicherzelle WO2014000991A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012211326.6A DE102012211326A1 (de) 2012-06-29 2012-06-29 Speicherstruktur einer elektrischen Energiespeicherzelle
DE102012211326.6 2012-06-29

Publications (1)

Publication Number Publication Date
WO2014000991A1 true WO2014000991A1 (de) 2014-01-03

Family

ID=48570078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/060526 WO2014000991A1 (de) 2012-06-29 2013-05-22 Speicherstruktur einer elektrischen energiespeicherzelle

Country Status (2)

Country Link
DE (1) DE102012211326A1 (de)
WO (1) WO2014000991A1 (de)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050255339A1 (en) * 2002-02-20 2005-11-17 Tsepin Tsai Metal air cell system
US20060025514A1 (en) * 2004-07-27 2006-02-02 Honda Motor Co., Ltd. C/C composite material precursor, C/C composite material and method for producing C/C composite material
US20110033772A1 (en) * 2007-12-20 2011-02-10 The Regents Of The University Of California Sintered porous structure and method of making same
US20120034520A1 (en) * 2010-08-09 2012-02-09 Chun Lu Self-sealed metal electrode for rechargeable oxide-ion battery cells
US20120052253A1 (en) * 2010-08-25 2012-03-01 Florida State University Research Foundation, Inc. Methods of fabricating ceramic preforms with 2-d channels and structures produced thereby

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8278013B2 (en) * 2007-05-10 2012-10-02 Alan Devoe Fuel cell device and system
DE102010041019A1 (de) * 2010-09-20 2012-03-22 Siemens Aktiengesellschaft Wiederaufladbare Energiespeichereinheit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050255339A1 (en) * 2002-02-20 2005-11-17 Tsepin Tsai Metal air cell system
US20060025514A1 (en) * 2004-07-27 2006-02-02 Honda Motor Co., Ltd. C/C composite material precursor, C/C composite material and method for producing C/C composite material
US20110033772A1 (en) * 2007-12-20 2011-02-10 The Regents Of The University Of California Sintered porous structure and method of making same
US20120034520A1 (en) * 2010-08-09 2012-02-09 Chun Lu Self-sealed metal electrode for rechargeable oxide-ion battery cells
US20120052253A1 (en) * 2010-08-25 2012-03-01 Florida State University Research Foundation, Inc. Methods of fabricating ceramic preforms with 2-d channels and structures produced thereby

Also Published As

Publication number Publication date
DE102012211326A1 (de) 2014-01-02

Similar Documents

Publication Publication Date Title
EP0696386B1 (de) Hochtemperaturbrennstoffzelle mit verbesserter festelektrolyt/elektroden-grenzfläche und verfahren zur herstellung der grenzfläche
EP1343215B1 (de) Strukturierter Körper für eine in Brennstoffzellen verwendete Anode
DE102011085224A1 (de) Speicherelement und Verfahren zu dessen Herstellung
DE102011017594A1 (de) Verfahren zur Herstellung eines porösen Körpers und Zelle einer wieder aufladbaren Oxidbatterie
EP2810332B1 (de) Elektrischer energiespeicher
EP2850676B1 (de) Speicherstruktur einer elektrischen energiespeicherzelle
EP2789038B1 (de) Stack für einen elektrischen energiespeicher
WO2014000991A1 (de) Speicherstruktur einer elektrischen energiespeicherzelle
EP2850680B1 (de) Speicherstruktur einer elektrischen energiespeicherzelle
EP2810337B1 (de) Speicherstruktur einer elektrischen energiespeicherzelle
DE102012205077A1 (de) Elektrischer Energiespeicher
EP2849904B1 (de) Verfahren zur herstellung einer speicherstruktur einer elektrischen energiespeicherzelle
DE102012202978A1 (de) Verfahren zur Herstellung einer Speicherstruktur eines elektrischen Energiespeichers
EP1658653A1 (de) Festoxidbrennstoffzelle und verfahren zu ihrer herstellung
DE102016119741A1 (de) Brennstoffzellenelement und Brennstoffzellenstapel
DE102011077699B4 (de) Verfahren zur Herstellung eines porösen Körpers und Zelle einer wieder aufladbaren Oxidbatterie
EP3327848B1 (de) Verfahren zur herstellung einer festoxidbrennstoffzelle
DE102012202997A1 (de) Verfahren zu Herstellung einer Speicherstruktur eines elektrischen Energiespeichers
DE102012202974A1 (de) Verfahren zur Herstellung einer Speicherstruktur
DE102010028893B4 (de) Verfahren zur Herstellung eines Interkonnektors für einen Brennstoffzellenstapel
EP2724401A1 (de) Speicherelement
DE112019000078T5 (de) Legierungsbauteil, zellenstapel und zellenstapelvorrichtung
DE102012204171A1 (de) Speicherstruktur einer elektrischen Energiespeicherzelle
WO2015010823A1 (de) Speicherstruktur und verfahren zur herstellung
DE102013200594A1 (de) Verfahren zur Herstellung einer Elektroden-Elektrolyt-Einheit für einen wiederaufladbaren elektrischen Energiespeicher, insbesondere einen Metalloxid-Luft-Energiespeicher, mit einem zwischen zwei Elektroden angeordneten Elektrolyten

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13726454

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13726454

Country of ref document: EP

Kind code of ref document: A1