WO2013191175A1 - Optical waveguide, optical interconnection component, optical module, opto-electric hybrid board, and electronic device - Google Patents

Optical waveguide, optical interconnection component, optical module, opto-electric hybrid board, and electronic device Download PDF

Info

Publication number
WO2013191175A1
WO2013191175A1 PCT/JP2013/066729 JP2013066729W WO2013191175A1 WO 2013191175 A1 WO2013191175 A1 WO 2013191175A1 JP 2013066729 W JP2013066729 W JP 2013066729W WO 2013191175 A1 WO2013191175 A1 WO 2013191175A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical waveguide
refractive index
core
opto
Prior art date
Application number
PCT/JP2013/066729
Other languages
French (fr)
Japanese (ja)
Inventor
進也 荒井
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013125973A external-priority patent/JP6251989B2/en
Priority claimed from JP2013125972A external-priority patent/JP2014026268A/en
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to US14/408,448 priority Critical patent/US9720171B2/en
Publication of WO2013191175A1 publication Critical patent/WO2013191175A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • G02B6/428Electrical aspects containing printed circuit boards [PCB]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Definitions

  • the present invention relates to an optical waveguide, an optical wiring component, an optical module, an opto-electric hybrid board, and an electronic device.
  • optical communication technology for transferring data using an optical carrier wave has been developed, and in recent years, an optical waveguide has been widely used as a means for guiding the optical carrier wave from one point to another point.
  • This optical waveguide has a linear core part and a clad part provided so as to cover the periphery thereof.
  • the core part is made of a material that is substantially transparent to the light of the optical carrier wave
  • the cladding part is made of a material having a refractive index lower than that of the core part.
  • the optical waveguide In the optical waveguide, light introduced from one end of the core portion is conveyed to the other end while being reflected at the boundary with the cladding portion.
  • a light emitting element such as a semiconductor laser is disposed on the incident side of the optical waveguide, and a light receiving element such as a photodiode is disposed on the emission side. Light incident from the light emitting element propagates through the optical waveguide, is received by the light receiving element, and performs communication based on the flickering pattern of the received light or its intensity pattern.
  • An object of the present invention is to provide an opto-electric hybrid board in which optical wiring is freely laid without being restricted by the arrangement of electrical elements and the like, and enables high-density mounting of the electrical wiring and the optical wiring, and the opto-electric hybrid board. It is providing the electronic device provided with.
  • the electric element is sandwiched between the substrate and the sheet-like optical waveguide, the heat dissipation of the electric element may be reduced.
  • An object of the present invention is to provide a light guide that can freely construct an optical wiring while ensuring heat dissipation of an electric element provided on the electric wiring board when mounted so as to be stacked on the electric wiring board.
  • Another object of the present invention is to provide an optical wiring component, an optical module, an opto-electric hybrid board, and an electronic device having a waveguide and high-density optical wiring.
  • An electric wiring board comprising: a first substrate; an electric wiring laid inside or on the surface of the first substrate; and an electric element mounted on the first substrate; A plurality of core portions provided so as to intersect with each other on the same plane, and a side clad portion provided adjacent to a side surface of each core portion, from the central portion of the core portion toward the side clad portion
  • a film-shaped optical waveguide comprising: a core layer in which a refractive index distribution in which the refractive index is continuously reduced; and an optical path conversion unit that converts an optical path of the core unit; Have Between the optical waveguide and the electrical wiring board, configured to transmit and receive signals with photoelectric conversion,
  • the opto-electric hybrid board further includes a second substrate, an electrical wiring laid in or on the surface of the second substrate, and an optical element mounted on the second substrate. It has a conversion part, The optical path included in the optical waveguide is optically connected to the optical element included in the photoelectric conversion unit, the electrical wiring included in the photoelectric conversion unit, and the electrical wiring included in the electrical wiring substrate;
  • optical waveguide further includes a metal layer provided on at least one surface side of the core layer.
  • the electrical wiring board includes a metal layer provided on each side of the first substrate and a via post provided so as to connect the metal layers through the first substrate.
  • An optical waveguide having a core layer including a core portion and a side cladding portion provided so as to be adjacent to a side surface of each of the core portions, and an optical path conversion portion that converts an optical path of the core portion,
  • An optical waveguide further comprising a through hole formed in the core layer so that the electrical element is inserted when the optical waveguide is overlaid on an electrical wiring board including the electrical element.
  • optical waveguide according to any one of (15) to (19), further including a lens provided on the other surface side of the core layer.
  • An optical wiring component comprising: the optical waveguide according to any one of (15) to (20) above; and an optical connector provided at an end portion of the core portion.
  • the electric interposer has an electric wiring laid on the inside or the surface thereof, and a second terminal connected to the electric wiring,
  • an opto-electric hybrid board in which optical wiring is freely laid without being restricted by the arrangement of electric elements and the like and high-density mounting of an electric circuit and optical wiring is possible.
  • optical waveguide on which the optical wiring is constructed is easy to remove, an opto-electric hybrid board that can be easily assembled and repaired can be obtained.
  • an electronic device that includes the opto-electric hybrid board and can be reduced in size and performance can be obtained.
  • the present invention when mounted so as to be stacked on the electric wiring board, it is possible to freely construct the optical wiring while ensuring the heat dissipation of the electric element provided on the electric wiring board. An optical waveguide is obtained.
  • an optical wiring component an optical module, an opto-electric hybrid board, and an electronic device having high-density optical wiring can be obtained.
  • FIG. 2 is a cross-sectional view taken along line XX in a state where optical waveguides are stacked as indicated by white arrows in FIG.
  • FIG. 26 is a perspective view showing a part of the optical waveguide shown in FIGS. 1 and 25 in an enlarged manner (partially cut out and shown through). It is a figure which shows an example of the refractive index distribution in the width direction of the cross section of the core part of an optical waveguide.
  • 5A is an example of a cross-sectional view cut across the core portion of the optical waveguide shown in FIG. 3, and FIG.
  • FIG. 5B is a core layer of the cross-sectional view shown in FIG. 5A. It is a figure which shows typically an example of the refractive index distribution W on the centerline C1 which passes through the center of the thickness direction.
  • 6A is another example of a cross-sectional view cut across the core portion of the optical waveguide shown in FIG. 3, and FIG. 6B is a cross-sectional view shown in FIG. It is a figure which shows typically the other example of the refractive index distribution W on the centerline C1 which passes the center of the thickness direction of a core layer. It is a figure which shows intensity distribution of the emitted light when light injects into the core part of the optical waveguide which has a refractive index distribution shown in FIG. FIG.
  • FIG. 26 is a plan view showing the vicinity of the intersection of the optical waveguide shown in FIGS. 1 and 25 and a diagram showing a refractive index distribution in the vicinity of the intersection. It is the elements on larger scale which show the other structural example vicinity of a cross
  • FIG. 26 is an exploded perspective view of the optical connector shown in FIGS. 1 and 25 and a perspective view of the optical connector shown in FIG. 1. It is sectional drawing which shows the other structural example of the optical module which concerns on 1st Embodiment.
  • FIG. 17 is a cross-sectional view taken along line XX in a state where optical waveguides are stacked as indicated by white arrows in FIG.
  • FIG. 17 is a perspective view showing a part of the optical waveguide shown in FIG.
  • FIG. 26 is a cross-sectional view taken along line XX in a state where optical waveguides are stacked as indicated by arrows in FIG.
  • FIG. 1 is an exploded perspective view showing a first embodiment of the opto-electric hybrid board according to the present invention (partially see through), and FIG. 2 is a state in which optical waveguides are stacked as shown by white arrows in FIG. FIG.
  • An optical module 100 shown in FIG. 1 includes an optical waveguide 1, an optical connector 101 provided at an end thereof, and a photoelectric conversion unit 4 provided below the optical waveguide 1. Further, the opto-electric hybrid board 1000 shown in FIG. 1 includes an optical module 100 and a mother board (electric wiring board) 5 provided below the photoelectric conversion unit 4.
  • the optical waveguide 1 is a sheet-like member having a quadrangular shape in plan view. As shown in FIG. 2, the optical waveguide 1 is formed by laminating a clad layer 11, a core layer 13, and a clad layer 12 in this order from below, and a core portion 14 that propagates an optical signal to the core layer 13. Are formed in a desired pattern. In FIG. 1, the core portion 14 formed in the core layer 13 is indicated by a broken line together with the optical connector 101 and the photoelectric conversion portion 4 that are behind the optical waveguide 1.
  • the core portion 14 is exposed on two opposite sides of the four sides of the optical waveguide 1, and the optical connector 101 is provided there.
  • the optical wiring component 10 is configured to optically connect the core portion 14 of the optical waveguide 1 and other optical components via the optical connector 101.
  • 1 illustrates an example in which the optical connector 101 is provided on two opposite sides of the optical waveguide 1, the arrangement of the optical connector 101 is not limited to this, and the optical connector 101 is provided on a side other than FIG. Alternatively, it may be provided at a portion other than the outer edge.
  • a plurality of photoelectric conversion units 4 are provided on the lower surface of the optical waveguide 1.
  • the photoelectric conversion unit 4 converts an electrical signal into an optical signal and sends it to the core unit 14 or receives an optical signal propagated through the core unit 14 and converts it into an electrical signal.
  • the optical waveguide 1 is provided with a mirror (optical path conversion unit) 17 corresponding to the light receiving and emitting unit of the photoelectric conversion unit 4, and the optical path of the core unit 14 from the surface direction of the optical waveguide 1 by the mirror 17. It is converted in a direction perpendicular thereto, and the core portion 14 and the light receiving / emitting portion of the photoelectric conversion portion 4 are optically connected.
  • a plurality of electric elements 50 for electric wiring boards such as a plurality of LSIs 501, capacitors 502, and chip resistors 503 are mounted.
  • the photoelectric conversion unit 4 and the mother board 5 are electrically and mechanically connected via an electrical connector.
  • the optical waveguide 1 and the electric element 50 for the electric wiring board can be easily replaced if necessary.
  • optical waveguide First, the optical waveguide will be described.
  • the optical waveguide 1 is a sheet-like member having a core portion 14 and a cladding portion, and is used as an optical wiring that transmits an optical signal from one end portion of the core portion 14 to the other end portion.
  • FIG. 3 is a perspective view showing a part of the optical waveguide 1 shown in FIG. 1 in an enlarged manner (partially cut out and shown through).
  • the optical waveguide 1 shown in FIG. 3 has three layers of a clad layer 11, a core layer 13, and a clad layer 12 from the lower side.
  • the core layer 13 includes a long core portion 14, A side cladding portion 15 adjacent to the core portion 14 is formed.
  • the core part 14 is surrounded by the clad part (the side clad part 15 and the clad layers 11 and 12), and can propagate light.
  • the refractive index of the core portion 14 may be larger than the refractive index of the cladding portion, but the difference is preferably 0.3% or more, and more preferably 0.5% or more.
  • the upper limit value is not particularly set, but is preferably about 5.5%. If the difference in refractive index is less than the lower limit value, the effect of propagating light may be reduced. On the other hand, if the difference in refractive index exceeds the upper limit value, further improvement in light transmission efficiency cannot be expected.
  • the refractive index difference is expressed by the following equation, where A is the refractive index of the core portion 14 and B is the refractive index of the cladding portion.
  • Refractive index difference (%)
  • the refractive index distribution in the cross section of the core portion 14 may be any shape distribution.
  • FIG. 4 is a diagram showing an example of the refractive index distribution in the width direction of the cross section of the core portion 14 of the optical waveguide 1.
  • This refractive index distribution may be a so-called step index (SI) type distribution in which the refractive index changes discontinuously as shown in FIG. 4A, and the refractive index distribution as shown in FIG. 4B. May be a so-called graded index (GI) type distribution in which the values continuously change. If the SI type distribution is used, it is easy to form a refractive index distribution. If the GI type distribution is used, the probability that the signal light is collected in a region having a high refractive index is increased, so that the transmission efficiency is improved.
  • SI step index
  • GI graded index
  • the refractive index distribution has a shape in which the refractive index can be regarded as continuously changing although the refractive index changes stepwise.
  • the distribution may also be
  • the refractive index distribution shown in FIG. 4C is a distribution in which the refractive index changes stepwise, and the amount of change in the refractive index per step that changes in a stepped manner is the refractive index of the entire refractive index distribution. Since the amount of change in refractive index (refractive index difference) is sufficiently small (eg, 1/5 or less), the refractive index distribution as shown in FIG. . For this reason, the refractive index distribution shown in FIG. 4C has high transmission efficiency and can be easily formed.
  • the refractive index difference can be obtained by setting A as the maximum value of the refractive index in the core portion 14 and B as the minimum value of the refractive index in the cladding portion.
  • the rate of change of the refractive index is preferably about 0.001 to 0.035 [/ 10 ⁇ m], and preferably 0.002 to 0.030 [ / 10 ⁇ m] is more preferable. If the change rate of the refractive index is within the above range, effects such as a reduction in transmission loss, a reduction in the bluntness of the pulse signal, and suppression of crosstalk in each core portion 14 can be reliably obtained.
  • FIG. 5A is an example of a cross-sectional view cut across the core portion of the optical waveguide shown in FIG. 3, and FIG. 5B is a core layer of the cross-sectional view shown in FIG. 5A. It is a figure which shows typically an example of the refractive index distribution W on the centerline C1 which passes the center of 13 thickness directions.
  • the left one is the core portion 141 and the right one is the core portion 142.
  • the left side is a side clad part 151
  • the center is the side clad part 152
  • the right side is the side clad part 153.
  • the refractive index distribution W is provided corresponding to the position of each core portion 14, and the refractive index continuously decreases toward both sides from the maximum value Wm and the maximum value Wm.
  • the refractive index continuously decreases toward the adjacent low refractive index region WL.
  • the refractive index is distributed so that the maximum value Wm is at the apex and the both sides of the maximum value Wm are gradually lowered and lowered.
  • the low refractive index region WL an almost constant refractive index is distributed which is lower than the refractive index of the high refractive index region WH.
  • the plurality of maximum values Wm existing in the refractive index distribution W are preferably the same value, but may be slightly different from each other.
  • the deviation amount is preferably within 10% of the average value of the plurality of maximum values Wm.
  • the two core portions 14 arranged in parallel are each in the form of an elongated line, and the refractive index distribution W as described above is maintained substantially the same in the entire longitudinal direction of the core portions 14.
  • the refractive index distribution W as described above is also formed in the core portion 14 intersecting with these core portions 14, and substantially the same distribution is maintained in the entire longitudinal direction of the core portion 14.
  • the core layer 13 shown in FIG. 1 is formed with the core portion 14 and the side clad portion 15 adjacent to the side surface thereof.
  • the core layer 13 shown in FIG. 5A includes two core portions 141 and 142 arranged in parallel and side clad portions 151, 152, and 153 provided in regions other than these core portions. Is provided. Thereby, each core part 141 and 142 will be in the state surrounded by each side cladding part 151,152,153 and each cladding layer 11,12, respectively.
  • the refractive indexes of these core portions 141 and 142 are higher than the refractive indexes of the side cladding portions 151, 152, and 153, light can be confined in the width direction of the core portions 141 and 142.
  • a dense dot is attached
  • the optical waveguide 1 light incident on one end portion of the core portion 14 is propagated to the other while confining in the thickness direction of each core portion 14, so that the other end portion of the core portion 14 is transmitted. It can be taken out.
  • the refractive index distribution W the refractive index continuously changes as a whole.
  • the effect of confining light in the core portion 14 is further enhanced, so that transmission loss can be further reduced.
  • the refractive index distribution W since the refractive index has a maximum value and the refractive index continuously changes, the speed of light increases as the distance from the center increases due to the property that the speed of light is inversely proportional to the refractive index. It is difficult for a difference in propagation time to occur. For this reason, the transmission waveform does not easily collapse, and for example, even when the transmission light includes a pulse signal, it is possible to suppress blunting of the pulse signal (spreading of the pulse signal). In addition, interference of transmitted light at the intersection is suppressed. As a result, the optical waveguide 1 that can further improve the quality of optical communication is obtained.
  • the refractive index continuously changing in the refractive index distribution W is a state in which the curve of the refractive index distribution W is rounded in each part, and this curve is differentiable.
  • the maximum value Wm is located in the core portions 141 and 142 as shown in FIG. 5A, but among the core portions 141 and 142, it is located in the center portion of the width. It is preferable. Thereby, in each core part 141 and 142, the probability that transmission light will gather in the center part of the width of core part 141 and 142 becomes high, and the probability that it will leak to side cladding parts 151, 152, and 153 becomes relatively low. As a result, the transmission loss of the core parts 141 and 142 can be further reduced.
  • the central portion of the width of the core portion 141 is a region at a distance of 30% of the width of the high refractive index region WH on both sides from the center of the high refractive index region WH.
  • the difference between the maximum value Wm and the average refractive index in the low refractive index region WL is preferably as large as possible, but is preferably about 0.005 to 0.07, and about 0.007 to 0.05. More preferably, it is about 0.01 to 0.03.
  • the difference in refractive index difference exceeds the upper limit value, further improvement in the effect of confining light cannot be expected, and the manufacture of the optical waveguide 1 becomes difficult.
  • the refractive index distribution W in the core portions 141 and 142 has a maximum value when the horizontal axis indicates the position of the cross section of the core layer 13 and the vertical axis indicates the refractive index. It is preferable that the shape in the vicinity of Wm is a substantially U shape convex upward. Thereby, the light confinement action in the core parts 141 and 142 becomes more remarkable.
  • the amount of deviation from the average refractive index in the low refractive index region WL is preferably within 5% of the average refractive index. Thereby, the low refractive index region WL functions reliably as the side cladding portion 15.
  • the refractive index distribution W as described above, it is possible to obtain effects such as transmission loss reduction, pulse signal dullness reduction, crosstalk suppression, crosstalk suppression, and the like.
  • the inventors have found that these effects are greatly influenced by the average width WCL of the side cladding part or the ratio of the average width WCO of the core part and the average width WCL of the side cladding part. And when these factors were in the predetermined range, it discovered that the above-mentioned effect became more remarkable and reliable.
  • the ratio (WCO / WCL) between the average width WCO of the core portion 14 and the average width WCL of the side cladding portion 15 is preferably in the range of 0.1 to 10.
  • WCO / WCL is less than the lower limit value
  • the average width of the core portion 14 becomes too narrow, so that crosstalk can be reduced, but transmission loss tends to increase, and the optical waveguide 1 can be downsized. May be hindered.
  • WCO / WCL exceeds the upper limit value, the average width of the side cladding portion 15 becomes too narrow, so that crosstalk increases, and further, the average width of the core portion 14 becomes too wide. Dullness may increase.
  • WCO / WCL is more preferably about 0.1 to 5, more preferably about 0.2 to 4.
  • the average width WCL of the side cladding portion 15 is in the range of 5 to 250 ⁇ m independently of or in addition to WCO / WCL.
  • the WCL is more preferably in the range of 10 to 200 ⁇ m, and further preferably in the range of 10 to 120 ⁇ m.
  • the refractive index distribution W may include a flat portion in which the refractive index is not substantially changed in the vicinity of each maximum value Wm. Even in this case, the optical waveguide of the present invention exhibits the effects and effects as described above.
  • the flat portion where the refractive index does not substantially change is a region where the refractive index fluctuation is less than 0.001, and the refractive index continuously decreases on both sides thereof.
  • the length of the flat portion is not particularly limited, but is preferably 100 ⁇ m or less, more preferably 20 ⁇ m or less, and even more preferably 10 ⁇ m or less.
  • the number of the core parts 14 is not specifically limited, Three or more may be sufficient.
  • the refractive index distribution W has a high refractive index region WH corresponding to each core portion 14, and a low refractive index region WL exists between the high refractive index regions WH.
  • the refractive index distribution W may be a distribution having a minimum value between the high refractive index region WH and the low refractive index region WL. According to such a distribution, the function of confining and propagating light in a region having a high refractive index is enhanced, and transmission loss and blunting of the pulse signal can be suppressed particularly small.
  • the low refractive index region WL has a maximum value (this is referred to as “second maximum value”) that is smaller than the maximum value (this is referred to as “first maximum value”) included in the high refractive index region WH. ").) Is preferably included.
  • FIG. 6A is another example of a cross-sectional view cut across the core portion of the optical waveguide shown in FIG. 3, and FIG. 6B is a cross-sectional view shown in FIG. It is a figure which shows typically the other example of the refractive index distribution W on the centerline C1 which passes the center of the thickness direction of the core layer.
  • the sixth (b) has four local minimum values Ws1, Ws2, Ws3, and Ws4 and five local maximum values Wm1, Wm2, Wm3, Wm4, and Wm5.
  • the five maximum values include a maximum value (first maximum value) Wm2 and Wm4 having a relatively high refractive index, and a maximum value (second maximum value) Wm1, Wm3 having a relatively low refractive index. Wm5 exists.
  • the maximum value Wm2 and the maximum value Wm4 exist between the minimum value Ws1 and the minimum value Ws2, and between the minimum value Ws3 and the minimum value Ws4.
  • the core portion 14 is formed.
  • a core portion 141 is defined between the minimum value Ws1 and the minimum value Ws2
  • a core portion 142 is defined between the minimum value Ws3 and the minimum value Ws4.
  • the side cladding portion 15 is provided. It becomes.
  • the region on the left side of the minimum value Ws1 is the side cladding portion 151
  • the region between the minimum value Ws2 and the minimum value Ws3 is the side surface cladding portion 152
  • the region on the right side of the minimum value Ws4 is the side surface cladding portion 153.
  • the refractive index distribution W should have at least a region where the second maximum value, the minimum value, the first maximum value, the minimum value, and the second maximum value are arranged in this order. Note that this region is repeatedly provided according to the number of core portions.
  • the refractive index distribution W has a second maximum value, a minimum value, and a first value. Local maximum values, local minimum values, second local maximum values, local minimum values, first local maximum values, local minimum values, second local maximum values, and the like. It is only necessary to have a region in which the maximum value of 1 and the second maximum value are alternately arranged.
  • the plurality of local minimum values, the plurality of first local maximum values, and the plurality of second local maximum values are preferably substantially the same as each other, but the local minimum values are the first local maximum value and the second local maximum value.
  • the values may be slightly different from each other. In that case, it is preferable that the amount of deviation is suppressed within 10% of the average value of the plurality of minimum values.
  • the four minimum values Ws1, Ws2, Ws3, and Ws4 are less than the average refractive index WA in the adjacent side cladding portions 15, respectively.
  • a region having a smaller refractive index than the side cladding portion 15 exists at the boundary between each core portion 14 and each side cladding portion 15.
  • a steeper refractive index gradient is formed in the vicinity of each local minimum value Ws1, Ws2, Ws3, and Ws4. This suppresses light leakage from each core portion 14, thereby reducing transmission loss.
  • the optical waveguide 1 is obtained.
  • the maximum values Wm1, Wm3, and Wm5 are located in the side cladding portions 151, 152, and 153. It is preferable to be located other than the vicinity of the edge (near the interface with the cores 141 and 142). As a result, the local maximum values Wm2, Wm4 in the core portions 141, 142 and the local maximum values Wm1, Wm3, Wm5 in the side cladding portions 151, 152, 153 are sufficiently separated from each other. , 142 can sufficiently reduce the probability that the transmitted light leaks into the side clad parts 151, 152, 153. As a result, the transmission loss of the core parts 141 and 142 can be reduced.
  • the vicinity of the edge of the side cladding portions 151, 152, and 153 is a region having a distance of 5% of the width of the side cladding portions 151, 152, and 153 from the edge to the inside.
  • the local maximum values Wm1, Wm3, and Wm5 are located at the center of the width of the side cladding portions 151, 152, and 153, and the local minimum values Ws1, Ws2, Ws3, which are adjacent to the local maximum values Wm1, Wm3, and Wm5, It is preferable that the refractive index continuously decreases toward Ws4.
  • the local maximum values Wm1, Wm3, and Wm5 are smaller in refractive index than the local maximum values Wm2 and Wm4 located in the core portions 141 and 142 described above. Although it does not have, since the refractive index is higher than the surroundings, it has a slight light transmission property. As a result, the side clad parts 151, 152, and 153 have an effect of preventing transmission to other core parts by confining transmission light leaked from the core parts 141 and 142. That is, the presence of the maximum values Wm1, Wm3, and Wm5 can suppress crosstalk.
  • the minimum values Ws1, Ws2, Ws3, and Ws4 are less than the average refractive index WA of the adjacent side cladding portions 15 as described above, but the difference is preferably within a predetermined range.
  • the difference between the minimum values Ws1, Ws2, Ws3, Ws4 and the average refractive index WA of the side cladding portion 15 is the minimum values Ws1, Ws2, Ws3, Ws4 and the maximum values Wm2, among the core portions 141, 142.
  • the difference from Wm4 is preferably about 3 to 80%, more preferably about 5 to 50%, and further preferably about 7 to 20%.
  • the side clad portion 15 has a light transmission property necessary and sufficient for suppressing crosstalk.
  • the difference between the minimum value Ws1, Ws2, Ws3, Ws4 and the average refractive index WA of the side cladding 15 is below the lower limit, the light transmission in the side cladding 15 is too small and crosstalk is sufficient. If the value exceeds the upper limit, the light transmission property of the side cladding portion 15 is too large, and the light transmission properties of the core portions 141 and 142 may be adversely affected.
  • the difference between the minimum values Ws1, Ws2, Ws3, Ws4 and the maximum values Wm1, Wm3, Wm5 is about 6 to 90% of the difference between the minimum values Ws1, Ws2, Ws3, Ws4 and the maximum values Wm2, Wm4. It is preferably about 10 to 70%, more preferably about 14 to 40%. As a result, the balance between the refractive index height of the side cladding portion 15 and the refractive index height of the core portion 14 is optimized, and the optical waveguide 1 has particularly excellent optical transmission properties and more reliably suppresses crosstalk. It will be possible.
  • the difference in refractive index between the minimum values Ws1, Ws2, Ws3, and Ws4 and the maximum values Wm2 and Wm4 in the core portions 141 and 142 is preferably as large as possible, but is about 0.005 to 0.07. Preferably, it is about 0.007 to 0.05, more preferably about 0.01 to 0.03. Thereby, the above-described difference in refractive index becomes necessary and sufficient for confining light in the core portions 141 and 142.
  • FIG. 7 is a diagram showing the intensity distribution of the emitted light when light is incident on the core portion 141 of the optical waveguide 1 having the refractive index distribution shown in FIG.
  • This intensity distribution is the intensity distribution of the emitted light at the other end when the light is incident on the end of the core 141 out of the two parallel cores 141 and 142 formed in the optical waveguide 1.
  • the intensity of the emitted light becomes the largest at the central part of the outgoing end of the core part 141.
  • the intensity of the emitted light decreases as the distance from the central portion of the core portion 141 decreases.
  • an intensity distribution is obtained such that a minimum value is obtained in the core portion 142 adjacent to the core portion 141.
  • the minimum value of the intensity distribution of the emitted light matches the position of the core part 142, so that the crosstalk in the core part 142 can be suppressed to be extremely small.
  • the intensity distribution of the emitted light does not take the minimum value in the core portion adjacent to the core portion where the light is incident, but rather takes the maximum value, which causes a crosstalk problem. It was.
  • the intensity distribution of the emitted light in the optical waveguide 1 according to the present embodiment as described above is extremely useful for suppressing crosstalk.
  • the optical waveguide 1 has minimum values Ws1, Ws2, Ws3, and Ws4 and has a refractive index distribution.
  • the characteristic refractive index distribution W in which the refractive index continuously changes over the entire W is the intensity distribution of the emitted light, which conventionally had a maximum value in the core 142, in the core 142. For example, it is shifted to the adjacent side clad portion 153 or the like. That is, the crosstalk is reliably suppressed by the shift of the intensity distribution.
  • the intensity distribution of the emitted light as described above is not necessarily observed although there is a high probability of being observed when at least two core portions 14 are formed in parallel in the optical waveguide of the present invention.
  • NA numerical aperture
  • the cross-sectional area of the core part 141, the pitch of the core parts 141, 142, etc. a clear minimum value is not observed, or the position of the minimum value deviates from the core part 142. Even in such a case, crosstalk is sufficiently suppressed.
  • the refractive index in the vicinity of the maximum values Wm2 and Wm4 is continuously equal to or higher than the average refractive index WA. Is a [ ⁇ m], and the width of the portion where the refractive index in the vicinity of the minimum values Ws1, Ws2, Ws3, and Ws4 is continuously less than the average refractive index WA is b [ ⁇ m].
  • b is preferably about 0.01a to 1.2a, more preferably about 0.03a to 1a, and further preferably about 0.1a to 0.8a.
  • the substantial widths of the minimum values Ws1, Ws2, Ws3, and Ws4 become necessary and sufficient for providing the above-described functions and effects. That is, when b is below the lower limit value, the substantial widths of the minimum values Ws1, Ws2, Ws3, and Ws4 are too narrow, and the action of confining light in the core portions 141 and 142 may be reduced. On the other hand, when b exceeds the upper limit value, the substantial widths of the local minimum values Ws1, Ws2, Ws3, and Ws4 are too wide, and the width and pitch of the core portions 141 and 142 are limited accordingly, and transmission is performed. There is a possibility that the efficiency may be lowered and the increase in the number of channels and the increase in density may be hindered.
  • the average refractive index WA in the side cladding 15 can be approximated at the midpoint between the maximum value Wm1 and the minimum value Ws1.
  • the refractive index distribution W is, for example, (1) a method of observing a refractive index dependent interference fringe using an interference microscope (dual-beam interference microscope), and specifying the refractive index distribution N from the interference fringe, (2 ) It can be specified by the refractive near field method (Refracted Near Field method; RNF) or the like.
  • the refractive near field method can employ measurement conditions described in, for example, Japanese Patent Laid-Open No. 5-332880.
  • the interference microscope is useful in that the refractive index distribution W can be easily specified.
  • the core portion 14 may be linear or curved in plan view. Furthermore, the core part 14 may cross
  • the refractive index distribution is preferably a distribution as shown in FIG. 4 (b), FIG. 4 (c), FIG. 5 (b) or FIG. 6 (b). Thereby, the interference of the optical signal in an intersection can be suppressed especially.
  • the cross-sectional shape of the core portion 14 is not particularly limited, and may be a circle such as a perfect circle, an ellipse, or an oval, or a polygon such as a triangle, a quadrangle, a pentagon, or a hexagon. By being (rectangular shape), the core part 14 of the stable quality can be manufactured efficiently.
  • the height of the core portion 14 (the thickness of the core layer 13) is not particularly limited, but is preferably about 1 to 200 ⁇ m, more preferably about 5 to 100 ⁇ m, and about 10 to 70 ⁇ m. More preferably. Thereby, it is possible to reduce the thickness of the core portion 14 while suppressing a decrease in transmission efficiency of the optical waveguide 1.
  • the constituent material (main material) of the core layer 13 as described above is, for example, acrylic resin, methacrylic resin, polycarbonate, polystyrene, cyclic ether resin such as epoxy resin or oxetane resin, polyamide, polyimide, poly Benzoxazole, polysilane, polysilazane, silicone resin, fluorine resin, polyurethane, polyolefin resin, polybutadiene, polyisoprene, polychloroprene, polyester such as PET and PBT, polyethylene succinate, polysulfone, polyether, benzocyclo
  • resin materials such as cyclic olefin resins such as butene resin and norbornene resin
  • glass materials such as quartz glass and borosilicate glass can be used.
  • the resin material may be a composite material in which materials having different compositions are combined.
  • At least one selected from the group consisting of (meth) acrylic resins, epoxy resins, silicone resins, polyimide resins, fluorine resins, and polyolefin resins is particularly preferable.
  • a resin or epoxy resin is more preferable. Since these resin materials have high light transmittance, the optical waveguide 1 with particularly small transmission loss can be obtained.
  • the clad layers 11 and 12 are located below and above the core layer 13.
  • the average thickness of the cladding layers 11 and 12 is preferably about 0.05 to 1.5 times the average thickness of the core layer 13, and more preferably about 0.1 to 1.25 times. Specifically, the average thickness of the cladding layers 11 and 12 is preferably about 1 to 200 ⁇ m, more preferably about 3 to 100 ⁇ m, and further preferably about 5 to 60 ⁇ m. Thereby, the function as a clad part is ensured while preventing the optical waveguide 1 from becoming thicker than necessary. Moreover, moderate rigidity is given to the optical waveguide 1. For example, even when there is a space between the optical waveguide 1 and the mother board 5, the optical waveguide 1 becomes difficult to bend, and an optical path shift in the optical coupling portion can be suppressed. .
  • constituent material of the cladding layers 11 and 12 for example, the same material as the constituent material of the core layer 13 described above can be used, and in particular, (meth) acrylic resin, epoxy resin, silicone resin, It is preferably at least one selected from the group consisting of a polyimide resin, a fluorine resin, and a polyolefin resin, and more preferably a (meth) acrylic resin or an epoxy resin.
  • the refractive index distribution in the thickness direction of the cross section of the optical waveguide 1 may be an SI type or GI type distribution, or a distribution as shown in FIG.
  • the size in plan view is preferably set to a size that can cover at least a part of the mother board 5, for example.
  • the major axis is preferably set to about 50 mm to 3000 mm.
  • planar view shape of the optical waveguide 1 is not particularly limited, but may be a polygon, such as a quadrangle or a hexagon, a circle, an ellipse, or the like.
  • FIG. 8 is a plan view showing the vicinity of the intersection of the optical waveguide 1 shown in FIG. 1 and a diagram showing the refractive index distribution in the vicinity of the intersection.
  • the intersecting portion 147 between the core portions 14 has a maximum value at the center portion, and the refractive index gradually decreases so as to draw a skirt toward the periphery (side clad portion 15). It preferably has a rate distribution. As a result, signal light easily gathers at the center of the intersection 147, so that interference at the intersection 147 is particularly suppressed.
  • the refractive index of the intersection 147 is higher than the surrounding area. Based on this refractive index difference, the signal light that has entered the intersection 147 is less likely to enter the core 14 that intersects the core 14 through which the signal light has propagated. As a result, in the optical waveguide 1, interference of optical signals can be suppressed at the intersection 147. In this way, optical signals can be crossed on the same plane without making a three-dimensional intersection. As a result, the device (for example, the opto-electric hybrid board 1000) on which the optical waveguide 1 is mounted can be easily reduced in size, thickness, and density.
  • the maximum refractive index of the intersecting portion 147 is preferably about 0.001 to 0.05 higher than the maximum refractive index of the core portion 14 other than the intersecting portion 147, and more preferably about 0.002 to 0.03. .
  • the crossing angle of the optical axes of the intersecting core portions 14 is preferably 10 to 90 °, and more preferably 20 to 90 °. If the crossing angle is within this range, the occurrence of interference can be sufficiently suppressed.
  • this intersection angle means an inner angle with a smaller angle among the inner angles formed by the intersecting optical axes.
  • FIG. 9 is a partially enlarged view showing another configuration example near the intersection.
  • Each of the optical waveguides shown in FIGS. 9A and 9B is configured so that the width of the core portion 14 gradually increases in the vicinity of the intersection portion 147 as it goes toward the intersection portion 147.
  • the width of the core portion 14 gradually increases linearly
  • the width of the core portion 14 increases gradually in a curve. Yes.
  • interference at the intersection 147 is particularly suppressed, and transmission efficiency at the intersection 147 is improved.
  • the intersecting portion 148 shown in FIG. 9C the three core portions 14 intersect, and the intersecting angle is set to 60 °.
  • the intersecting portion 148 shown in FIG. 9 (d) the four core portions 14 intersect, and the intersecting angle is set to 45 °.
  • the number of core portions 14 that intersect at the intersection portion 148 may be five or more. In that case, the number of intersections is appropriately set so that the intersection angle is within the above range. Moreover, each crossing angle may be equal to or different from each other.
  • a mirror 17 is provided in the optical waveguide 1 shown in FIG.
  • FIG. 10A is a perspective view showing an example in which a mirror (optical path conversion unit) 17 is formed in the middle of the core unit 14 of the optical waveguide 1 shown in FIG.
  • a concave portion (hole) 170 having a V-shaped cross section is formed in the middle of the core portion 14 so as to penetrate the core portion 14 in the thickness direction.
  • the mirror 17 is constituted by a part of the inner surface of the recess 170.
  • the mirror 17 has a planar shape and is inclined by 45 ° with respect to the axis (optical axis) of the core portion 14.
  • the light propagating through the core portion 14 is reflected by the mirror 17, and the optical path is converted by 90 ° downward in FIG. 10 (a). Further, the light propagating from below in FIG. 10A is reflected by the mirror 17 and enters the core portion 14. That is, the mirror 17 has an optical path conversion function for converting the optical path of light propagating through the core unit 14.
  • a reflective film may be formed on the surface of the processed surface constituting the mirror 17 as necessary.
  • the reflective film include a metal film such as Au, Ag, and Al, and a film made of a material having a lower refractive index than the core portion 14.
  • the metal film forming method include physical vapor deposition such as vacuum vapor deposition, chemical vapor deposition such as CVD, and plating.
  • the mirror 17 may be provided not in the middle of the core part 14 but in the side clad part 15 and on the extension line of the core part 14 as shown in FIG.
  • the mirror 17 can be replaced with another optical path conversion unit such as a curved waveguide.
  • a support film 2 may be provided on the lower surface of the optical waveguide 1 and a cover film 3 may be provided on the upper surface, if necessary.
  • constituent material of the support film 2 and the cover film 3 examples include various resin materials such as polyethylene terephthalate (PET), polyolefin such as polyethylene and polypropylene, polyimide, and polyamide.
  • PET polyethylene terephthalate
  • polyolefin such as polyethylene and polypropylene
  • polyimide such as polyimide
  • polyamide such as polyamide
  • the average thickness of the support film 2 and the cover film 3 is not particularly limited, but is preferably about 5 to 500 ⁇ m, more preferably about 10 to 400 ⁇ m. Thereby, since the support film 2 and the cover film 3 have moderate rigidity, while supporting the optical waveguide 1 reliably, the optical waveguide 1 can be reliably protected from external force and an external environment.
  • a lens 16 is provided on the lower surface of the clad layer 11.
  • the lens 16 converges the signal light passing between the mirror 17 and the optical element 6 and contributes to increasing the optical coupling efficiency.
  • Examples of the constituent material of the lens 16 include various resin materials such as acrylic resin, various glass materials such as quartz glass, and the like.
  • the lens 16 may be a lens obtained by deforming a part of the clad layer 11 and imparting a function as a lens. For this deformation, for example, a nanoimprint technique or the like is used.
  • the size and shape of the optical waveguide 1 in plan view are appropriately set according to the size and shape of the mother board 5 and are not particularly limited.
  • the optical waveguide 1 is a square having a side of about 20 mm to 2000 mm. Is done.
  • the shape may be a circle, a polygon or the like.
  • the optical connector 101 is provided at the end of the optical waveguide 1 and can optically connect the core portion 14 to other optical components.
  • the optical connector 101 may be compliant with various connector standards, such as a mini MT connector, an MT connector defined in JIS C 5981, a 16 MT connector, a two-dimensional array MT connector, an MPO connector, MPX connector etc. are mentioned.
  • FIG. 11A is an exploded perspective view of the optical connector 101 shown in FIG. 1, and FIG. 11B is a perspective view of the optical connector 101 shown in FIG.
  • a notch 1c is provided in the vicinity of the core portion 14 to which the optical connector 101 is attached. Specifically, notches 1c having the same length as the optical connector 101 to be mounted are formed on both sides of the core portion 14, respectively.
  • the optical connector 101 shown in FIG. 11 has a connector main body 1011 having two legs 1012 and a connector lid 1013 that can be attached to the connector main body 1011. As shown in FIG. 11B, the two legs 1012 of the connector main body 1011 can be fitted into the notches 1c, respectively. As a result, the core is interposed between the two legs 1012 of the connector main body 1011. The part 14 is inserted.
  • the connector lid 1013 is also inserted between the two leg portions 1012 together with the core portion 14, and as a result, as shown in FIG. 11B, the connector body 1011, the connector lid 1013, The core portion 14 is sandwiched between and fixed.
  • the optical connector 101 When the optical connector 101 is attached to the optical waveguide 1, the end of the core portion 14 is exposed from the end surface of the optical connector 101 as shown in FIG.
  • the core part 14 and another optical component such as another optical waveguide or optical fiber can be optically connected.
  • the optical component to be connected include a wavelength conversion element, a filter, a diffraction grating, a polarizer, a prism, and a lens in addition to the optical waveguide and the optical fiber.
  • examples of the constituent material of the optical connector 101 include a resin material, a metal material, and a ceramic material.
  • the structure of the optical connector 101 is not limited to the structure shown in FIG.
  • the optical connector 101 may be configured to protrude from the end face of the optical waveguide 1, and in that case, it is not necessary to provide the notch 1 c in the optical waveguide 1.
  • the optical connector 101 may be configured such that the connector main body 1011 is simply bonded onto the end of the optical waveguide 1 without projecting the optical waveguide 1 or providing the notch 1c.
  • the pattern of the core part 14 in the optical waveguide 1 is not limited to what is shown in FIG. 1, What kind of pattern may be sufficient.
  • the photoelectric conversion unit 4 includes a photoelectric conversion unit substrate 41 provided below the optical waveguide 1, an optical element 6 and a photoelectric conversion unit electrical element 7 mounted on the lower surface of the photoelectric conversion unit substrate 41, and an electrical connector (first connector). 1 terminal) 42.
  • the photoelectric conversion unit 4 is bonded to the lower surface of the optical waveguide 1 by a fixing member such as an adhesive.
  • a fixing member such as an adhesive
  • the photoelectric conversion unit substrate 41 includes an insulating substrate (second substrate) 411, electric wirings 412 provided on both surfaces thereof, and through wiring 413 that connects the electric wirings 412 on each surface. And a through hole 414 that penetrates the insulating substrate 411 and the like.
  • Examples of the material constituting the insulating substrate 411 include various resin materials such as polyimide resins, polyamide resins, epoxy resins, various vinyl resins, and polyester resins such as polyethylene terephthalate resins.
  • a resin mainly composed of a resin is preferably used.
  • a polyimide resin is particularly suitable as a constituent material of the insulating substrate 411 because it has high heat resistance and excellent translucency and flexibility.
  • Specific examples of the insulating substrate 411 include film substrates used for polyester copper-clad film substrates, polyimide copper-clad film substrates, aramid copper-clad film substrates, and the like.
  • the insulating substrate 411 is provided between the optical element 6 and the optical waveguide 1, and the signal light passes through the through hole 414 provided in the insulating substrate 411. To do. Note that when an insulating substrate 411 having a light-transmitting property is used, a through hole is not necessary.
  • the average thickness of the insulating substrate 411 is preferably about 5 to 200 ⁇ m, and more preferably about 10 to 150 ⁇ m. With the insulating substrate 411 having such a thickness, the optical module 100 can be thinned and transmission loss of the insulating substrate 411 is suppressed. Furthermore, if the thickness of the insulating substrate 411 is within the above range, the distance between the mirror 17 and the optical element 6 is sufficiently short, so that it is possible to prevent the transmission efficiency from being lowered due to the divergence of signal light. .
  • the insulating substrate 411 may be a single substrate, but may also be a multilayer substrate (build-up substrate) formed by stacking a plurality of substrates. In this case, an arbitrary electric circuit may be formed between the layers of the multilayer substrate. Thereby, a high-density electric circuit can be constructed in the insulating substrate 411.
  • the insulating substrate 411 can be replaced with an insulating layer formed or laminated on the lower surface of the optical waveguide 1.
  • the insulating layer is made of a silicon compound such as silicon oxide or silicon nitride, a resin material such as a polyimide resin or an epoxy resin, or the like.
  • a physical vapor deposition method such as vacuum vapor deposition or sputtering, a chemical vapor deposition method such as plasma CVD or thermal CVD, a liquid phase film formation method such as a coating method, or a printing method is used.
  • the electric wiring 412 and the through wiring 413 are each made of a conductive material.
  • the conductive material include metal materials such as simple metals such as copper, aluminum, nickel, chromium, zinc, tin, gold, and silver, or alloys containing these metal elements.
  • the average thickness of the electrical wiring 412 is appropriately set according to the electrical conductivity required for the wiring, but is set to about 1 to 30 ⁇ m, for example.
  • the mounting method of the optical element 6 or the photoelectric element 7 for the photoelectric conversion unit on the photoelectric conversion unit substrate 41 is not particularly limited, and a die bonding method, a wire bonding method, or the like is used.
  • the optical element 6 shown in FIG. 2 includes an element body 60, and a light emitting / receiving unit 61 and a terminal 62 provided on the upper surface of the element body 60.
  • the light emitting / receiving unit refers to a light receiving unit, a light emitting unit, or a unit having both functions.
  • the light receiving / emitting unit 61 of the optical element 6 and the mirror 17 of the optical waveguide 1 are optically connected.
  • optical element 6 examples include light emitting elements such as a surface emitting laser (VCSEL) and a light emitting diode (LED), and a light receiving element such as a photodiode (PD, APD).
  • VCSEL surface emitting laser
  • LED light emitting diode
  • PD photodiode
  • terminal 62 of the optical element 6 and the electrical wiring 412 of the photoelectric conversion unit 4 are electrically connected via bumps.
  • This bump is made of various metal materials.
  • the photoelectric conversion unit electrical element 7 shown in FIG. 2 includes an element body 70 and a terminal 72 provided on the upper surface of the element body 70.
  • the electric element 7 for the photoelectric conversion unit for example, a driver IC, a transimpedance amplifier (TIA), a limiting amplifier (LA), or a combination IC, LSI, RAM, ROM, capacitor, coil, resistor, or a combination of these elements. And diodes.
  • a driver IC for example, a transimpedance amplifier (TIA), a limiting amplifier (LA), or a combination IC, LSI, RAM, ROM, capacitor, coil, resistor, or a combination of these elements. And diodes.
  • the terminal 72 of the photoelectric conversion unit electrical element 7 and the electrical wiring 412 of the photoelectric conversion unit 4 are electrically connected via bumps.
  • Optical communication is performed in the core portion 14 of the optical module 100 by providing the photoelectric conversion portion 4 including the optical element 6 and the photoelectric conversion portion electrical element 7 at both ends of the core portion 14 of the optical waveguide 1. Can do.
  • the electrical connection between the optical element 6 or the photoelectric conversion unit electrical element 7 and the electrical wiring 412 is performed by wire bonding, an anisotropic conductive film (ADF), an anisotropic conductive paste, in addition to the connection method described above.
  • a connection method using (ACP) or the like may be used.
  • a sealing material 45 is provided between the optical element 6 and the photoelectric conversion unit electrical element 7 shown in FIG. 2 and the photoelectric conversion unit substrate 41.
  • the sealing material 45 include an epoxy resin, a polyester resin, a polyurethane resin, and a silicone resin.
  • the photoelectric conversion unit 4 is electrically connected to the mother board 5 via the electrical connector 42.
  • the electrical connector 42 may be a connector conforming to various connector standards or a general-purpose product, and examples thereof include a board-to-board connector, an FPC / FFC connector, a ZIF connector, and a NON-ZIF connector.
  • the optical waveguide 1 may be mechanically connected to the mother board 5 via the electrical connector 42. With such a fixing method, the optical waveguide 1 can be attached to and detached from the mother board 5. Thereby, since it becomes easy to separate the motherboard 5 and the optical waveguide 1, there is an advantage that the optical waveguide 1 can be easily replaced, for example.
  • the mother board (electric wiring board) 5 includes an insulating board (first board) 51, electric wiring 52 provided on the upper surface thereof, a plurality of LSIs 501, capacitors 502 and chip resistors mounted on the insulating board 51.
  • a plurality of electrical elements 50 for electrical wiring boards, such as 503, and electrical connectors (second terminals) 53 are provided.
  • the electrical connector 53 is fitted to the electrical connector (first terminal) 42 of the photoelectric conversion unit 4, and by this fitting, the electrical wiring 52 on the mother board 5 side and the electrical wiring 412 on the photoelectric conversion unit 4 side Are electrically and mechanically connected, and the operations of the optical element 6 of the photoelectric conversion unit 4 and the electric element 7 for the photoelectric conversion unit can be controlled from the mother board 5 side. In addition, transmission / reception of signals becomes possible.
  • Examples of the material constituting the insulating substrate 51 include various resin materials such as polyimide resins, polyamide resins, epoxy resins, various vinyl resins, and polyester resins such as polyethylene terephthalate resins.
  • various resin materials such as polyimide resins, polyamide resins, epoxy resins, various vinyl resins, and polyester resins such as polyethylene terephthalate resins.
  • paper, glass cloth, resin film, etc. are used as a base material, and this base material is impregnated with a resin material such as a phenol resin, a polyester resin, an epoxy resin, a cyanate resin, a polyimide resin, or a fluorine resin.
  • insulating substrates used for composite copper-clad laminates such as glass cloth / epoxy copper-clad laminates, glass nonwoven fabrics / epoxy copper-clad laminates, polyetherimide resin substrates, polyethers
  • It may be a heat-resistant / thermoplastic organic rigid substrate such as a ketone resin substrate or a polysulfone resin substrate, or a ceramic rigid substrate such as an alumina substrate, an aluminum nitride substrate, or a silicon carbide substrate.
  • the electrical wiring 52 is made of a conductive material.
  • the conductive material include metal materials such as simple metals such as copper, aluminum, nickel, chromium, zinc, tin, gold, and silver, or alloys containing these metal elements.
  • the average thickness of the electric wiring 52 is appropriately set in accordance with the electrical conductivity required for the wiring, but is about 1 to 30 ⁇ m, for example.
  • the mother board 5 is provided with such an electric wiring 52, that is, a metal layer, the rigidity of the mother board 5 is improved as compared with the case where the mother board 5 is constituted by only the insulating substrate 51.
  • the optical waveguide 1 is stacked on the mother board 5
  • not only the optical waveguide 1 but also the mother board 5 becomes difficult to bend.
  • the arrangement of the optical waveguide 1 connected to the mother board 5 is maintained with higher accuracy.
  • the Rukoto Thereby, the transmission / reception efficiency of the signal between the optical waveguide 1 and the mother board 5 can be maintained higher.
  • the electric element 50 for the electric wiring board is accommodated under the optical waveguide 1.
  • the electric circuit board electrical element 50 and the core part 14 can coexist in the same region as described above, so the pattern of the core part 14 can be freely set. can do.
  • the distance between the core portions 14 can be minimized, so that the transmission efficiency of the optical signal can be optimized.
  • optical waveguide 1 can be easily separated from the mother board 5, repairs such as exchanging the optical waveguide 1 and the mother board 5 individually can be easily performed.
  • the electric element 50 for the electric wiring board mounted on the mother board 5 is not limited to the above-described one, and for example, IC, CPU, RAM, ROM, transistor, coil, diode, capacitor, vibrator, piezoelectric element, relay, It may be an optical element or the like.
  • the distance between the optical waveguide 1 and the motherboard 5 can be easily adjusted, for example, by changing the height of the electrical connector 42 on the photoelectric conversion unit 4 side or the electrical connector 53 on the motherboard 5 side. It is preferably set to about 1 to 100 mm, more preferably about 2 to 80 mm.
  • the electrical connector 42 on the photoelectric conversion unit 4 side and the electrical connector 53 on the motherboard 5 side are connected, so that the space between them is fixed.
  • the optical module 100 and the mother board 5 are fixed only partially, so that a large amount of space exists between the optical waveguide 1 and the mother board 5.
  • the thermal deformation of the mother board 5 hardly affects the optical module 100 side, and the reliability of the opto-electric hybrid board 1000 is improved.
  • the optical module 100 when the optical module 100 is fixed to the mother board 5, a mechanism other than the electrical connectors 42 and 53, for example, fixing with an adhesive or the like, may be added.
  • FIG. 12 is a cross-sectional view showing another configuration example of the optical module 100 according to the present embodiment.
  • the photoelectric conversion unit 4 shown in FIG. 12 is obtained by adding a heat spreader 44 to the photoelectric conversion unit 4 shown in FIG.
  • the heat spreader 44 illustrated in FIG. 12 has a box shape that covers the optical element 6 and the photoelectric conversion unit electrical element 7 mounted on the lower surface of the photoelectric conversion unit substrate 41.
  • the bottom surface of the heat spreader 44 and the bottom surface of the photoelectric conversion unit electrical element 7 are in contact with each other. Thereby, the heat from the photoelectric conversion unit electrical element 7 is efficiently transmitted to the heat spreader 44 and diffused. As a result, the heat dissipation of the photoelectric conversion unit electrical element 7 is particularly promoted.
  • a material having high thermal conductivity for example, a metal material, a carbon material, a ceramic material, or the like is used.
  • a simple substance or an alloy of copper, aluminum, iron, silver, gold, chromium, nickel, zinc, and tin is preferably used.
  • the photoelectric conversion unit electrical element 7 and the heat spreader 44 may be merely in contact with each other, or may be in contact with each other via a heat conductive material.
  • the heat conducting material include resin materials such as acrylic resins and silicone resins, carbon materials such as graphite, ceramic materials such as silica, alumina, and silicon nitride, metals such as aluminum and copper.
  • a sheet or paste of a system material or the like is used.
  • a composite material sheet or paste in which two or more of these materials are mixed may also be used.
  • the heat spreader 44 may be provided with an uneven shape that increases the surface area. As this uneven
  • FIG. 13 is a sectional view showing a part of the second embodiment of the opto-electric hybrid board according to the present invention.
  • the second embodiment is the same as the first embodiment except that the configuration of the photoelectric conversion unit 4 is different.
  • the 13 includes an insulating substrate 411a provided on the lower surface of the cladding layer 11 of the optical waveguide 1, an insulating substrate 411b provided on the upper surface of the cladding layer 12, and a lower surface of the insulating substrate 411a.
  • An electrical wiring 412a provided on the insulating substrate 411b, a through-wiring 413 penetrating the optical waveguide 1 to connect the electrical wiring 412a and the electrical wiring 412b, and a sealing material 45.
  • the mirror 17 is configured by a part of the inner surface of the recess 170 formed from the electric wiring 412b to the insulating substrate 411b, the optical waveguide 1, and the insulating substrate 411a.
  • the structure of the photoelectric conversion unit 4 shown in FIG. 13 is a structure in which the optical waveguide 1 is sandwiched between two insulating substrates 411a and 411b. For this reason, even if a thinner substrate is used as the insulating substrate 411a, the rigidity of the photoelectric conversion unit 4 can be maintained, and the separation distance between the optical element 6 and the mirror 17 can be further shortened. As a result, the optical coupling efficiency between the optical element 6 and the mirror 17 can be further increased.
  • the average thickness of the insulating substrates 411a and 411b is preferably about 5 to 50 ⁇ m, and more preferably about 10 to 40 ⁇ m.
  • the photoelectric conversion unit electrical element 7 and the like can be mounted on the upper surface side of the insulating substrate 411b. Is possible.
  • the concave portion 170 is a concave portion opened on the upper surface of the electric wiring 412 b, it can be formed after the photoelectric conversion portion 4 is bonded to the optical waveguide 1. For this reason, it becomes possible to form the recessed part 170 according to the position of the light receiving / emitting part of the optical element 6, and the optical axis alignment of the light receiving / emitting part and the mirror 17 can be performed very strictly.
  • FIG. 14 is a cross-sectional view showing a part of the third embodiment of the opto-electric hybrid board according to the present invention.
  • an electrical interposer (electric wiring board) 55 is interposed between the photoelectric conversion unit 4 and the mother board 5, and the LSI 501 is mounted on the electrical interposer 55. It is the same as the form. In this embodiment, unlike the first and second embodiments, the electric interposer 55 corresponds to an “electric wiring board”.
  • the electric interposer 55 shown in FIG. 14 includes a multilayer substrate 550 having a core substrate 551 and a buildup layer 552 laminated on both surfaces thereof, and bumps 553 provided on the lower surface of the multilayer substrate 550. Yes.
  • the LSI 501 is mounted on the electric interposer 55, and the electric wiring and the photoelectric conversion unit 4 laid on the surface and inside of the electric interposer 55 are connected to the electric connector (second terminal) 53. It is electrically connected via.
  • an electrical interposer 55 it is possible to easily increase the density of electrical wiring and increase the signal transmission speed.
  • the opto-electric hybrid board 1000 that enables high-speed and large-capacity information processing is obtained.
  • the electric interposer 55 is electrically connected to the electric wiring 52 of the mother board 5 via the bumps 553. Thereby, even when a plurality of electrical interposers 55 are mounted on the mother board 5, these can be linked to each other.
  • the multilayer substrate 550 may be a multilayer substrate including a core substrate as shown in FIG. 14, but may be a coreless multilayer substrate not including a core substrate.
  • the buildup layer 552 is formed by a buildup method such as an additive method, a semi-additive method, or a subtractive method.
  • the electric interposer 55 may be mounted with other electric elements as described above, for example.
  • the electric interposer 55 shown in FIG. 14 is a reinforcing member (stiffener) bonded to a region other than the region where the electric element 50 for the electric wiring board such as the LSI 501 is mounted on the upper surface of the multilayer substrate 550. 554. Specifically, in the electrical interposer 55 shown in FIG. 14, a reinforcing member 554 is provided in a region other than the LSI 501 and the electrical connector 53.
  • the constituent material of the reinforcing member 554 a material having a smaller thermal expansion coefficient than the insulating layer of the buildup layer 552 is used. By using such a reinforcing member 554, the thermal expansion of the buildup layer 552 can be suppressed, and the deformation of the multilayer substrate 550 can be suppressed.
  • Specific examples of the constituent material of the reinforcing member 554 include a metal material and a ceramic material, but a metal material is preferably used. Thereby, the heat dissipation of the reinforcement member 554 can be improved and the reliability of the electrical element 50 for electrical wiring boards can be improved.
  • the thermal expansion coefficient of the reinforcing member 554 is preferably 0.5 ppm / ° C. or more and 10 ppm / ° C. or less, more preferably 1 ppm / ° C. or more and 7 ppm / ° C. or less, and 1 ppm / ° C. or more and 5 ppm / ° C. or less. More preferably. Thereby, the deformation of the multilayer substrate 550 can be more effectively prevented.
  • Such a metal material is not particularly limited, and various metal materials can be used. From the viewpoint of realizing heat dissipation and low thermal expansion, it is preferable to use an alloy containing Fe.
  • Such alloys containing Fe include Fe—Ni alloys, Fe—Co—Cr alloys, Fe—Co alloys, Fe—Pt alloys, Fe—Pd alloys, and the like. It is preferable to use a base alloy.
  • Such a metal material is useful as a constituent material of the reinforcing member 554 because it has not only excellent heat dissipation but also a low coefficient of thermal expansion.
  • the Fe—Ni alloy is not particularly limited as long as it contains Fe and Ni.
  • the balance (M) is a metal such as Co, Ti, Mo, Cr, Pd, and Pt. Of these, one or more metals may be included.
  • Fe—Ni alloys include Fe—Ni alloys such as Fe-36Ni alloy (Invar), Fe-32Ni-5Co alloy (Super Invar), and Fe-29Ni-17Co alloy (Kovar).
  • Fe-Ni-Co alloys such as Fe-36Ni-12Co alloy (Erin bar), Ni-Mo-Fe alloys such as Fe-Ni-Cr-Ti alloy and Ni-28Mo-2Fe alloy.
  • Fe—Ni—Co alloys are commercially available under trade names such as KV series (manufactured by NEOMAX Materials) such as KV-2, KV-4, KV-6, KV-15, KV-25, and Nivarox. ing.
  • Fe—Ni alloys are commercially available under trade names such as NS-5 and D-1 (manufactured by NEOMAX Materials).
  • Fe-Ni-Cr-Ti alloys are commercially available under trade names such as Ni-Span C-902 (manufactured by Daido Special Metal Co., Ltd.), EL-3 (manufactured by NEOMAX Material Co., Ltd.), and the like.
  • the Fe—Co—Cr alloy is not particularly limited as long as it contains Fe, Co, and Cr.
  • an Fe—Co—Cr alloy such as Fe-54Co-9.5Cr (stainless invar) is used. Is mentioned.
  • the Fe—Co—Cr-based alloy may contain one or more metals of metals such as Ni, Ti, Mo, Pd, and Pt in addition to Fe, Co, and Cr.
  • the Fe—Co alloy is not particularly limited as long as it contains Fe and Co.
  • one of metals such as Ni, Ti, Mo, Cr, Pd, and Pt is used. It may contain seeds or two or more metals.
  • the Fe—Pt alloy is not particularly limited as long as it contains Fe and Pt.
  • one of metals such as Co, Ni, Ti, Mo, Cr, and Pd is used. It may contain seeds or two or more metals.
  • the Fe—Pd alloy is not particularly limited as long as it contains Fe and Pd.
  • one of metals such as Co, Ni, Ti, Mo, Cr, and Pt is used. It may contain seeds or two or more metals.
  • the reinforcing member 554 is joined to the upper surface of the multilayer substrate 550.
  • the joining method include an adhesive, a pressure-sensitive adhesive, and pressure welding.
  • the reinforcing member 554 and the multilayer substrate 550 can be easily joined by using an adhesive.
  • Such an adhesive is not particularly limited as long as it has an adhesive function, and various adhesives can be used, but those having excellent thermal conductivity are preferable.
  • Examples of the adhesive having excellent thermal conductivity include those containing an inorganic filler.
  • Examples of the inorganic filler include metals such as Au, Ag, and Pt, oxides such as silica, alumina, diatomaceous earth, titanium oxide, iron oxide, zinc oxide, magnesium oxide, and metal ferrite, boron nitride, silicon nitride, and nitride.
  • Nitrides such as gallium and titanium nitride, hydroxides such as aluminum hydroxide and magnesium hydroxide, carbonates such as calcium carbonate (light and heavy), magnesium carbonate, dolomite, and dawsonite, calcium sulfate, barium sulfate, ammonium sulfate, Sulfates or sulfites such as calcium sulfite, talc, mica, clay, glass fiber, calcium silicate, montmorillonite, bentonite and other silicates, zinc borate, barium metaborate, aluminum borate, calcium borate, boric acid Sodium borate, carbon black, graph Carbon, etc., iron powder, copper powder, aluminum powder, zinc white, molybdenum sulfide, boron fiber, potassium titanate, lead zirconate titanate, one or more of these Is used.
  • an insulation process is performed to the site
  • the electric interposer 55 is provided with a reinforcing member 555 having the same configuration as the reinforcing member 554 in a region other than the bump 553 on the lower surface of the multilayer substrate 550.
  • a reinforcing member 555 By providing such a reinforcing member 555, the deformation of the electric interposer 55 can be further suppressed.
  • a via hole penetrating in the thickness direction is formed in the multilayer substrate 550, and a heat transfer post 556 is provided in the via hole.
  • the heat transfer post 556 passes through the entire multilayer substrate 550 in the thickness direction, and has an upper end exposed at the upper surface of the multilayer substrate 550 and a lower end exposed at the lower surface of the multilayer substrate 550.
  • the heat transfer post 556 has an upper end in contact with the reinforcing member 554 and a lower end in contact with the reinforcing member 555.
  • the heat transfer post 556 connects the reinforcing member 554 and the reinforcing member 555.
  • the heat transfer post 556 has a higher heat transfer property than the multilayer substrate 550 described above. Thereby, heat can be efficiently transferred from the reinforcing member 554 to the reinforcing member 555 through the heat transfer post 556. As a result, the reinforcing members 554 and 555 can improve the performance as a heat spreader.
  • the heat transfer post 556 penetrates the multilayer substrate 550 in the thickness direction, it can be formed easily and with high accuracy like a known conductor post.
  • the heat transfer post 556 may be hollow or solid. Moreover, it does not specifically limit as a cross-sectional shape of the heat-transfer post 556, For example, circular, an ellipse, a polygon etc. are mentioned. Further, the number of heat transfer posts 556 is not particularly limited and is arbitrary, but it is preferable to increase the number as much as possible so as not to impair the mechanical strength of the multilayer substrate 550.
  • the heat transfer post 556 does not contribute to the transmission of electrical signals. Thereby, heat can be more efficiently transferred from the reinforcing member 554 to the reinforcing member 555 via the heat transfer post 556.
  • the heat transfer post 556 is provided on the outer periphery when the multilayer substrate 550 is viewed in plan. Thereby, it is easy to make the temperature distribution of the multilayer substrate 550 uniform.
  • the heat transfer post 556 is provided so as not to come into contact with the electric wiring formed on the surface or inside of the multilayer substrate 550. Thereby, a short circuit between the heat transfer post 556 and the electrical wiring can be prevented.
  • the constituent material of the heat transfer post 556 is not particularly limited as long as it has higher heat transfer property than the multilayer substrate 550, but a metal material is preferably used.
  • the metal material examples include various metals and various alloys such as copper, a copper-based alloy, aluminum, and an aluminum-based alloy. Especially, since it is excellent in heat conductivity, it is preferable to use copper, a copper-type alloy, aluminum, and an aluminum-type alloy. Since copper and a copper-based alloy are excellent in thermal conductivity, the heat dissipation of the electric element for electric wiring board 50 can be further improved.
  • FIG. 15A is a cross-sectional view showing a part of the fourth embodiment of the opto-electric hybrid board of the present invention
  • FIG. 15B is a top view of FIG. 15A.
  • the optical waveguide 1 has a shape including a sheet-like portion 1a that extends so as to cover a part of the mother board 5, and a strip-like portion 1b that extends from the sheet-like portion 1a.
  • the third embodiment is the same as the third embodiment except that the belt-like portion 1b is twisted by 90 ° at the connecting portion 1d between the sheet-like portion 1a and the belt-like portion 1b.
  • the optical waveguide 1 shown in FIG. 15 has a sheet-like portion 1a that covers the mother board 5 and the electric interposer 55 as in the third embodiment.
  • the optical waveguide 1 shown in FIG. 15 has a strip-shaped portion 1b, and the photoelectric conversion portion 4 is provided in the strip-shaped portion 1b.
  • the band-like portion 1b is twisted by 90 ° at the connecting portion 1d, the arrangement of the photoelectric conversion unit 4 is also rotated by 90 ° with respect to the arrangement of the third embodiment. .
  • the flat plate-like photoelectric conversion unit 4 is arranged so that the surface direction thereof is orthogonal to the upper surface of the electric interposer 55.
  • a plurality of contacts 4120 connected to the electrical wiring 412 are arranged at the end of the insulating substrate 411 of the photoelectric conversion unit 4.
  • the contact 4120 can be directly inserted into the electrical connector (socket) 53 of the electrical interposer 55.
  • a so-called edge connector in which the contact 4120 is formed instead can be employed. Thereby, the cost reduction and simplification of the photoelectric conversion part 4 can be achieved.
  • the electrical connector 53 can be directly visually recognized from above the optical waveguide 1, so that the connection work between the contact 4120 and the electrical connector 53 can be easily performed. There is also an advantage of being able to.
  • the electrical connector 53 may be a card socket type connector other than those described above.
  • the band-shaped portion 1 b is provided at the end of the optical waveguide 1 and the optical connector 101 is attached to the end, but the arrangement of the band-shaped portion 1 b is not limited to this.
  • the belt-like part 1b may be arranged at a position surrounded by the sheet-like part 1a.
  • twist angle in the connecting portion 1d is not limited to 90 °, and is appropriately set within a range of about 10 to 90 ° according to the acceptance angle of the electrical connector 53.
  • FIG. 16 is an exploded perspective view showing a fifth embodiment of the opto-electric hybrid board of the present invention (partially shown in a transparent manner), and FIG. 17 is a state in which optical waveguides are stacked as shown by white arrows in FIG. FIG.
  • the fifth embodiment is the same as the first embodiment except that the optical waveguide 1 further includes a metal layer 18.
  • the optical waveguide 1 shown in FIGS. 16 and 17 has metal layers 18 provided on the upper surface of the cladding layer 12 and the lower surface of the cladding layer 11, respectively.
  • the rigidity of the optical waveguide 1 can be increased.
  • the optical waveguide 1 becomes difficult to bend and its shape is easily maintained, so that the arrangement of the optical waveguide 1 and the mother board 5 is maintained with higher accuracy.
  • the transmission / reception efficiency of the signal between the optical waveguide 1 and the mother board 5 can be maintained higher.
  • an opto-electric hybrid board 1000 with particularly high internal signal transmission efficiency (reliability) can be obtained.
  • FIG. 18 is an enlarged perspective view of a part of the optical waveguide 1 shown in FIG.
  • the 17 and 18 has a metal layer 18 provided on the upper surface of the cladding layer 12 and the lower surface of the cladding layer 11, respectively.
  • the upper surface of the LSI 501 is in contact (direct contact) with the metal layer 18 provided on the lower surface of the cladding layer 11.
  • heat from the LSI 501 is easily transferred to the metal layer 18 and diffused.
  • the heat radiation of the LSI 501 is particularly promoted. That is, the metal layer 18 functions as a heat spreader that dissipates heat from the LSI 501.
  • heat radiating member may be connected to the metal layer 18. Heat from the LSI 501 can be conducted to the heat radiating member through the metal layer 18 to be radiated.
  • a heat radiating member a heat radiating fin, a heat exchanger, etc. are mentioned, for example.
  • the upper surface of the LSI 501 may be in contact with the metal layer 18 via a heat conductive material.
  • the heat conducting material include resin materials such as acrylic resins and silicone resins, carbon materials such as graphite, ceramic materials such as silica, alumina, and silicon nitride, metals such as aluminum and copper.
  • a sheet or paste of a system material or the like is used.
  • a composite material sheet or paste in which two or more of these materials are mixed may also be used.
  • the rigidity of the optical waveguide 1 can be increased by providing the metal layer 18.
  • the optical waveguide 1 becomes difficult to bend and its shape is easily maintained, so that the arrangement of the optical waveguide 1 and the mother board 5 is maintained with higher accuracy.
  • the transmission / reception efficiency of the signal between the optical waveguide 1 and the mother board 5 can be maintained higher.
  • an opto-electric hybrid board 1000 with particularly high internal signal transmission efficiency (reliability) can be obtained.
  • the average thickness of the metal layer 18 is not particularly limited, but is preferably about 1 to 1000 ⁇ m, more preferably about 3 to 800 ⁇ m. Thereby, it is possible to prevent the optical waveguide 1 from being bent due to its own weight while enhancing heat dissipation. That is, when the average thickness of the metal layer 18 is less than the lower limit, sufficient heat dissipation may not be obtained, and sufficient rigidity may not be imparted to the optical waveguide 1. On the other hand, when the average thickness of the metal layer 18 exceeds the upper limit, the mass of the metal layer 18 increases, and the optical waveguide 1 is bent by its own weight, which may reduce the signal transmission efficiency.
  • the total average thickness of the metal layers 18 is preferably about 0.01 to 20 times, more preferably about 0.05 to 15 times the average thickness of the optical waveguide 1.
  • Examples of the constituent material of the metal layer 18 include various metal materials, particularly copper, aluminum, iron, silver, gold, chromium, nickel, zinc, tin, or an alloy containing these metal elements is preferably used. More preferably, aluminum, iron and copper alone or a base alloy thereof is used as a main material. Since these materials have particularly high heat dissipation properties and give the optical waveguide 1 particularly sufficient rigidity, the arrangement of the optical waveguide 1 and the mother board 5 can be maintained with higher accuracy.
  • a via hole penetrating the optical waveguide 1 may be provided, and a heat transfer post may be provided there.
  • a heat transfer post By connecting the metal layer 18 provided on the upper surface of the clad layer 12 and the metal layer 18 provided on the lower surface of the clad layer 11 through this heat transfer post, the function as a heat spreader is further strengthened. It becomes.
  • the constituent material of the heat transfer post include various metal materials such as copper, aluminum, nickel, chromium, zinc, tin, gold, silver and the like, or alloys containing these metal elements.
  • a through hole is formed in the metal layer 18 provided on the lower surface of the cladding layer 11 at a portion overlapping the optical path. Thereby, it is possible to prevent the propagation of the signal light from being disturbed by the metal layer 18.
  • the metal layer 18 may be patterned as necessary to include a portion used as an electrical wiring.
  • FIG. 19 is a cross-sectional view showing another configuration example of the optical module 100 according to the present embodiment.
  • the heat spreader 44 shown in FIG. 19 is obtained by adding a heat spreader (heat radiator) 44 to the photoelectric conversion unit 4 shown in FIG.
  • the heat spreader 44 shown in FIG. 19 has a box shape that covers the optical element 6 and the photoelectric conversion unit electrical element 7 mounted on the lower surface of the photoelectric conversion unit substrate 41.
  • the bottom surface of the heat spreader 44 and the bottom surface of the photoelectric conversion unit electrical element 7 are in contact with each other. Thereby, the heat from the photoelectric conversion unit electrical element 7 is efficiently transmitted to the heat spreader 44 and diffused. As a result, the heat dissipation of the photoelectric conversion unit electrical element 7 is particularly promoted.
  • the photoelectric conversion unit electrical element 7 and the heat spreader 44 may be merely in contact with each other, or may be in contact with each other via a heat conductive material.
  • the heat conducting material those described above are used.
  • the heat spreader 44 may be provided with an uneven shape that increases the surface area. As this uneven
  • FIG. 20 is a cross-sectional view showing a part of the sixth embodiment of the opto-electric hybrid board according to the present invention.
  • the sixth embodiment is the same as the fifth embodiment except that the configuration of the photoelectric conversion unit 4 is different.
  • the 20 includes an insulating substrate 411a provided on the lower surface of the cladding layer 11 of the optical waveguide 1, an insulating substrate 411b provided on the upper surface of the cladding layer 12, and a lower surface of the insulating substrate 411a.
  • An electrical wiring 412a provided on the insulating substrate 411b, a through-wiring 413 penetrating the optical waveguide 1 to connect the electrical wiring 412a and the electrical wiring 412b, and a sealing material 45.
  • the mirror 17 is configured by a part of the inner surface of the recess 170 formed from the electric wiring 412b to the insulating substrate 411b, the optical waveguide 1, and the insulating substrate 411a.
  • the 20 has a structure in which the optical waveguide 1 is sandwiched between two insulating substrates 411a and 411b. For this reason, even if a thinner substrate is used as the insulating substrate 411a, the rigidity of the photoelectric conversion unit 4 can be maintained, and the separation distance between the optical element 6 and the mirror 17 can be further shortened. As a result, the optical coupling efficiency between the optical element 6 and the mirror 17 can be further increased.
  • the average thickness of the insulating substrates 411a and 411b is preferably about 5 to 50 ⁇ m, and more preferably about 10 to 40 ⁇ m.
  • the photoelectric conversion unit electrical element 7 and the like can be mounted on the upper surface side of the insulating substrate 411b. Is possible.
  • the concave portion 170 is a concave portion opened on the upper surface of the electric wiring 412 b, it can be formed after the photoelectric conversion portion 4 is bonded to the optical waveguide 1. For this reason, it becomes possible to form the recessed part 170 according to the position of the light receiving / emitting part of the optical element 6, and the optical axis alignment of the light receiving / emitting part and the mirror 17 can be performed very strictly.
  • FIG. 21 is a cross-sectional view showing another configuration example of the optical module 100 according to the present embodiment.
  • the insulating substrates 411a and 411b and the electric wirings 412a and 412b of the photoelectric conversion unit 4 illustrated in FIG. 20 are each extended over the entire optical waveguide 1.
  • the electric wirings 412a and 412b are each made of a metal material and have the same function as the metal layer 18 according to the first embodiment. For this reason, in the optical module 100 shown in FIG. 21, the rigidity of the optical waveguide 1 is enhanced as a whole, and the optical waveguide 1 is protected from external force, external light, and the external environment.
  • FIG. 22 is a cross-sectional view showing a part of a seventh embodiment of the opto-electric hybrid board according to the present invention.
  • the insulating substrate 411 of the photoelectric conversion unit 4 and the electric wiring 412 provided on the upper surface thereof, and the metal layer 18 positioned thereon are omitted, while the optical waveguide 1 is the same as the optical module 100 according to the fifth embodiment, except that a through-wiring 18c that penetrates 1 and connects the metal layer 18 and the electric wiring 412 is formed. That is, the photoelectric conversion unit 4 shown in FIG. 22 is configured such that the optical waveguide 1 and the electric wiring 412 are in contact with each other. With such a structure, the distance between the optical element 6 and the mirror 17 can be further shortened as much as the insulating substrate 411 and the like are omitted. As a result, the optical coupling efficiency between the optical element 6 and the mirror 17 can be further increased. Further, since the separation distance can be shortened, the lens 16 can be omitted as shown in FIG.
  • an electric circuit can be constructed in a wider range by patterning the metal layer 18 to create an electric wiring and connecting it to the electric wiring 412 through the through wiring 18c. Furthermore, heat from the optical element 6 and the photoelectric conversion unit electrical element 7 can also be diffused to the metal layer 18 through the through-wiring 18c to dissipate heat.
  • FIG. 23 is a sectional view showing a part of an eighth embodiment of the opto-electric hybrid board according to the present invention.
  • an electrical interposer (electric wiring board) 55 is interposed between the photoelectric conversion unit 4 and the mother board 5, and the LSI 501 is mounted on the electrical interposer 55. It is the same as the form. In this embodiment, unlike the fifth embodiment, the electrical interposer 55 corresponds to an electrical wiring board.
  • the electric interposer 55 shown in FIG. 23 includes a multilayer substrate 550 having a core substrate 551 and a buildup layer 552 laminated on both surfaces thereof, and bumps 553 provided on the lower surface of the multilayer substrate 550.
  • the LSI 501 is mounted on the electric interposer 55, and the electrical wiring laid on the surface and inside of the electric interposer 55 and the photoelectric conversion unit 4 are electrically connected via the electric connector 53. It is connected.
  • an electrical interposer 55 it is possible to easily increase the density of electrical wiring and increase the signal transmission speed. As a result, it is possible to increase the speed and capacity of information transmission between the LSI 501 and the photoelectric conversion unit 4, and to maximize the benefits of speeding up by optical communication. That is, the opto-electric hybrid board 1000 that enables high-speed and large-capacity information processing is obtained.
  • the electric interposer 55 is electrically connected to the electric wiring 52 of the mother board 5 via the bumps 553. Thereby, even when a plurality of electrical interposers 55 are mounted on the mother board 5, these can be linked to each other.
  • the multilayer substrate 550 may be a multilayer substrate including a core substrate as shown in FIG. 23, or may be a coreless multilayer substrate not including a core substrate.
  • the buildup layer 552 is formed by a buildup method such as an additive method, a semi-additive method, or a subtractive method.
  • the electric interposer 55 may be mounted with other electric elements as described above, for example.
  • the electric interposer 55 shown in FIG. 23 is a reinforcing member (stiffener) bonded to a region other than the region where the electric element 50 for the electric wiring board such as the LSI 501 is mounted on the upper surface of the multilayer substrate 550. 554. Specifically, in the electrical interposer 55 shown in FIG. 23, a reinforcing member 554 is provided in a region other than the LSI 501 and the electrical connector 53.
  • the electrical interposer 55 includes the reinforcing members 554 and 555, that is, the metal layers, and these are connected via the heat transfer posts 556, so that the electrical interposer 55 has the metal layers. Its rigidity is improved compared to the case where it is not provided. Thereby, when the optical waveguide 1 is stacked on the electric interposer 55, not only the optical waveguide 1 but also the electric interposer 55 is difficult to be bent. As a result, the arrangement of the optical waveguide 1 connected to the electric interposer 55 is reduced. It will be maintained with higher accuracy. Thereby, the transmission / reception efficiency of the signal between the optical waveguide 1 and the electric interposer 55 can be maintained higher.
  • FIG. 24A is a cross-sectional view showing a part of the ninth embodiment of the opto-electric hybrid board of the present invention
  • FIG. 24B is a top view of FIG.
  • FIG. 24 the same components as those of the above-described embodiments are denoted by the same reference numerals as those described above, and detailed description thereof is omitted.
  • the optical waveguide 1 has a shape including a sheet-like portion 1a extending so as to cover a part of the mother board 5, and a strip-like portion 1b extending from the sheet-like portion 1a. This is the same as in the eighth embodiment, except that the belt-like portion 1b is twisted by 90 ° at the connecting portion 1d between the sheet-like portion 1a and the belt-like portion 1b.
  • the optical waveguide 1 shown in FIG. 24 has a sheet-like portion 1a that covers the mother board 5 and the electric interposer 55 as in the eighth embodiment.
  • the optical waveguide 1 shown in FIG. 24 has a strip-shaped portion 1b, and the photoelectric conversion portion 4 is provided in the strip-shaped portion 1b.
  • the band-like portion 1b is twisted by 90 ° at the connecting portion 1d, the arrangement of the photoelectric conversion unit 4 is also rotated by 90 ° with respect to the arrangement of the fourth embodiment. .
  • the flat plate-like photoelectric conversion unit 4 is arranged so that the surface direction thereof is orthogonal to the upper surface of the electric interposer 55.
  • a plurality of contacts 4120 connected to the electrical wiring 412 are arranged at the end of the insulating substrate 411 of the photoelectric conversion unit 4.
  • the contact 4120 can be directly inserted into the electrical connector (socket) 53 of the electrical interposer 55.
  • a so-called edge connector in which the contact 4120 is formed instead can be employed. Thereby, cost reduction and simplification of the photoelectric conversion part 4 can be achieved.
  • the electrical connector 53 can be directly visually recognized from above the optical waveguide 1, and therefore, the connection work between the contact 4120 and the electrical connector 53 can be easily performed. There is also an advantage of being able to.
  • the electrical connector 53 may be a card socket type connector other than those described above.
  • a band-shaped portion 1b is provided at the end of the optical waveguide 1 and the optical connector 101 is attached to the end, but the arrangement of the band-shaped portion 1b is not limited to this.
  • the belt-like part 1b may be arranged at a position surrounded by the sheet-like part 1a.
  • twist angle in the connecting portion 1d is not limited to 90 °, and is appropriately set within a range of about 10 to 90 ° according to the acceptance angle of the electrical connector 53.
  • FIG. 25 is an exploded perspective view showing a tenth embodiment of the opto-electric hybrid board of the present invention (partially shown), and FIG. 26 is a view showing X in a state where optical waveguides are stacked as shown by arrows in FIG. FIG.
  • 10th Embodiment is described, it demonstrates centering around difference with 1st Embodiment, The description is abbreviate
  • 25 and 26 components similar to those in the first embodiment are denoted by the same reference numerals as those described above, and detailed description thereof is omitted.
  • An optical module 100 shown in FIG. 25 has an optical waveguide 1, an optical connector 101 provided at an end thereof, and a photoelectric conversion unit 4 provided below the optical waveguide 1.
  • An opto-electric hybrid board 1000 shown in FIG. 25 includes the optical module 100 and a mother board (electric wiring board) 5 provided below the photoelectric conversion unit 4.
  • the optical waveguide 1 is a sheet-like member having a quadrangular shape in plan view. As shown in FIG. 26, the optical waveguide 1 is formed by laminating a clad layer 11, a core layer 13, and a clad layer 12 in this order from below, and a core portion 14 that propagates an optical signal to the core layer 13. Are formed in a desired pattern. In FIG. 25, the core portion 14 formed in the core layer 13 is indicated by a broken line together with the photoelectric conversion portion 4 behind the optical waveguide 1.
  • a through hole 19 is provided in the optical waveguide 1 so as to penetrate therethrough.
  • the electrical wiring board electrical element 50 is covered with the optical waveguide 1. Therefore, in the case of the electrical wiring board electrical element 50 having a large calorific value such as the LSI 501, heat dissipation. May decrease.
  • the through hole 19 is provided in the optical waveguide 1 as described above, and the LSI 501 is inserted into the through hole 19 when the optical waveguide 1 is overlaid on the mother board 5.
  • the LSI 501 is not covered with the optical waveguide 1 and heat dissipation is ensured. And it can prevent that the operating characteristic of LSI501 falls by heat.
  • the core portion 14 may be linear or curved in plan view. Furthermore, the core part 14 may branch or cross
  • the core part 14 can be formed. As a result, it is possible to minimize a decrease in transmission efficiency, a dull pulse signal, and the like in the optical waveguide 1.
  • the refractive index distribution is preferably a distribution as shown in FIG. 4 (b), FIG. 4 (c), FIG. 5 (b) or FIG. 6 (b). Thereby, the interference of the optical signal in an intersection can be suppressed especially.
  • the low-profile components such as the capacitor 502 and the chip resistor 503 whose mounting height is relatively low among the electric elements 50 for the electric wiring board are the optical waveguide 1.
  • the LSI 501 having a relatively high mounting height is inserted into the through-hole 19 provided in the optical waveguide 1 and the upper portion protrudes from the optical waveguide 1 as described above. Thereby, the heat dissipation of the LSI 501 is ensured.
  • the electric element 50 for other electrical wiring boards may be sufficient, for example, an electrolytic capacitor, a transformer, a reactor etc. are mentioned.
  • the electric element 50 for the electric wiring board may not be inserted into all the through holes 19 provided in the optical waveguide 1.
  • the through hole 19 may be provided in the portion of the optical waveguide 1 positioned above the electric element 50.
  • the shape of the through hole 19 is not particularly limited as long as the LSI 501 can be inserted, but is set so that the inner dimension of the through hole 19 is about 0.1 to 20 mm larger than the outer dimension of the LSI 501 in plan view. It is preferable to set it to be larger by about 0.2 to 15 mm.
  • the upper part of the LSI 501 may be set to be the same height as the upper surface of the optical waveguide 1, but preferably protrudes from the upper surface of the optical waveguide 1.
  • the amount of protrusion of the LSI 501 is not particularly limited, but is preferably about 5 to 90% of the height of the LSI 501 and more preferably about 10 to 80%.
  • FIG. 27 is a cross-sectional view showing another configuration example of the optical module 100 according to the present embodiment.
  • a heat spreader 44 shown in FIG. 27 is obtained by adding a heat spreader 44 to the photoelectric conversion unit 4 shown in FIG.
  • a heat spreader 44 shown in FIG. 27 has a box shape that covers the optical element 6 and the photoelectric conversion unit electrical element 7 mounted below the insulating substrate 411 of the photoelectric conversion unit 4.
  • the bottom surface of the heat spreader 44 and the bottom surface of the photoelectric conversion unit electrical element 7 are in contact with each other. Thereby, the heat from the photoelectric conversion unit electrical element 7 is efficiently transmitted to the heat spreader 44 and diffused. As a result, the heat dissipation of the photoelectric conversion unit electrical element 7 is particularly promoted.
  • FIG. 28 is a sectional view showing a part of an eleventh embodiment of the opto-electric hybrid board according to the present invention.
  • the eleventh embodiment is the same as the tenth embodiment except that the configuration of the optical waveguide 1 is different.
  • the optical module 100 shown in FIG. 28 has a metal layer 18 provided on the cladding layer 12 of the optical waveguide 1. That is, the optical waveguide of the present invention includes the optical waveguide 1 and the metal layer 18.
  • the metal layer 18 shown in FIG. 28 covers the entire surface of the cladding layer 12 and is configured to close the opening of the through hole 19.
  • the LSI 501 inserted into the through hole 19 is in contact with the metal layer 18 whose upper surface closes the opening of the through hole 19.
  • heat from the LSI 501 is easily transferred to the metal layer 18 and diffused. Thereby, the heat radiation of the LSI 501 is particularly promoted. That is, the metal layer 18 functions as a heat spreader that dissipates heat from the LSI 501.
  • the average thickness of the metal layer 18 is not particularly limited, but is preferably about 1 to 1000 ⁇ m, more preferably about 3 to 800 ⁇ m. Thereby, it is possible to prevent the optical waveguide 1 from being bent by its own weight while improving heat dissipation.
  • the constituent material of the metal layer 18 As the constituent material of the metal layer 18, the constituent material of the heat spreader 44 described above is used, and in particular, a material mainly containing any one of a copper simple substance, a copper alloy, an aluminum simple substance, and an aluminum alloy is preferable. Since these materials have particularly high thermal conductivity, the heat dissipation in the metal layer 18 can be particularly enhanced.
  • a heat conductive material as described above may be inserted between the LSI 501 and the metal layer 18 as necessary.
  • the metal layer 18 may be configured to block only a part of the opening of the through hole 19, for example, only a part of the upper surface of the LSI 501 that generates a particularly large amount of heat. It may be configured to cover.
  • FIG. 29 is a sectional view showing a part of a twelfth embodiment of the opto-electric hybrid board according to the present invention.
  • the twelfth embodiment is the same as the tenth embodiment except that the configuration of the photoelectric conversion unit 4 is different.
  • the 29 includes an insulating substrate 411a provided on the lower surface of the cladding layer 11 of the optical waveguide 1, an insulating substrate 411b provided on the upper surface of the cladding layer 12, and a lower surface of the insulating substrate 411a.
  • An electrical wiring 412a provided on the insulating substrate 411b, a through-wiring 413 connecting the electrical wiring 412a and the electrical wiring 412b, a sealing material 45, and an electrical connector 42.
  • the mirror 17 is configured by a part of the inner surface of the recess 170 formed from the electric wiring 412b to the insulating substrate 411b, the optical waveguide 1, and the insulating substrate 411a.
  • FIG. 30 is a cross-sectional view showing another configuration example of the optical module 100 according to the present embodiment.
  • each of the insulating substrates 411a and 411b and the electric wirings 412a and 412b of the photoelectric conversion unit 4 illustrated in FIG. 29 is extended over the entire optical waveguide 1.
  • the rigidity of the optical waveguide 1 is strengthened as a whole, and the optical waveguide 1 is protected from external forces, external light, and the external environment.
  • FIG. 31 is a sectional view showing a part of a thirteenth embodiment of the opto-electric hybrid board according to the present invention.
  • FIG. 31 the same components as those of the above-described embodiments are denoted by the same reference numerals as those described above, and detailed description thereof is omitted.
  • the insulating substrate 411 of the photoelectric conversion unit 4 and the electrical wiring 412 provided on the upper surface thereof are omitted, while penetrating the metal layer 18 and the optical waveguide 1 located on the lower surface of the cladding layer 11.
  • This is the same as the eleventh embodiment (FIG. 28) except that a through wiring 18c that connects the metal layer 18 and the electric wiring 412 is formed. That is, the photoelectric conversion unit 4 shown in FIG. 31 is configured such that the cladding layer 11 and the electric wiring 412 are in contact with each other. With such a structure, the distance between the optical element 6 and the mirror 17 can be further shortened as much as the insulating substrate 411 and the like are omitted. As a result, the optical coupling efficiency between the optical element 6 and the mirror 17 can be further increased.
  • FIG. 32 is a cross-sectional view showing a part of a fourteenth embodiment of the opto-electric hybrid board according to the present invention.
  • FIG. 32 the same components as those of the above-described embodiments are denoted by the same reference numerals as those described above, and detailed description thereof is omitted.
  • an electrical interposer (electric wiring board) 55 is interposed between the photoelectric conversion unit 4 and the mother board 5, and the LSI 501 is mounted on the electrical interposer 55. It is the same as the form. In this embodiment, unlike the above embodiments, the electric interposer 55 corresponds to an “electric wiring board”.
  • the electric interposer 55 shown in FIG. 32 includes a multilayer substrate 550 having a core substrate 551 and a buildup layer 552 laminated on both surfaces thereof, and bumps 553 provided on the lower surface of the multilayer substrate 550. Yes.
  • the LSI 501 is mounted on the electric interposer 55, and the electric wiring and the photoelectric conversion unit 4 laid on the surface and inside of the electric interposer 55 are connected to the electric connector (second terminal) 53. It is electrically connected via.
  • an electrical interposer 55 it is possible to easily increase the density of electrical wiring and increase the signal transmission speed.
  • the opto-electric hybrid board 1000 that enables high-speed and large-capacity information processing is obtained.
  • FIG. 33 (a) is a cross-sectional view showing a part of the fifteenth embodiment of the opto-electric hybrid board according to the present invention
  • FIG. 33 (b) is a top view of FIG. 33 (a).
  • the optical waveguide 1 has a shape including a sheet-like portion 1a that extends so as to cover a part of the mother board 5, and a strip-like portion 1b that extends from the sheet-like portion 1a.
  • the belt-like portion 1b is twisted by 90 ° at the connecting portion 1d between the sheet-like portion 1a and the belt-like portion 1b.
  • the optical waveguide 1 shown in FIG. 33 has a sheet-like portion 1a covering the mother board 5 and the electric interposer 55 as in the fourteenth embodiment, and the through-hole 19 is formed in the sheet-like portion 1a. Is formed.
  • the optical waveguide 1 is manufactured.
  • the optical waveguide 1 is manufactured by laminating the clad layer 11, the core layer 13, and the clad layer 12 in this order.
  • the core portion 14 and the side clad portion 15 are formed in the core layer 13.
  • a nanoimprint method, a direct drawing method, a direct exposure self-forming method, or the like is used.
  • radiation is irradiated locally toward a film having a refractive index modulation ability capable of forming a refractive index difference between an irradiated region and a non-irradiated region by irradiation of light such as light.
  • the core part 14 and the side clad part 15 are formed by forming the rate difference.
  • Examples of the principle of refractive index modulation include monomer diffusion, photobleaching, photoisomerization, photodimerization, and the like, and one or a combination of two or more of these is used. Of these, monomer diffusion is particularly preferably employed as the principle of refractive index modulation.
  • monomer diffusion a layer composed of a material in which a photopolymerizable monomer having a refractive index different from that of the polymer is dispersed in the polymer is partially irradiated with light to cause polymerization of the photopolymerizable monomer. Along with this, the photopolymerizable monomer is moved and unevenly distributed, whereby the refractive index is biased in the layer to form the core portion 14 and the side cladding portion 15.
  • the refractive index modulation based on such a principle it is possible to easily form the core portion 14 of any shape simply by selecting the region to be irradiated with light, so that the optical waveguide 1 can be manufactured extremely efficiently. it can.
  • the refractive index distribution formed by such a principle is formed corresponding to the concentration distribution of the photopolymerizable monomer, the refractive index distribution in the cross section of the formed core portion 14 has a smooth refractive index change. Will be accompanied.
  • the manufactured optical waveguide 1 has a GI-type refractive index distribution, has high transmission characteristics, and can reliably suppress interference at the intersection.
  • Examples of the material that causes such monomer diffusion include a photosensitive resin composition described in Japanese Patent Application Laid-Open No. 2010-090328.
  • the amount of change in refractive index can be adjusted according to the amount of irradiated light (radiation amount).
  • photobleaching the molecular structure in the material is cleaved by light irradiation, and the leaving group is detached from the main chain. As a result, the refractive index of the material is changed to form the core portion 14.
  • photoisomerization and photodimerization light irradiation causes photoisomerization or photodimerization of the material, and the refractive index of the material changes. Thereby, the core part 14 is formed.
  • Examples of materials that cause photobleaching include core film materials described in JP-A-2009-145867.
  • examples of materials that cause photoisomerization include norbornene resins described in JP-A-2005-164650.
  • examples of a material that causes photodimerization include a photosensitive resin composition described in JP 2011-105791 A.
  • the formed refractive index distribution is accompanied by a smooth refractive index change.
  • a method of gradually changing the irradiation amount of the irradiated light for example, a method using a multi-tone mask such as a gray-tone mask or a half-tone mask, a method of scanning a light beam having a distribution of light intensity, irradiation for each region Examples include a method of irradiating while changing the time.
  • the refractive index difference may be formed by diffusing the refractive index adjusting agent in the polymer and continuously changing the concentration of the refractive index adjusting agent.
  • a method for supplying the refractive index adjusting agent into the polymer include methods such as coating, spraying, adhesion, dipping, and deposition.
  • an arbitrary refractive index distribution can be formed by adjusting the supply amount for each region.
  • the refractive index adjusting agent include those described in JP-A-2006-276735.
  • a mirror 17 is formed on the obtained optical waveguide 1 and a lens 16 is provided.
  • mechanical processing such as dicing processing or transfer of a molding die, laser processing, electron beam processing, or the like is used.
  • a metal layer 18 is formed on each of the lower surface of the cladding layer 11 and the upper surface of the cladding layer 12 as necessary.
  • the method for forming the metal layer 18 is not particularly limited, and examples thereof include physical vapor deposition such as vacuum vapor deposition, chemical vapor deposition such as CVD, plating, and printing.
  • the metal layer 18 may be attached to the lower surface of the cladding layer 11 and the upper surface of the cladding layer 12.
  • an adhesive a pressure-sensitive adhesive, an adhesive sheet, or the like can be used.
  • the metal layer 18 may be formed by depositing a metal material on the lower surface of the cladding layer 11 and the upper surface of the cladding layer 12.
  • a through hole 19 is formed in the optical waveguide 1.
  • various processing methods are also used for forming the through hole 19.
  • the optical connector 101 is attached to the end of the optical waveguide 1. Thereby, the optical wiring component 10 is obtained.
  • the photoelectric conversion unit 4 is bonded to the lower surface of the optical waveguide 1. Thereby, the optical module 100 is obtained.
  • an electrical wiring board electrical element 50 such as an LSI 501 is mounted on the insulating substrate 51 to manufacture the mother board 5. Then, the optical waveguide 1 is overlapped so as to cover the mother board 5 and the electric connector 42 of the photoelectric conversion unit 4 and the electric connector 53 of the mother board 5 are connected. When the through hole 19 is formed in the optical waveguide 1, the LSI 501 is inserted into the through hole 19 provided in the optical waveguide 1.
  • the opto-electric hybrid board 1000 is obtained as described above.
  • the opto-electric hybrid board 1000 of the present invention as described above can shorten and increase the density of the core portion 14 of the optical waveguide 1 and improve the internal optical coupling efficiency. Optical signal transmission efficiency is high. Therefore, by providing the opto-electric hybrid board of the present invention, a highly reliable electronic device (electronic device of the present invention) capable of performing high-quality optical communication can be obtained.
  • the core portion 14 of the optical waveguide 1 is shortened and densified, the transmission efficiency is high, and the heat radiation of the LSI 501 is high, so that the reliability is high. Therefore, by providing the optical waveguide of the present invention, a highly reliable electronic device (electronic device of the present invention) capable of performing high-quality optical communication can be obtained.
  • Examples of the electronic device including the opto-electric hybrid board of the present invention include electronic devices such as a mobile phone, a game machine, a router device, a WDM device, a personal computer, a television, and a home server. In any of these electronic devices, it is necessary to transmit a large amount of data at high speed between an arithmetic device such as an LSI and a storage device such as a RAM. Therefore, by providing such an electronic device with the opto-electric hybrid board according to the present invention, problems such as noise and signal degradation peculiar to the electric wiring can be solved, and a dramatic improvement in performance can be expected.
  • the amount of heat generated in the optical waveguide portion is greatly reduced compared to electrical wiring. For this reason, the electric power required for cooling can be reduced and the power consumption of the whole electronic device can be reduced.
  • the opto-electric hybrid board and the optical waveguide of the present invention can be mounted on the mother board 5 via a connector or the like, it can be easily detached from the mother board 5 as necessary. For this reason, the optical waveguide 1 and the mother board 5 can be taken out individually and replaced or repaired.
  • optical waveguide The optical waveguide, the optical wiring component, the optical module, the opto-electric hybrid board, and the electronic device according to the present invention have been described based on the illustrated embodiments, but the present invention is not limited to these.
  • the optical waveguide 1 may be stacked not to cover the entire surface of the motherboard 5 but to cover a part thereof, or may be stacked to protrude from the edge of the motherboard 5.
  • the photoelectric conversion unit substrate 41 included in the photoelectric conversion unit 4 may be a multilayer substrate including a buildup layer.
  • the through hole 19 is not limited to a closed hole in a plan view, but may be a partially opened hole.
  • optical waveguide having refractive index distribution shown in FIG. 5 First, optical waveguides having a linear core part having a refractive index distribution shown in FIG. 5 were produced under different conditions (Examples 1 to 18). The optical waveguides of Comparative Example 1 and Reference Examples 1 to 4 for comparison were also manufactured. The following 3. Then, these optical waveguides were evaluated.
  • Example 1 (1) Manufacture of resin composition for forming clad layer Daicel Chemical Industries, Ltd. alicyclic epoxy resin: 20 g of Celoxide 2081, ADEKA Co., Ltd. Cationic polymerization initiator: Adekaoptomer SP-170 0.6 g , And 80 g of methyl isobutyl ketone were mixed with stirring to prepare a solution.
  • the clad layer-forming resin composition E1 was uniformly applied onto a polyimide film having a thickness of 25 ⁇ m by a doctor blade. Thereafter, it was put into a dryer at 50 ° C. for 10 minutes. After completely removing the solvent, the entire surface was irradiated with ultraviolet rays with a UV exposure machine to cure the applied resin composition E1. As a result, a colorless and transparent lower cladding layer having a thickness of 10 ⁇ m was obtained. The cumulative amount of ultraviolet light was 500 mJ / cm 2 .
  • the photosensitive resin composition F1 was uniformly applied by a doctor blade. Thereafter, it was put into a dryer at 40 ° C. for 5 minutes. After completely removing the solvent to form a film, a photomask having a linear pattern of lines and spaces drawn on the entire surface was pressure-bonded onto the obtained film. Then, ultraviolet rays were irradiated from above the photomask with a parallel exposure machine. The cumulative amount of ultraviolet light was 1000 mJ / cm 2 .
  • the photomask was removed and placed in an oven at 150 ° C. for 30 minutes. Upon removal from the oven, it was confirmed that a clear waveguide pattern appeared in the coating.
  • Table 1 shows the average width WCO of the core portion and the average width WCL of the side cladding portion. Further, the thickness of the obtained core layer was 50 ⁇ m, and the number of core portions was eight.
  • the clad layer forming resin composition E1 was applied in the same manner as in (3) to obtain a colorless and transparent upper clad layer having a thickness of 10 ⁇ m. Thus, an optical waveguide was obtained.
  • Example 2 (6) Evaluation of refractive index distribution
  • the refractive index distribution W of the width direction was acquired with the interference microscope.
  • the refractive index distribution W had a plurality of low refractive index regions and high refractive index regions, and the refractive index changed continuously.
  • Examples 2 to 8 The composition of the polymer, the composition and content of the monomer, and the cumulative amount of ultraviolet light are set as shown in Table 1, and the average width WCO of the core portion and the average width WCL of the side cladding portions are values shown in Table 1, respectively.
  • the optical waveguides of Examples 2 to 8 were obtained in the same manner as in Example 1 except that the photomask pattern was set as described above.
  • Example 9 (1) Synthesis of (meth) acrylic polymer 20.0 g of methyl methacrylate (MMA), 30.0 g of benzyl methacrylate (BzMA), and 450 g of methyl isobutyl ketone were charged into a separable flask. These were stirred and mixed, and then replaced with nitrogen gas to prepare a monomer solution.
  • MMA methyl methacrylate
  • BzMA benzyl methacrylate
  • 450 g of methyl isobutyl ketone 450 g of methyl isobutyl ketone
  • the said initiator solution was added to the said monomer solution using the syringe, stirring the said monomer solution in the state heated at 80 degreeC.
  • the mixture was stirred at 80 ° C. for 1 hour and then cooled to prepare a polymer solution.
  • 5 L of isopropanol was prepared in a beaker, and the polymer solution was dropped into the beaker while stirring at room temperature with a stirrer. After completion of dropping, the mixture was further stirred for 30 minutes, and then the precipitated polymer was taken out and dried at 60 ° C. under reduced pressure for 8 hours in a vacuum dryer. Thereby, acrylic polymer A1 was obtained.
  • the clad layer-forming resin composition B1 was uniformly applied onto a polyimide film having a thickness of 25 ⁇ m by a doctor blade, and then placed in a dryer at 80 ° C for 10 minutes. After completely removing the solvent, it was further put into an oven at 150 ° C. for 10 minutes and cured to obtain a colorless and transparent lower clad layer having a thickness of 10 ⁇ m.
  • Preparation of core layer The photosensitive resin composition C1 was uniformly apply
  • the photomask was removed and placed in an oven at 150 ° C. for 30 minutes. When taken out from the oven, it was confirmed that a clear waveguide pattern having a rectangular cross section appeared on the coating.
  • Table 2 shows the average width WCO of the core portion and the average width WCL of the side cladding portions. Further, the thickness of the obtained core layer was 50 ⁇ m, and the number of core portions was eight.
  • (6) Production of upper clad layer On the produced core layer, the clad layer-forming resin composition B1 was applied in the same manner as in (4) to obtain a colorless and transparent upper clad layer having a thickness of 10 ⁇ m. An optical waveguide was obtained in the same manner as above.
  • Example 10 The composition and content of the monomer, and the cumulative amount of ultraviolet light are set as shown in Table 2, and the photo is taken so that the average width WCO of the core portion and the average width WCL of the side cladding portions are the values shown in Table 2, respectively.
  • Optical waveguides of Examples 10 to 12 were obtained in the same manner as Example 9 except that the mask pattern was set.
  • Example 13 (1) Synthesis of polyolefin-based resin having a leaving group In a glove box filled with dry nitrogen, both moisture and oxygen concentrations are controlled to 1 ppm or less, and 7.2 g (40.1 mmol) of hexylnorbornene (HxNB) , And 12.9 g (40.1 mmol) of diphenylmethylnorbornenemethoxysilane were weighed into a 500 mL vial, and 60 g of dehydrated toluene and 11 g of ethyl acetate were added. The glove box was covered with a silicon sealer and sealed at the top.
  • HxNB hexylnorbornene
  • the molar ratio of each structural unit in polymer # 1 was 50 mol% for the hexylnorbornene structural unit and 50 mol% for the diphenylmethylnorbornenemethoxysilane structural unit, as determined by NMR.
  • composition for forming core layer 10 g of the above-mentioned polymer # 1 was weighed into a 100 mL glass container, and 40 g of mesitylene, 0.01 g of an antioxidant Irganox 1076 (manufactured by Ciba Geigy), cyclohexyloxetane monomer ( Toa Gosei CHOX, CAS # 483303-25-9, molecular weight 186, boiling point 125 ° C./1.33 kPa) 2 g, and polymerization initiator (photoacid generator) Rhodosil Photoinitiator 2074 (manufactured by Rhodia, CAS # 178233-72-2) ) (0.0125 g in 0.1 mL of ethyl acetate) was added and dissolved uniformly.
  • an antioxidant Irganox 1076 manufactured by Ciba Geigy
  • cyclohexyloxetane monomer Toa Gosei CHOX,
  • the composition for clean core layer formation differs from the photosensitive resin composition as described in each Example by the point in which a monomer is not contained.
  • the polymer # 1 has a function of releasing a leaving group upon irradiation with actinic radiation, and a so-called photobleaching phenomenon occurs.
  • the polymerization initiator is expressed as PI 2074 in Table 1.
  • the photomask was removed and placed in an oven at 150 ° C. for 30 minutes. When taken out from the oven, it was confirmed that a clear waveguide pattern having a rectangular cross section appeared on the coating.
  • the thickness of the obtained core layer was 50 ⁇ m.
  • the number of core portions was eight.
  • the clad layer-forming resin composition E1 was applied in the same manner as in (3) to obtain a colorless and transparent upper clad layer having a thickness of 10 ⁇ m.
  • An optical waveguide was obtained as described above.
  • the refractive index distribution W had a plurality of low refractive index regions and high refractive index regions, and the refractive index changed continuously.
  • Examples 14 and 15 The composition and content of the monomer, and the cumulative amount of UV light are set as shown in Table 3, and the average width WCO of the core portion and the average width WCL of the side cladding portions are set to values shown in Table 3, respectively.
  • An optical waveguide was obtained in the same manner as in Example 13 except that the mask pattern was set.
  • Example 16 (1) Production of Optical Waveguide Using the composition for forming an optical waveguide used in Example 13, a multi-color extrusion molding (coextrusion molding) was performed on a polyethersulfone (PES) film by a die coater. As a result, a multicolor molded body was obtained in which three layers were extruded with the composition for forming the core layer as the intermediate layer and the composition for forming the clad layer as the lower layer and the upper layer. This was put into a dryer at 55 ° C. for 10 minutes to completely remove the solvent. Thereafter, a photomask was pressed and selectively irradiated with ultraviolet rays at 1300 mJ / cm 2 .
  • PES polyethersulfone
  • the mask was removed, and heating was performed at 150 ° C. for 1.5 hours in a dryer. After heating, a clear waveguide pattern appeared, and it was confirmed that a core part and a side cladding part were formed. Thereafter, a length of 10 cm was cut out from the obtained optical waveguide. Note that the formed optical waveguide has eight core portions formed in parallel. The total thickness of the optical waveguide was 100 ⁇ m.
  • the refractive index distribution W of the width direction was acquired with the interference microscope. As a result, the refractive index distribution W had a plurality of low refractive index regions and high refractive index regions, and the refractive index changed continuously.
  • a refractive index distribution T in the thickness direction was obtained by an interference microscope along a center line passing through the center of the width of the core portion in the vertical direction.
  • the refractive index distribution T had a region where the refractive index continuously changed at the center thereof, and a region having a refractive index lower than that of the region and a substantially constant value on both sides thereof.
  • the refractive index distribution T in the thickness direction of the obtained optical waveguide was a so-called graded index type.
  • Example 17 and 18 The composition and content of the monomer and the integrated light quantity of ultraviolet rays are set as shown in Table 3, and the photomask is set so that the average width WCO of the core portion and the average width WCL of the side cladding portions are values shown in Table 3, respectively.
  • the optical waveguides of Examples 17 and 18 were obtained in the same manner as Example 16 except that the above pattern was set.
  • Comparative Example 1 An optical waveguide of Comparative Example 1 was obtained in the same manner as Example 13 except that CHO was not added and the amount of PI2074 added was 0.01 g for the core forming composition and the cladding forming composition.
  • the refractive index of the core part was constant, the refractive index of the side cladding part was also constant, and the refractive index of the core part and the cladding part was discontinuous. That is, the refractive index distribution of the core layer of the obtained optical waveguide was a so-called step index (SI) type distribution.
  • SI step index
  • Tables 1, 2 and 3 show the manufacturing conditions of the optical waveguides obtained in the above Examples, Comparative Examples and Reference Examples.
  • the shape of the distribution designated as “GI type” in Tables 1, 2 and 3 is a high refractive index region WH including a maximum value Wm and a low refractive index region WL as shown in FIG. It was a shape in which and were arranged alternately.
  • the distribution shape of “W type” in Tables 4, 5 and 6 has four minimum values and five maximum values alternately arranged as shown in FIG. It was a shape. From this W-type refractive index distribution W, the respective minimum values Ws1, Ws2, Ws3 and Ws4 and the respective maximum values Wm1, Wm2, Wm3, Wm4 and Wm5 were obtained, and the average refractive index WA in the cladding part was obtained.
  • the refractive index distribution W in the width direction of the optical waveguide obtained in each example and each reference example had a continuous change in the refractive index in the whole.
  • the width a [ ⁇ m] of the portion where the refractive index in the vicinity of the maximum values Wm2 and Wm4 formed in the core portion is equal to or greater than the average refractive index WA, and
  • the width b [ ⁇ m] of the portion where the refractive index in the vicinity of each local minimum value Ws1, Ws2, Ws3 and Ws4 has a value less than the average refractive index WA was measured.
  • the maximum change rate of the refractive index in the gradually decreasing portion was in the range of 0.008 to 0.025. Further, the maximum values of the refractive indexes at the intersections were all higher than the maximum value Wm, and the difference was in the range of 0.003 to 0.015.
  • the refractive index distribution W in the width direction of the optical waveguide obtained in Comparative Examples 1 and 2 was a step index type.
  • 3.2 Transmission loss of optical waveguide Light emitted from an 850 nm VCSEL (surface emitting laser) is introduced into the optical waveguide obtained in each example and each comparative example via an optical fiber of 50 ⁇ m ⁇ , and emitted light is 200 ⁇ m ⁇ . The light was received by an optical fiber and the light intensity was measured. Note that the cutback method was used to measure the transmission loss. Then, when the measured values were plotted with the longitudinal direction of the optical waveguide taken on the horizontal axis and the insertion loss on the vertical axis, the measured values were arranged on a straight line. Therefore, the transmission loss was calculated from the slope of the straight line. The results are shown in Tables 14 to 19 below.
  • 3.3 Retention of pulse signal waveform A pulse signal with a pulse width of 1 ns was incident on the obtained optical waveguide from a laser pulse light source, and the pulse width of the e
  • the amount of modulation of the refractive index can be adjusted according to the amount of irradiation light.
  • the refractive index distribution was evaluated as described above for the obtained optical waveguide, a high refractive index region and a low refractive index region were confirmed, but the change in refractive index was not as continuous as in each example. .
  • the obtained optical waveguide had a larger transmission loss than the respective examples, and the retention of the pulse signal waveform was also low. 4).
  • an optical waveguide having an intersection was manufactured as follows under the same conditions as in the above-described Examples, Comparative Examples, and Reference Examples.
  • Example A An optical waveguide having crossed portions is manufactured by manufacturing an optical waveguide in the same manner as in Example 1 except that a photomask used for producing the core layer is one corresponding to the pattern of the optical waveguide having crossed portions.
  • Manufactured In the manufacture of the optical waveguide, three types of optical waveguides having intersection angles of 30 °, 60 °, and 90 ° at each intersection were manufactured.
  • Examples B to Z, a to k, Comparative Examples A and B, and Reference Examples A to J Except that the photomask used for producing the core layer was one corresponding to the pattern of the core part having the intersecting part, the same as in Examples 2 to 37, Comparative Examples 1 and 2, and Reference Examples 1 to 10
  • the optical waveguide optical waveguides each having an intersecting portion were manufactured.
  • three types of optical waveguides having intersection angles of 30 °, 60 °, and 90 ° at each intersection were manufactured. 5).
  • Evaluation of Optical Waveguide Having Intersection Next, the insertion loss between both ends of the obtained optical waveguide having the crossing portion was measured. Tables 14 to 19 show the calculated transmission loss at the intersection.
  • the insertion loss value showed the same tendency as the transmission loss described above. That is, the optical waveguides having the intersections obtained in each example had a sufficiently small insertion loss, whereas the optical waveguides having the intersections obtained in each comparative example had a relatively large insertion loss. And 3. It was confirmed that the smaller the transmission loss measured in (3), the smaller the amount of signal light that interferes.
  • the optical waveguide having the intersection obtained in each example has a smaller transmission loss at the intersection than the optical waveguide having the intersection obtained in each comparative example. Became clear. When the intersection angle was 90 °, the transmission loss was 0.02 dB or less.
  • the calculation method of the transmission loss at the intersection is a method in which a plurality of samples having different numbers of intersections are prepared and the transmission loss per intersection is calculated from comparison of the insertion loss.
  • the amount of signal light interfering with the core portion intersecting with the core portion to be measured (hereinafter referred to as “interference light amount”) was measured.
  • the measured value of the optical waveguide obtained in Comparative Example 1 is 1 in Tables 14 to 16
  • the measured value of the optical waveguide obtained in Comparative Example 2 is 1 in Tables 17 to 19. Relative values were calculated and shown in Tables 14-19.
  • an opto-electric hybrid board in which optical wiring is freely laid without being restricted by the arrangement of electric elements and the like and high-density mounting of an electric circuit and optical wiring is possible.
  • optical waveguide on which the optical wiring is constructed is easy to remove, an opto-electric hybrid board that can be easily assembled and repaired can be obtained.
  • an electronic device that includes the opto-electric hybrid board and can be reduced in size and performance can be obtained.
  • the present invention when mounted so as to be stacked on the electric wiring board, it is possible to freely construct the optical wiring while ensuring the heat dissipation of the electric element provided on the electric wiring board. An optical waveguide is obtained.
  • an optical wiring component an optical module, an opto-electric hybrid board, and an electronic device having high-density optical wiring can be obtained.
  • the present invention is extremely useful industrially.

Abstract

The present invention provides an opto-electric hybrid board on which optical wiring can be freely laid and on which electric wiring and optical wiring can be densely mounted without being subject to restrictions due to the placement of electrical elements; and an electronic device including this opto-electric hybrid board. The opto-electric hybrid board (1000) of the present invention includes: an optical module (100) having an optical waveguide (1), an optical connector provided on the end of the waveguide, and a photoelectric conversion unit (4) provided below the optical waveguide (1); and a motherboard (electric wiring board) (5) provided below the photoelectric conversion unit (4). The optical waveguide (1) includes: a core layer (13) having a plurality of cores (14) intersecting each other on the same plane, and a side-surface cladding; and a mirror (optical path changing unit) (17) for changing the optical paths of the cores (14). The optical waveguide (1) and the motherboard (5) are connected via an electrical connector, and both are preferably detachable.

Description

光導波路、光配線部品、光モジュール、光電気混載基板および電子機器Optical waveguide, optical wiring component, optical module, opto-electric hybrid board and electronic device
 本発明は、光導波路、光配線部品、光モジュール、光電気混載基板および電子機器に関するものである。 The present invention relates to an optical waveguide, an optical wiring component, an optical module, an opto-electric hybrid board, and an electronic device.
 本願は、2012年6月19日に、日本に出願された特願2012-138118号、2012年6月19日に、日本に出願された特願2012-138119号、2012年6月19日に、日本に出願された特願2012-138120号、2013年6月14日に、日本に出願された特願2013-125972号、及び2013年6月14日に、日本に出願された特願2013-125973号に基づき優先権を主張し、その内容をここに援用する。 This application is filed on June 19, 2012, Japanese Patent Application No. 2012-138118 filed in Japan, June 19, 2012, Japanese Patent Application No. 2012-138119 filed in Japan, June 19, 2012 Japanese Patent Application No. 2012-138120 filed in Japan, Japanese Patent Application No. 2013-125972 filed in Japan on June 14, 2013, and Japanese Patent Application No. 2013 filed in Japan on June 14, 2013 -Claims priority under 125973, the contents of which are incorporated herein.
 光搬送波を使用してデータを移送する光通信技術が開発され、近年、この光搬送波を、一地点から他地点に導くための手段として、光導波路が普及しつつある。この光導波路は、線状のコア部と、その周囲を覆うように設けられたクラッド部とを有している。コア部は、光搬送波の光に対して実質的に透明な材料によって構成され、クラッド部は、コア部より屈折率が低い材料によって構成されている。 Optical communication technology for transferring data using an optical carrier wave has been developed, and in recent years, an optical waveguide has been widely used as a means for guiding the optical carrier wave from one point to another point. This optical waveguide has a linear core part and a clad part provided so as to cover the periphery thereof. The core part is made of a material that is substantially transparent to the light of the optical carrier wave, and the cladding part is made of a material having a refractive index lower than that of the core part.
 光導波路では、コア部の一端から導入された光が、クラッド部との境界で反射しながら他端に搬送される。光導波路の入射側には半導体レーザー等の発光素子が配置され、出射側にはフォトダイオード等の受光素子が配置される。発光素子から入射された光は光導波路を伝搬し、受光素子により受光され、受光した光の明滅パターンもしくはその強弱パターンに基づいて通信を行う。 In the optical waveguide, light introduced from one end of the core portion is conveyed to the other end while being reflected at the boundary with the cladding portion. A light emitting element such as a semiconductor laser is disposed on the incident side of the optical waveguide, and a light receiving element such as a photodiode is disposed on the emission side. Light incident from the light emitting element propagates through the optical waveguide, is received by the light receiving element, and performs communication based on the flickering pattern of the received light or its intensity pattern.
 このような光導波路を基板上に敷設し、光配線を構築することが検討されている。例えば特許文献1に記載された電子装置においては、基板上に複数の光導波路が敷設されており、さらに、光導波路の端部上には発光素子および受光素子が搭載された電気配線基板が配置されている。 It has been studied to construct an optical wiring by laying such an optical waveguide on a substrate. For example, in the electronic device described in Patent Document 1, a plurality of optical waveguides are laid on a substrate, and an electric wiring board on which light-emitting elements and light-receiving elements are mounted is disposed on the ends of the optical waveguides. Has been.
 ところで、このような光配線は、電気配線の一部を置き換える目的で電子装置内に実装されることが多い。このため、配線全体の省スペース化を考慮した場合、光配線は、特許文献1に記載されているように、メインの基板上に電気配線とともに表面実装される。 By the way, such an optical wiring is often mounted in an electronic device for the purpose of replacing a part of the electrical wiring. For this reason, when space saving of the whole wiring is considered, the optical wiring is surface-mounted on the main substrate together with the electric wiring as described in Patent Document 1.
 一方、この基板上には、光配線や電気配線の他に多数の電気素子が実装されている。近年、基板の小型化の要請が強く、それに伴って電気素子の実装密度も高まっている。しかしながら、これらの電気素子は基板に対してハンダ等で固定される必要があるため、平面視における同じ位置に電気素子と光導波路とを併存させることが難しい。このため、光導波路は電気素子を避けるように敷設される必要が生じるとともに、光配線の本数が多い場合には複数に分割して敷設する必要も生じる。その結果、電気素子の実装密度が高くなるほど、多数の光導波路を複雑に敷設しなければならなくなり、製造工数が非常に多くなるとともに光導波路の総延長が長くなって伝送損失の増大を招く。 On the other hand, a large number of electrical elements are mounted on the substrate in addition to optical wiring and electrical wiring. In recent years, there has been a strong demand for miniaturization of substrates, and along with this, the mounting density of electrical elements has also increased. However, since these electric elements need to be fixed to the substrate with solder or the like, it is difficult to coexist the electric element and the optical waveguide at the same position in plan view. For this reason, it is necessary to lay the optical waveguide so as to avoid the electric element, and it is also necessary to divide the optical waveguide into a plurality when the number of optical wirings is large. As a result, the higher the mounting density of electrical elements, the more complex the number of optical waveguides that must be laid, which increases the number of manufacturing steps and increases the total length of the optical waveguides, leading to an increase in transmission loss.
特開2009-104064号公報JP 2009-104064 A
 本発明の目的は、電気素子等の配置による制約を受けることなく光配線が自由に敷設され、電気配線と光配線の高密度実装を可能にした光電気混載基板、および、この光電気混載基板を備えた電子機器を提供することにある。 SUMMARY OF THE INVENTION An object of the present invention is to provide an opto-electric hybrid board in which optical wiring is freely laid without being restricted by the arrangement of electrical elements and the like, and enables high-density mounting of the electrical wiring and the optical wiring, and the opto-electric hybrid board. It is providing the electronic device provided with.
 一方で、基板上に実装された電気素子を覆うように、シート状の光導波路を載置することが検討されている。これにより、光導波路のコア部の敷設経路において、電気素子の実装による制約を受けなくなる。 On the other hand, it has been studied to place a sheet-like optical waveguide so as to cover the electric element mounted on the substrate. Thereby, the installation path of the core part of the optical waveguide is not restricted by the mounting of the electric element.
 また、基板とシート状の光導波路とで電気素子が挟まれることになるため、電気素子の放熱性が低下するおそれがある。 Also, since the electric element is sandwiched between the substrate and the sheet-like optical waveguide, the heat dissipation of the electric element may be reduced.
 本発明の目的は、電気配線基板上に重ねるように実装されたとき、電気配線基板上に設けられた電気素子の放熱性を確保しながら、光配線を自由に構築することを可能にした光導波路、および、高密度な光配線を備えた光配線部品、光モジュール、光電気混載基板および電子機器を提供することにもある。 An object of the present invention is to provide a light guide that can freely construct an optical wiring while ensuring heat dissipation of an electric element provided on the electric wiring board when mounted so as to be stacked on the electric wiring board. Another object of the present invention is to provide an optical wiring component, an optical module, an opto-electric hybrid board, and an electronic device having a waveguide and high-density optical wiring.
 このような目的は、下記(1)~(28)の本発明により達成される。 Such an object is achieved by the present inventions (1) to (28) below.
 (1) 第1基板と、前記第1基板の内部または表面に敷設された電気配線と、前記第1基板上に搭載された電気素子と、を備える電気配線基板と、
 同一平面上で互いに交差するよう設けられた複数のコア部と前記各コア部の側面に隣接するよう設けられた側面クラッド部とを備え、前記コア部の中心部から前記側面クラッド部に向かって屈折率が連続的に低くなる屈折率分布が形成されているコア層と、前記コア部の光路を変換する光路変換部と、を備えるフィルム状の光導波路と、
を有し、
 前記光導波路と前記電気配線基板との間で、光電変換を伴う信号の送受信が行われるよう構成されており、
 前記光導波路は、前記電気素子を挟んで前記第1基板の反対側に配置されていることを特徴とする光電気混載基板。
(1) An electric wiring board comprising: a first substrate; an electric wiring laid inside or on the surface of the first substrate; and an electric element mounted on the first substrate;
A plurality of core portions provided so as to intersect with each other on the same plane, and a side clad portion provided adjacent to a side surface of each core portion, from the central portion of the core portion toward the side clad portion A film-shaped optical waveguide comprising: a core layer in which a refractive index distribution in which the refractive index is continuously reduced; and an optical path conversion unit that converts an optical path of the core unit;
Have
Between the optical waveguide and the electrical wiring board, configured to transmit and receive signals with photoelectric conversion,
The opto-electric hybrid board according to claim 1, wherein the optical waveguide is disposed on the opposite side of the first board with the electric element interposed therebetween.
 (2) 前記光導波路は、前記電気配線基板に対して着脱可能に設けられている上記(1)に記載の光電気混載基板。 (2) The opto-electric hybrid board according to (1), wherein the optical waveguide is detachably attached to the electric wiring board.
 (3) 当該光電気混載基板は、さらに、第2基板と、前記第2基板の内部または表面に敷設された電気配線と、前記第2基板上に搭載された光素子と、を備えた光電変換部を有するものであり、
 前記光導波路が備える前記光路変換部と前記光電変換部が備える前記光素子とが光学的に接続されているとともに、前記光電変換部が備える前記電気配線と前記電気配線基板が備える前記電気配線とが電気的に接続されている上記(1)または(2)に記載の光電気混載基板。
(3) The opto-electric hybrid board further includes a second substrate, an electrical wiring laid in or on the surface of the second substrate, and an optical element mounted on the second substrate. It has a conversion part,
The optical path included in the optical waveguide is optically connected to the optical element included in the photoelectric conversion unit, the electrical wiring included in the photoelectric conversion unit, and the electrical wiring included in the electrical wiring substrate; The opto-electric hybrid board according to (1) or (2), wherein are electrically connected.
 (4) 前記光電変換部の前記電気配線と前記電気配線基板の前記電気配線との間が、電気コネクターを介して電気的に接続されている上記(3)に記載の光電気混載基板。 (4) The opto-electric hybrid board according to (3), wherein the electrical wiring of the photoelectric conversion unit and the electrical wiring of the electrical wiring board are electrically connected via an electrical connector.
 (5) 前記光電変換部は、さらに、前記光素子に接するように設けられた放熱体を備えている上記(3)または(4)に記載の光電気混載基板。 (5) The opto-electric hybrid board according to (3) or (4), wherein the photoelectric conversion unit further includes a heat dissipator provided so as to be in contact with the optical element.
 (6) 前記光導波路は、さらに、前記コア層の少なくとも一方の面側に設けられた金属層を備える上記(1)ないし(5)のいずれかに記載の光電気混載基板。 (6) The opto-electric hybrid board according to any one of (1) to (5), wherein the optical waveguide further includes a metal layer provided on at least one surface side of the core layer.
 (7) 前記金属層の構成材料は、アルミニウム、鉄および銅の単体またはこれらの基合金を主材料とするものである上記(6)に記載の光電気混載基板。 (7) The opto-electric hybrid board according to the above (6), wherein the constituent material of the metal layer is mainly composed of aluminum, iron and copper alone or a base alloy thereof.
 (8) 前記金属層は、前記電気素子と直接接触または熱伝導部を介して接触している上記(6)または(7)に記載の光電気混載基板。 (8) The opto-electric hybrid board according to (6) or (7), wherein the metal layer is in direct contact with the electric element or in contact with a heat conducting part.
 (9) 前記光導波路は、前記電気配線基板の前記第1基板との間に空間が生じるように配置されている上記(1)ないし(8)のいずれかに記載の光電気混載基板。 (9) The opto-electric hybrid board according to any one of (1) to (8), wherein the optical waveguide is disposed so that a space is generated between the optical wiring board and the first board.
 (10) マザーボードと、
 前記マザーボード上に搭載された、前記電気配線基板としての電気インターポーザーと、
 前記光導波路と、
を備え、
 前記光導波路は、前記電気インターポーザーが備える前記電気素子を覆うように、前記電気素子を介して前記第1基板の反対側に配置されている上記(1)ないし(9)のいずれかに記載の光電気混載基板。
(10) Motherboard,
An electrical interposer mounted on the motherboard as the electrical wiring board;
The optical waveguide;
With
The optical waveguide according to any one of (1) to (9), wherein the optical waveguide is disposed on the opposite side of the first substrate via the electric element so as to cover the electric element included in the electric interposer. The opto-electric hybrid board.
 (11) 前記電気配線基板は、前記第1基板の両面側にそれぞれ設けられた金属層と、前記第1基板を貫通して前記金属層同士を接続するように設けられたビアポストと、を備えている上記(10)に記載の光電気混載基板。 (11) The electrical wiring board includes a metal layer provided on each side of the first substrate and a via post provided so as to connect the metal layers through the first substrate. The opto-electric hybrid board according to (10) above.
 (12) 前記電気配線基板は、前記第1基板の少なくとも一方の面側に設けられた金属層を備えている上記(1)ないし(11)のいずれかに記載の光電気混載基板。 (12) The opto-electric hybrid board according to any one of (1) to (11), wherein the electric wiring board includes a metal layer provided on at least one surface side of the first board.
 (13) 前記光導波路と、前記コア部の端部に設けられた光コネクターと、を有する上記(1)ないし(12)のいずれかに記載の光電気混載基板。 (13) The opto-electric hybrid board according to any one of (1) to (12), including the optical waveguide and an optical connector provided at an end of the core portion.
 (14) 上記(1)ないし(13)のいずれかに記載の光電気混載基板を備えることを特徴とする電子機器。 (14) An electronic apparatus comprising the opto-electric hybrid board according to any one of (1) to (13) above.
 (15) コア部と前記各コア部の側面に隣接するよう設けられた側面クラッド部とを備えたコア層と、前記コア部の光路を変換する光路変換部と、有する光導波路であって、
 電気素子を備えた電気配線基板に対して当該光導波路が重ねられたとき、前記電気素子が挿入されるよう前記コア層に形成された貫通孔をさらに有していることを特徴とする光導波路。
(15) An optical waveguide having a core layer including a core portion and a side cladding portion provided so as to be adjacent to a side surface of each of the core portions, and an optical path conversion portion that converts an optical path of the core portion,
An optical waveguide, further comprising a through hole formed in the core layer so that the electrical element is inserted when the optical waveguide is overlaid on an electrical wiring board including the electrical element. .
 (16) さらに、前記コア層の一方の面側に設けられた金属層を有しており、
 前記金属層は、前記貫通孔の少なくとも一部を塞ぐよう構成されている上記(15)に記載の光導波路。
(16) Furthermore, it has a metal layer provided on one surface side of the core layer,
The optical waveguide according to (15), wherein the metal layer is configured to close at least a part of the through hole.
 (17) 前記金属層の構成材料は、銅単体、銅合金、アルミニウム単体およびアルミニウム合金のいずれかを主成分とするものである上記(16)に記載の光導波路。 (17) The optical waveguide according to (16), wherein the constituent material of the metal layer is mainly composed of any one of a copper simple substance, a copper alloy, an aluminum simple substance, and an aluminum alloy.
 (18) 前記コア層は、同一平面上で互いに交差するよう設けられた複数の前記コア部を備えている上記(15)ないし(17)のいずれかに記載の光導波路。 (18) The optical waveguide according to any one of (15) to (17), wherein the core layer includes a plurality of the core portions provided to cross each other on the same plane.
 (19) 前記コア部は、中心部から前記側面クラッド部に向かって屈折率が連続的に低くなる屈折率分布を有している上記(15)ないし(18)のいずれかに記載の光導波路。 (19) The optical waveguide according to any one of (15) to (18), wherein the core portion has a refractive index distribution in which a refractive index continuously decreases from a central portion toward the side cladding portion. .
 (20) さらに、前記コア層の他方の面側に設けられたレンズを有している上記(15)ないし(19)のいずれかに記載の光導波路。 (20) The optical waveguide according to any one of (15) to (19), further including a lens provided on the other surface side of the core layer.
 (21) 上記(15)ないし(20)のいずれかに記載の光導波路と、前記コア部の端部に設けられた光コネクターと、を有することを特徴とする光配線部品。 (21) An optical wiring component comprising: the optical waveguide according to any one of (15) to (20) above; and an optical connector provided at an end portion of the core portion.
 (22) 上記(15)ないし(20)のいずれかに記載の光導波路と、前記コア層の一方の面側に設けられ、前記光路変換部と光学的に接続された光素子と、を有することを特徴とする光モジュール。 (22) The optical waveguide according to any one of (15) to (20), and an optical element provided on one surface side of the core layer and optically connected to the optical path conversion unit. An optical module characterized by that.
 (23) さらに、前記光素子を覆うように設けられた放熱体と、を有する上記(22)に記載の光モジュール。 (23) The optical module according to (22), further including a heat radiator provided to cover the optical element.
 (24) さらに、前記コア層と前記光素子との間に設けられた基板と、前記基板の内部または表面に敷設された電気配線と、前記電気配線に接続された第1の端子と、を有する上記(22)または(23)に記載の光モジュール。 (24) Furthermore, a substrate provided between the core layer and the optical element, an electrical wiring laid in or on the surface of the substrate, and a first terminal connected to the electrical wiring, The optical module according to (22) or (23).
 (25) さらに、マザーボードと、
 前記マザーボード上に搭載され、電気素子を備えた前記電気配線基板としての電気インターポーザーと、
 を有し、
 前記光導波路と前記電気インターポーザーとが重ねられ、かつ、前記電気インターポーザーが備える前記電気素子が前記貫通孔に挿入されるよう構成されている上記(24)に記載の光モジュール。
(25) Furthermore, with the motherboard,
An electrical interposer as the electrical wiring board mounted on the motherboard and provided with electrical elements;
Have
The optical module according to (24), wherein the optical waveguide and the electrical interposer are overlapped, and the electrical element included in the electrical interposer is configured to be inserted into the through hole.
 (26) 前記電気インターポーザーは、その内部または表面に敷設された電気配線と、前記電気配線に接続された第2の端子と、を有しており、
 前記第1の端子と、前記電気インターポーザーに設けられた前記第2の端子と、が接続されている上記(25)に記載の光モジュール。
(26) The electric interposer has an electric wiring laid on the inside or the surface thereof, and a second terminal connected to the electric wiring,
The optical module according to (25), wherein the first terminal and the second terminal provided in the electric interposer are connected.
 (27) 上記(15)ないし(20)のいずれかに記載の光導波路を備えることを特徴とする光電気混載基板。 (27) An opto-electric hybrid board comprising the optical waveguide according to any one of (15) to (20) above.
 (28) 上記(15)ないし(20)のいずれかに記載の光導波路を備えることを特徴とする電子機器。 (28) An electronic device comprising the optical waveguide according to any one of (15) to (20) above.
 本発明によれば、電気素子等の配置による制約を受けることなく光配線が自由に敷設され、電気回路と光配線の高密度実装を可能にした光電気混載基板が得られる。 According to the present invention, it is possible to obtain an opto-electric hybrid board in which optical wiring is freely laid without being restricted by the arrangement of electric elements and the like and high-density mounting of an electric circuit and optical wiring is possible.
 また、光配線が構築された光導波路の取り外しが容易であるため、組み立てや修理が容易な光電気混載基板が得られる。 Also, since the optical waveguide on which the optical wiring is constructed is easy to remove, an opto-electric hybrid board that can be easily assembled and repaired can be obtained.
 また、本発明によれば、上記光電気混載基板を備え、小型化および高性能化が可能な電子機器が得られる。 In addition, according to the present invention, an electronic device that includes the opto-electric hybrid board and can be reduced in size and performance can be obtained.
 さらに本発明によれば、電気配線基板上に重ねるように実装されたとき、電気配線基板上に設けられた電気素子の放熱性を確保しながら、光配線を自由に構築することを可能にした光導波路が得られる。 Furthermore, according to the present invention, when mounted so as to be stacked on the electric wiring board, it is possible to freely construct the optical wiring while ensuring the heat dissipation of the electric element provided on the electric wiring board. An optical waveguide is obtained.
 また、本発明によれば、高密度な光配線を備えた光配線部品、光モジュール、光電気混載基板および電子機器が得られる。 Further, according to the present invention, an optical wiring component, an optical module, an opto-electric hybrid board, and an electronic device having high-density optical wiring can be obtained.
本発明の光電気混載基板の第1実施形態を示す(一部透過して示す)分解斜視図である。It is a disassembled perspective view which shows 1st Embodiment of the opto-electric hybrid board of the present invention (partially see through). 図1に白抜き矢印で示すように光導波路を重ねた状態におけるX-X線断面図である。FIG. 2 is a cross-sectional view taken along line XX in a state where optical waveguides are stacked as indicated by white arrows in FIG. 図1、25に示す光導波路の一部を拡大して示す(一部切り欠いて、および透過して示す)斜視図である。FIG. 26 is a perspective view showing a part of the optical waveguide shown in FIGS. 1 and 25 in an enlarged manner (partially cut out and shown through). 光導波路のコア部の横断面の幅方向における屈折率分布の一例を示す図である。It is a figure which shows an example of the refractive index distribution in the width direction of the cross section of the core part of an optical waveguide. 図5(a)は、図3に示す光導波路のコア部を横切るように切断した横断面図の一例であり、図5(b)は、図5(a)に示す横断面図のコア層の厚さ方向の中心を通過する中心線C1上の屈折率分布Wの一例を模式的に示す図である。5A is an example of a cross-sectional view cut across the core portion of the optical waveguide shown in FIG. 3, and FIG. 5B is a core layer of the cross-sectional view shown in FIG. 5A. It is a figure which shows typically an example of the refractive index distribution W on the centerline C1 which passes through the center of the thickness direction. 図6(a)は、図3に示す光導波路のコア部を横切るように切断した横断面図の他の例であり、図6(b)は、図6(a)に示す横断面図のコア層の厚さ方向の中心を通過する中心線C1上の屈折率分布Wの他の例を模式的に示す図である。6A is another example of a cross-sectional view cut across the core portion of the optical waveguide shown in FIG. 3, and FIG. 6B is a cross-sectional view shown in FIG. It is a figure which shows typically the other example of the refractive index distribution W on the centerline C1 which passes the center of the thickness direction of a core layer. 図6に示す屈折率分布を有する光導波路のコア部に光を入射したときの出射光の強度分布を示す図である。It is a figure which shows intensity distribution of the emitted light when light injects into the core part of the optical waveguide which has a refractive index distribution shown in FIG. 図1、25に示す光導波路の交差部近傍を示す平面図および交差部近傍の屈折率分布を示す図である。FIG. 26 is a plan view showing the vicinity of the intersection of the optical waveguide shown in FIGS. 1 and 25 and a diagram showing a refractive index distribution in the vicinity of the intersection. 交差部近傍の他の構成例を示す部分拡大図である。It is the elements on larger scale which show the other structural example vicinity of a cross | intersection part. 図2に示す光導波路のコア部の途中および延長線上にミラー(光路変換部)が形成されている例を示す斜視図である。It is a perspective view which shows the example in which the mirror (optical path conversion part) is formed in the middle of the core part of the optical waveguide shown in FIG. 2, and an extension line. 図1、25に示す光コネクターの分解斜視図および図1に示す光コネクターの斜視図である。FIG. 26 is an exploded perspective view of the optical connector shown in FIGS. 1 and 25 and a perspective view of the optical connector shown in FIG. 1. 第1実施形態に係る光モジュールの他の構成例を示す断面図である。It is sectional drawing which shows the other structural example of the optical module which concerns on 1st Embodiment. 本発明の光電気混載基板の第2実施形態の一部を示す断面図である。It is sectional drawing which shows a part of 2nd Embodiment of the opto-electric hybrid board | substrate of this invention. 本発明の光電気混載基板の第3実施形態の一部を示す断面図である。It is sectional drawing which shows a part of 3rd Embodiment of the opto-electric hybrid board | substrate of this invention. 本発明の光電気混載基板の第4実施形態の一部を示す断面図である。It is sectional drawing which shows a part of 4th Embodiment of the opto-electric hybrid board | substrate of this invention. 本発明の光電気混載基板の第5実施形態を示す(一部透過して示す)分解斜視図である。It is a disassembled perspective view which shows 5th Embodiment of the opto-electric hybrid board of the present invention (partially see through). 図16に白抜き矢印で示すように光導波路を重ねた状態におけるX-X線断面図である。FIG. 17 is a cross-sectional view taken along line XX in a state where optical waveguides are stacked as indicated by white arrows in FIG. 図16に示す光導波路の一部を拡大して示す(一部切り欠いて、および透過して示す)斜視図である。FIG. 17 is a perspective view showing a part of the optical waveguide shown in FIG. 16 in an enlarged manner (partially cut out and shown through). 第5実施形態に係る光モジュールの他の構成例を示す断面図である。It is sectional drawing which shows the other structural example of the optical module which concerns on 5th Embodiment. 本発明の光電気混載基板の第6実施形態の一部を示す断面図である。It is sectional drawing which shows a part of 6th Embodiment of the opto-electric hybrid board of this invention. 第6実施形態に係る光モジュールの他の構成例を示す断面図である。It is sectional drawing which shows the other structural example of the optical module which concerns on 6th Embodiment. 本発明の光電気混載基板の第7実施形態の一部を示す断面図である。It is sectional drawing which shows a part of 7th Embodiment of the opto-electric hybrid board of this invention. 本発明の光電気混載基板の第8実施形態の一部を示す断面図である。It is sectional drawing which shows a part of 8th Embodiment of the opto-electric hybrid board | substrate of this invention. 本発明の光電気混載基板の第9実施形態の一部を示す断面図である。It is sectional drawing which shows a part of 9th Embodiment of the opto-electric hybrid board | substrate of this invention. 本発明の光電気混載基板の第10実施形態を示す(一部透過して示す)分解斜視図である。It is a disassembled perspective view which shows 10th Embodiment of the opto-electric hybrid board of the present invention (partially see through). 図25に矢印で示すように光導波路を重ねた状態におけるX-X線断面図である。FIG. 26 is a cross-sectional view taken along line XX in a state where optical waveguides are stacked as indicated by arrows in FIG.
 
第10実施形態に係る光モジュールの他の構成例を示す断面図である。 本発明の光電気混載基板の第11実施形態の一部を示す断面図である。 本発明の光電気混載基板の第12実施形態の一部を示す断面図である。 第12実施形態に係る光モジュールの他の構成例を示す断面図である。 本発明の光電気混載基板の第13実施形態の一部を示す断面図である。 本発明の光電気混載基板の第14実施形態の一部を示す断面図である。 本発明の光電気混載基板の第15実施形態の一部を示す(a)断面図および(b)上面図である。

It is sectional drawing which shows the other structural example of the optical module which concerns on 10th Embodiment. It is sectional drawing which shows a part of 11th Embodiment of the opto-electric hybrid board | substrate of this invention. It is sectional drawing which shows a part of 12th Embodiment of the opto-electric hybrid board of this invention. It is sectional drawing which shows the other structural example of the optical module which concerns on 12th Embodiment. It is sectional drawing which shows a part of 13th Embodiment of the opto-electric hybrid board of this invention. It is sectional drawing which shows a part of 14th Embodiment of the opto-electric hybrid board of this invention. It is (a) sectional drawing and (b) top view which show a part of 15th Embodiment of the opto-electric hybrid board of this invention.
 以下、本発明の光導波路、光配線部品、光モジュール、光電気混載基板および電子機器について添付図面に示す好適実施形態に基づいて詳細に説明する。
<光電気混載基板>
 ≪第1実施形態≫
 まず、本発明の光電気混載基板の第1実施形態について説明する。
Hereinafter, the optical waveguide, the optical wiring component, the optical module, the opto-electric hybrid board, and the electronic device of the present invention will be described in detail based on preferred embodiments shown in the accompanying drawings.
<Opto-electric hybrid board>
<< First Embodiment >>
First, a first embodiment of the opto-electric hybrid board according to the present invention will be described.
 図1は、本発明の光電気混載基板の第1実施形態を示す(一部透過して示す)分解斜視図、図2は、図1に白抜き矢印で示すように光導波路を重ねた状態におけるX-X線断面図である。 FIG. 1 is an exploded perspective view showing a first embodiment of the opto-electric hybrid board according to the present invention (partially see through), and FIG. 2 is a state in which optical waveguides are stacked as shown by white arrows in FIG. FIG.
 図1に示す光モジュール100は、光導波路1と、その端部に設けられた光コネクター101と、光導波路1の下方に設けられた光電変換部4と、を有している。また、図1に示す光電気混載基板1000は、光モジュール100と、光電変換部4の下方に設けられたマザーボード(電気配線基板)5と、を有している。 An optical module 100 shown in FIG. 1 includes an optical waveguide 1, an optical connector 101 provided at an end thereof, and a photoelectric conversion unit 4 provided below the optical waveguide 1. Further, the opto-electric hybrid board 1000 shown in FIG. 1 includes an optical module 100 and a mother board (electric wiring board) 5 provided below the photoelectric conversion unit 4.
 このうち、光導波路1は、平面視で四角形をなすシート状の部材である。光導波路1は、図2に示すように、クラッド層11、コア層13およびクラッド層12が下方からこの順で積層されてなるものであり、コア層13には光信号を伝搬するコア部14が所望のパターンで形成されている。なお、図1では、コア層13中に形成されているコア部14を、光導波路1の陰にある光コネクター101や光電変換部4とともに破線で示している。 Of these, the optical waveguide 1 is a sheet-like member having a quadrangular shape in plan view. As shown in FIG. 2, the optical waveguide 1 is formed by laminating a clad layer 11, a core layer 13, and a clad layer 12 in this order from below, and a core portion 14 that propagates an optical signal to the core layer 13. Are formed in a desired pattern. In FIG. 1, the core portion 14 formed in the core layer 13 is indicated by a broken line together with the optical connector 101 and the photoelectric conversion portion 4 that are behind the optical waveguide 1.
 また、光導波路1の4辺のうち、対向する2辺にはコア部14が露出しており、そこに光コネクター101が設けられている。光配線部品10は、この光コネクター101を介して光導波路1のコア部14と他の光学部品とを光学的に接続し得るよう構成されている。なお、図1では、光導波路1の対向する2辺に光コネクター101を設ける例を図示しているが、光コネクター101の配置はこれに限定されず、図1以外の辺に設けられていてもよく、外縁以外の部位に設けられていてもよい。 Also, the core portion 14 is exposed on two opposite sides of the four sides of the optical waveguide 1, and the optical connector 101 is provided there. The optical wiring component 10 is configured to optically connect the core portion 14 of the optical waveguide 1 and other optical components via the optical connector 101. 1 illustrates an example in which the optical connector 101 is provided on two opposite sides of the optical waveguide 1, the arrangement of the optical connector 101 is not limited to this, and the optical connector 101 is provided on a side other than FIG. Alternatively, it may be provided at a portion other than the outer edge.
 光導波路1の下面には、複数の光電変換部4が設けられている。光電変換部4では、電気信号を光信号に変換しコア部14に送出したり、コア部14を伝搬してきた光信号を受光し電気信号に変換する。なお、光導波路1には、光電変換部4の受発光部に対応してミラー(光路変換部)17が設けられており、このミラー17によってコア部14の光路が光導波路1の面方向からそれに垂直な方向へと変換され、コア部14と光電変換部4の受発光部とが光学的に接続されている。 A plurality of photoelectric conversion units 4 are provided on the lower surface of the optical waveguide 1. The photoelectric conversion unit 4 converts an electrical signal into an optical signal and sends it to the core unit 14 or receives an optical signal propagated through the core unit 14 and converts it into an electrical signal. The optical waveguide 1 is provided with a mirror (optical path conversion unit) 17 corresponding to the light receiving and emitting unit of the photoelectric conversion unit 4, and the optical path of the core unit 14 from the surface direction of the optical waveguide 1 by the mirror 17. It is converted in a direction perpendicular thereto, and the core portion 14 and the light receiving / emitting portion of the photoelectric conversion portion 4 are optically connected.
 一方、光電変換部4の下方に設けられたマザーボード5には、複数のLSI501やコンデンサー502、チップ抵抗器503といった複数の電気配線基板用電気素子50が実装されている。そして、光電変換部4とマザーボード5との間は、電気コネクターを介して電気的および機械的に接続されている。 On the other hand, on the mother board 5 provided below the photoelectric conversion unit 4, a plurality of electric elements 50 for electric wiring boards such as a plurality of LSIs 501, capacitors 502, and chip resistors 503 are mounted. The photoelectric conversion unit 4 and the mother board 5 are electrically and mechanically connected via an electrical connector.
 このような光電気混載基板1000では、図1、2に示すように、マザーボード(電気配線基板)5を覆うようにシート状の光導波路1が重ねられている。このため、光電気混載基板1000を平面視したとき、同じ領域に電気配線基板用電気素子50とコア部14とを併存させることができるので、コア部14のパターンを自由に設定することができる。すなわち、電気回路と光配線とを異なる階層に構築することができるので、各階層において電気回路や光配線を自由に設計することができる。その結果、例えばコア部14の距離を最短化し、光信号の伝送効率の最適化を図ることができる。また、コア部14を形成する領域に余裕が生まれるため、複数のコア部14を形成したとき、隣り合うコア部14同士の間隔を広くしてクロストークを緩和することができ、かつ、より多くのコア部14を形成することができるのでコア部14の高密度化を図ることができる。さらに、マザーボード5に対して光導波路1を分離させ易くなるため、必要に応じて光導波路1や電気配線基板用電気素子50を交換し易い利点がある。 In such an opto-electric hybrid board 1000, as shown in FIGS. 1 and 2, sheet-like optical waveguides 1 are stacked so as to cover a mother board (electric wiring board) 5. For this reason, when the opto-electric hybrid board 1000 is viewed from above, the electric circuit board electrical element 50 and the core part 14 can coexist in the same region, so the pattern of the core part 14 can be freely set. . That is, since the electric circuit and the optical wiring can be constructed in different levels, the electric circuit and the optical wiring can be freely designed in each level. As a result, for example, the distance between the core portions 14 can be minimized and the transmission efficiency of the optical signal can be optimized. In addition, since a margin is created in the region where the core portion 14 is formed, when a plurality of core portions 14 are formed, the interval between the adjacent core portions 14 can be widened to reduce crosstalk, and more Since the core part 14 can be formed, the density of the core part 14 can be increased. Furthermore, since it becomes easy to separate the optical waveguide 1 from the mother board 5, there is an advantage that the optical waveguide 1 and the electric element 50 for the electric wiring board can be easily replaced if necessary.
 以下、光電気混載基板1000の各部について詳述する。 Hereinafter, each part of the opto-electric hybrid board 1000 will be described in detail.
 (光導波路)
 まず、光導波路について説明する。
(Optical waveguide)
First, the optical waveguide will be described.
 光導波路1は、コア部14とクラッド部とを有するシート状の部材であり、コア部14の一方の端部から他方の端部に光信号を伝送する光配線として用いられる。 The optical waveguide 1 is a sheet-like member having a core portion 14 and a cladding portion, and is used as an optical wiring that transmits an optical signal from one end portion of the core portion 14 to the other end portion.
 図3は、図1に示す光導波路1の一部を拡大して示す(一部切り欠いて、および透過して示す)斜視図である。 FIG. 3 is a perspective view showing a part of the optical waveguide 1 shown in FIG. 1 in an enlarged manner (partially cut out and shown through).
 ((コア層))
 図3に示す光導波路1は、下側からクラッド層11、コア層13およびクラッド層12の3層を有しており、このうちコア層13には、長尺状のコア部14と、このコア部14に隣接する側面クラッド部15と、が形成されている。これにより、コア部14はクラッド部(側面クラッド部15および各クラッド層11、12)で囲まれることとなり、光を伝搬することができる。
((Core layer))
The optical waveguide 1 shown in FIG. 3 has three layers of a clad layer 11, a core layer 13, and a clad layer 12 from the lower side. Among these layers, the core layer 13 includes a long core portion 14, A side cladding portion 15 adjacent to the core portion 14 is formed. As a result, the core part 14 is surrounded by the clad part (the side clad part 15 and the clad layers 11 and 12), and can propagate light.
 コア部14の屈折率は、クラッド部の屈折率より大きければよいが、その差は0.3%以上であるのが好ましく、0.5%以上であるのがより好ましい。一方、上限値は特に設定されないが、好ましくは5.5%程度とされる。屈折率差が前記下限値未満の場合、光を伝搬する効果が低下するおそれがあり、一方、屈折率差が前記上限値を上回る場合、光の伝送効率のそれ以上の向上は期待できない。 The refractive index of the core portion 14 may be larger than the refractive index of the cladding portion, but the difference is preferably 0.3% or more, and more preferably 0.5% or more. On the other hand, the upper limit value is not particularly set, but is preferably about 5.5%. If the difference in refractive index is less than the lower limit value, the effect of propagating light may be reduced. On the other hand, if the difference in refractive index exceeds the upper limit value, further improvement in light transmission efficiency cannot be expected.
 なお、前記屈折率差とは、コア部14の屈折率をA、クラッド部の屈折率をBとしたとき、次式で表される。 The refractive index difference is expressed by the following equation, where A is the refractive index of the core portion 14 and B is the refractive index of the cladding portion.
   屈折率差(%)=|A/B-1|×100
 また、コア部14の横断面における屈折率分布は、いかなる形状の分布であってもよい。
Refractive index difference (%) = | A / B-1 | × 100
Further, the refractive index distribution in the cross section of the core portion 14 may be any shape distribution.
 図4は、光導波路1のコア部14の横断面の幅方向における屈折率分布の一例を示す図である。 FIG. 4 is a diagram showing an example of the refractive index distribution in the width direction of the cross section of the core portion 14 of the optical waveguide 1.
 この屈折率分布は、図4(a)に示すように屈折率が不連続的に変化したいわゆるステップインデックス(SI)型の分布であってもよく、図4(b)に示すように屈折率が連続的に変化したいわゆるグレーデッドインデックス(GI)型の分布であってもよい。SI型の分布であれば屈折率分布の形成が容易であり、GI型の分布であれば屈折率の高い領域に信号光が集まる確率が高くなるため伝送効率が向上する。 This refractive index distribution may be a so-called step index (SI) type distribution in which the refractive index changes discontinuously as shown in FIG. 4A, and the refractive index distribution as shown in FIG. 4B. May be a so-called graded index (GI) type distribution in which the values continuously change. If the SI type distribution is used, it is easy to form a refractive index distribution. If the GI type distribution is used, the probability that the signal light is collected in a region having a high refractive index is increased, so that the transmission efficiency is improved.
 また、上記屈折率分布は、図4(c)に示すように、屈折率が階段状に変化しているものの、全体的には屈折率が連続的に変化しているとみなすことができる形状の分布であってもよい。図4(c)に示す屈折率分布は、屈折率が階段状に変化してなる分布であり、階段状に変化している部分1段あたりの屈折率の変化量は屈折率分布全体の屈折率の変化量(屈折率差)に比べて十分に小さい(例えば5分の1以下)ため、図4(c)に示すような屈折率分布は、GI型の分布に近い光伝送特性を示す。このため、図4(c)に示す屈折率分布は、伝送効率が高くかつ形成が容易なものとなる。 Further, as shown in FIG. 4C, the refractive index distribution has a shape in which the refractive index can be regarded as continuously changing although the refractive index changes stepwise. The distribution may also be The refractive index distribution shown in FIG. 4C is a distribution in which the refractive index changes stepwise, and the amount of change in the refractive index per step that changes in a stepped manner is the refractive index of the entire refractive index distribution. Since the amount of change in refractive index (refractive index difference) is sufficiently small (eg, 1/5 or less), the refractive index distribution as shown in FIG. . For this reason, the refractive index distribution shown in FIG. 4C has high transmission efficiency and can be easily formed.
 なお、屈折率分布がGI型またはそれに準じる形状の場合、前記屈折率差はコア部14における屈折率の最大値をAとしクラッド部における屈折率の最小値をBとして求めることができる。 When the refractive index distribution is a GI type or a shape conforming thereto, the refractive index difference can be obtained by setting A as the maximum value of the refractive index in the core portion 14 and B as the minimum value of the refractive index in the cladding portion.
 また、図4(b)および図4(c)に示す分布では、屈折率の変化率が0.001~0.035[/10μm]程度であるのが好ましく、0.002~0.030[/10μm]程度であるのがより好ましい。屈折率の変化率が前記範囲内であれば、各コア部14における伝送損失の低減、パルス信号の鈍りの低減、クロストークの抑制等の効果が確実に得られる。 In the distributions shown in FIGS. 4B and 4C, the rate of change of the refractive index is preferably about 0.001 to 0.035 [/ 10 μm], and preferably 0.002 to 0.030 [ / 10 μm] is more preferable. If the change rate of the refractive index is within the above range, effects such as a reduction in transmission loss, a reduction in the bluntness of the pulse signal, and suppression of crosstalk in each core portion 14 can be reliably obtained.
 以下、GI型の屈折率分布について特に詳しく説明する。 Hereinafter, the GI type refractive index distribution will be described in detail.
 図5(a)は、図3に示す光導波路のコア部を横切るように切断した横断面図の一例であり、図5(b)は、図5(a)に示す横断面図のコア層13の厚さ方向の中心を通過する中心線C1上の屈折率分布Wの一例を模式的に示す図である。なお、図5(a)では、図3に示すコア層13に形成された長尺状の2本のコア部14について、左側のものをコア部141とし、右側のものをコア部142としている。同様に、図3に示す3本の側面クラッド部15について、左側のものを側面クラッド部151とし、中央のものを側面クラッド部152とし、右側のものを側面クラッド部153としている。 5A is an example of a cross-sectional view cut across the core portion of the optical waveguide shown in FIG. 3, and FIG. 5B is a core layer of the cross-sectional view shown in FIG. 5A. It is a figure which shows typically an example of the refractive index distribution W on the centerline C1 which passes the center of 13 thickness directions. In FIG. 5A, regarding the two long core portions 14 formed in the core layer 13 shown in FIG. 3, the left one is the core portion 141 and the right one is the core portion 142. . Similarly, for the three side clad parts 15 shown in FIG. 3, the left side is a side clad part 151, the center is the side clad part 152, and the right side is the side clad part 153.
 屈折率分布Wは、図5(b)に示すように、各コア部14の位置に対応して設けられ、極大値Wmとこの極大値Wmから両側に向かって屈折率が連続的に低下する2つの漸減部とを含み相対的に屈折率が高い高屈折率領域WHと、各側面クラッド部15の位置に対応して設けられ、相対的に屈折率が低い低屈折率領域WLと、を有している。高屈折率領域WHにおいて極大値Wmの両側では、隣接する低屈折率領域WLに向かって屈折率が連続的に低下するよう構成されている。すなわち、高屈折率領域WHでは、極大値Wmを頂点にしてその両側になだらかな裾を引いて低下するよう屈折率が分布している。一方、低屈折率領域WLでは、高屈折率領域WHの屈折率よりも低くかつほぼ一定の屈折率が分布している。 As shown in FIG. 5B, the refractive index distribution W is provided corresponding to the position of each core portion 14, and the refractive index continuously decreases toward both sides from the maximum value Wm and the maximum value Wm. A high refractive index region WH including two gradually decreasing portions and having a relatively high refractive index, and a low refractive index region WL provided corresponding to the position of each side cladding portion 15 and having a relatively low refractive index. Have. On both sides of the maximum value Wm in the high refractive index region WH, the refractive index continuously decreases toward the adjacent low refractive index region WL. That is, in the high refractive index region WH, the refractive index is distributed so that the maximum value Wm is at the apex and the both sides of the maximum value Wm are gradually lowered and lowered. On the other hand, in the low refractive index region WL, an almost constant refractive index is distributed which is lower than the refractive index of the high refractive index region WH.
 また、屈折率分布W中に存在する複数の極大値Wmは、互いに同じ値であることが好ましいが、多少ずれていてもよい。その場合、ずれ量は、複数の極大値Wmの平均値の10%以内であるのが好ましい。 Further, the plurality of maximum values Wm existing in the refractive index distribution W are preferably the same value, but may be slightly different from each other. In this case, the deviation amount is preferably within 10% of the average value of the plurality of maximum values Wm.
 なお、並列する2つのコア部14は、それぞれ細長い線状をなしており、上記のような屈折率分布Wは、これらのコア部14の長手方向全体においてほぼ同じ分布が維持されている。 Note that the two core portions 14 arranged in parallel are each in the form of an elongated line, and the refractive index distribution W as described above is maintained substantially the same in the entire longitudinal direction of the core portions 14.
 一方、これらのコア部14と交差するコア部14にも、上記のような屈折率分布Wが形成されており、このコア部14の長手方向全体においてほぼ同じ分布が維持されている。 On the other hand, the refractive index distribution W as described above is also formed in the core portion 14 intersecting with these core portions 14, and substantially the same distribution is maintained in the entire longitudinal direction of the core portion 14.
 以上のような屈折率分布Wに伴い、図1に示すコア層13には、コア部14と、その側面に隣接する側面クラッド部15とが形成されることとなる。 With the refractive index distribution W as described above, the core layer 13 shown in FIG. 1 is formed with the core portion 14 and the side clad portion 15 adjacent to the side surface thereof.
 より詳しくは、図5(a)に示すコア層13には、並列する2つのコア部141、142と、これらのコア部以外の領域に設けられた側面クラッド部151、152、153と、が設けられている。これにより、各コア部141、142は、それぞれ各側面クラッド部151、152、153および各クラッド層11、12で囲まれた状態となる。ここで、これらのコア部141、142の屈折率は、側面クラッド部151、152、153の屈折率より高くなっているので、各コア部141、142の幅方向において光を閉じ込めることができる。なお、図5(a)に示す各コア部14には密なドットを付し、各側面クラッド部15には疎なドットを付している。 More specifically, the core layer 13 shown in FIG. 5A includes two core portions 141 and 142 arranged in parallel and side clad portions 151, 152, and 153 provided in regions other than these core portions. Is provided. Thereby, each core part 141 and 142 will be in the state surrounded by each side cladding part 151,152,153 and each cladding layer 11,12, respectively. Here, since the refractive indexes of these core portions 141 and 142 are higher than the refractive indexes of the side cladding portions 151, 152, and 153, light can be confined in the width direction of the core portions 141 and 142. In addition, a dense dot is attached | subjected to each core part 14 shown to Fig.5 (a), and a sparse dot is attached | subjected to each side clad part 15. FIG.
 また、光導波路1では、コア部14の一方の端部に入射された光を、各コア部14の厚さ方向においても閉じ込めつつ他方に伝搬させることにより、コア部14の他方の端部から取り出すことができる。 Further, in the optical waveguide 1, light incident on one end portion of the core portion 14 is propagated to the other while confining in the thickness direction of each core portion 14, so that the other end portion of the core portion 14 is transmitted. It can be taken out.
 また、屈折率分布Wでは、全体的に屈折率が連続的に変化している。これにより、屈折率が階段状に変化したいわゆるステップインデックス型の屈折率分布を有する光導波路に比べ、コア部14に光を閉じ込める作用がより増強されるため、伝送損失のさらなる低減が図られる。 Also, in the refractive index distribution W, the refractive index continuously changes as a whole. Thereby, compared with an optical waveguide having a so-called step index type refractive index distribution in which the refractive index is changed stepwise, the effect of confining light in the core portion 14 is further enhanced, so that transmission loss can be further reduced.
 さらに、屈折率分布Wでは、極大値を有するとともに屈折率が連続的に変化しているため、光の速度が屈折率に反比例するという性質により、光の速度は中心から離れるにつれて速くなり、光路ごとの伝搬時間に差が生じ難くなる。このため、伝送波形が崩れ難くなり、例えば伝送光にパルス信号が含まれている場合でも、パルス信号の鈍り(パルス信号の広がり)を抑制することができる。それに加え、交差部における伝送光の混信が抑制される。その結果、光通信の品質をより高め得る光導波路1が得られる。 Further, in the refractive index distribution W, since the refractive index has a maximum value and the refractive index continuously changes, the speed of light increases as the distance from the center increases due to the property that the speed of light is inversely proportional to the refractive index. It is difficult for a difference in propagation time to occur. For this reason, the transmission waveform does not easily collapse, and for example, even when the transmission light includes a pulse signal, it is possible to suppress blunting of the pulse signal (spreading of the pulse signal). In addition, interference of transmitted light at the intersection is suppressed. As a result, the optical waveguide 1 that can further improve the quality of optical communication is obtained.
 なお、屈折率分布Wにおいて屈折率が連続的に変化しているとは、屈折率分布Wの曲線が各部で丸みを帯びており、この曲線が微分可能なものであるという状態である。 It should be noted that the refractive index continuously changing in the refractive index distribution W is a state in which the curve of the refractive index distribution W is rounded in each part, and this curve is differentiable.
 また、屈折率分布Wのうち、極大値Wmは、図5(a)に示すようにコア部141、142に位置しているが、コア部141、142の中でもその幅の中心部に位置しているのが好ましい。これにより、各コア部141、142では、伝送光がコア部141、142の幅の中心部に集まる確率が高くなり、相対的に側面クラッド部151、152、153に漏れ出る確率が低くなる。その結果、コア部141、142の伝送損失をより低減することができる。 Further, in the refractive index distribution W, the maximum value Wm is located in the core portions 141 and 142 as shown in FIG. 5A, but among the core portions 141 and 142, it is located in the center portion of the width. It is preferable. Thereby, in each core part 141 and 142, the probability that transmission light will gather in the center part of the width of core part 141 and 142 becomes high, and the probability that it will leak to side cladding parts 151, 152, and 153 becomes relatively low. As a result, the transmission loss of the core parts 141 and 142 can be further reduced.
 なお、コア部141の幅の中心部とは、高屈折率領域WHの中心から両側に、高屈折率領域WHの幅の30%の距離の領域である。 Note that the central portion of the width of the core portion 141 is a region at a distance of 30% of the width of the high refractive index region WH on both sides from the center of the high refractive index region WH.
 また、極大値Wmと低屈折率領域WLにおける平均屈折率との差は、できるだけ大きい方がよいが、0.005~0.07程度であるのが好ましく、0.007~0.05程度であるのがより好ましく、0.01~0.03程度であるのがさらに好ましい。これにより、コア部141、142中に光を確実に閉じ込めることができる。すなわち、屈折率差が前記下限値を下回る場合、コア部141、142から光が漏れ出るおそれがある。一方、屈折率差が前記上限値を上回る場合、光を閉じ込める効果のそれ以上の向上は期待できないばかりか、光導波路1の製造が困難になる。 Further, the difference between the maximum value Wm and the average refractive index in the low refractive index region WL is preferably as large as possible, but is preferably about 0.005 to 0.07, and about 0.007 to 0.05. More preferably, it is about 0.01 to 0.03. Thereby, light can be reliably confined in the core portions 141 and 142. That is, when the refractive index difference is less than the lower limit value, light may leak from the core portions 141 and 142. On the other hand, when the difference in refractive index exceeds the upper limit value, further improvement in the effect of confining light cannot be expected, and the manufacture of the optical waveguide 1 becomes difficult.
 また、コア部141、142における屈折率分布Wは、図5(b)に示すように、横軸にコア層13の横断面の位置をとり、縦軸に屈折率をとったとき、極大値Wm近傍の形状が上に凸の略U字状であるのが好ましい。これにより、コア部141、142における光の閉じ込め作用がより顕著なものとなる。 Further, as shown in FIG. 5B, the refractive index distribution W in the core portions 141 and 142 has a maximum value when the horizontal axis indicates the position of the cross section of the core layer 13 and the vertical axis indicates the refractive index. It is preferable that the shape in the vicinity of Wm is a substantially U shape convex upward. Thereby, the light confinement action in the core parts 141 and 142 becomes more remarkable.
 一方、低屈折率領域WLにおける平均屈折率からのずれ量は、平均屈折率の5%以内であるのが好ましい。これにより、低屈折率領域WLは、側面クラッド部15として確実に機能する。 On the other hand, the amount of deviation from the average refractive index in the low refractive index region WL is preferably within 5% of the average refractive index. Thereby, the low refractive index region WL functions reliably as the side cladding portion 15.
 ここで、上述したような屈折率分布Wによれば、伝送損失の低減、パルス信号の鈍りの低減、クロストークの抑制、交差部における混信の抑制等の効果を得ることができるが、本発明者は、これらの効果が側面クラッド部の平均幅WCL、あるいは、コア部の平均幅WCOと側面クラッド部の平均幅WCLとの比に大きな影響を受けることを見出した。そして、これらの因子が所定の範囲内にあるとき、前述の効果がより顕著で確実なものになることを見出した。 Here, according to the refractive index distribution W as described above, it is possible to obtain effects such as transmission loss reduction, pulse signal dullness reduction, crosstalk suppression, crosstalk suppression, and the like. The inventors have found that these effects are greatly influenced by the average width WCL of the side cladding part or the ratio of the average width WCO of the core part and the average width WCL of the side cladding part. And when these factors were in the predetermined range, it discovered that the above-mentioned effect became more remarkable and reliable.
 すなわち本発明では、コア部14の平均幅WCOと側面クラッド部15の平均幅WCLとの比(WCO/WCL)は、0.1~10の範囲とされるのが好ましい。コア部14と側面クラッド部15との間で幅の比を最適化することにより、前述した各効果をそれぞれ高度化することができる。したがって、例えばWCO/WCLが前記下限値未満である場合、コア部14の平均幅が狭くなり過ぎるので、クロストークの低減が図られるものの、伝送損失が大きくなり易く、また光導波路1の小型化が妨げられるおそれがある。また、WCO/WCLが前記上限値超である場合、側面クラッド部15の平均幅が狭くなり過ぎるので、クロストークが増加し、さらにはコア部14の平均幅が広くなり過ぎるため、パルス信号の鈍りが増大するおそれがある。 That is, in the present invention, the ratio (WCO / WCL) between the average width WCO of the core portion 14 and the average width WCL of the side cladding portion 15 is preferably in the range of 0.1 to 10. By optimizing the width ratio between the core portion 14 and the side clad portion 15, each effect described above can be enhanced. Therefore, for example, when WCO / WCL is less than the lower limit value, the average width of the core portion 14 becomes too narrow, so that crosstalk can be reduced, but transmission loss tends to increase, and the optical waveguide 1 can be downsized. May be hindered. Further, when WCO / WCL exceeds the upper limit value, the average width of the side cladding portion 15 becomes too narrow, so that crosstalk increases, and further, the average width of the core portion 14 becomes too wide. Dullness may increase.
 なお、WCO/WCLは、より好ましくは0.1~5程度とされ、さらに好ましくは0.2~4程度とされる。 In addition, WCO / WCL is more preferably about 0.1 to 5, more preferably about 0.2 to 4.
 一方、本発明では、WCO/WCLと独立して、あるいはそれに加え、側面クラッド部15の平均幅WCLが5~250μmの範囲内にあることが好ましい。これにより、前述した各効果をそれぞれ高度化することができる。したがって、例えばWCLが前記下限値未満である場合、側面クラッド部15の平均幅が狭くなり過ぎるので、パルス信号の鈍りが増大したり、クロストークが増加したりするおそれがある。また、WCLが前記上限値超である場合、屈折率分布Wの形状を最適化することができず、伝送損失が大きくなるおそれがある。さらに、光導波路1の小型化が困難になるおそれがある。 On the other hand, in the present invention, it is preferable that the average width WCL of the side cladding portion 15 is in the range of 5 to 250 μm independently of or in addition to WCO / WCL. Thereby, each effect mentioned above can each be advanced. Therefore, for example, when WCL is less than the lower limit value, the average width of the side clad portion 15 becomes too narrow, and there is a possibility that the dullness of the pulse signal increases or the crosstalk increases. Moreover, when WCL is more than the upper limit value, the shape of the refractive index distribution W cannot be optimized, and transmission loss may increase. Furthermore, there is a possibility that miniaturization of the optical waveguide 1 becomes difficult.
 なお、WCLは、より好ましくは10~200μmの範囲内にあるとされ、さらに好ましくは10~120μmの範囲内にあるとされる。 The WCL is more preferably in the range of 10 to 200 μm, and further preferably in the range of 10 to 120 μm.
 また、屈折率分布Wは、各極大値Wm近傍において、屈折率が実質的に変化していない平坦部を含んでいてもよい。この場合でも、本発明の光導波路は前述したような作用・効果を奏するものとなる。ここで、屈折率が実質的に変化していない平坦部とは、屈折率の変動が0.001未満である領域であって、その両側では屈折率が連続的に低下している領域のことをいう。 Further, the refractive index distribution W may include a flat portion in which the refractive index is not substantially changed in the vicinity of each maximum value Wm. Even in this case, the optical waveguide of the present invention exhibits the effects and effects as described above. Here, the flat portion where the refractive index does not substantially change is a region where the refractive index fluctuation is less than 0.001, and the refractive index continuously decreases on both sides thereof. Say.
 平坦部の長さは、特に限定されないが、好ましくは100μm以下、より好ましくは20μm以下、さらに好ましくは10μm以下とされる。 The length of the flat portion is not particularly limited, but is preferably 100 μm or less, more preferably 20 μm or less, and even more preferably 10 μm or less.
 なお、コア部14の数は特に限定されず、3つ以上であってもよい。その場合も、屈折率分布Wは、各コア部14に対応して高屈折率領域WHを有し、高屈折率領域WH同士の間には低屈折率領域WLが存在する分布になる。 In addition, the number of the core parts 14 is not specifically limited, Three or more may be sufficient. Also in this case, the refractive index distribution W has a high refractive index region WH corresponding to each core portion 14, and a low refractive index region WL exists between the high refractive index regions WH.
 また、屈折率分布Wは、高屈折率領域WHと低屈折率領域WLとの間に極小値を有する分布であってもよい。このような分布によれば、光を屈折率の高い領域に閉じ込めて伝搬する機能が増強され、伝送損失およびパルス信号の鈍りを特に小さく抑えることができる。 Further, the refractive index distribution W may be a distribution having a minimum value between the high refractive index region WH and the low refractive index region WL. According to such a distribution, the function of confining and propagating light in a region having a high refractive index is enhanced, and transmission loss and blunting of the pulse signal can be suppressed particularly small.
 また、この場合、低屈折率領域WLには、高屈折率領域WHに含まれる極大値(これを「第1の極大値」とする。)より小さい極大値(これを「第2の極大値」とする。)が含まれているのが好ましい。低屈折率領域WLにこのような第2の極大値が含まれていることにより、幅方向に隣接するコア部の間のクロストークが抑制される。その結果、コア層13中に複数のコア部を形成して多チャンネル化したり、コア部の間隔を狭めて高密度化したりしても、光導波路1であれば、高品質な光通信を維持することができる。そして、複数のコア部14が同一平面上で互いに交差している場合でも、光信号の混信が抑制されることとなる。 Further, in this case, the low refractive index region WL has a maximum value (this is referred to as “second maximum value”) that is smaller than the maximum value (this is referred to as “first maximum value”) included in the high refractive index region WH. ").) Is preferably included. By including such a second maximum value in the low refractive index region WL, crosstalk between core portions adjacent in the width direction is suppressed. As a result, even if a plurality of core portions are formed in the core layer 13 to be multi-channeled or the core portions 13 are narrowed to increase the density, the optical waveguide 1 can maintain high-quality optical communication. can do. And even when the several core part 14 mutually cross | intersects on the same plane, the interference of an optical signal will be suppressed.
 図6(a)は、図3に示す光導波路のコア部を横切るように切断した横断面図の他の例であり、図6(b)は、図6(a)に示す横断面図のコア層13の厚さ方向の中心を通過する中心線C1上の屈折率分布Wの他の例を模式的に示す図である。 6A is another example of a cross-sectional view cut across the core portion of the optical waveguide shown in FIG. 3, and FIG. 6B is a cross-sectional view shown in FIG. It is a figure which shows typically the other example of the refractive index distribution W on the centerline C1 which passes the center of the thickness direction of the core layer.
 図6(b)に示す屈折率分布Wは、4つの極小値Ws1、Ws2、Ws3、Ws4と、5つの極大値Wm1、Wm2、Wm3、Wm4、Wm5と、を有している。また、5つの極大値には、相対的に屈折率の大きい極大値(第1の極大値)Wm2、Wm4と、相対的に屈折率の小さい極大値(第2の極大値)Wm1、Wm3、Wm5とが存在している。 6 (b) has four local minimum values Ws1, Ws2, Ws3, and Ws4 and five local maximum values Wm1, Wm2, Wm3, Wm4, and Wm5. The five maximum values include a maximum value (first maximum value) Wm2 and Wm4 having a relatively high refractive index, and a maximum value (second maximum value) Wm1, Wm3 having a relatively low refractive index. Wm5 exists.
 このうち、極小値Ws1と極小値Ws2との間および極小値Ws3と極小値Ws4との間には、極大値Wm2および極大値Wm4が存在している。 Among these, the maximum value Wm2 and the maximum value Wm4 exist between the minimum value Ws1 and the minimum value Ws2, and between the minimum value Ws3 and the minimum value Ws4.
 図6に示す光導波路1では、極小値Ws1と極小値Ws2との間に、相対的に屈折率の大きい極大値Wm2が位置していることから、この領域がコア部14となり、同様に、極小値Ws3と極小値Ws4との間にも極大値Wm4が位置していることからコア部14となる。なお、ここでは、極小値Ws1と極小値Ws2との間をコア部141とし、極小値Ws3と極小値Ws4との間をコア部142とする。 In the optical waveguide 1 shown in FIG. 6, since the local maximum value Wm2 having a relatively large refractive index is located between the local minimum value Ws1 and the local minimum value Ws2, this region becomes the core portion 14, and similarly, Since the local maximum value Wm4 is located between the local minimum value Ws3 and the local minimum value Ws4, the core portion 14 is formed. Here, a core portion 141 is defined between the minimum value Ws1 and the minimum value Ws2, and a core portion 142 is defined between the minimum value Ws3 and the minimum value Ws4.
 また、極小値Ws1の左側の領域、極小値Ws2と極小値Ws3との間、および極小値Ws4の右側の領域は、それぞれコア部14を両側面に隣接する領域であることから側面クラッド部15となる。なお、ここでは、極小値Ws1の左側の領域を側面クラッド部151とし、極小値Ws2と極小値Ws3との間を側面クラッド部152とし、極小値Ws4の右側の領域を側面クラッド部153とする。 Further, since the region on the left side of the minimum value Ws1, the region between the minimum value Ws2 and the minimum value Ws3, and the region on the right side of the minimum value Ws4 are regions adjacent to both side surfaces, the side cladding portion 15 is provided. It becomes. Here, the region on the left side of the minimum value Ws1 is the side cladding portion 151, the region between the minimum value Ws2 and the minimum value Ws3 is the side surface cladding portion 152, and the region on the right side of the minimum value Ws4 is the side surface cladding portion 153. .
 すなわち、屈折率分布Wは、少なくとも、第2の極大値、極小値、第1の極大値、極小値、第2の極大値がこの順で並ぶ領域を有していればよい。なお、この領域は、コア部の数に応じて繰り返し設けられ、本実施形態のようにコア部14が2つである場合、屈折率分布Wは、第2の極大値、極小値、第1の極大値、極小値、第2の極大値、極小値、第1の極大値、極小値、第2の極大値のように、極大値と極小値が交互に並び、かつ極大値については第1の極大値と第2の極大値が交互に並ぶ領域を有していればよい。 That is, the refractive index distribution W should have at least a region where the second maximum value, the minimum value, the first maximum value, the minimum value, and the second maximum value are arranged in this order. Note that this region is repeatedly provided according to the number of core portions. When the number of core portions 14 is two as in the present embodiment, the refractive index distribution W has a second maximum value, a minimum value, and a first value. Local maximum values, local minimum values, second local maximum values, local minimum values, first local maximum values, local minimum values, second local maximum values, and the like. It is only necessary to have a region in which the maximum value of 1 and the second maximum value are alternately arranged.
 また、これら複数の極小値、複数の第1の極大値、および複数の第2の極大値は、それぞれ互いにほぼ同じ値であることが好ましいが、極小値は第1の極大値や第2の極大値より小さく、第2の極大値は第1の極大値より小さいという関係が保持されれば、互いの値が多少ずれていても差し支えない。その場合、ずれ量は、複数の極小値の平均値の10%以内に抑えられているのが好ましい。 The plurality of local minimum values, the plurality of first local maximum values, and the plurality of second local maximum values are preferably substantially the same as each other, but the local minimum values are the first local maximum value and the second local maximum value. As long as the relationship that the second maximum value is smaller than the first maximum value and the second maximum value is smaller than the first maximum value is maintained, the values may be slightly different from each other. In that case, it is preferable that the amount of deviation is suppressed within 10% of the average value of the plurality of minimum values.
 ここで、4つの極小値Ws1、Ws2、Ws3、Ws4は、それぞれ、隣接する側面クラッド部15における平均屈折率WA未満である。これにより、各コア部14と各側面クラッド部15との境界には、側面クラッド部15よりもさらに屈折率の小さい領域が存在することとなる。その結果、各極小値Ws1、Ws2、Ws3、Ws4の近傍では、より急峻な屈折率の勾配が形成され、これにより、各コア部14からの光の漏れが抑制されるため、伝送損失の小さい光導波路1が得られる。 Here, the four minimum values Ws1, Ws2, Ws3, and Ws4 are less than the average refractive index WA in the adjacent side cladding portions 15, respectively. As a result, a region having a smaller refractive index than the side cladding portion 15 exists at the boundary between each core portion 14 and each side cladding portion 15. As a result, a steeper refractive index gradient is formed in the vicinity of each local minimum value Ws1, Ws2, Ws3, and Ws4. This suppresses light leakage from each core portion 14, thereby reducing transmission loss. The optical waveguide 1 is obtained.
 また、図6(b)に示す屈折率分布Wのうち、極大値Wm1、Wm3、Wm5は側面クラッド部151、152、153中に位置しているが、特に側面クラッド部151、152、153の縁部近傍(コア部141、142との界面近傍)以外に位置しているのが好ましい。これにより、コア部141、142中の極大値Wm2、Wm4と、側面クラッド部151、152、153中の極大値Wm1、Wm3、Wm5とが、互いに十分に離間したものとなるため、コア部141、142中の伝送光が、側面クラッド部151、152、153中に漏れ出る確率を十分に低くすることができる。その結果、コア部141、142の伝送損失を低減することができる。 Further, in the refractive index distribution W shown in FIG. 6B, the maximum values Wm1, Wm3, and Wm5 are located in the side cladding portions 151, 152, and 153. It is preferable to be located other than the vicinity of the edge (near the interface with the cores 141 and 142). As a result, the local maximum values Wm2, Wm4 in the core portions 141, 142 and the local maximum values Wm1, Wm3, Wm5 in the side cladding portions 151, 152, 153 are sufficiently separated from each other. , 142 can sufficiently reduce the probability that the transmitted light leaks into the side clad parts 151, 152, 153. As a result, the transmission loss of the core parts 141 and 142 can be reduced.
 なお、側面クラッド部151、152、153の縁部近傍とは、前述した縁部から内側に、側面クラッド部151、152、153の幅の5%の距離の領域である。 It should be noted that the vicinity of the edge of the side cladding portions 151, 152, and 153 is a region having a distance of 5% of the width of the side cladding portions 151, 152, and 153 from the edge to the inside.
 また、極大値Wm1、Wm3、Wm5は、側面クラッド部151、152、153の幅の中央部に位置しており、しかも、極大値Wm1、Wm3、Wm5から隣接する極小値Ws1、Ws2、Ws3、Ws4に向かっては、屈折率が連続的に低下しているのが好ましい。これにより、コア部141、142中の極大値Wm2、Wm4と、側面クラッド部151、152、153中の極大値Wm1、Wm3、Wm5との離間距離は、最大限確保され、しかも極大値Wm1、Wm3、Wm5近傍に光を確実に閉じ込めることができることになるため、前述したコア部141、142からの伝送光の漏出をより確実に抑制することができる。 The local maximum values Wm1, Wm3, and Wm5 are located at the center of the width of the side cladding portions 151, 152, and 153, and the local minimum values Ws1, Ws2, Ws3, which are adjacent to the local maximum values Wm1, Wm3, and Wm5, It is preferable that the refractive index continuously decreases toward Ws4. Thereby, the separation distances between the maximum values Wm2, Wm4 in the core portions 141, 142 and the maximum values Wm1, Wm3, Wm5 in the side cladding portions 151, 152, 153 are ensured to the maximum, and the maximum values Wm1, Since light can be reliably confined in the vicinity of Wm3 and Wm5, leakage of transmission light from the core portions 141 and 142 described above can be more reliably suppressed.
 さらに、極大値Wm1、Wm3、Wm5は、前述したコア部141、142に位置する極大値Wm2、Wm4よりも屈折率の小さいものであるので、コア部141、142のような高い光伝送性は有しないものの、周囲よりも屈折率が高くなっているため、わずかな光伝送性を有することとなる。その結果、側面クラッド部151、152、153は、コア部141、142から漏出した伝送光を閉じ込めることで、他のコア部への波及を防止する作用を有するものとなる。すなわち、極大値Wm1、Wm3、Wm5が存在することで、クロストークを抑制することができる。 Furthermore, the local maximum values Wm1, Wm3, and Wm5 are smaller in refractive index than the local maximum values Wm2 and Wm4 located in the core portions 141 and 142 described above. Although it does not have, since the refractive index is higher than the surroundings, it has a slight light transmission property. As a result, the side clad parts 151, 152, and 153 have an effect of preventing transmission to other core parts by confining transmission light leaked from the core parts 141 and 142. That is, the presence of the maximum values Wm1, Wm3, and Wm5 can suppress crosstalk.
 なお、極小値Ws1、Ws2、Ws3、Ws4は、前述したように、隣接する側面クラッド部15の平均屈折率WA未満であるが、その差は、所定の範囲内であることが望まれる。具体的には、極小値Ws1、Ws2、Ws3、Ws4と側面クラッド部15の平均屈折率WAとの差は、極小値Ws1、Ws2、Ws3、Ws4とコア部141、142中の極大値Wm2、Wm4との差の3~80%程度であるのが好ましく、5~50%程度であるのがより好ましく、7~20%程度であるのがさらに好ましい。これにより、側面クラッド部15は、クロストークを抑制するのに必要かつ十分な光伝送性を有するものとなる。なお、極小値Ws1、Ws2、Ws3、Ws4と側面クラッド部15の平均屈折率WAとの差が前記下限値を下回る場合は、側面クラッド部15における光伝送性が小さ過ぎて、クロストークを十分に抑制することができないおそれがあり、前記上限値を上回る場合には、側面クラッド部15における光伝送性が大き過ぎて、コア部141、142の光伝送性に悪影響を及ぼすおそれがある。 Note that the minimum values Ws1, Ws2, Ws3, and Ws4 are less than the average refractive index WA of the adjacent side cladding portions 15 as described above, but the difference is preferably within a predetermined range. Specifically, the difference between the minimum values Ws1, Ws2, Ws3, Ws4 and the average refractive index WA of the side cladding portion 15 is the minimum values Ws1, Ws2, Ws3, Ws4 and the maximum values Wm2, among the core portions 141, 142. The difference from Wm4 is preferably about 3 to 80%, more preferably about 5 to 50%, and further preferably about 7 to 20%. As a result, the side clad portion 15 has a light transmission property necessary and sufficient for suppressing crosstalk. If the difference between the minimum value Ws1, Ws2, Ws3, Ws4 and the average refractive index WA of the side cladding 15 is below the lower limit, the light transmission in the side cladding 15 is too small and crosstalk is sufficient. If the value exceeds the upper limit, the light transmission property of the side cladding portion 15 is too large, and the light transmission properties of the core portions 141 and 142 may be adversely affected.
 また、極小値Ws1、Ws2、Ws3、Ws4と極大値Wm1、Wm3、Wm5との差は、極小値Ws1、Ws2、Ws3、Ws4と極大値Wm2、Wm4との差の6~90%程度であるのが好ましく、10~70%程度であるのがより好ましく、14~40%程度であるのがさらに好ましい。これにより、側面クラッド部15における屈折率の高さとコア部14における屈折率の高さとのバランスが最適化され、光導波路1は、特に優れた光伝送性を有するとともにクロストークをより確実に抑制し得るものとなる。 The difference between the minimum values Ws1, Ws2, Ws3, Ws4 and the maximum values Wm1, Wm3, Wm5 is about 6 to 90% of the difference between the minimum values Ws1, Ws2, Ws3, Ws4 and the maximum values Wm2, Wm4. It is preferably about 10 to 70%, more preferably about 14 to 40%. As a result, the balance between the refractive index height of the side cladding portion 15 and the refractive index height of the core portion 14 is optimized, and the optical waveguide 1 has particularly excellent optical transmission properties and more reliably suppresses crosstalk. It will be possible.
 なお、極小値Ws1、Ws2、Ws3、Ws4とコア部141、142中の極大値Wm2、Wm4との屈折率差は、できるだけ大きい方がよいが、0.005~0.07程度であるのが好ましく、0.007~0.05程度であるのがより好ましく、0.01~0.03程度であるのがさらに好ましい。これにより、上述した屈折率差が、コア部141、142中に光を閉じ込めるのに必要かつ十分なものとなる。 The difference in refractive index between the minimum values Ws1, Ws2, Ws3, and Ws4 and the maximum values Wm2 and Wm4 in the core portions 141 and 142 is preferably as large as possible, but is about 0.005 to 0.07. Preferably, it is about 0.007 to 0.05, more preferably about 0.01 to 0.03. Thereby, the above-described difference in refractive index becomes necessary and sufficient for confining light in the core portions 141 and 142.
 ここで、図7は、図6に示す屈折率分布を有する光導波路1のコア部141に光を入射したときの出射光の強度分布を示す図である。この強度分布は、光導波路1に形成された並列する2つのコア部141、142のうち、コア部141の端部に光を入射したときの他方の端部における出射光の強度分布である。 Here, FIG. 7 is a diagram showing the intensity distribution of the emitted light when light is incident on the core portion 141 of the optical waveguide 1 having the refractive index distribution shown in FIG. This intensity distribution is the intensity distribution of the emitted light at the other end when the light is incident on the end of the core 141 out of the two parallel cores 141 and 142 formed in the optical waveguide 1.
 コア部141に光を入射すると、出射光の強度は、コア部141の出射端の中心部において最も大きくなる。そして、コア部141の中心部から離れるにつれて出射光の強度は小さくなるが、光導波路1では、コア部141に隣り合うコア部142において極小値をとるような強度分布が得られる。このようにコア部142の位置に出射光の強度分布の極小値が一致することで、コア部142におけるクロストークは極めて小さく抑えられることとなる。その結果、多チャンネル化および高密度化によってもクロストークの発生を確実に防止し得る光導波路1が得られる。 When light is incident on the core part 141, the intensity of the emitted light becomes the largest at the central part of the outgoing end of the core part 141. The intensity of the emitted light decreases as the distance from the central portion of the core portion 141 decreases. However, in the optical waveguide 1, an intensity distribution is obtained such that a minimum value is obtained in the core portion 142 adjacent to the core portion 141. As described above, the minimum value of the intensity distribution of the emitted light matches the position of the core part 142, so that the crosstalk in the core part 142 can be suppressed to be extremely small. As a result, it is possible to obtain the optical waveguide 1 that can surely prevent the occurrence of crosstalk even by increasing the number of channels and increasing the density.
 なお、従来の光導波路では、光を入射するコア部に隣り合うコア部において出射光の強度分布が極小値をとることはなく、むしろ極大値をとっていたので、クロストークの問題が発生していた。これに対し、上述したような本実施形態に係る光導波路1における出射光の強度分布は、クロストークを抑制する上で極めて有用なものである。 In the conventional optical waveguide, the intensity distribution of the emitted light does not take the minimum value in the core portion adjacent to the core portion where the light is incident, but rather takes the maximum value, which causes a crosstalk problem. It was. On the other hand, the intensity distribution of the emitted light in the optical waveguide 1 according to the present embodiment as described above is extremely useful for suppressing crosstalk.
 本実施形態に係る光導波路1においてこのような強度分布が得られる詳細な理由は明らかでないものの、理由の1つとしては、極小値Ws1、Ws2、Ws3、Ws4を有し、かつ、屈折率分布W全体で屈折率が連続的に変化している、という特徴的な屈折率分布Wが、従来であればコア部142において極大値を有していた出射光の強度分布を、コア部142に隣接する側面クラッド部153等にシフトさせていることが挙げられる。すなわち、この強度分布のシフトにより、クロストークが確実に抑制されているのである。 Although the detailed reason why such an intensity distribution is obtained in the optical waveguide 1 according to the present embodiment is not clear, one reason is that the optical waveguide 1 has minimum values Ws1, Ws2, Ws3, and Ws4 and has a refractive index distribution. The characteristic refractive index distribution W in which the refractive index continuously changes over the entire W is the intensity distribution of the emitted light, which conventionally had a maximum value in the core 142, in the core 142. For example, it is shifted to the adjacent side clad portion 153 or the like. That is, the crosstalk is reliably suppressed by the shift of the intensity distribution.
 なお、出射光の強度分布が側面クラッド部15にシフトしたとしても、受光素子等はコア部14の位置に合わせて配置されているため、クロストークを招くおそれはほとんどなく、光通信の品質を劣化させることはない。 Even if the intensity distribution of the emitted light is shifted to the side clad portion 15, the light receiving element and the like are arranged in accordance with the position of the core portion 14, so there is almost no risk of crosstalk, and the quality of optical communication is improved. There is no deterioration.
 また、上記のような出射光の強度分布は、本発明の光導波路において少なくとも2つのコア部14が並列して形成されている場合には観測される確率は高いものの、必ず観測されるわけではなく、入射光のNA(numerical aperture)やコア部141の横断面積、コア部141、142のピッチ等によっては、明瞭な極小値が観測されなかったり、極小値の位置がコア部142から外れたりする場合もあるが、このような場合でもクロストークは十分に抑制される。 The intensity distribution of the emitted light as described above is not necessarily observed although there is a high probability of being observed when at least two core portions 14 are formed in parallel in the optical waveguide of the present invention. Depending on the NA (numerical aperture) of the incident light, the cross-sectional area of the core part 141, the pitch of the core parts 141, 142, etc., a clear minimum value is not observed, or the position of the minimum value deviates from the core part 142. Even in such a case, crosstalk is sufficiently suppressed.
 また、図6(b)に示す屈折率分布Wにおいて、側面クラッド部15における平均屈折率をWAとしたとき、極大値Wm2、Wm4近傍における屈折率が連続して平均屈折率WA以上である部分の幅をa[μm]とし、極小値Ws1、Ws2、Ws3、Ws4近傍における屈折率が連続して平均屈折率WA未満である部分の幅をb[μm]とする。このとき、bは、0.01a~1.2a程度であるのが好ましく、0.03a~1a程度であるのがより好ましく、0.1a~0.8a程度であるのがさらに好ましい。これにより、極小値Ws1、Ws2、Ws3、Ws4の実質的な幅が、上述した作用・効果を奏するのに必要かつ十分なものとなる。すなわち、bが前記下限値を下回っている場合は、極小値Ws1、Ws2、Ws3、Ws4の実質的な幅が狭過ぎるため、コア部141、142に光を閉じ込める作用が低下するおそれがある。一方、bが前記上限値を上回っている場合は、極小値Ws1、Ws2、Ws3、Ws4の実質的な幅が広過ぎて、その分、コア部141、142の幅やピッチが制限され、伝送効率が低下したり多チャンネル化および高密度化が妨げられるおそれがある。 Further, in the refractive index distribution W shown in FIG. 6B, when the average refractive index in the side cladding portion 15 is WA, the refractive index in the vicinity of the maximum values Wm2 and Wm4 is continuously equal to or higher than the average refractive index WA. Is a [μm], and the width of the portion where the refractive index in the vicinity of the minimum values Ws1, Ws2, Ws3, and Ws4 is continuously less than the average refractive index WA is b [μm]. At this time, b is preferably about 0.01a to 1.2a, more preferably about 0.03a to 1a, and further preferably about 0.1a to 0.8a. As a result, the substantial widths of the minimum values Ws1, Ws2, Ws3, and Ws4 become necessary and sufficient for providing the above-described functions and effects. That is, when b is below the lower limit value, the substantial widths of the minimum values Ws1, Ws2, Ws3, and Ws4 are too narrow, and the action of confining light in the core portions 141 and 142 may be reduced. On the other hand, when b exceeds the upper limit value, the substantial widths of the local minimum values Ws1, Ws2, Ws3, and Ws4 are too wide, and the width and pitch of the core portions 141 and 142 are limited accordingly, and transmission is performed. There is a possibility that the efficiency may be lowered and the increase in the number of channels and the increase in density may be hindered.
 なお、側面クラッド部15における平均屈折率WAは、極大値Wm1と極小値Ws1との中点で近似することができる。 The average refractive index WA in the side cladding 15 can be approximated at the midpoint between the maximum value Wm1 and the minimum value Ws1.
 また、屈折率分布Wは、例えば、(1)干渉顕微鏡(dual-beam interference microscope)を用いて屈折率依存の干渉縞を観測し、その干渉縞から屈折率分布Nを特定する方法、(2)屈折ニアフィールド法(Refracted Near Field method;RNF)等により特定することができる。このうち、屈折ニアフィールド法は、例えば特開平5-332880号公報に記載の測定条件を採用することができる。一方、干渉顕微鏡は、屈折率分布Wの特定を簡便に行い得る点で有用である。 The refractive index distribution W is, for example, (1) a method of observing a refractive index dependent interference fringe using an interference microscope (dual-beam interference microscope), and specifying the refractive index distribution N from the interference fringe, (2 ) It can be specified by the refractive near field method (Refracted Near Field method; RNF) or the like. Among these, the refractive near field method can employ measurement conditions described in, for example, Japanese Patent Laid-Open No. 5-332880. On the other hand, the interference microscope is useful in that the refractive index distribution W can be easily specified.
 また、コア部14は、平面視で直線状または曲線状であってもよい。さらに、コア部14は途中で交差しているとともに、必要に応じて分岐していてもよい。図1に示すようにコア部14同士を途中で交差させることにより、同一平面内において光信号を交差させることが可能になるため、立体交差させたり迂回させたりすることなく最短距離のパターンのコア部14を形成することができる。その結果、光導波路1における伝送効率の低下やパルス信号の鈍り等を最小化することができる。なおこの場合、屈折率分布は図4(b)、図4(c)、図5(b)または図6(b)に示すような分布であるのが好ましい。これにより、交差部における光信号の混信を特に抑えることができる。 Further, the core portion 14 may be linear or curved in plan view. Furthermore, the core part 14 may cross | intersecting on the way and may branch as needed. As shown in FIG. 1, since the optical signals can be crossed in the same plane by crossing the core portions 14 in the middle, the core having the shortest distance pattern without being crossed or detoured. The portion 14 can be formed. As a result, it is possible to minimize a decrease in transmission efficiency, a dull pulse signal, and the like in the optical waveguide 1. In this case, the refractive index distribution is preferably a distribution as shown in FIG. 4 (b), FIG. 4 (c), FIG. 5 (b) or FIG. 6 (b). Thereby, the interference of the optical signal in an intersection can be suppressed especially.
 なお、コア部14の横断面形状は特に限定されず、例えば、真円、楕円形、長円形等の円形、三角形、四角形、五角形、六角形等の多角形であってもよいが、四角形(矩形状)であることにより、安定した品質のコア部14を効率よく製造することができる。 The cross-sectional shape of the core portion 14 is not particularly limited, and may be a circle such as a perfect circle, an ellipse, or an oval, or a polygon such as a triangle, a quadrangle, a pentagon, or a hexagon. By being (rectangular shape), the core part 14 of the stable quality can be manufactured efficiently.
 また、コア部14の高さ(コア層13の厚さ)は、特に限定されないが、それぞれ、1~200μm程度であるのが好ましく、5~100μm程度であるのがより好ましく、10~70μm程度であるのがさらに好ましい。これにより、光導波路1の伝送効率の低下を抑えつつコア部14の薄型化を図ることができる。 The height of the core portion 14 (the thickness of the core layer 13) is not particularly limited, but is preferably about 1 to 200 μm, more preferably about 5 to 100 μm, and about 10 to 70 μm. More preferably. Thereby, it is possible to reduce the thickness of the core portion 14 while suppressing a decrease in transmission efficiency of the optical waveguide 1.
 上述したようなコア層13の構成材料(主材料)は、例えば、アクリル系樹脂、メタクリル系樹脂、ポリカーボネート、ポリスチレン、エポキシ系樹脂やオキセタン系樹脂のような環状エーテル系樹脂、ポリアミド、ポリイミド、ポリベンゾオキサゾール、ポリシラン、ポリシラザン、シリコーン系樹脂、フッ素系樹脂、ポリウレタン、ポリオレフィン系樹脂、ポリブタジエン、ポリイソプレン、ポリクロロプレン、PETやPBTのようなポリエステル、ポリエチレンサクシネート、ポリサルフォン、ポリエーテル、また、ベンゾシクロブテン系樹脂やノルボルネン系樹脂等の環状オレフィン系樹脂のような各種樹脂材料の他、石英ガラス、ホウケイ酸ガラスのようなガラス材料等を用いることができる。なお、樹脂材料は、異なる組成のものを組み合わせた複合材料であってもよい。 The constituent material (main material) of the core layer 13 as described above is, for example, acrylic resin, methacrylic resin, polycarbonate, polystyrene, cyclic ether resin such as epoxy resin or oxetane resin, polyamide, polyimide, poly Benzoxazole, polysilane, polysilazane, silicone resin, fluorine resin, polyurethane, polyolefin resin, polybutadiene, polyisoprene, polychloroprene, polyester such as PET and PBT, polyethylene succinate, polysulfone, polyether, benzocyclo In addition to various resin materials such as cyclic olefin resins such as butene resin and norbornene resin, glass materials such as quartz glass and borosilicate glass can be used. Note that the resin material may be a composite material in which materials having different compositions are combined.
 また、これらの中でも特に(メタ)アクリル系樹脂、エポキシ系樹脂、シリコーン系樹脂、ポリイミド系樹脂、フッ素系樹脂、およびポリオレフィン系樹脂からなる群から選択される少なくとも1種が好ましく、(メタ)アクリル系樹脂またはエポキシ系樹脂がより好ましい。これらの樹脂材料は、光の透過性が高いことから、特に伝送損失の小さい光導波路1が得られる。 Among these, at least one selected from the group consisting of (meth) acrylic resins, epoxy resins, silicone resins, polyimide resins, fluorine resins, and polyolefin resins is particularly preferable. A resin or epoxy resin is more preferable. Since these resin materials have high light transmittance, the optical waveguide 1 with particularly small transmission loss can be obtained.
 ((クラッド層))
 一方、クラッド層11、12は、コア層13の下部および上部に位置する。
((Clad layer))
On the other hand, the clad layers 11 and 12 are located below and above the core layer 13.
 クラッド層11、12の平均厚さは、コア層13の平均厚さの0.05~1.5倍程度であるのが好ましく、0.1~1.25倍程度であるのがより好ましい。具体的には、クラッド層11、12の平均厚さは、それぞれ1~200μm程度であるのが好ましく、3~100μm程度であるのがより好ましく、5~60μm程度であるのがさらに好ましい。これにより、光導波路1が必要以上に厚膜化するのを防止しつつ、クラッド部としての機能が確保される。また、光導波路1に適度な剛性が付与され、例えば光導波路1とマザーボード5との間に空間がある場合でも、光導波路1が撓み難くなり、光結合部における光路ずれを抑制することができる。 The average thickness of the cladding layers 11 and 12 is preferably about 0.05 to 1.5 times the average thickness of the core layer 13, and more preferably about 0.1 to 1.25 times. Specifically, the average thickness of the cladding layers 11 and 12 is preferably about 1 to 200 μm, more preferably about 3 to 100 μm, and further preferably about 5 to 60 μm. Thereby, the function as a clad part is ensured while preventing the optical waveguide 1 from becoming thicker than necessary. Moreover, moderate rigidity is given to the optical waveguide 1. For example, even when there is a space between the optical waveguide 1 and the mother board 5, the optical waveguide 1 becomes difficult to bend, and an optical path shift in the optical coupling portion can be suppressed. .
 また、クラッド層11、12の構成材料としては、例えば、前述したコア層13の構成材料と同様の材料を用いることができるが、特に(メタ)アクリル系樹脂、エポキシ系樹脂、シリコーン系樹脂、ポリイミド系樹脂、フッ素系樹脂、およびポリオレフィン系樹脂からなる群から選択される少なくとも1種であるのが好ましく、(メタ)アクリル系樹脂またはエポキシ系樹脂がより好ましい。 Further, as the constituent material of the cladding layers 11 and 12, for example, the same material as the constituent material of the core layer 13 described above can be used, and in particular, (meth) acrylic resin, epoxy resin, silicone resin, It is preferably at least one selected from the group consisting of a polyimide resin, a fluorine resin, and a polyolefin resin, and more preferably a (meth) acrylic resin or an epoxy resin.
 また、光導波路1の横断面の厚さ方向の屈折率分布についても、SI型、GI型の分布であってもよく、図4(c)に示すような分布であってもよい。 Also, the refractive index distribution in the thickness direction of the cross section of the optical waveguide 1 may be an SI type or GI type distribution, or a distribution as shown in FIG.
 なお、光導波路1は、後述するようにマザーボード5上に重ねて配置されるため、その平面視における大きさは、例えばマザーボード5の少なくとも一部を覆い得る大きさに設定されるのが好ましい。具体的には、長径が50mm~3000mm程度に設定されるのが好ましい。 In addition, since the optical waveguide 1 is disposed on the mother board 5 as described later, the size in plan view is preferably set to a size that can cover at least a part of the mother board 5, for example. Specifically, the major axis is preferably set to about 50 mm to 3000 mm.
 また、光導波路1の平面視形状は、特に限定されないが、四角形、六角形のような多角形の他、円形、楕円形等であってもよい。 Further, the planar view shape of the optical waveguide 1 is not particularly limited, but may be a polygon, such as a quadrangle or a hexagon, a circle, an ellipse, or the like.
 ((交差部))
 図8は、図1に示す光導波路1の交差部近傍を示す平面図および交差部近傍の屈折率分布を示す図である。
((Intersection))
FIG. 8 is a plan view showing the vicinity of the intersection of the optical waveguide 1 shown in FIG. 1 and a diagram showing the refractive index distribution in the vicinity of the intersection.
 コア部14同士の交差部147は、図8に示すように、中心部に極大値があり、そこから周辺(側面クラッド部15)に向かって裾を引くように屈折率が漸減するような屈折率分布を有しているのが好ましい。これにより、交差部147の中心部に信号光が集まり易くなるので、交差部147における混信が特に抑制される。 As shown in FIG. 8, the intersecting portion 147 between the core portions 14 has a maximum value at the center portion, and the refractive index gradually decreases so as to draw a skirt toward the periphery (side clad portion 15). It preferably has a rate distribution. As a result, signal light easily gathers at the center of the intersection 147, so that interference at the intersection 147 is particularly suppressed.
 そして、交差部147の屈折率は、その周囲に比べて高いのが好ましい。この屈折率差に基づき、交差部147に進入した信号光は、その信号光が伝搬してきたコア部14と交差するコア部14には進入し難くなる。その結果、光導波路1では、交差部147において光信号の混信を抑制することができる。このようにして立体交差化することなく、同一平面上で光信号の交差が可能になる。その結果、光導波路1が実装されたデバイス(例えば光電気混載基板1000)の小型化、薄型化および高密度化を容易に図ることができる。 And, it is preferable that the refractive index of the intersection 147 is higher than the surrounding area. Based on this refractive index difference, the signal light that has entered the intersection 147 is less likely to enter the core 14 that intersects the core 14 through which the signal light has propagated. As a result, in the optical waveguide 1, interference of optical signals can be suppressed at the intersection 147. In this way, optical signals can be crossed on the same plane without making a three-dimensional intersection. As a result, the device (for example, the opto-electric hybrid board 1000) on which the optical waveguide 1 is mounted can be easily reduced in size, thickness, and density.
 交差部147の最大の屈折率は、交差部147以外のコア部14における最大の屈折率より0.001~0.05程度高いのが好ましく、0.002~0.03程度高いのがより好ましい。 The maximum refractive index of the intersecting portion 147 is preferably about 0.001 to 0.05 higher than the maximum refractive index of the core portion 14 other than the intersecting portion 147, and more preferably about 0.002 to 0.03. .
 ここで、交差するコア部14の光軸の交差角は10~90°であるのが好ましく、20~90°であるのがより好ましい。交差角がこの範囲内であれば、混信の発生を十分に抑えることができる。なお、この交差角とは、交差する光軸同士がなす内角のうち、角度が小さい方の内角をいう。 Here, the crossing angle of the optical axes of the intersecting core portions 14 is preferably 10 to 90 °, and more preferably 20 to 90 °. If the crossing angle is within this range, the occurrence of interference can be sufficiently suppressed. In addition, this intersection angle means an inner angle with a smaller angle among the inner angles formed by the intersecting optical axes.
 なお、上述したような交差部147では混信が抑制されるとともに1つの交差部147を通過する際の光信号の伝送損失が0.02dB以下に抑えられる。このため、1つのコア部14に対して複数のコア部14が交差するようにコア部14のパターンを設定しても伝送損失が小さく抑えられることとなり、複雑なパターンの光配線を構築することができる。 It should be noted that interference is suppressed at the intersection 147 as described above, and the transmission loss of the optical signal when passing through one intersection 147 is suppressed to 0.02 dB or less. For this reason, even if the pattern of the core part 14 is set so that a plurality of core parts 14 intersect one core part 14, the transmission loss can be suppressed to be small, and an optical wiring having a complicated pattern is constructed. Can do.
 図9は、交差部近傍の他の構成例を示す部分拡大図である。 FIG. 9 is a partially enlarged view showing another configuration example near the intersection.
 図9(a)、(b)に示す光導波路は、それぞれ、交差部147の近傍において、コア部14の幅が交差部147に向かうにつれて漸増するよう構成されている。このうち、図9(a)に示す光導波路ではコア部14の幅が直線的に漸増している一方、図9(b)に示す光導波路ではコア部14の幅が曲線的に漸増している。このような構造になっていると、交差部147における混信が特に抑制されるとともに、交差部147における伝送効率の改善が図られる。 Each of the optical waveguides shown in FIGS. 9A and 9B is configured so that the width of the core portion 14 gradually increases in the vicinity of the intersection portion 147 as it goes toward the intersection portion 147. Among these, in the optical waveguide shown in FIG. 9A, the width of the core portion 14 gradually increases linearly, whereas in the optical waveguide shown in FIG. 9B, the width of the core portion 14 increases gradually in a curve. Yes. With such a structure, interference at the intersection 147 is particularly suppressed, and transmission efficiency at the intersection 147 is improved.
 図9(c)に示す交差部148では、3つのコア部14が交差しており、その交差角は60°に設定されている。一方、図9(d)に示す交差部148では、4つのコア部14が交差しており、その交差角は45°に設定されている。 In the intersecting portion 148 shown in FIG. 9C, the three core portions 14 intersect, and the intersecting angle is set to 60 °. On the other hand, in the intersecting portion 148 shown in FIG. 9 (d), the four core portions 14 intersect, and the intersecting angle is set to 45 °.
 交差部148において交差するコア部14の数は5つ以上であってもよく、その場合、交差角が前記範囲内になるよう交差数が適宜設定される。また、各交差角は互いに等しくても異なっていてもよい。 The number of core portions 14 that intersect at the intersection portion 148 may be five or more. In that case, the number of intersections is appropriately set so that the intersection angle is within the above range. Moreover, each crossing angle may be equal to or different from each other.
 ((ミラー))
 図2に示す光導波路1には、ミラー17が設けられている。
((mirror))
A mirror 17 is provided in the optical waveguide 1 shown in FIG.
 図10(a)は、図2に示す光導波路1のコア部14の途中にミラー(光路変換部)17が形成されている例を示す斜視図である。 FIG. 10A is a perspective view showing an example in which a mirror (optical path conversion unit) 17 is formed in the middle of the core unit 14 of the optical waveguide 1 shown in FIG.
 図10(a)に示す光導波路1には、コア部14を厚さ方向に貫通するように、横断面がV字状をなす凹部(空孔)170がコア部14の途中に形成されている。そして、ミラー17は、この凹部170の内面の一部で構成されている。ミラー17は平面状であり、かつコア部14の軸線(光軸)に対して45°傾斜している。このミラー17にコア部14を伝搬してきた光が反射され、図10(a)の下方に光路が90°変換される。また、図10(a)の下方から伝搬してきた光は、ミラー17で反射されコア部14に入射される。すなわち、ミラー17は、コア部14を伝搬する光の光路を変換する光路変換機能を有する。 In the optical waveguide 1 shown in FIG. 10A, a concave portion (hole) 170 having a V-shaped cross section is formed in the middle of the core portion 14 so as to penetrate the core portion 14 in the thickness direction. Yes. The mirror 17 is constituted by a part of the inner surface of the recess 170. The mirror 17 has a planar shape and is inclined by 45 ° with respect to the axis (optical axis) of the core portion 14. The light propagating through the core portion 14 is reflected by the mirror 17, and the optical path is converted by 90 ° downward in FIG. 10 (a). Further, the light propagating from below in FIG. 10A is reflected by the mirror 17 and enters the core portion 14. That is, the mirror 17 has an optical path conversion function for converting the optical path of light propagating through the core unit 14.
 なお、必要に応じて、ミラー17を構成する加工面の表面に反射膜が成膜されていてもよい。この反射膜としては、例えば、Au、Ag、Al等の金属膜や、コア部14より低屈折率の材料の膜等が挙げられる。金属膜の形成方法としては、例えば、真空蒸着のような物理蒸着法、CVDのような化学蒸着法、めっき法等が挙げられる。 Note that a reflective film may be formed on the surface of the processed surface constituting the mirror 17 as necessary. Examples of the reflective film include a metal film such as Au, Ag, and Al, and a film made of a material having a lower refractive index than the core portion 14. Examples of the metal film forming method include physical vapor deposition such as vacuum vapor deposition, chemical vapor deposition such as CVD, and plating.
 また、ミラー17はコア部14の途中ではなく、図10(b)に示すように、側面クラッド部15内であってコア部14の延長線上に設けられてもよい。 Further, the mirror 17 may be provided not in the middle of the core part 14 but in the side clad part 15 and on the extension line of the core part 14 as shown in FIG.
 なお、ミラー17は、例えば湾曲させた導波路等、その他の光路変換部で代替することもできる。 It should be noted that the mirror 17 can be replaced with another optical path conversion unit such as a curved waveguide.
 また、図3に示すように、光導波路1の下面には支持フィルム2が、上面にはカバーフィルム3が、それぞれ必要に応じて設けられていてもよい。 Further, as shown in FIG. 3, a support film 2 may be provided on the lower surface of the optical waveguide 1 and a cover film 3 may be provided on the upper surface, if necessary.
 支持フィルム2およびカバーフィルム3の構成材料としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレン、ポリプロピレンのようなポリオレフィン、ポリイミド、ポリアミド等の各種樹脂材料が挙げられる。 Examples of the constituent material of the support film 2 and the cover film 3 include various resin materials such as polyethylene terephthalate (PET), polyolefin such as polyethylene and polypropylene, polyimide, and polyamide.
 また、支持フィルム2およびカバーフィルム3の平均厚さは、特に限定されないが、5~500μm程度であるのが好ましく、10~400μm程度であるのがより好ましい。これにより、支持フィルム2およびカバーフィルム3は、適度な剛性を有するものとなるため、光導波路1を確実に支持するとともに、外力や外部環境から光導波路1を確実に保護することができる。 The average thickness of the support film 2 and the cover film 3 is not particularly limited, but is preferably about 5 to 500 μm, more preferably about 10 to 400 μm. Thereby, since the support film 2 and the cover film 3 have moderate rigidity, while supporting the optical waveguide 1 reliably, the optical waveguide 1 can be reliably protected from external force and an external environment.
 図2に示す光導波路1には、クラッド層11の下面にレンズ16が設けられている。レンズ16は、ミラー17と光素子6との間を通過する信号光を収束させ、光結合効率を高めることに寄与する。 In the optical waveguide 1 shown in FIG. 2, a lens 16 is provided on the lower surface of the clad layer 11. The lens 16 converges the signal light passing between the mirror 17 and the optical element 6 and contributes to increasing the optical coupling efficiency.
 レンズ16の構成材料は、例えば、アクリル系樹脂のような各種樹脂材料、石英ガラスのような各種ガラス材料等が挙げられる。 Examples of the constituent material of the lens 16 include various resin materials such as acrylic resin, various glass materials such as quartz glass, and the like.
 また、レンズ16は、クラッド層11の一部を変形させ、レンズとしての機能を付与したものであってもよい。この変形には、例えばナノインプリント技術等が用いられる。 Further, the lens 16 may be a lens obtained by deforming a part of the clad layer 11 and imparting a function as a lens. For this deformation, for example, a nanoimprint technique or the like is used.
 なお、光導波路1の平面視における大きさおよび形状は、マザーボード5の大きさおよび形状等に応じて適宜設定され、特に限定されるものではないが、一例として一辺が20mm~2000mm程度の四角形とされる。また、形状は円形、多角形等であってもよい。 The size and shape of the optical waveguide 1 in plan view are appropriately set according to the size and shape of the mother board 5 and are not particularly limited. However, as an example, the optical waveguide 1 is a square having a side of about 20 mm to 2000 mm. Is done. Further, the shape may be a circle, a polygon or the like.
 (光コネクター)
 光コネクター101は、光導波路1の端部に設けられ、コア部14を他の光学部品と光学的に接続し得るものである。この光コネクター101は、各種コネクター規格に準拠したものであってもよく、例えば小型(Mini)MTコネクター、JIS C 5981に規定されたMTコネクター、16MTコネクター、2次元配列型MTコネクター、MPOコネクター、MPXコネクター等が挙げられる。
(Optical connector)
The optical connector 101 is provided at the end of the optical waveguide 1 and can optically connect the core portion 14 to other optical components. The optical connector 101 may be compliant with various connector standards, such as a mini MT connector, an MT connector defined in JIS C 5981, a 16 MT connector, a two-dimensional array MT connector, an MPO connector, MPX connector etc. are mentioned.
 図11(a)は、図1に示す光コネクター101の分解斜視図、図11(b)は、図1に示す光コネクター101の斜視図である。 11A is an exploded perspective view of the optical connector 101 shown in FIG. 1, and FIG. 11B is a perspective view of the optical connector 101 shown in FIG.
 図11に示す光コネクター101の場合、光コネクター101を装着するコア部14近傍には切り欠き1cが設けられる。具体的には、コア部14の両側部にそれぞれ、装着する光コネクター101と同程度の長さの切り欠き1cが形成されている。 In the case of the optical connector 101 shown in FIG. 11, a notch 1c is provided in the vicinity of the core portion 14 to which the optical connector 101 is attached. Specifically, notches 1c having the same length as the optical connector 101 to be mounted are formed on both sides of the core portion 14, respectively.
 図11に示す光コネクター101は、2つの脚部1012を備えたコネクター本体1011と、コネクター本体1011に装着可能なコネクター蓋体1013と、を有している。コネクター本体1011の2つの脚部1012は、図11(b)に示すように、切り欠き1cにそれぞれ嵌め込めるようになっており、その結果、コネクター本体1011の2つの脚部1012の間にコア部14が挿入されるようになっている。 The optical connector 101 shown in FIG. 11 has a connector main body 1011 having two legs 1012 and a connector lid 1013 that can be attached to the connector main body 1011. As shown in FIG. 11B, the two legs 1012 of the connector main body 1011 can be fitted into the notches 1c, respectively. As a result, the core is interposed between the two legs 1012 of the connector main body 1011. The part 14 is inserted.
 また、コネクター蓋体1013もコア部14とともに2つの脚部1012の間に挿入されるようになっており、その結果、図11(b)に示すように、コネクター本体1011とコネクター蓋体1013とでコア部14を挟みこみ、固定し得るよう構成されている。 The connector lid 1013 is also inserted between the two leg portions 1012 together with the core portion 14, and as a result, as shown in FIG. 11B, the connector body 1011, the connector lid 1013, The core portion 14 is sandwiched between and fixed.
 光導波路1に光コネクター101が装着されると、コア部14の端部は図11(b)に示すように光コネクター101の端面から露出した状態となる。この光コネクター101に対して他のコネクターを接続することによって、例えばコア部14と他の光導波路や光ファイバーといった光学部品を光学的に接続することができる。接続される光学部品としては、光導波路や光ファイバーの他に、例えば、波長変換素子、フィルター、回折格子、偏光子、プリズム、レンズ等が挙げられる。 When the optical connector 101 is attached to the optical waveguide 1, the end of the core portion 14 is exposed from the end surface of the optical connector 101 as shown in FIG. By connecting another connector to the optical connector 101, for example, the core part 14 and another optical component such as another optical waveguide or optical fiber can be optically connected. Examples of the optical component to be connected include a wavelength conversion element, a filter, a diffraction grating, a polarizer, a prism, and a lens in addition to the optical waveguide and the optical fiber.
 また、光コネクター101の構成材料としては、例えば、樹脂材料、金属材料、セラミックス材料等が挙げられる。 Also, examples of the constituent material of the optical connector 101 include a resin material, a metal material, and a ceramic material.
 また、光コネクター101の構造は、図11に示す構造に限定されない。例えば、光導波路1の端面から光コネクター101が突出するよう構成されていてもよく、その場合は、光導波路1に切り欠き1cを設ける必要はない。さらに、光導波路1を突出させたり切り欠き1cを設けたりすることなく、単に光導波路1の端部上にコネクター本体1011が接着されてなるような構造の光コネクター101であってもよい。 Further, the structure of the optical connector 101 is not limited to the structure shown in FIG. For example, the optical connector 101 may be configured to protrude from the end face of the optical waveguide 1, and in that case, it is not necessary to provide the notch 1 c in the optical waveguide 1. Further, the optical connector 101 may be configured such that the connector main body 1011 is simply bonded onto the end of the optical waveguide 1 without projecting the optical waveguide 1 or providing the notch 1c.
 なお、光導波路1におけるコア部14のパターンは、図1に示すものに限定されず、いかなるパターンであってもよい。 In addition, the pattern of the core part 14 in the optical waveguide 1 is not limited to what is shown in FIG. 1, What kind of pattern may be sufficient.
 (光電変換部)
 光電変換部4は、光導波路1の下方に設けられた光電変換部基板41と、光電変換部基板41の下面に搭載された光素子6および光電変換部用電気素子7と、電気コネクター(第1の端子)42と、を有している。この光電変換部4は、接着剤等の固定部材により光導波路1の下面に接着されている。以下、光電変換部4の各部について詳述する。
(Photoelectric converter)
The photoelectric conversion unit 4 includes a photoelectric conversion unit substrate 41 provided below the optical waveguide 1, an optical element 6 and a photoelectric conversion unit electrical element 7 mounted on the lower surface of the photoelectric conversion unit substrate 41, and an electrical connector (first connector). 1 terminal) 42. The photoelectric conversion unit 4 is bonded to the lower surface of the optical waveguide 1 by a fixing member such as an adhesive. Hereinafter, each part of the photoelectric conversion unit 4 will be described in detail.
 ((光電変換部基板))
 光電変換部基板41は、図2に示すように、絶縁性基板(第2基板)411と、その両面にそれぞれ設けられた電気配線412と、各面の電気配線412同士を接続する貫通配線413と、絶縁性基板411等を貫通するスルーホール414と、を有している。
((Photoelectric conversion part substrate))
As shown in FIG. 2, the photoelectric conversion unit substrate 41 includes an insulating substrate (second substrate) 411, electric wirings 412 provided on both surfaces thereof, and through wiring 413 that connects the electric wirings 412 on each surface. And a through hole 414 that penetrates the insulating substrate 411 and the like.
 絶縁性基板411を構成する材料としては、例えば、ポリイミド系樹脂、ポリアミド系樹脂、エポキシ系樹脂、各種ビニル系樹脂、ポリエチレンテレフタレート樹脂等のポリエステル系樹脂等の各種樹脂材料が挙げられるが、中でもポリイミド系樹脂を主材料とするものが好ましく用いられる。ポリイミド系樹脂は、耐熱性が高く、優れた透光性および可撓性を有していることから、絶縁性基板411の構成材料として特に好適である。なお、絶縁性基板411の具体例としては、ポリエステル銅張フィルム基板、ポリイミド銅張フィルム基板、アラミド銅張フィルム基板等に使用されるフィルム基板が挙げられる。 Examples of the material constituting the insulating substrate 411 include various resin materials such as polyimide resins, polyamide resins, epoxy resins, various vinyl resins, and polyester resins such as polyethylene terephthalate resins. A resin mainly composed of a resin is preferably used. A polyimide resin is particularly suitable as a constituent material of the insulating substrate 411 because it has high heat resistance and excellent translucency and flexibility. Specific examples of the insulating substrate 411 include film substrates used for polyester copper-clad film substrates, polyimide copper-clad film substrates, aramid copper-clad film substrates, and the like.
 ここで、図2に示す光モジュール100では、光素子6と光導波路1との間に絶縁性基板411が設けられており、信号光はこの絶縁性基板411に設けられたスルーホール414を通過する。なお、絶縁性基板411として透光性を有するものを用いた場合には、スルーホールは不要である。 Here, in the optical module 100 shown in FIG. 2, the insulating substrate 411 is provided between the optical element 6 and the optical waveguide 1, and the signal light passes through the through hole 414 provided in the insulating substrate 411. To do. Note that when an insulating substrate 411 having a light-transmitting property is used, a through hole is not necessary.
 また、絶縁性基板411の平均厚さは5~200μm程度であるのが好ましく、10~150μm程度であるのがより好ましい。このような厚さの絶縁性基板411であれば、光モジュール100の薄型化が図られるとともに、絶縁性基板411の透過損失が抑制される。さらには、絶縁性基板411の厚さが前記範囲内であれば、ミラー17と光素子6との距離が十分に短くなるので信号光の発散によって伝送効率が低下するのを防止することができる。 Further, the average thickness of the insulating substrate 411 is preferably about 5 to 200 μm, and more preferably about 10 to 150 μm. With the insulating substrate 411 having such a thickness, the optical module 100 can be thinned and transmission loss of the insulating substrate 411 is suppressed. Furthermore, if the thickness of the insulating substrate 411 is within the above range, the distance between the mirror 17 and the optical element 6 is sufficiently short, so that it is possible to prevent the transmission efficiency from being lowered due to the divergence of signal light. .
 なお、絶縁性基板411は、1枚の基板であってもよいが、複数層の基板を積層してなる多層基板(ビルドアップ基板)であってもよい。この場合、多層基板の層間には任意の電気回路が形成されていてもよい。これにより、絶縁性基板411中に高密度の電気回路を構築することができる。 Note that the insulating substrate 411 may be a single substrate, but may also be a multilayer substrate (build-up substrate) formed by stacking a plurality of substrates. In this case, an arbitrary electric circuit may be formed between the layers of the multilayer substrate. Thereby, a high-density electric circuit can be constructed in the insulating substrate 411.
 なお、絶縁性基板411は、光導波路1の下面に成膜または積層された絶縁層で代替することもできる。 The insulating substrate 411 can be replaced with an insulating layer formed or laminated on the lower surface of the optical waveguide 1.
 絶縁層は、酸化ケイ素、窒化ケイ素のようなケイ素化合物、ポリイミド系樹脂、エポキシ系樹脂のような樹脂材料等により構成される。また、成膜法としては、例えば真空蒸着、スパッタリングのような物理蒸着法、プラズマCVD、熱CVDのような化学蒸着法、塗布法、印刷法といった液相成膜法等が用いられる。 The insulating layer is made of a silicon compound such as silicon oxide or silicon nitride, a resin material such as a polyimide resin or an epoxy resin, or the like. As the film formation method, for example, a physical vapor deposition method such as vacuum vapor deposition or sputtering, a chemical vapor deposition method such as plasma CVD or thermal CVD, a liquid phase film formation method such as a coating method, or a printing method is used.
 電気配線412および貫通配線413はそれぞれ導電性材料で構成されている。導電性材料としては、例えば、銅、アルミニウム、ニッケル、クロム、亜鉛、錫、金、銀等の金属単体、またはこれらの金属元素を含む合金といった金属材料が挙げられる。 The electric wiring 412 and the through wiring 413 are each made of a conductive material. Examples of the conductive material include metal materials such as simple metals such as copper, aluminum, nickel, chromium, zinc, tin, gold, and silver, or alloys containing these metal elements.
 また、電気配線412の平均厚さは、配線に要求される導電率等に応じて適宜設定されるものの、例えば1~30μm程度とされる。 Further, the average thickness of the electrical wiring 412 is appropriately set according to the electrical conductivity required for the wiring, but is set to about 1 to 30 μm, for example.
 なお、光電変換部基板41に対する光素子6や光電変換部用電気素子7の搭載方法は、特に限定されず、ダイボンディング法、ワイヤーボンディング法等が用いられる。 In addition, the mounting method of the optical element 6 or the photoelectric element 7 for the photoelectric conversion unit on the photoelectric conversion unit substrate 41 is not particularly limited, and a die bonding method, a wire bonding method, or the like is used.
 ((光素子))
 図2に示す光素子6は、素子本体60と、素子本体60の上面に設けられた受発光部61および端子62と、を備えている。なお、受発光部とは、受光部または発光部、あるいはその双方の機能を有するものを指す。そして、光素子6の受発光部61と光導波路1のミラー17との間が光学的に接続されている。
((Optical element))
The optical element 6 shown in FIG. 2 includes an element body 60, and a light emitting / receiving unit 61 and a terminal 62 provided on the upper surface of the element body 60. The light emitting / receiving unit refers to a light receiving unit, a light emitting unit, or a unit having both functions. The light receiving / emitting unit 61 of the optical element 6 and the mirror 17 of the optical waveguide 1 are optically connected.
 光素子6としては、例えば、面発光レーザー(VCSEL)、発光ダイオード(LED)等の発光素子、フォトダイオード(PD、APD)等の受光素子が挙げられる。 Examples of the optical element 6 include light emitting elements such as a surface emitting laser (VCSEL) and a light emitting diode (LED), and a light receiving element such as a photodiode (PD, APD).
 また、光素子6の端子62と光電変換部4の電気配線412とがバンプを介して電気的に接続されている。このバンプは各種金属材料で構成される。 Further, the terminal 62 of the optical element 6 and the electrical wiring 412 of the photoelectric conversion unit 4 are electrically connected via bumps. This bump is made of various metal materials.
 ((光電変換部用電気素子))
 図2に示す光電変換部用電気素子7は、素子本体70と、素子本体70の上面に設けられた端子72と、を備えている。
((Electric element for photoelectric conversion part))
The photoelectric conversion unit electrical element 7 shown in FIG. 2 includes an element body 70 and a terminal 72 provided on the upper surface of the element body 70.
 光電変換部用電気素子7としては、例えば、ドライバーIC、トランスインピーダンスアンプ(TIA)、リミッティングアンプ(LA)、またはこれらの素子を複合したコンビネーションIC、LSI、RAM、ROM、コンデンサー、コイル、抵抗、ダイオード等が挙げられる。 As the electric element 7 for the photoelectric conversion unit, for example, a driver IC, a transimpedance amplifier (TIA), a limiting amplifier (LA), or a combination IC, LSI, RAM, ROM, capacitor, coil, resistor, or a combination of these elements. And diodes.
 また、光電変換部用電気素子7の端子72と光電変換部4の電気配線412とがバンプを介して電気的に接続されている。このような光素子6や光電変換部用電気素子7を備えた光電変換部4を光導波路1のコア部14の両端部に設けることにより、光モジュール100のコア部14において光通信を行うことができる。 Further, the terminal 72 of the photoelectric conversion unit electrical element 7 and the electrical wiring 412 of the photoelectric conversion unit 4 are electrically connected via bumps. Optical communication is performed in the core portion 14 of the optical module 100 by providing the photoelectric conversion portion 4 including the optical element 6 and the photoelectric conversion portion electrical element 7 at both ends of the core portion 14 of the optical waveguide 1. Can do.
 なお、光素子6や光電変換部用電気素子7と電気配線412との電気的接続は、上述したような接続方法の他、ワイヤーボンディング、異方性導電フィルム(ADF)、異方性導電ペースト(ACP)等を用いた接続方法で行われてもよい。 In addition, the electrical connection between the optical element 6 or the photoelectric conversion unit electrical element 7 and the electrical wiring 412 is performed by wire bonding, an anisotropic conductive film (ADF), an anisotropic conductive paste, in addition to the connection method described above. A connection method using (ACP) or the like may be used.
 また、図2に示す光素子6や光電変換部用電気素子7と光電変換部基板41との間には封止材45が設けられている。封止材45としては、例えば、エポキシ系樹脂、ポリエステル系樹脂、ポリウレタン系樹脂、シリコーン系樹脂等が挙げられる。 Further, a sealing material 45 is provided between the optical element 6 and the photoelectric conversion unit electrical element 7 shown in FIG. 2 and the photoelectric conversion unit substrate 41. Examples of the sealing material 45 include an epoxy resin, a polyester resin, a polyurethane resin, and a silicone resin.
 ((電気コネクター))
 光電変換部4は、電気コネクター42を介してマザーボード5に電気的に接続されている。
((Electrical connector))
The photoelectric conversion unit 4 is electrically connected to the mother board 5 via the electrical connector 42.
 電気コネクター42は、各種コネクター規格に準拠したものあるいは汎用品であってもよく、例えばボード・ツー・ボードコネクター、FPC/FFCコネクター、ZIFコネクター、NON-ZIFコネクター等が挙げられる。 The electrical connector 42 may be a connector conforming to various connector standards or a general-purpose product, and examples thereof include a board-to-board connector, an FPC / FFC connector, a ZIF connector, and a NON-ZIF connector.
 なお、光導波路1は、機械的にも、この電気コネクター42を介してマザーボード5に接続されていてもよい。このような固定方法であれば、マザーボード5に対して光導波路1を着脱可能にすることができる。これにより、マザーボード5と光導波路1とを分離させ易くなるため、例えば光導波路1を交換し易い利点がある。 The optical waveguide 1 may be mechanically connected to the mother board 5 via the electrical connector 42. With such a fixing method, the optical waveguide 1 can be attached to and detached from the mother board 5. Thereby, since it becomes easy to separate the motherboard 5 and the optical waveguide 1, there is an advantage that the optical waveguide 1 can be easily replaced, for example.
 (マザーボード)
 マザーボード(電気配線基板)5は、絶縁性基板(第1基板)51と、その上面に設けられた電気配線52と、絶縁性基板51上に搭載された複数のLSI501、コンデンサー502およびチップ抵抗器503といった複数の電気配線基板用電気素子50と、電気コネクター(第2の端子)53と、を有している。
(Motherboard)
The mother board (electric wiring board) 5 includes an insulating board (first board) 51, electric wiring 52 provided on the upper surface thereof, a plurality of LSIs 501, capacitors 502 and chip resistors mounted on the insulating board 51. A plurality of electrical elements 50 for electrical wiring boards, such as 503, and electrical connectors (second terminals) 53 are provided.
 電気コネクター53は、光電変換部4の電気コネクター(第1の端子)42と嵌合するものであり、この嵌合により、マザーボード5側の電気配線52と光電変換部4側の電気配線412とが電気的および機械的に接続され、光電変換部4の光素子6や光電変換部用電気素子7の動作をマザーボード5側から制御することが可能になる。また、信号の送受信も可能になる。 The electrical connector 53 is fitted to the electrical connector (first terminal) 42 of the photoelectric conversion unit 4, and by this fitting, the electrical wiring 52 on the mother board 5 side and the electrical wiring 412 on the photoelectric conversion unit 4 side Are electrically and mechanically connected, and the operations of the optical element 6 of the photoelectric conversion unit 4 and the electric element 7 for the photoelectric conversion unit can be controlled from the mother board 5 side. In addition, transmission / reception of signals becomes possible.
 絶縁性基板51を構成する材料としては、例えば、ポリイミド系樹脂、ポリアミド系樹脂、エポキシ系樹脂、各種ビニル系樹脂、ポリエチレンテレフタレート樹脂等のポリエステル系樹脂等の各種樹脂材料が挙げられる。この他、紙、ガラス布、樹脂フィルム等を基材とし、この基材に、フェノール系樹脂、ポリエステル系樹脂、エポキシ系樹脂、シアネート樹脂、ポリイミド系樹脂、フッ素系樹脂等の樹脂材料を含浸させたもの、具体的には、ガラス布・エポキシ銅張積層板、ガラス不織布・エポキシ銅張積層板等のコンポジット銅張積層板に使用される絶縁性基板の他、ポリエーテルイミド樹脂基板、ポリエーテルケトン樹脂基板、ポリサルフォン系樹脂基板等の耐熱・熱可塑性の有機系リジッド基板や、アルミナ基板、窒化アルミニウム基板、炭化ケイ素基板等のセラミックス系リジッド基板等であってもよい。 Examples of the material constituting the insulating substrate 51 include various resin materials such as polyimide resins, polyamide resins, epoxy resins, various vinyl resins, and polyester resins such as polyethylene terephthalate resins. In addition, paper, glass cloth, resin film, etc. are used as a base material, and this base material is impregnated with a resin material such as a phenol resin, a polyester resin, an epoxy resin, a cyanate resin, a polyimide resin, or a fluorine resin. In addition to insulating substrates used for composite copper-clad laminates such as glass cloth / epoxy copper-clad laminates, glass nonwoven fabrics / epoxy copper-clad laminates, polyetherimide resin substrates, polyethers It may be a heat-resistant / thermoplastic organic rigid substrate such as a ketone resin substrate or a polysulfone resin substrate, or a ceramic rigid substrate such as an alumina substrate, an aluminum nitride substrate, or a silicon carbide substrate.
 電気配線52は導電性材料で構成されている。導電性材料としては、例えば、銅、アルミニウム、ニッケル、クロム、亜鉛、錫、金、銀等の金属単体、またはこれらの金属元素を含む合金といった金属材料が挙げられる。 The electrical wiring 52 is made of a conductive material. Examples of the conductive material include metal materials such as simple metals such as copper, aluminum, nickel, chromium, zinc, tin, gold, and silver, or alloys containing these metal elements.
 また、電気配線52の平均厚さは、配線に要求される導電率等に応じて適宜設定されるものの、例えば1~30μm程度とされる。 Further, the average thickness of the electric wiring 52 is appropriately set in accordance with the electrical conductivity required for the wiring, but is about 1 to 30 μm, for example.
 マザーボード5がこのような電気配線52、すなわち金属層を備えていることにより、マザーボード5は絶縁性基板51だけで構成される場合に比べてその剛性が向上する。これにより、光導波路1をマザーボード5上に重ねたとき、光導波路1のみならずマザーボード5も撓み難くなり、その結果、マザーボード5と接続されている光導波路1の配置がより高精度に維持されることとなる。これにより、光導波路1とマザーボード5との間の信号の送受信効率をより高く維持することができる。 Since the mother board 5 is provided with such an electric wiring 52, that is, a metal layer, the rigidity of the mother board 5 is improved as compared with the case where the mother board 5 is constituted by only the insulating substrate 51. As a result, when the optical waveguide 1 is stacked on the mother board 5, not only the optical waveguide 1 but also the mother board 5 becomes difficult to bend. As a result, the arrangement of the optical waveguide 1 connected to the mother board 5 is maintained with higher accuracy. The Rukoto. Thereby, the transmission / reception efficiency of the signal between the optical waveguide 1 and the mother board 5 can be maintained higher.
 ここで、図2に示す光電気混載基板1000では、電気配線基板用電気素子50が光導波路1の下に収まっている。このため、光電気混載基板1000を平面視したとき、前述したように同じ領域に電気配線基板用電気素子50とコア部14とを併存させることができるので、コア部14のパターンを自由に設定することができる。その結果、例えばコア部14の距離を最短化することができるので、光信号の伝送効率の最適化を図ることができる。 Here, in the opto-electric hybrid board 1000 shown in FIG. 2, the electric element 50 for the electric wiring board is accommodated under the optical waveguide 1. For this reason, when the opto-electric hybrid board 1000 is viewed from above, the electric circuit board electrical element 50 and the core part 14 can coexist in the same region as described above, so the pattern of the core part 14 can be freely set. can do. As a result, for example, the distance between the core portions 14 can be minimized, so that the transmission efficiency of the optical signal can be optimized.
 また、マザーボード5から光導波路1を容易に分離させることができるので、光導波路1やマザーボード5を個別に交換する等の補修を容易に行うことができる。 Further, since the optical waveguide 1 can be easily separated from the mother board 5, repairs such as exchanging the optical waveguide 1 and the mother board 5 individually can be easily performed.
 なお、マザーボード5に実装される電気配線基板用電気素子50は、上述したものに限定されず、例えばIC、CPU、RAM、ROM、トランジスター、コイル、ダイオード、コンデンサー、振動子、圧電素子、リレー、光素子等であってもよい。 Note that the electric element 50 for the electric wiring board mounted on the mother board 5 is not limited to the above-described one, and for example, IC, CPU, RAM, ROM, transistor, coil, diode, capacitor, vibrator, piezoelectric element, relay, It may be an optical element or the like.
 ここで、光導波路1とマザーボード5との距離は、例えば光電変換部4側の電気コネクター42やマザーボード5側の電気コネクター53の高さを変えることで容易に調整することができるが、一例として1~100mm程度に設定されるのが好ましく、2~80mm程度に設定されるのがより好ましい。 Here, the distance between the optical waveguide 1 and the motherboard 5 can be easily adjusted, for example, by changing the height of the electrical connector 42 on the photoelectric conversion unit 4 side or the electrical connector 53 on the motherboard 5 side. It is preferably set to about 1 to 100 mm, more preferably about 2 to 80 mm.
 なお、本実施形態に係る光電気混載基板1000では、光電変換部4側の電気コネクター42とマザーボード5側の電気コネクター53とを接続することにより、両者間が固定されている。このような方法で固定することにより、光モジュール100とマザーボード5との間は一部分のみで固定されるため、光導波路1とマザーボード5との間に多くの空間が存在する状態となる。この状態では、例えばマザーボード5の熱変形の影響が光モジュール100側に及び難くなり、光電気混載基板1000の信頼性が向上する。 Note that, in the opto-electric hybrid board 1000 according to the present embodiment, the electrical connector 42 on the photoelectric conversion unit 4 side and the electrical connector 53 on the motherboard 5 side are connected, so that the space between them is fixed. By fixing in this manner, the optical module 100 and the mother board 5 are fixed only partially, so that a large amount of space exists between the optical waveguide 1 and the mother board 5. In this state, for example, the thermal deformation of the mother board 5 hardly affects the optical module 100 side, and the reliability of the opto-electric hybrid board 1000 is improved.
 また、マザーボード5に対して光モジュール100を固定する際には、電気コネクター42、53以外の機構、例えば接着剤による固定等を追加するようにしてもよい。 Further, when the optical module 100 is fixed to the mother board 5, a mechanism other than the electrical connectors 42 and 53, for example, fixing with an adhesive or the like, may be added.
 図12は、本実施形態に係る光モジュール100の他の構成例を示す断面図である。 FIG. 12 is a cross-sectional view showing another configuration example of the optical module 100 according to the present embodiment.
 図12に示す光電変換部4は、図1に示す光電変換部4にヒートスプレッダー44を付加したものである。図12に示すヒートスプレッダー44は、光電変換部基板41の下面に搭載された光素子6や光電変換部用電気素子7を覆う箱状をなしている。そして、ヒートスプレッダー44内部の底面と光電変換部用電気素子7の下面とが当接するよう構成されている。これにより、光電変換部用電気素子7からの熱がヒートスプレッダー44に効率よく伝達され、拡散する。その結果、光電変換部用電気素子7の放熱が特に促進されることとなる。 The photoelectric conversion unit 4 shown in FIG. 12 is obtained by adding a heat spreader 44 to the photoelectric conversion unit 4 shown in FIG. The heat spreader 44 illustrated in FIG. 12 has a box shape that covers the optical element 6 and the photoelectric conversion unit electrical element 7 mounted on the lower surface of the photoelectric conversion unit substrate 41. The bottom surface of the heat spreader 44 and the bottom surface of the photoelectric conversion unit electrical element 7 are in contact with each other. Thereby, the heat from the photoelectric conversion unit electrical element 7 is efficiently transmitted to the heat spreader 44 and diffused. As a result, the heat dissipation of the photoelectric conversion unit electrical element 7 is particularly promoted.
 ヒートスプレッダー44の構成材料としては、熱伝導性の高いもの、例えば金属材料、炭素材料、セラミックス材料等が用いられる。また特に、銅、アルミニウム、鉄、銀、金、クロム、ニッケル、亜鉛、錫の単体または合金が好ましく用いられる。 As a constituent material of the heat spreader 44, a material having high thermal conductivity, for example, a metal material, a carbon material, a ceramic material, or the like is used. In particular, a simple substance or an alloy of copper, aluminum, iron, silver, gold, chromium, nickel, zinc, and tin is preferably used.
 なお、光電変換部用電気素子7とヒートスプレッダー44との間は、単に接しているのみであってもよいが、熱伝導材を介して接していてもよい。熱伝導材としては、例えば、アクリル系樹脂、シリコーン系樹脂のような樹脂系材料、グラファイトのような炭素系材料、シリカ、アルミナ、窒化ケイ素のようなセラミックス系材料、アルミニウム、銅のような金属系材料等のシートまたはペースト等が用いられる。また、これらの材料の2種以上を混合した複合材料のシートまたはペーストも用いられる。 Note that the photoelectric conversion unit electrical element 7 and the heat spreader 44 may be merely in contact with each other, or may be in contact with each other via a heat conductive material. Examples of the heat conducting material include resin materials such as acrylic resins and silicone resins, carbon materials such as graphite, ceramic materials such as silica, alumina, and silicon nitride, metals such as aluminum and copper. A sheet or paste of a system material or the like is used. A composite material sheet or paste in which two or more of these materials are mixed may also be used.
 また、ヒートスプレッダー44には、表面積を大きくする凹凸形状が設けられていてもよい。この凹凸形状としては、例えば図12に示すヒートスプレッダー44の下面に設けられるフィン形状等が挙げられる。 Also, the heat spreader 44 may be provided with an uneven shape that increases the surface area. As this uneven | corrugated shape, the fin shape etc. which are provided in the lower surface of the heat spreader 44 shown, for example in FIG. 12 are mentioned.
 ≪第2実施形態≫
 次に、本発明の光電気混載基板の第2実施形態に係る光モジュールについて説明する。
<< Second Embodiment >>
Next, an optical module according to a second embodiment of the opto-electric hybrid board of the present invention will be described.
 図13は、本発明の光電気混載基板の第2実施形態の一部を示す断面図である。 FIG. 13 is a sectional view showing a part of the second embodiment of the opto-electric hybrid board according to the present invention.
 以下、第2実施形態について説明するが、第1実施形態との相違点を中心に説明し、同様の事項についてはその説明を省略する。なお、図13において第1実施形態と同様の構成部分については、先に説明したのと同様の符号を付し、その詳細な説明を省略する。 Hereinafter, the second embodiment will be described, but the description will focus on the differences from the first embodiment, and the description of the same matters will be omitted. In FIG. 13, the same components as those of the first embodiment are denoted by the same reference numerals as those described above, and detailed description thereof is omitted.
 第2実施形態は、光電変換部4の構成が異なる以外、第1実施形態と同様である。 The second embodiment is the same as the first embodiment except that the configuration of the photoelectric conversion unit 4 is different.
 図13に示す光電変換部4は、光導波路1のクラッド層11の下面に設けられた絶縁性基板411aと、クラッド層12の上面に設けられた絶縁性基板411bと、絶縁性基板411aの下面に設けられた電気配線412aと、絶縁性基板411bの上面に設けられた電気配線412bと、光導波路1を貫通し電気配線412aと電気配線412bとを接続する貫通配線413と、封止材45と、電気コネクター42と、光素子6と、光電変換部用電気素子7と、を有している。また、ミラー17は、電気配線412bから、絶縁性基板411b、光導波路1、および絶縁性基板411aにわたって形成された凹部170の内面の一部で構成されている。 13 includes an insulating substrate 411a provided on the lower surface of the cladding layer 11 of the optical waveguide 1, an insulating substrate 411b provided on the upper surface of the cladding layer 12, and a lower surface of the insulating substrate 411a. An electrical wiring 412a provided on the insulating substrate 411b, a through-wiring 413 penetrating the optical waveguide 1 to connect the electrical wiring 412a and the electrical wiring 412b, and a sealing material 45. And an electrical connector 42, an optical element 6, and a photoelectric conversion unit electrical element 7. Further, the mirror 17 is configured by a part of the inner surface of the recess 170 formed from the electric wiring 412b to the insulating substrate 411b, the optical waveguide 1, and the insulating substrate 411a.
 図13に示す光電変換部4の構造は、光導波路1を2枚の絶縁性基板411a、411bで挟み込む構造になっている。このため、絶縁性基板411aとしてより薄いものを用いたとしても光電変換部4の剛性を維持することができ、光素子6とミラー17との離間距離をより短くすることができる。その結果、光素子6とミラー17との光結合効率をより高めることができる。 The structure of the photoelectric conversion unit 4 shown in FIG. 13 is a structure in which the optical waveguide 1 is sandwiched between two insulating substrates 411a and 411b. For this reason, even if a thinner substrate is used as the insulating substrate 411a, the rigidity of the photoelectric conversion unit 4 can be maintained, and the separation distance between the optical element 6 and the mirror 17 can be further shortened. As a result, the optical coupling efficiency between the optical element 6 and the mirror 17 can be further increased.
 絶縁性基板411a、411bの平均厚さは、5~50μm程度であるのが好ましく、10~40μm程度であるのがより好ましい。 The average thickness of the insulating substrates 411a and 411b is preferably about 5 to 50 μm, and more preferably about 10 to 40 μm.
 なお、本実施形態に係る光電変換部4では、絶縁性基板411bの上面側にも光電変換部用電気素子7等を実装可能であり、これにより光電変換部用電気素子7のさらなる高密度実装が可能になる。 In the photoelectric conversion unit 4 according to the present embodiment, the photoelectric conversion unit electrical element 7 and the like can be mounted on the upper surface side of the insulating substrate 411b. Is possible.
 また、凹部170は、電気配線412bの上面に開口している凹部であるので、光導波路1に対して光電変換部4を接着した後に形成可能である。このため、光素子6の受発光部の位置に合わせて凹部170を形成することが可能になり、受発光部とミラー17との光軸合わせを極めて厳密に行うことができる。 Further, since the concave portion 170 is a concave portion opened on the upper surface of the electric wiring 412 b, it can be formed after the photoelectric conversion portion 4 is bonded to the optical waveguide 1. For this reason, it becomes possible to form the recessed part 170 according to the position of the light receiving / emitting part of the optical element 6, and the optical axis alignment of the light receiving / emitting part and the mirror 17 can be performed very strictly.
 ≪第3実施形態≫
 次に、本発明の光電気混載基板の第3実施形態について説明する。
<< Third Embodiment >>
Next, a third embodiment of the opto-electric hybrid board according to the present invention will be described.
 図14は、本発明の光電気混載基板の第3実施形態の一部を示す断面図である。 FIG. 14 is a cross-sectional view showing a part of the third embodiment of the opto-electric hybrid board according to the present invention.
 以下、第3実施形態について説明するが、第1実施形態との相違点を中心に説明し、同様の事項についてはその説明を省略する。なお、図14において前記各実施形態と同様の構成部分については、先に説明したのと同様の符号を付し、その詳細な説明を省略する。 Hereinafter, although the third embodiment will be described, the differences from the first embodiment will be mainly described, and description of similar matters will be omitted. In FIG. 14, the same components as those of the above-described embodiments are denoted by the same reference numerals as those described above, and detailed description thereof is omitted.
 第3実施形態は、光電変換部4とマザーボード5との間に電気インターポーザー(電気配線基板)55が介挿されているとともに、LSI501が電気インターポーザー55に搭載されている以外、第1実施形態と同様である。なお、本実施形態では、第1、第2実施形態と異なり、電気インターポーザー55が「電気配線基板」に相当する。 In the third embodiment, an electrical interposer (electric wiring board) 55 is interposed between the photoelectric conversion unit 4 and the mother board 5, and the LSI 501 is mounted on the electrical interposer 55. It is the same as the form. In this embodiment, unlike the first and second embodiments, the electric interposer 55 corresponds to an “electric wiring board”.
 図14に示す電気インターポーザー55は、コア基板551とその両面に積層されたビルドアップ層552とを備えた多層基板550と、多層基板550の下面に設けられたバンプ553と、を有している。そして、電気インターポーザー55には前述したようにLSI501が搭載されているとともに、電気インターポーザー55の表面および内部に敷設された電気配線と光電変換部4とが電気コネクター(第2の端子)53を介して電気的に接続されている。このような電気インターポーザー55を用いることにより、電気配線の高密度化を容易に図ることができ、信号伝送速度を高めることができる。その結果、LSI501と光電変換部4との間の情報伝送の高速化および大容量化を図ることができ、光通信による高速化の恩恵を最大限に活かすことができる。すなわち、高速かつ大容量の情報処理を可能にする光電気混載基板1000が得られる。 The electric interposer 55 shown in FIG. 14 includes a multilayer substrate 550 having a core substrate 551 and a buildup layer 552 laminated on both surfaces thereof, and bumps 553 provided on the lower surface of the multilayer substrate 550. Yes. As described above, the LSI 501 is mounted on the electric interposer 55, and the electric wiring and the photoelectric conversion unit 4 laid on the surface and inside of the electric interposer 55 are connected to the electric connector (second terminal) 53. It is electrically connected via. By using such an electrical interposer 55, it is possible to easily increase the density of electrical wiring and increase the signal transmission speed. As a result, it is possible to increase the speed and capacity of information transmission between the LSI 501 and the photoelectric conversion unit 4, and to maximize the benefits of speeding up by optical communication. That is, the opto-electric hybrid board 1000 that enables high-speed and large-capacity information processing is obtained.
 また、電気インターポーザー55は、バンプ553を介してマザーボード5の電気配線52と電気的に接続されている。これにより、マザーボード5上に複数の電気インターポーザー55が搭載されている場合も、これらを相互に連携させることができる。 Further, the electric interposer 55 is electrically connected to the electric wiring 52 of the mother board 5 via the bumps 553. Thereby, even when a plurality of electrical interposers 55 are mounted on the mother board 5, these can be linked to each other.
 なお、多層基板550は、図14に示すようなコア基板を含む多層基板であってもよいが、コア基板を含まないコアレスの多層基板であってもよい。 The multilayer substrate 550 may be a multilayer substrate including a core substrate as shown in FIG. 14, but may be a coreless multilayer substrate not including a core substrate.
 また、ビルドアップ層552は、アディティブ法、セミアディティブ法、サブトラクティブ法のようなビルドアップ工法により形成される。 Further, the buildup layer 552 is formed by a buildup method such as an additive method, a semi-additive method, or a subtractive method.
 また、電気インターポーザー55には、例えば前述したようなその他の電気素子が搭載されていてもよい。 Further, the electric interposer 55 may be mounted with other electric elements as described above, for example.
 ここで、図14に示す電気インターポーザー55は、多層基板550の上面のうち、LSI501のような電気配線基板用電気素子50等が搭載された領域以外の領域に接合された補強部材(スティフナー)554を有している。具体的には、図14に示す電気インターポーザー55では、LSI501および電気コネクター53以外の領域に補強部材554が設けられている。 Here, the electric interposer 55 shown in FIG. 14 is a reinforcing member (stiffener) bonded to a region other than the region where the electric element 50 for the electric wiring board such as the LSI 501 is mounted on the upper surface of the multilayer substrate 550. 554. Specifically, in the electrical interposer 55 shown in FIG. 14, a reinforcing member 554 is provided in a region other than the LSI 501 and the electrical connector 53.
 補強部材554の構成材料としては、ビルドアップ層552の絶縁層よりも熱膨張係数が小さいものが用いられる。このような補強部材554を用いることにより、ビルドアップ層552の熱膨張を抑えることができ、多層基板550の変形を抑えることができる。補強部材554の構成材料としては、具体的には、例えば金属材料、セラミックス材料等が挙げられるが、金属材料を用いるのが好ましい。これにより、補強部材554の放熱性を高めることができ、電気配線基板用電気素子50の信頼性を高めることができる。 As the constituent material of the reinforcing member 554, a material having a smaller thermal expansion coefficient than the insulating layer of the buildup layer 552 is used. By using such a reinforcing member 554, the thermal expansion of the buildup layer 552 can be suppressed, and the deformation of the multilayer substrate 550 can be suppressed. Specific examples of the constituent material of the reinforcing member 554 include a metal material and a ceramic material, but a metal material is preferably used. Thereby, the heat dissipation of the reinforcement member 554 can be improved and the reliability of the electrical element 50 for electrical wiring boards can be improved.
 特に、補強部材554の熱膨張係数は、0.5ppm/℃以上10ppm/℃以下であるのが好ましく、1ppm/℃以上7ppm/℃以下であるのがより好ましく、1ppm/℃以上5ppm/℃以下であるのがさらに好ましい。これにより、多層基板550の変形をより効果的に防止することができる。 In particular, the thermal expansion coefficient of the reinforcing member 554 is preferably 0.5 ppm / ° C. or more and 10 ppm / ° C. or less, more preferably 1 ppm / ° C. or more and 7 ppm / ° C. or less, and 1 ppm / ° C. or more and 5 ppm / ° C. or less. More preferably. Thereby, the deformation of the multilayer substrate 550 can be more effectively prevented.
 かかる金属材料としては、特に限定されず、各種金属材料を用いることができるが、放熱性および低熱膨張を実現する観点から、Feを含む合金を用いるのが好ましい。 Such a metal material is not particularly limited, and various metal materials can be used. From the viewpoint of realizing heat dissipation and low thermal expansion, it is preferable to use an alloy containing Fe.
 かかるFeを含む合金としては、例えば、Fe-Ni系合金、Fe-Co-Cr系合金、Fe-Co系合金、Fe-Pt系合金、Fe-Pd合金等が挙げられ、特に、Fe-Ni系合金を用いるのが好ましい。 Examples of such alloys containing Fe include Fe—Ni alloys, Fe—Co—Cr alloys, Fe—Co alloys, Fe—Pt alloys, Fe—Pd alloys, and the like. It is preferable to use a base alloy.
 このような金属材料は、放熱性に優れるだけでなく、熱膨張係数が低いため、補強部材554の構成材料として有用である。 Such a metal material is useful as a constituent material of the reinforcing member 554 because it has not only excellent heat dissipation but also a low coefficient of thermal expansion.
 Fe-Ni系合金としては、FeおよびNiを含むものであれば、特に限定されず、FeおよびNiの他に、残部(M)として、Co、Ti、Mo、Cr、Pd、Pt等の金属のうちの1種または2種以上の金属を含んでいてもよい。 The Fe—Ni alloy is not particularly limited as long as it contains Fe and Ni. In addition to Fe and Ni, the balance (M) is a metal such as Co, Ti, Mo, Cr, Pd, and Pt. Of these, one or more metals may be included.
 より具体的には、Fe-Ni系合金としては、例えば、Fe-36Ni合金(インバー)等のFe-Ni合金、Fe-32Ni-5Co合金(スーパーインバー)、Fe-29Ni-17Co合金(コバール)、Fe-36Ni-12Co合金(エリンバー)等のFe-Ni-Co合金、Fe-Ni-Cr-Ti合金、Ni-28Mo-2Fe合金等のNi-Mo-Fe合金等が挙げられる。また、Fe-Ni-Co合金は、例えば、KV-2、KV-4、KV-6、KV-15、KV-25等のKVシリーズ(NEOMAXマテリアル社製)、Nivarox等の商品名で市販されている。また、Fe-Ni合金は、例えば、NS-5、D-1(NEOMAXマテリアル社製)等の商品名で市販されている。また、Fe-Ni-Cr-Ti合金は、例えば、Ni-Span C-902(大同スペシャルメタル社製)、EL-3(NEOMAXマテリアル社製)等の商品名で市販されている。 More specifically, examples of Fe—Ni alloys include Fe—Ni alloys such as Fe-36Ni alloy (Invar), Fe-32Ni-5Co alloy (Super Invar), and Fe-29Ni-17Co alloy (Kovar). Fe-Ni-Co alloys such as Fe-36Ni-12Co alloy (Erin bar), Ni-Mo-Fe alloys such as Fe-Ni-Cr-Ti alloy and Ni-28Mo-2Fe alloy. In addition, Fe—Ni—Co alloys are commercially available under trade names such as KV series (manufactured by NEOMAX Materials) such as KV-2, KV-4, KV-6, KV-15, KV-25, and Nivarox. ing. In addition, Fe—Ni alloys are commercially available under trade names such as NS-5 and D-1 (manufactured by NEOMAX Materials). Fe-Ni-Cr-Ti alloys are commercially available under trade names such as Ni-Span C-902 (manufactured by Daido Special Metal Co., Ltd.), EL-3 (manufactured by NEOMAX Material Co., Ltd.), and the like.
 また、Fe-Co-Cr系合金としては、Fe、CoおよびCrを含むものであれば、特に限定されないが、例えば、Fe-54Co-9.5Cr(ステンレスインバー)等のFe-Co-Cr合金が挙げられる。なお、Fe-Co-Cr系合金は、Fe、CoおよびCrの他に、Ni、Ti、Mo、Pd、Pt等の金属のうちの1種または2種以上の金属を含んでいてもよい。 The Fe—Co—Cr alloy is not particularly limited as long as it contains Fe, Co, and Cr. For example, an Fe—Co—Cr alloy such as Fe-54Co-9.5Cr (stainless invar) is used. Is mentioned. Note that the Fe—Co—Cr-based alloy may contain one or more metals of metals such as Ni, Ti, Mo, Pd, and Pt in addition to Fe, Co, and Cr.
 また、Fe-Co系合金としては、FeおよびCoを含むものであれば、特に限定されず、FeおよびCoの他に、Ni、Ti、Mo、Cr、Pd、Pt等の金属のうちの1種または2種以上の金属を含んでいてもよい。 The Fe—Co alloy is not particularly limited as long as it contains Fe and Co. In addition to Fe and Co, one of metals such as Ni, Ti, Mo, Cr, Pd, and Pt is used. It may contain seeds or two or more metals.
 また、Fe-Pt系合金としては、FeおよびPtを含むものであれば、特に限定されず、FeおよびPtの他に、Co、Ni、Ti、Mo、Cr、Pd等の金属のうちの1種または2種以上の金属を含んでいてもよい。 The Fe—Pt alloy is not particularly limited as long as it contains Fe and Pt. In addition to Fe and Pt, one of metals such as Co, Ni, Ti, Mo, Cr, and Pd is used. It may contain seeds or two or more metals.
 また、Fe-Pd系合金としては、FeおよびPdを含むものであれば、特に限定されず、FeおよびPdの他に、Co、Ni、Ti、Mo、Cr、Pt等の金属のうちの1種または2種以上の金属を含んでいてもよい。 The Fe—Pd alloy is not particularly limited as long as it contains Fe and Pd. In addition to Fe and Pd, one of metals such as Co, Ni, Ti, Mo, Cr, and Pt is used. It may contain seeds or two or more metals.
 この補強部材554は、多層基板550の上面に接合されているが、その接合方法としては、例えば接着剤、粘着剤、圧接等が挙げられる。このうち接着剤を用いることにより、補強部材554と多層基板550とを簡単に接合することができる。かかる接着剤としては、接着機能を有するものであれば、特に限定されず、各種接着剤を用いることができるが、熱伝導性に優れたものが好ましい。 The reinforcing member 554 is joined to the upper surface of the multilayer substrate 550. Examples of the joining method include an adhesive, a pressure-sensitive adhesive, and pressure welding. Among these, the reinforcing member 554 and the multilayer substrate 550 can be easily joined by using an adhesive. Such an adhesive is not particularly limited as long as it has an adhesive function, and various adhesives can be used, but those having excellent thermal conductivity are preferable.
 熱伝導性に優れた接着剤としては、例えば無機フィラーを含むものが挙げられる。無機フィラーとしては、例えば、Au、Ag、Pt等の金属、シリカ、アルミナ、ケイ藻土、酸化チタン、酸化鉄、酸化亜鉛、酸化マグネシウム、金属フェライト等の酸化物、窒化ホウ素、窒化ケイ素、窒化ガリウム、窒化チタン等の窒化物、水酸化アルミニウム、水酸化マグネシウム等の水酸化物、炭酸カルシウム(軽質、重質)、炭酸マグネシウム、ドロマイト、ドーソナイト等の炭酸塩、硫酸カルシウム、硫酸バリウム、硫酸アンモニウム、亜硫酸カルシウム等の硫酸塩または亜硫酸塩、タルク、マイカ、クレー、ガラス繊維、ケイ酸カルシウム、モンモリロナイト、ベントナイト等のケイ酸塩、ホウ酸亜鉛、メタホウ酸バリウム、ホウ酸アルミニウム、ホウ酸カルシウム、ホウ酸ナトリウム等のホウ酸塩、カーボンブラック、グラファイト、炭素繊維等の炭素、その他鉄粉、銅粉、アルミニウム粉、亜鉛華、硫化モリブデン、ボロン繊維、チタン酸カリウム、チタン酸ジルコン酸鉛が挙げられ、これらのうちの1種または2種以上が用いられる。なお、無機フィラーとして導電性を有するものを用いた場合、必要に応じて、接着剤の接する部位に絶縁処理を施す。 Examples of the adhesive having excellent thermal conductivity include those containing an inorganic filler. Examples of the inorganic filler include metals such as Au, Ag, and Pt, oxides such as silica, alumina, diatomaceous earth, titanium oxide, iron oxide, zinc oxide, magnesium oxide, and metal ferrite, boron nitride, silicon nitride, and nitride. Nitrides such as gallium and titanium nitride, hydroxides such as aluminum hydroxide and magnesium hydroxide, carbonates such as calcium carbonate (light and heavy), magnesium carbonate, dolomite, and dawsonite, calcium sulfate, barium sulfate, ammonium sulfate, Sulfates or sulfites such as calcium sulfite, talc, mica, clay, glass fiber, calcium silicate, montmorillonite, bentonite and other silicates, zinc borate, barium metaborate, aluminum borate, calcium borate, boric acid Sodium borate, carbon black, graph Carbon, etc., iron powder, copper powder, aluminum powder, zinc white, molybdenum sulfide, boron fiber, potassium titanate, lead zirconate titanate, one or more of these Is used. In addition, when the thing which has electroconductivity is used as an inorganic filler, an insulation process is performed to the site | part which an adhesive agent contacts as needed.
 また、電気インターポーザー55には、多層基板550の下面のうち、バンプ553以外の領域にも補強部材554と同様の構成を有する補強部材555が設けられている。このような補強部材555を設けることにより、電気インターポーザー55の変形をさらに抑えることができる。 Further, the electric interposer 55 is provided with a reinforcing member 555 having the same configuration as the reinforcing member 554 in a region other than the bump 553 on the lower surface of the multilayer substrate 550. By providing such a reinforcing member 555, the deformation of the electric interposer 55 can be further suppressed.
 また、多層基板550には、その厚さ方向に貫通するビアホールが形成されており、そのビアホールに伝熱ポスト556が設けられている。 In addition, a via hole penetrating in the thickness direction is formed in the multilayer substrate 550, and a heat transfer post 556 is provided in the via hole.
 この伝熱ポスト556は、多層基板550全体をその厚さ方向に貫通しており、上端が多層基板550の上面に露出するとともに、下端が多層基板550の下面に露出している。そして、伝熱ポスト556は、上端が補強部材554に接触し、下端が補強部材555に接触している。これにより、伝熱ポスト556は、補強部材554と補強部材555とを接続している。 The heat transfer post 556 passes through the entire multilayer substrate 550 in the thickness direction, and has an upper end exposed at the upper surface of the multilayer substrate 550 and a lower end exposed at the lower surface of the multilayer substrate 550. The heat transfer post 556 has an upper end in contact with the reinforcing member 554 and a lower end in contact with the reinforcing member 555. Thus, the heat transfer post 556 connects the reinforcing member 554 and the reinforcing member 555.
 この伝熱ポスト556は、前述した多層基板550よりも高い伝熱性を有する。これにより、補強部材554から伝熱ポスト556を介して補強部材555へ熱を効率的に伝達することができる。その結果、補強部材554、555はヒートスプレッダーとしての性能を向上させることができる。 The heat transfer post 556 has a higher heat transfer property than the multilayer substrate 550 described above. Thereby, heat can be efficiently transferred from the reinforcing member 554 to the reinforcing member 555 through the heat transfer post 556. As a result, the reinforcing members 554 and 555 can improve the performance as a heat spreader.
 また、この伝熱ポスト556は、多層基板550をその厚さ方向に貫通するものであるため、公知の導体ポストと同様に、簡単かつ高精度に形成することができる。 In addition, since the heat transfer post 556 penetrates the multilayer substrate 550 in the thickness direction, it can be formed easily and with high accuracy like a known conductor post.
 また、伝熱ポスト556は、中空であってもよいし、中実であってもよい。また、伝熱ポスト556の横断面形状としては、特に限定されず、例えば、円形、楕円形、多角形等が挙げられる。また、伝熱ポスト556の数は、特に限定されず、任意であるが、多層基板550の機械的強度を損ねない程度に、できるだけ多くするのが好ましい。 Also, the heat transfer post 556 may be hollow or solid. Moreover, it does not specifically limit as a cross-sectional shape of the heat-transfer post 556, For example, circular, an ellipse, a polygon etc. are mentioned. Further, the number of heat transfer posts 556 is not particularly limited and is arbitrary, but it is preferable to increase the number as much as possible so as not to impair the mechanical strength of the multilayer substrate 550.
 伝熱ポスト556は、電気信号の伝送に寄与しないものである。これにより、補強部材554から伝熱ポスト556を介して補強部材555へ熱をより効率的に伝達することができる。 The heat transfer post 556 does not contribute to the transmission of electrical signals. Thereby, heat can be more efficiently transferred from the reinforcing member 554 to the reinforcing member 555 via the heat transfer post 556.
 なお、本実施形態では、伝熱ポスト556が、多層基板550を平面視したときの外周部に設けられている。これにより、多層基板550の温度分布を均一化し易い。 In this embodiment, the heat transfer post 556 is provided on the outer periphery when the multilayer substrate 550 is viewed in plan. Thereby, it is easy to make the temperature distribution of the multilayer substrate 550 uniform.
 また、伝熱ポスト556は、多層基板550の表面や内部に形成された電気配線と接触しないよう設けられている。これにより、伝熱ポスト556と電気配線との短絡を防止することができる。 Further, the heat transfer post 556 is provided so as not to come into contact with the electric wiring formed on the surface or inside of the multilayer substrate 550. Thereby, a short circuit between the heat transfer post 556 and the electrical wiring can be prevented.
 このような伝熱ポスト556の構成材料としては、多層基板550よりも高い伝熱性を有するものであれば、特に限定されないが、金属材料を用いるのが好ましい。 The constituent material of the heat transfer post 556 is not particularly limited as long as it has higher heat transfer property than the multilayer substrate 550, but a metal material is preferably used.
 かかる金属材料としては、例えば、銅、銅系合金、アルミニウム、アルミニウム系合金等の各種金属および各種合金が挙げられる。中でも、伝熱性に優れるので、銅、銅系合金、アルミニウム、アルミニウム系合金を用いるのが好ましい。銅および銅系合金は熱伝導性に優れるので、電気配線基板用電気素子50の放熱性をより向上させることができる。 Examples of the metal material include various metals and various alloys such as copper, a copper-based alloy, aluminum, and an aluminum-based alloy. Especially, since it is excellent in heat conductivity, it is preferable to use copper, a copper-type alloy, aluminum, and an aluminum-type alloy. Since copper and a copper-based alloy are excellent in thermal conductivity, the heat dissipation of the electric element for electric wiring board 50 can be further improved.
 ≪第4実施形態≫
 次に、本発明の光電気混載基板の第4実施形態について説明する。
<< Fourth Embodiment >>
Next, a fourth embodiment of the opto-electric hybrid board according to the present invention will be described.
 図15(a)は、本発明の光電気混載基板の第4実施形態の一部を示す断面図、図15(b)は、図15(a)の上面図である。 FIG. 15A is a cross-sectional view showing a part of the fourth embodiment of the opto-electric hybrid board of the present invention, and FIG. 15B is a top view of FIG. 15A.
 以下、第4実施形態について説明するが、第3実施形態との相違点を中心に説明し、同様の事項についてはその説明を省略する。なお、図15において前記各実施形態と同様の構成部分については、先に説明したのと同様の符号を付し、その詳細な説明を省略する。 Hereinafter, although the fourth embodiment will be described, the description will focus on the differences from the third embodiment, and the description of the same matters will be omitted. In FIG. 15, the same components as those of the above-described embodiments are denoted by the same reference numerals as those described above, and detailed description thereof is omitted.
 第4実施形態は、光導波路1が、マザーボード5の一部を覆うように広がるシート状の部分1aと、シート状の部分1aから伸びる帯状の部分1bと、を備えた形状をなしており、シート状の部分1aと帯状の部分1bとの接続部1dにおいて帯状の部分1bが90°捻られている以外、第3実施形態と同様である。 In the fourth embodiment, the optical waveguide 1 has a shape including a sheet-like portion 1a that extends so as to cover a part of the mother board 5, and a strip-like portion 1b that extends from the sheet-like portion 1a. The third embodiment is the same as the third embodiment except that the belt-like portion 1b is twisted by 90 ° at the connecting portion 1d between the sheet-like portion 1a and the belt-like portion 1b.
 すなわち、図15に示す光導波路1は、第3実施形態と同様にマザーボード5や電気インターポーザー55を覆うシート状の部分1aを有している。 That is, the optical waveguide 1 shown in FIG. 15 has a sheet-like portion 1a that covers the mother board 5 and the electric interposer 55 as in the third embodiment.
 また、図15に示す光導波路1は、帯状の部分1bを有しており、この帯状の部分1bには光電変換部4が設けられている。ここで、帯状の部分1bは前記接続部1dにおいて90°捻られているため、それに伴って光電変換部4の配置も第3実施形態の配置に対して90°回転された配置になっている。これにより、平板状をなす光電変換部4は、その面方向が電気インターポーザー55の上面に対して直交するよう配置されることとなる。 Further, the optical waveguide 1 shown in FIG. 15 has a strip-shaped portion 1b, and the photoelectric conversion portion 4 is provided in the strip-shaped portion 1b. Here, since the band-like portion 1b is twisted by 90 ° at the connecting portion 1d, the arrangement of the photoelectric conversion unit 4 is also rotated by 90 ° with respect to the arrangement of the third embodiment. . As a result, the flat plate-like photoelectric conversion unit 4 is arranged so that the surface direction thereof is orthogonal to the upper surface of the electric interposer 55.
 光電変換部4の絶縁性基板411の端部には、電気配線412に接続された接点4120が複数並べられている。上記のように光電変換部4が配置されることにより、この接点4120を電気インターポーザー55の電気コネクター(ソケット)53に直接差し込むことが可能になる。このような接続構造であれば、光電変換部4に電気コネクター42を設ける必要がなく、代わりに接点4120を形成しただけのいわゆるエッジ・コネクターを採用することができる。これにより、光電変換部4の低コスト化および簡素化を図ることができる。また、帯状の部分1bが90°捻られることにより、光導波路1の上方から電気コネクター53を直接視認することができるようになるため、接点4120と電気コネクター53との接続作業を容易に行うことができるという利点もある。 A plurality of contacts 4120 connected to the electrical wiring 412 are arranged at the end of the insulating substrate 411 of the photoelectric conversion unit 4. By disposing the photoelectric conversion unit 4 as described above, the contact 4120 can be directly inserted into the electrical connector (socket) 53 of the electrical interposer 55. With such a connection structure, it is not necessary to provide the electrical connector 42 in the photoelectric conversion unit 4, and a so-called edge connector in which the contact 4120 is formed instead can be employed. Thereby, the cost reduction and simplification of the photoelectric conversion part 4 can be achieved. Further, since the strip-shaped portion 1b is twisted by 90 °, the electrical connector 53 can be directly visually recognized from above the optical waveguide 1, so that the connection work between the contact 4120 and the electrical connector 53 can be easily performed. There is also an advantage of being able to.
 なお、この場合、電気コネクター53は、上述したものの他にカードソケットタイプのコネクターであってもよい。 In this case, the electrical connector 53 may be a card socket type connector other than those described above.
 また、図15では、光導波路1の端部に帯状の部分1bが設けられ、その端部には光コネクター101が装着されているが、帯状の部分1bの配置はこれに限定されない。例えば、シート状の部分1aに囲まれる位置に帯状の部分1bが配置されていてもよい。 Further, in FIG. 15, the band-shaped portion 1 b is provided at the end of the optical waveguide 1 and the optical connector 101 is attached to the end, but the arrangement of the band-shaped portion 1 b is not limited to this. For example, the belt-like part 1b may be arranged at a position surrounded by the sheet-like part 1a.
 さらに、接続部1dにおける捻り角度は、90°に限定されず、電気コネクター53の受け入れ角に応じて10~90°程度の範囲内で適宜設定される。 Furthermore, the twist angle in the connecting portion 1d is not limited to 90 °, and is appropriately set within a range of about 10 to 90 ° according to the acceptance angle of the electrical connector 53.
 ≪第5実施形態≫
 次に、本発明の光電気混載基板の第5実施形態について説明する。
«Fifth embodiment»
Next, a fifth embodiment of the opto-electric hybrid board according to the present invention will be described.
 図16は、本発明の光電気混載基板の第5実施形態を示す(一部透過して示す)分解斜視図、図17は、図16に白抜き矢印で示すように光導波路を重ねた状態におけるX-X線断面図である。 FIG. 16 is an exploded perspective view showing a fifth embodiment of the opto-electric hybrid board of the present invention (partially shown in a transparent manner), and FIG. 17 is a state in which optical waveguides are stacked as shown by white arrows in FIG. FIG.
 以下、第5実施形態について説明するが、第1実施形態との相違点を中心に説明し、同様の事項についてはその説明を省略する。なお、図16において前記各実施形態と同様の構成部分については、先に説明したのと同様の符号を付し、その詳細な説明を省略する。 Hereinafter, although the fifth embodiment will be described, the differences from the first embodiment will be mainly described, and description of similar matters will be omitted. In FIG. 16, the same components as those of the above-described embodiments are denoted by the same reference numerals as those described above, and detailed description thereof is omitted.
 第5実施形態は、光導波路1がさらに金属層18を備えている以外、第1実施形態と同様である。 The fifth embodiment is the same as the first embodiment except that the optical waveguide 1 further includes a metal layer 18.
 図16、17に示す光導波路1は、クラッド層12の上面およびクラッド層11の下面にそれぞれ設けられた金属層18を有している。金属層18を設けることにより、光導波路1の剛性を高めることができる。これにより、光導波路1をマザーボード5上に重ねたとき、光導波路1が撓み難くなり、その形状が維持され易いため、光導波路1とマザーボード5との配置がより高精度に維持される。これにより、光導波路1とマザーボード5との間の信号の送受信効率をより高く維持することができる。その結果、内部の信号伝送効率(信頼性)が特に高い光電気混載基板1000が得られる。 The optical waveguide 1 shown in FIGS. 16 and 17 has metal layers 18 provided on the upper surface of the cladding layer 12 and the lower surface of the cladding layer 11, respectively. By providing the metal layer 18, the rigidity of the optical waveguide 1 can be increased. Thereby, when the optical waveguide 1 is overlaid on the mother board 5, the optical waveguide 1 becomes difficult to bend and its shape is easily maintained, so that the arrangement of the optical waveguide 1 and the mother board 5 is maintained with higher accuracy. Thereby, the transmission / reception efficiency of the signal between the optical waveguide 1 and the mother board 5 can be maintained higher. As a result, an opto-electric hybrid board 1000 with particularly high internal signal transmission efficiency (reliability) can be obtained.
 (光導波路)
 図18は、図16に示す光導波路1の一部を拡大して示す(一部切り欠いて、および透過して示す)斜視図である。
(Optical waveguide)
FIG. 18 is an enlarged perspective view of a part of the optical waveguide 1 shown in FIG.
 図17、18に示す光導波路1は、クラッド層12の上面およびクラッド層11の下面にそれぞれ設けられた金属層18を有している。そして、LSI501の上面は、クラッド層11の下面に設けられた金属層18に当接(直接接触)している。これにより、LSI501からの熱は金属層18に容易に伝達され、拡散する。その結果、LSI501の放熱が特に促進されることとなる。すなわち、金属層18は、LSI501からの熱を放熱させるヒートスプレッダーとして機能する。 17 and 18 has a metal layer 18 provided on the upper surface of the cladding layer 12 and the lower surface of the cladding layer 11, respectively. The upper surface of the LSI 501 is in contact (direct contact) with the metal layer 18 provided on the lower surface of the cladding layer 11. As a result, heat from the LSI 501 is easily transferred to the metal layer 18 and diffused. As a result, the heat radiation of the LSI 501 is particularly promoted. That is, the metal layer 18 functions as a heat spreader that dissipates heat from the LSI 501.
 また、金属層18には図示しない他の放熱部材が接続されていてもよい。金属層18を介してLSI501からの熱をこの放熱部材に伝導させ、放熱することができる。放熱部材としては、例えば、放熱フィン、熱交換機等が挙げられる。 Further, another heat radiating member (not shown) may be connected to the metal layer 18. Heat from the LSI 501 can be conducted to the heat radiating member through the metal layer 18 to be radiated. As a heat radiating member, a heat radiating fin, a heat exchanger, etc. are mentioned, for example.
 なお、LSI501の上面は、熱伝導材を介して金属層18と接していてもよい。熱伝導材としては、例えば、アクリル系樹脂、シリコーン系樹脂のような樹脂系材料、グラファイトのような炭素系材料、シリカ、アルミナ、窒化ケイ素のようなセラミックス系材料、アルミニウム、銅のような金属系材料等のシートまたはペースト等が用いられる。また、これらの材料の2種以上を混合した複合材料のシートまたはペーストも用いられる。 Note that the upper surface of the LSI 501 may be in contact with the metal layer 18 via a heat conductive material. Examples of the heat conducting material include resin materials such as acrylic resins and silicone resins, carbon materials such as graphite, ceramic materials such as silica, alumina, and silicon nitride, metals such as aluminum and copper. A sheet or paste of a system material or the like is used. A composite material sheet or paste in which two or more of these materials are mixed may also be used.
 また、金属層18を設けることにより、光導波路1の剛性を高めることができる。これにより、光導波路1をマザーボード5上に重ねたとき、光導波路1が撓み難くなり、その形状が維持され易いため、光導波路1とマザーボード5との配置がより高精度に維持される。これにより、光導波路1とマザーボード5との間の信号の送受信効率をより高く維持することができる。その結果、内部の信号伝送効率(信頼性)が特に高い光電気混載基板1000が得られる。 Moreover, the rigidity of the optical waveguide 1 can be increased by providing the metal layer 18. Thereby, when the optical waveguide 1 is overlaid on the mother board 5, the optical waveguide 1 becomes difficult to bend and its shape is easily maintained, so that the arrangement of the optical waveguide 1 and the mother board 5 is maintained with higher accuracy. Thereby, the transmission / reception efficiency of the signal between the optical waveguide 1 and the mother board 5 can be maintained higher. As a result, an opto-electric hybrid board 1000 with particularly high internal signal transmission efficiency (reliability) can be obtained.
 金属層18の平均厚さは、特に限定されないが、1~1000μm程度であるのが好ましく、3~800μm程度であるのがより好ましい。これにより、放熱性を高めつつ、光導波路1に十分な剛性が付与され、かつ自重で撓むのを防止することができる。すなわち、金属層18の平均厚さが前記下限値を下回る場合、十分な放熱性が得られないおそれや、また光導波路1に十分な剛性が付与されないおそれがある。一方、金属層18の平均厚さが前記上限値を上回る場合、金属層18の質量が大きくなり、光導波路1が自重で撓んでしまい、信号伝送効率が低下するおそれがある。 The average thickness of the metal layer 18 is not particularly limited, but is preferably about 1 to 1000 μm, more preferably about 3 to 800 μm. Thereby, it is possible to prevent the optical waveguide 1 from being bent due to its own weight while enhancing heat dissipation. That is, when the average thickness of the metal layer 18 is less than the lower limit, sufficient heat dissipation may not be obtained, and sufficient rigidity may not be imparted to the optical waveguide 1. On the other hand, when the average thickness of the metal layer 18 exceeds the upper limit, the mass of the metal layer 18 increases, and the optical waveguide 1 is bent by its own weight, which may reduce the signal transmission efficiency.
 また、金属層18の合計の平均厚さは、光導波路1の平均厚さの0.01~20倍程度であるのが好ましく、0.05~15倍程度であるのがより好ましい。これにより、十分な放熱性と剛性とを確保しつつ、光導波路1の質量が必要以上に重くなるのを防止することができる。 In addition, the total average thickness of the metal layers 18 is preferably about 0.01 to 20 times, more preferably about 0.05 to 15 times the average thickness of the optical waveguide 1. Thereby, it is possible to prevent the mass of the optical waveguide 1 from becoming unnecessarily heavy while ensuring sufficient heat dissipation and rigidity.
 金属層18の構成材料としては、例えば各種金属材料が挙げられ、特に銅、アルミニウム、鉄、銀、金、クロム、ニッケル、亜鉛、錫の単体またはこれらの金属元素を含む合金が好ましく用いられ、アルミニウム、鉄および銅の単体またはこれらの基合金を主材料とするものがより好ましく用いられる。これらの材料は特に放熱性が高く、かつ、光導波路1に特に十分な剛性を付与するものであるため、光導波路1とマザーボード5との配置をさらに高精度に維持することができる。 Examples of the constituent material of the metal layer 18 include various metal materials, particularly copper, aluminum, iron, silver, gold, chromium, nickel, zinc, tin, or an alloy containing these metal elements is preferably used. More preferably, aluminum, iron and copper alone or a base alloy thereof is used as a main material. Since these materials have particularly high heat dissipation properties and give the optical waveguide 1 particularly sufficient rigidity, the arrangement of the optical waveguide 1 and the mother board 5 can be maintained with higher accuracy.
 また、後に詳述するが、光導波路1を貫通するビアホールを設け、そこに伝熱ポストを設けるようにしてもよい。この伝熱ポストを介してクラッド層12の上面に設けられた金属層18とクラッド層11の下面に設けられた金属層18とを接続することにより、ヒートスプレッダーとしての機能がより強化されることとなる。この伝熱ポストの構成材料には、例えば、銅、アルミニウム、ニッケル、クロム、亜鉛、錫、金、銀等の金属単体、またはこれらの金属元素を含む合金といった各種金属材料が挙げられる。 As will be described in detail later, a via hole penetrating the optical waveguide 1 may be provided, and a heat transfer post may be provided there. By connecting the metal layer 18 provided on the upper surface of the clad layer 12 and the metal layer 18 provided on the lower surface of the clad layer 11 through this heat transfer post, the function as a heat spreader is further strengthened. It becomes. Examples of the constituent material of the heat transfer post include various metal materials such as copper, aluminum, nickel, chromium, zinc, tin, gold, silver and the like, or alloys containing these metal elements.
 なお、クラッド層11の下面に設けられた金属層18には、光路と重なる部分に貫通孔が形成されている。これにより、金属層18によって信号光の伝搬が妨げられるのを防止することができる。 Note that a through hole is formed in the metal layer 18 provided on the lower surface of the cladding layer 11 at a portion overlapping the optical path. Thereby, it is possible to prevent the propagation of the signal light from being disturbed by the metal layer 18.
 また、金属層18には、必要に応じてパターニングが施され、電気配線として用いられる部分が含まれていてもよい。 Further, the metal layer 18 may be patterned as necessary to include a portion used as an electrical wiring.
 図19は、本実施形態に係る光モジュール100の他の構成例を示す断面図である。 FIG. 19 is a cross-sectional view showing another configuration example of the optical module 100 according to the present embodiment.
 図19に示す光電変換部4は、図16に示す光電変換部4にヒートスプレッダー(放熱体)44を付加したものである。図19に示すヒートスプレッダー44は、光電変換部基板41の下面に搭載された光素子6や光電変換部用電気素子7を覆う箱状をなしている。そして、ヒートスプレッダー44内部の底面と光電変換部用電気素子7の下面とが当接するよう構成されている。これにより、光電変換部用電気素子7からの熱がヒートスプレッダー44に効率よく伝達され、拡散する。その結果、光電変換部用電気素子7の放熱が特に促進されることとなる。 19 is obtained by adding a heat spreader (heat radiator) 44 to the photoelectric conversion unit 4 shown in FIG. The heat spreader 44 shown in FIG. 19 has a box shape that covers the optical element 6 and the photoelectric conversion unit electrical element 7 mounted on the lower surface of the photoelectric conversion unit substrate 41. The bottom surface of the heat spreader 44 and the bottom surface of the photoelectric conversion unit electrical element 7 are in contact with each other. Thereby, the heat from the photoelectric conversion unit electrical element 7 is efficiently transmitted to the heat spreader 44 and diffused. As a result, the heat dissipation of the photoelectric conversion unit electrical element 7 is particularly promoted.
 ヒートスプレッダー44の構成材料としては、前述したものと同様のものが用いられる。 As the constituent material of the heat spreader 44, the same materials as described above are used.
 なお、光電変換部用電気素子7とヒートスプレッダー44との間は、単に接しているのみであってもよいが、熱伝導材を介して接していてもよい。熱伝導材としては前述したものが用いられる。 Note that the photoelectric conversion unit electrical element 7 and the heat spreader 44 may be merely in contact with each other, or may be in contact with each other via a heat conductive material. As the heat conducting material, those described above are used.
 また、ヒートスプレッダー44には、表面積を大きくする凹凸形状が設けられていてもよい。この凹凸形状としては、例えば図19に示すヒートスプレッダー44の下面に設けられるフィン形状等が挙げられる。 Also, the heat spreader 44 may be provided with an uneven shape that increases the surface area. As this uneven | corrugated shape, the fin shape etc. which are provided in the lower surface of the heat spreader 44 shown, for example in FIG. 19 are mentioned.
 ≪第6実施形態≫
 次に、本発明の光電気混載基板の第6実施形態に係る光モジュールについて説明する。
<< Sixth Embodiment >>
Next, an optical module according to a sixth embodiment of the opto-electric hybrid board of the present invention will be described.
 図20は、本発明の光電気混載基板の第6実施形態の一部を示す断面図である。 FIG. 20 is a cross-sectional view showing a part of the sixth embodiment of the opto-electric hybrid board according to the present invention.
 以下、第6実施形態について説明するが、第5実施形態との相違点を中心に説明し、同様の事項についてはその説明を省略する。なお、図20において前記各実施形態と同様の構成部分については、先に説明したのと同様の符号を付し、その詳細な説明を省略する。 Hereinafter, although the sixth embodiment will be described, the description will focus on the differences from the fifth embodiment, and the description of the same matters will be omitted. In FIG. 20, the same components as those of the above-described embodiments are denoted by the same reference numerals as those described above, and detailed description thereof is omitted.
 第6実施形態は、光電変換部4の構成が異なる以外、第5実施形態と同様である。 The sixth embodiment is the same as the fifth embodiment except that the configuration of the photoelectric conversion unit 4 is different.
 図20に示す光電変換部4は、光導波路1のクラッド層11の下面に設けられた絶縁性基板411aと、クラッド層12の上面に設けられた絶縁性基板411bと、絶縁性基板411aの下面に設けられた電気配線412aと、絶縁性基板411bの上面に設けられた電気配線412bと、光導波路1を貫通し電気配線412aと電気配線412bとを接続する貫通配線413と、封止材45と、電気コネクター42と、光素子6と、光電変換部用電気素子7と、を有している。また、ミラー17は、電気配線412bから、絶縁性基板411b、光導波路1、および絶縁性基板411aにわたって形成された凹部170の内面の一部で構成されている。 20 includes an insulating substrate 411a provided on the lower surface of the cladding layer 11 of the optical waveguide 1, an insulating substrate 411b provided on the upper surface of the cladding layer 12, and a lower surface of the insulating substrate 411a. An electrical wiring 412a provided on the insulating substrate 411b, a through-wiring 413 penetrating the optical waveguide 1 to connect the electrical wiring 412a and the electrical wiring 412b, and a sealing material 45. And an electrical connector 42, an optical element 6, and a photoelectric conversion unit electrical element 7. Further, the mirror 17 is configured by a part of the inner surface of the recess 170 formed from the electric wiring 412b to the insulating substrate 411b, the optical waveguide 1, and the insulating substrate 411a.
 図20に示す光電変換部4の構造は、光導波路1を2枚の絶縁性基板411a、411bで挟み込む構造になっている。このため、絶縁性基板411aとしてより薄いものを用いたとしても光電変換部4の剛性を維持することができ、光素子6とミラー17との離間距離をより短くすることができる。その結果、光素子6とミラー17との光結合効率をより高めることができる。 20 has a structure in which the optical waveguide 1 is sandwiched between two insulating substrates 411a and 411b. For this reason, even if a thinner substrate is used as the insulating substrate 411a, the rigidity of the photoelectric conversion unit 4 can be maintained, and the separation distance between the optical element 6 and the mirror 17 can be further shortened. As a result, the optical coupling efficiency between the optical element 6 and the mirror 17 can be further increased.
 絶縁性基板411a、411bの平均厚さは、5~50μm程度であるのが好ましく、10~40μm程度であるのがより好ましい。 The average thickness of the insulating substrates 411a and 411b is preferably about 5 to 50 μm, and more preferably about 10 to 40 μm.
 なお、本実施形態に係る光電変換部4では、絶縁性基板411bの上面側にも光電変換部用電気素子7等を実装可能であり、これにより光電変換部用電気素子7のさらなる高密度実装が可能になる。 In the photoelectric conversion unit 4 according to the present embodiment, the photoelectric conversion unit electrical element 7 and the like can be mounted on the upper surface side of the insulating substrate 411b. Is possible.
 また、凹部170は、電気配線412bの上面に開口している凹部であるので、光導波路1に対して光電変換部4を接着した後に形成可能である。このため、光素子6の受発光部の位置に合わせて凹部170を形成することが可能になり、受発光部とミラー17との光軸合わせを極めて厳密に行うことができる。 Further, since the concave portion 170 is a concave portion opened on the upper surface of the electric wiring 412 b, it can be formed after the photoelectric conversion portion 4 is bonded to the optical waveguide 1. For this reason, it becomes possible to form the recessed part 170 according to the position of the light receiving / emitting part of the optical element 6, and the optical axis alignment of the light receiving / emitting part and the mirror 17 can be performed very strictly.
 図21は、本実施形態に係る光モジュール100の他の構成例を示す断面図である。 FIG. 21 is a cross-sectional view showing another configuration example of the optical module 100 according to the present embodiment.
 図21に示す光電変換部4では、図20に示す光電変換部4の各絶縁性基板411a、411bおよび電気配線412a、412bがそれぞれ光導波路1の全体にわたって延伸されている。ここで、電気配線412a、412bは、それぞれ金属材料で構成されたものであり、前記第1実施形態に係る金属層18と同様の機能を有するものである。このため、図21に示す光モジュール100では、光導波路1の剛性が全体にわたって強化されるとともに、光導波路1が外力や外光、外部環境から保護されることとなる。 21, the insulating substrates 411a and 411b and the electric wirings 412a and 412b of the photoelectric conversion unit 4 illustrated in FIG. 20 are each extended over the entire optical waveguide 1. Here, the electric wirings 412a and 412b are each made of a metal material and have the same function as the metal layer 18 according to the first embodiment. For this reason, in the optical module 100 shown in FIG. 21, the rigidity of the optical waveguide 1 is enhanced as a whole, and the optical waveguide 1 is protected from external force, external light, and the external environment.
 ≪第7実施形態≫
 次に、本発明の光電気混載基板の第7実施形態に係る光モジュールについて説明する。
<< Seventh Embodiment >>
Next, an optical module according to a seventh embodiment of the opto-electric hybrid board of the present invention will be described.
 図22は、本発明の光電気混載基板の第7実施形態の一部を示す断面図である。 FIG. 22 is a cross-sectional view showing a part of a seventh embodiment of the opto-electric hybrid board according to the present invention.
 以下、第7実施形態について説明するが、第5実施形態との相違点を中心に説明し、同様の事項についてはその説明を省略する。なお、図22において前記各実施形態と同様の構成部分については、先に説明したのと同様の符号を付し、その詳細な説明を省略する。 Hereinafter, although the seventh embodiment will be described, the description will focus on the differences from the fifth embodiment, and the description of the same matters will be omitted. In FIG. 22, the same components as those in the above-described embodiments are denoted by the same reference numerals as those described above, and detailed description thereof is omitted.
 第7実施形態に係る光モジュール100は、光電変換部4の絶縁性基板411およびその上面に設けられた電気配線412と、その上に位置する金属層18と、が省略され、一方、光導波路1を貫通し金属層18と電気配線412とを接続する貫通配線18cが形成されている以外、第5実施形態に係る光モジュール100と同様である。すなわち、図22に示す光電変換部4は、光導波路1と電気配線412とが接するよう構成されている。このような構造であれば、絶縁性基板411等が省略された分、光素子6とミラー17との離間距離をさらに短くすることができる。その結果、光素子6とミラー17との光結合効率をさらに高めることができる。また、前記離間距離を短くすることができるので、図22に示すようにレンズ16を省略することもできる。 In the optical module 100 according to the seventh embodiment, the insulating substrate 411 of the photoelectric conversion unit 4 and the electric wiring 412 provided on the upper surface thereof, and the metal layer 18 positioned thereon are omitted, while the optical waveguide 1 is the same as the optical module 100 according to the fifth embodiment, except that a through-wiring 18c that penetrates 1 and connects the metal layer 18 and the electric wiring 412 is formed. That is, the photoelectric conversion unit 4 shown in FIG. 22 is configured such that the optical waveguide 1 and the electric wiring 412 are in contact with each other. With such a structure, the distance between the optical element 6 and the mirror 17 can be further shortened as much as the insulating substrate 411 and the like are omitted. As a result, the optical coupling efficiency between the optical element 6 and the mirror 17 can be further increased. Further, since the separation distance can be shortened, the lens 16 can be omitted as shown in FIG.
 また、金属層18をパターニングして電気配線を作り込み、貫通配線18cを介して電気配線412と接続することにより、より広い範囲に電気回路を構築することができる。さらには、貫通配線18cを介して、光素子6や光電変換部用電気素子7からの熱を金属層18にも拡散させ、放熱することができる。 In addition, an electric circuit can be constructed in a wider range by patterning the metal layer 18 to create an electric wiring and connecting it to the electric wiring 412 through the through wiring 18c. Furthermore, heat from the optical element 6 and the photoelectric conversion unit electrical element 7 can also be diffused to the metal layer 18 through the through-wiring 18c to dissipate heat.
 ≪第8実施形態≫
 次に、本発明の光電気混載基板の第8実施形態について説明する。
<< Eighth Embodiment >>
Next, an eighth embodiment of the opto-electric hybrid board according to the present invention will be described.
 図23は、本発明の光電気混載基板の第8実施形態の一部を示す断面図である。 FIG. 23 is a sectional view showing a part of an eighth embodiment of the opto-electric hybrid board according to the present invention.
 以下、第8実施形態について説明するが、第3実施形態や第5実施形態との相違点を中心に説明し、同様の事項についてはその説明を省略する。なお、図23において前記各実施形態と同様の構成部分については、先に説明したのと同様の符号を付し、その詳細な説明を省略する。 Hereinafter, although the eighth embodiment will be described, the description will focus on differences from the third embodiment and the fifth embodiment, and the description of the same matters will be omitted. In FIG. 23, components similar to those in the above-described embodiments are denoted by the same reference numerals as those described above, and detailed description thereof is omitted.
 第8実施形態は、光電変換部4とマザーボード5との間に電気インターポーザー(電気配線基板)55が介挿されているとともに、LSI501が電気インターポーザー55に搭載されている以外、第5実施形態と同様である。なお、本実施形態では、第5実施形態等と異なり、電気インターポーザー55が電気配線基板に相当する。 In the eighth embodiment, an electrical interposer (electric wiring board) 55 is interposed between the photoelectric conversion unit 4 and the mother board 5, and the LSI 501 is mounted on the electrical interposer 55. It is the same as the form. In this embodiment, unlike the fifth embodiment, the electrical interposer 55 corresponds to an electrical wiring board.
 図23に示す電気インターポーザー55は、コア基板551とその両面に積層されたビルドアップ層552とを備えた多層基板550と、多層基板550の下面に設けられたバンプ553と、を有している。そして、電気インターポーザー55には前述したようにLSI501が搭載されているとともに、電気インターポーザー55の表面および内部に敷設された電気配線と光電変換部4とが電気コネクター53を介して電気的に接続されている。このような電気インターポーザー55を用いることにより、電気配線の高密度化を容易に図ることができ、信号伝送速度を高めることができる。その結果、LSI501と光電変換部4との間の情報伝送の高速化および大容量化を図ることができ、光通信による高速化の恩恵を最大限に活かすことができる。すなわち、高速かつ大容量の情報処理を可能にする光電気混載基板1000が得られる。 The electric interposer 55 shown in FIG. 23 includes a multilayer substrate 550 having a core substrate 551 and a buildup layer 552 laminated on both surfaces thereof, and bumps 553 provided on the lower surface of the multilayer substrate 550. Yes. As described above, the LSI 501 is mounted on the electric interposer 55, and the electrical wiring laid on the surface and inside of the electric interposer 55 and the photoelectric conversion unit 4 are electrically connected via the electric connector 53. It is connected. By using such an electrical interposer 55, it is possible to easily increase the density of electrical wiring and increase the signal transmission speed. As a result, it is possible to increase the speed and capacity of information transmission between the LSI 501 and the photoelectric conversion unit 4, and to maximize the benefits of speeding up by optical communication. That is, the opto-electric hybrid board 1000 that enables high-speed and large-capacity information processing is obtained.
 また、電気インターポーザー55は、バンプ553を介してマザーボード5の電気配線52と電気的に接続されている。これにより、マザーボード5上に複数の電気インターポーザー55が搭載されている場合も、これらを相互に連携させることができる。 Further, the electric interposer 55 is electrically connected to the electric wiring 52 of the mother board 5 via the bumps 553. Thereby, even when a plurality of electrical interposers 55 are mounted on the mother board 5, these can be linked to each other.
 なお、多層基板550は、図23に示すようなコア基板を含む多層基板であってもよいが、コア基板を含まないコアレスの多層基板であってもよい。 The multilayer substrate 550 may be a multilayer substrate including a core substrate as shown in FIG. 23, or may be a coreless multilayer substrate not including a core substrate.
 また、ビルドアップ層552は、アディティブ法、セミアディティブ法、サブトラクティブ法のようなビルドアップ工法により形成される。 Further, the buildup layer 552 is formed by a buildup method such as an additive method, a semi-additive method, or a subtractive method.
 また、電気インターポーザー55には、例えば前述したようなその他の電気素子が搭載されていてもよい。 Further, the electric interposer 55 may be mounted with other electric elements as described above, for example.
 ここで、図23に示す電気インターポーザー55は、多層基板550の上面のうち、LSI501のような電気配線基板用電気素子50等が搭載された領域以外の領域に接合された補強部材(スティフナー)554を有している。具体的には、図23に示す電気インターポーザー55では、LSI501および電気コネクター53以外の領域に補強部材554が設けられている。 Here, the electric interposer 55 shown in FIG. 23 is a reinforcing member (stiffener) bonded to a region other than the region where the electric element 50 for the electric wiring board such as the LSI 501 is mounted on the upper surface of the multilayer substrate 550. 554. Specifically, in the electrical interposer 55 shown in FIG. 23, a reinforcing member 554 is provided in a region other than the LSI 501 and the electrical connector 53.
 以上のように、電気インターポーザー55がこのような補強部材554、555、すなわち金属層を備え、かつこれらが伝熱ポスト556を介して接続されていることにより、電気インターポーザー55は金属層を備えない場合に比べてその剛性が向上する。これにより、光導波路1を電気インターポーザー55上に重ねたとき、光導波路1のみならず電気インターポーザー55も撓み難くなり、その結果、電気インターポーザー55と接続されている光導波路1の配置がより高精度に維持されることとなる。これにより、光導波路1と電気インターポーザー55との間の信号の送受信効率をより高く維持することができる。 As described above, the electrical interposer 55 includes the reinforcing members 554 and 555, that is, the metal layers, and these are connected via the heat transfer posts 556, so that the electrical interposer 55 has the metal layers. Its rigidity is improved compared to the case where it is not provided. Thereby, when the optical waveguide 1 is stacked on the electric interposer 55, not only the optical waveguide 1 but also the electric interposer 55 is difficult to be bent. As a result, the arrangement of the optical waveguide 1 connected to the electric interposer 55 is reduced. It will be maintained with higher accuracy. Thereby, the transmission / reception efficiency of the signal between the optical waveguide 1 and the electric interposer 55 can be maintained higher.
 ≪第9実施形態≫
 次に、本発明の光電気混載基板の第9実施形態について説明する。
<< Ninth embodiment >>
Next, a ninth embodiment of the opto-electric hybrid board according to the present invention will be described.
 図24(a)は、本発明の光電気混載基板の第9実施形態の一部を示す断面図、図24(b)は、図24(a)の上面図である。 FIG. 24A is a cross-sectional view showing a part of the ninth embodiment of the opto-electric hybrid board of the present invention, and FIG. 24B is a top view of FIG.
 以下、第9実施形態について説明するが、第4実施形態や第8実施形態との相違点を中心に説明し、同様の事項についてはその説明を省略する。なお、図24において前記各実施形態と同様の構成部分については、先に説明したのと同様の符号を付し、その詳細な説明を省略する。 Hereinafter, the ninth embodiment will be described, but the description will focus on differences from the fourth embodiment and the eighth embodiment, and description of similar matters will be omitted. In FIG. 24, the same components as those of the above-described embodiments are denoted by the same reference numerals as those described above, and detailed description thereof is omitted.
 第9実施形態は、光導波路1が、マザーボード5の一部を覆うように広がるシート状の部分1aと、シート状の部分1aから伸びる帯状の部分1bと、を備えた形状をなしており、シート状の部分1aと帯状の部分1bとの接続部1dにおいて帯状の部分1bが90°捻られている以外、第8実施形態と同様である。 In the ninth embodiment, the optical waveguide 1 has a shape including a sheet-like portion 1a extending so as to cover a part of the mother board 5, and a strip-like portion 1b extending from the sheet-like portion 1a. This is the same as in the eighth embodiment, except that the belt-like portion 1b is twisted by 90 ° at the connecting portion 1d between the sheet-like portion 1a and the belt-like portion 1b.
 すなわち、図24に示す光導波路1は、第8実施形態と同様にマザーボード5や電気インターポーザー55を覆うシート状の部分1aを有している。 That is, the optical waveguide 1 shown in FIG. 24 has a sheet-like portion 1a that covers the mother board 5 and the electric interposer 55 as in the eighth embodiment.
 また、図24に示す光導波路1は、帯状の部分1bを有しており、この帯状の部分1bには光電変換部4が設けられている。ここで、帯状の部分1bは前記接続部1dにおいて90°捻られているため、それに伴って光電変換部4の配置も第4実施形態の配置に対して90°回転された配置になっている。これにより、平板状をなす光電変換部4は、その面方向が電気インターポーザー55の上面に対して直交するよう配置されることとなる。 Further, the optical waveguide 1 shown in FIG. 24 has a strip-shaped portion 1b, and the photoelectric conversion portion 4 is provided in the strip-shaped portion 1b. Here, since the band-like portion 1b is twisted by 90 ° at the connecting portion 1d, the arrangement of the photoelectric conversion unit 4 is also rotated by 90 ° with respect to the arrangement of the fourth embodiment. . As a result, the flat plate-like photoelectric conversion unit 4 is arranged so that the surface direction thereof is orthogonal to the upper surface of the electric interposer 55.
 光電変換部4の絶縁性基板411の端部には、電気配線412に接続された接点4120が複数並べられている。上記のように光電変換部4が配置されることにより、この接点4120を電気インターポーザー55の電気コネクター(ソケット)53に直接差し込むことが可能になる。このような接続構造であれば、光電変換部4に電気コネクター42を設ける必要がなく、代わりに接点4120を形成しただけのいわゆるエッジ・コネクターを採用することができる。これにより、光電変換部4の低コスト化および簡素化を図ることができる。また、帯状の部分1bが90°捻られることにより、光導波路1の上方から電気コネクター53を直接視認することができるようになるため、接点4120と電気コネクター53との接続作業を容易に行うことができるという利点もある。 A plurality of contacts 4120 connected to the electrical wiring 412 are arranged at the end of the insulating substrate 411 of the photoelectric conversion unit 4. By disposing the photoelectric conversion unit 4 as described above, the contact 4120 can be directly inserted into the electrical connector (socket) 53 of the electrical interposer 55. With such a connection structure, it is not necessary to provide the electrical connector 42 in the photoelectric conversion unit 4, and a so-called edge connector in which the contact 4120 is formed instead can be employed. Thereby, cost reduction and simplification of the photoelectric conversion part 4 can be achieved. Further, since the strip-shaped portion 1b is twisted by 90 °, the electrical connector 53 can be directly visually recognized from above the optical waveguide 1, and therefore, the connection work between the contact 4120 and the electrical connector 53 can be easily performed. There is also an advantage of being able to.
 なお、この場合、電気コネクター53は、上述したものの他にカードソケットタイプのコネクターであってもよい。 In this case, the electrical connector 53 may be a card socket type connector other than those described above.
 また、図24では、光導波路1の端部に帯状の部分1bが設けられ、その端部には光コネクター101が装着されているが、帯状の部分1bの配置はこれに限定されない。例えば、シート状の部分1aに囲まれる位置に帯状の部分1bが配置されていてもよい。 In FIG. 24, a band-shaped portion 1b is provided at the end of the optical waveguide 1 and the optical connector 101 is attached to the end, but the arrangement of the band-shaped portion 1b is not limited to this. For example, the belt-like part 1b may be arranged at a position surrounded by the sheet-like part 1a.
 さらに、接続部1dにおける捻り角度は、90°に限定されず、電気コネクター53の受け入れ角に応じて10~90°程度の範囲内で適宜設定される。 Furthermore, the twist angle in the connecting portion 1d is not limited to 90 °, and is appropriately set within a range of about 10 to 90 ° according to the acceptance angle of the electrical connector 53.
 ≪第10実施形態≫
 本発明の光電気混載基板の第10実施形態、およびそれに含まれる本発明の光モジュール、本発明の光配線部品および本発明の光導波路について説明する。
«Tenth embodiment»
A tenth embodiment of the opto-electric hybrid board according to the present invention, and the optical module according to the present invention, the optical wiring component according to the present invention, and the optical waveguide according to the present invention will be described.
 図25は、本発明の光電気混載基板の第10実施形態を示す(一部透過して示す)分解斜視図、図26は、図25に矢印で示すように光導波路を重ねた状態におけるX-X線断面図である。
以下、第10実施形態について説明するが、第1実施形態との相違点を中心に説明し、同様の事項についてはその説明を省略する。なお、図25、26において第1実施形態と同様の構成部分については、先に説明したのと同様の符号を付し、その詳細な説明を省略する。
FIG. 25 is an exploded perspective view showing a tenth embodiment of the opto-electric hybrid board of the present invention (partially shown), and FIG. 26 is a view showing X in a state where optical waveguides are stacked as shown by arrows in FIG. FIG.
Hereinafter, although 10th Embodiment is described, it demonstrates centering around difference with 1st Embodiment, The description is abbreviate | omitted about the same matter. 25 and 26, components similar to those in the first embodiment are denoted by the same reference numerals as those described above, and detailed description thereof is omitted.
 図25に示す光モジュール100は、光導波路1と、その端部に設けられた光コネクター101と、光導波路1の下方に設けられた光電変換部4と、を有している。また、図25に示す光電気混載基板1000は、光モジュール100と、光電変換部4の下方に設けられたマザーボード(電気配線基板)5と、を有している。 An optical module 100 shown in FIG. 25 has an optical waveguide 1, an optical connector 101 provided at an end thereof, and a photoelectric conversion unit 4 provided below the optical waveguide 1. An opto-electric hybrid board 1000 shown in FIG. 25 includes the optical module 100 and a mother board (electric wiring board) 5 provided below the photoelectric conversion unit 4.
 このうち、光導波路1は、平面視で四角形をなすシート状の部材である。光導波路1は、図26に示すように、クラッド層11、コア層13およびクラッド層12が下方からこの順で積層されてなるものであり、コア層13には光信号を伝搬するコア部14が所望のパターンで形成されている。なお、図25では、コア層13中に形成されているコア部14を、光導波路1の陰にある光電変換部4とともに破線で示している。 Of these, the optical waveguide 1 is a sheet-like member having a quadrangular shape in plan view. As shown in FIG. 26, the optical waveguide 1 is formed by laminating a clad layer 11, a core layer 13, and a clad layer 12 in this order from below, and a core portion 14 that propagates an optical signal to the core layer 13. Are formed in a desired pattern. In FIG. 25, the core portion 14 formed in the core layer 13 is indicated by a broken line together with the photoelectric conversion portion 4 behind the optical waveguide 1.
 本実施形態では、第1実施形態と同様の内容及び構成に加え、光導波路1には、これを貫通するように貫通孔19が設けられている。 In the present embodiment, in addition to the same contents and configuration as in the first embodiment, a through hole 19 is provided in the optical waveguide 1 so as to penetrate therethrough.
 一方、そのような貫通孔が存在しない場合、電気配線基板用電気素子50が光導波路1で覆われることになるため、LSI501のような発熱量の大きい電気配線基板用電気素子50の場合、放熱性が低下するおそれがある。 On the other hand, when such a through-hole does not exist, the electrical wiring board electrical element 50 is covered with the optical waveguide 1. Therefore, in the case of the electrical wiring board electrical element 50 having a large calorific value such as the LSI 501, heat dissipation. May decrease.
 そこで、本実施形態では、前述したように光導波路1に貫通孔19を設け、光導波路1がマザーボード5上に重ねられたとき、貫通孔19にLSI501が挿入されるよう構成している。これにより、LSI501は光導波路1に覆われることがなくなり、放熱性が確保される。そして、熱によってLSI501の動作特性が低下するのを防止することができる。 Therefore, in the present embodiment, the through hole 19 is provided in the optical waveguide 1 as described above, and the LSI 501 is inserted into the through hole 19 when the optical waveguide 1 is overlaid on the mother board 5. As a result, the LSI 501 is not covered with the optical waveguide 1 and heat dissipation is ensured. And it can prevent that the operating characteristic of LSI501 falls by heat.
 また、コア部14は、平面視で直線状または曲線状であってもよい。さらに、コア部14は途中で分岐または交差していてもよい。特に図25に示すようにコア部14同士を途中で交差させることにより、同一平面内において光信号を交差させることが可能になるため、立体交差させたり迂回させたりすることなく最短距離のパターンのコア部14を形成することができる。その結果、光導波路1における伝送効率の低下やパルス信号の鈍り等を最小化することができる。なおこの場合、屈折率分布は図4(b)、図4(c)、図5(b)または図6(b)に示すような分布であるのが好ましい。これにより、交差部における光信号の混信を特に抑えることができる。 Further, the core portion 14 may be linear or curved in plan view. Furthermore, the core part 14 may branch or cross | intersect on the way. In particular, as shown in FIG. 25, by crossing the core portions 14 in the middle, it becomes possible to cross the optical signals in the same plane, so that the pattern of the shortest distance can be obtained without making a three-dimensional intersection or detouring. The core part 14 can be formed. As a result, it is possible to minimize a decrease in transmission efficiency, a dull pulse signal, and the like in the optical waveguide 1. In this case, the refractive index distribution is preferably a distribution as shown in FIG. 4 (b), FIG. 4 (c), FIG. 5 (b) or FIG. 6 (b). Thereby, the interference of the optical signal in an intersection can be suppressed especially.
 ここで、図26に示す光電気混載基板1000では、電気配線基板用電気素子50のうち、実装時の高さが相対的に低いコンデンサー502やチップ抵抗器503等の低背部品は光導波路1の下に収まっている一方、実装時の高さが相対的に高いLSI501は、前述したように、光導波路1に設けられた貫通孔19に挿入され、上部が光導波路1から突出している。これにより、LSI501の放熱性が確保される。なお、貫通孔19に挿入されるのはLSIに限定されず、その他の電気配線基板用電気素子50であってもよく、例えば電解コンデンサー、トランス、リアクトル等が挙げられる。 Here, in the opto-electric hybrid board 1000 shown in FIG. 26, the low-profile components such as the capacitor 502 and the chip resistor 503 whose mounting height is relatively low among the electric elements 50 for the electric wiring board are the optical waveguide 1. On the other hand, the LSI 501 having a relatively high mounting height is inserted into the through-hole 19 provided in the optical waveguide 1 and the upper portion protrudes from the optical waveguide 1 as described above. Thereby, the heat dissipation of the LSI 501 is ensured. In addition, what is inserted in the through-hole 19 is not limited to LSI, The electric element 50 for other electrical wiring boards may be sufficient, for example, an electrolytic capacitor, a transformer, a reactor etc. are mentioned.
 また、光導波路1に設けられた貫通孔19の全てに電気配線基板用電気素子50が挿入されていなくてもよい。例えば低背部品であっても発熱量の大きい電気配線基板用電気素子50が実装されている場合には、その上方に位置する光導波路1の部分に貫通孔19を設けるようにすればよい。 Further, the electric element 50 for the electric wiring board may not be inserted into all the through holes 19 provided in the optical waveguide 1. For example, when the electric element 50 for an electric wiring board having a large calorific value is mounted even if it is a low-profile component, the through hole 19 may be provided in the portion of the optical waveguide 1 positioned above the electric element 50.
 また、貫通孔19の形状は、LSI501を挿入可能な形状であれば特に限定されないが、平面視においてLSI501の外寸に対して貫通孔19の内寸が0.1~20mm程度大きくなるよう設定されるのが好ましく、0.2~15mm程度大きくなるよう設定されるのがより好ましい。これにより、貫通孔19にLSI501を挿入するだけで、マザーボード5に対して光導波路1の配置がほぼ一意に決められるため、光導波路1に接着された光電変換部4側の電気コネクター42とマザーボード5側の電気コネクター53との位置合わせを容易に行うことができる。さらに、この程度の寸法差があれば、LSI501の隙間を介して光導波路1の上面側と下面側とで十分な換気が行われるため、下面側の空間に溜まった熱を放熱させ易いという利点もある。 The shape of the through hole 19 is not particularly limited as long as the LSI 501 can be inserted, but is set so that the inner dimension of the through hole 19 is about 0.1 to 20 mm larger than the outer dimension of the LSI 501 in plan view. It is preferable to set it to be larger by about 0.2 to 15 mm. As a result, simply by inserting the LSI 501 into the through hole 19, the arrangement of the optical waveguide 1 is almost uniquely determined with respect to the mother board 5. Therefore, the electrical connector 42 on the photoelectric conversion unit 4 side bonded to the optical waveguide 1 and the mother board are arranged. Positioning with the electrical connector 53 on the 5 side can be easily performed. Further, if there is such a dimensional difference, sufficient ventilation is performed on the upper surface side and the lower surface side of the optical waveguide 1 through the gap between the LSIs 501, so that the heat accumulated in the space on the lower surface side can be easily radiated. There is also.
 なお、LSI501の上部が光導波路1の上面と同じ高さになるよう設定されていてもよいが、好ましくは光導波路1の上面から突出しているのが好ましい。これにより、光導波路1の上面側を流れる気流がLSI501の突出部分に当たり、貫通孔19を介して光導波路1の下面側に流れ込み易くなる。その結果、下面側の空間の換気が特に促進されることとなる。 The upper part of the LSI 501 may be set to be the same height as the upper surface of the optical waveguide 1, but preferably protrudes from the upper surface of the optical waveguide 1. Thereby, the airflow flowing on the upper surface side of the optical waveguide 1 hits the protruding portion of the LSI 501 and easily flows into the lower surface side of the optical waveguide 1 through the through hole 19. As a result, ventilation of the space on the lower surface side is particularly promoted.
 LSI501の突出量は、特に限定されないが、LSI501の高さの5~90%程度であるのが好ましく、10~80%程度であるのがより好ましい。 The amount of protrusion of the LSI 501 is not particularly limited, but is preferably about 5 to 90% of the height of the LSI 501 and more preferably about 10 to 80%.
 図27は、本実施形態に係る光モジュール100の他の構成例を示す断面図である。 FIG. 27 is a cross-sectional view showing another configuration example of the optical module 100 according to the present embodiment.
 図27に示す光電変換部4は、図25に示す光電変換部4にヒートスプレッダー44を付加したものである。図27に示すヒートスプレッダー44は、光電変換部4の絶縁性基板411の下方に搭載された光素子6や光電変換部用電気素子7を覆う箱状をなしている。そして、ヒートスプレッダー44内部の底面と光電変換部用電気素子7の下面とが当接するよう構成されている。これにより、光電変換部用電気素子7からの熱がヒートスプレッダー44に効率よく伝達され、拡散する。その結果、光電変換部用電気素子7の放熱が特に促進されることとなる。 27 is obtained by adding a heat spreader 44 to the photoelectric conversion unit 4 shown in FIG. A heat spreader 44 shown in FIG. 27 has a box shape that covers the optical element 6 and the photoelectric conversion unit electrical element 7 mounted below the insulating substrate 411 of the photoelectric conversion unit 4. The bottom surface of the heat spreader 44 and the bottom surface of the photoelectric conversion unit electrical element 7 are in contact with each other. Thereby, the heat from the photoelectric conversion unit electrical element 7 is efficiently transmitted to the heat spreader 44 and diffused. As a result, the heat dissipation of the photoelectric conversion unit electrical element 7 is particularly promoted.
 ≪第11実施形態≫
 次に、本発明の光電気混載基板の第11実施形態に係る光モジュール、およびそれに含まれる本発明の光配線部品および本発明の光導波路について説明する。
<< 11th Embodiment >>
Next, an optical module according to an eleventh embodiment of the opto-electric hybrid board of the present invention, the optical wiring component of the present invention included in the optical module, and the optical waveguide of the present invention will be described.
 図28は、本発明の光電気混載基板の第11実施形態の一部を示す断面図である。 FIG. 28 is a sectional view showing a part of an eleventh embodiment of the opto-electric hybrid board according to the present invention.
 以下、第11実施形態について説明するが、第10実施形態との相違点を中心に説明し、同様の事項についてはその説明を省略する。なお、図28において第10実施形態と同様の構成部分については、先に説明したのと同様の符号を付し、その詳細な説明を省略する。 Hereinafter, although the eleventh embodiment will be described, the description will focus on differences from the tenth embodiment, and description of similar matters will be omitted. In FIG. 28, the same components as those in the tenth embodiment are denoted by the same reference numerals as those described above, and detailed description thereof is omitted.
 第11実施形態は、光導波路1の構成が異なる以外、第10実施形態と同様である。 The eleventh embodiment is the same as the tenth embodiment except that the configuration of the optical waveguide 1 is different.
 図28に示す光モジュール100は、光導波路1のクラッド層12上に設けられた金属層18を有している。すなわち、本発明の光導波路は、光導波路1と金属層18とを有している。図28に示す金属層18は、クラッド層12上を全面にわたって覆っており、貫通孔19の開口も塞ぐように構成されている。一方、貫通孔19に挿入されたLSI501は、その上面が貫通孔19の開口を塞いている金属層18に当接している。 The optical module 100 shown in FIG. 28 has a metal layer 18 provided on the cladding layer 12 of the optical waveguide 1. That is, the optical waveguide of the present invention includes the optical waveguide 1 and the metal layer 18. The metal layer 18 shown in FIG. 28 covers the entire surface of the cladding layer 12 and is configured to close the opening of the through hole 19. On the other hand, the LSI 501 inserted into the through hole 19 is in contact with the metal layer 18 whose upper surface closes the opening of the through hole 19.
 図28に示す光モジュール100では、LSI501からの熱が金属層18に容易に伝達され、拡散する。これにより、LSI501の放熱が特に促進されることとなる。すなわち、金属層18は、LSI501からの熱を放熱させるヒートスプレッダーとして機能する。 In the optical module 100 shown in FIG. 28, heat from the LSI 501 is easily transferred to the metal layer 18 and diffused. Thereby, the heat radiation of the LSI 501 is particularly promoted. That is, the metal layer 18 functions as a heat spreader that dissipates heat from the LSI 501.
 金属層18の平均厚さは、特に限定されないが、1~1000μm程度であるのが好ましく、3~800μm程度であるのがより好ましい。これにより、放熱性を高めつつ、光導波路1が自重で撓むのを防止することができる。 The average thickness of the metal layer 18 is not particularly limited, but is preferably about 1 to 1000 μm, more preferably about 3 to 800 μm. Thereby, it is possible to prevent the optical waveguide 1 from being bent by its own weight while improving heat dissipation.
 金属層18の構成材料としては、上述したヒートスプレッダー44の構成材料が用いられるが、特に銅単体、銅合金、アルミニウム単体およびアルミニウム合金のいずれかを主成分とするものが好ましい。これらの材料は熱伝導率が特に高いため、金属層18における放熱性を特に高めることができる。 As the constituent material of the metal layer 18, the constituent material of the heat spreader 44 described above is used, and in particular, a material mainly containing any one of a copper simple substance, a copper alloy, an aluminum simple substance, and an aluminum alloy is preferable. Since these materials have particularly high thermal conductivity, the heat dissipation in the metal layer 18 can be particularly enhanced.
 また、LSI501と金属層18との間にも、必要に応じて前述したような熱伝導材を介挿するようにしてもよい。 Also, a heat conductive material as described above may be inserted between the LSI 501 and the metal layer 18 as necessary.
 なお、金属層18は、貫通孔19の開口の一部のみ、例えばLSI501の上面のうち特に発熱量が大きい部分のみを塞ぐように構成されていてもよく、クラッド層12の全面ではなく一部を覆うように構成されていてもよい。 Note that the metal layer 18 may be configured to block only a part of the opening of the through hole 19, for example, only a part of the upper surface of the LSI 501 that generates a particularly large amount of heat. It may be configured to cover.
 ≪第12実施形態≫
 次に、本発明の光電気混載基板の第12実施形態に係る光モジュール、およびそれに含まれる本発明の光配線部品および本発明の光導波路について説明する。
<< Twelfth Embodiment >>
Next, an optical module according to a twelfth embodiment of the opto-electric hybrid board of the present invention, the optical wiring component of the present invention included in the optical module, and the optical waveguide of the present invention will be described.
 図29は、本発明の光電気混載基板の第12実施形態の一部を示す断面図である。 FIG. 29 is a sectional view showing a part of a twelfth embodiment of the opto-electric hybrid board according to the present invention.
 以下、第12実施形態について説明するが、第10実施形態との相違点を中心に説明し、同様の事項についてはその説明を省略する。なお、図29において前記各実施形態と同様の構成部分については、先に説明したのと同様の符号を付し、その詳細な説明を省略する。 Hereinafter, the twelfth embodiment will be described, but the description will focus on the differences from the tenth embodiment, and description of similar matters will be omitted. In FIG. 29, the same components as those of the above-described embodiments are denoted by the same reference numerals as those described above, and detailed description thereof is omitted.
 第12実施形態は、光電変換部4の構成が異なる以外、第10実施形態と同様である。 The twelfth embodiment is the same as the tenth embodiment except that the configuration of the photoelectric conversion unit 4 is different.
 図29に示す光電変換部4は、光導波路1のクラッド層11の下面に設けられた絶縁性基板411aと、クラッド層12の上面に設けられた絶縁性基板411bと、絶縁性基板411aの下面に設けられた電気配線412aと、絶縁性基板411bの上面に設けられた電気配線412bと、電気配線412aと電気配線412bとを接続する貫通配線413と、封止材45と、電気コネクター42と、光素子6と、光電変換部用電気素子7と、を有している。また、ミラー17は、電気配線412bから、絶縁性基板411b、光導波路1、および絶縁性基板411aにわたって形成された凹部170の内面の一部で構成されている。 29 includes an insulating substrate 411a provided on the lower surface of the cladding layer 11 of the optical waveguide 1, an insulating substrate 411b provided on the upper surface of the cladding layer 12, and a lower surface of the insulating substrate 411a. An electrical wiring 412a provided on the insulating substrate 411b, a through-wiring 413 connecting the electrical wiring 412a and the electrical wiring 412b, a sealing material 45, and an electrical connector 42. , An optical element 6 and an electric element 7 for a photoelectric conversion unit. Further, the mirror 17 is configured by a part of the inner surface of the recess 170 formed from the electric wiring 412b to the insulating substrate 411b, the optical waveguide 1, and the insulating substrate 411a.
 図30は、本実施形態に係る光モジュール100の他の構成例を示す断面図である。 FIG. 30 is a cross-sectional view showing another configuration example of the optical module 100 according to the present embodiment.
 図30に示す光電変換部4では、図29に示す光電変換部4の各絶縁性基板411a、411bおよび電気配線412a、412bがそれぞれ光導波路1の全体にわたって延伸されている。これにより、光導波路1の剛性が全体にわたって強化されるとともに、光導波路1が外力や外光、外部環境から保護されることとなる。 30, each of the insulating substrates 411a and 411b and the electric wirings 412a and 412b of the photoelectric conversion unit 4 illustrated in FIG. 29 is extended over the entire optical waveguide 1. In the photoelectric conversion unit 4 illustrated in FIG. As a result, the rigidity of the optical waveguide 1 is strengthened as a whole, and the optical waveguide 1 is protected from external forces, external light, and the external environment.
 ≪第13実施形態≫
 次に、本発明の光電気混載基板の第13実施形態に係る光モジュール、およびそれに含まれる本発明の光配線部品および本発明の光導波路について説明する。
<< Thirteenth Embodiment >>
Next, an optical module according to a thirteenth embodiment of the opto-electric hybrid board of the present invention, the optical wiring component of the present invention included in the optical module, and the optical waveguide of the present invention will be described.
 図31は、本発明の光電気混載基板の第13実施形態の一部を示す断面図である。 FIG. 31 is a sectional view showing a part of a thirteenth embodiment of the opto-electric hybrid board according to the present invention.
 以下、第13実施形態について説明するが、第11実施形態との相違点を中心に説明し、同様の事項についてはその説明を省略する。なお、図31において前記各実施形態と同様の構成部分については、先に説明したのと同様の符号を付し、その詳細な説明を省略する。 Hereinafter, the thirteenth embodiment will be described. The description will focus on the differences from the eleventh embodiment, and the description of the same matters will be omitted. In FIG. 31, the same components as those of the above-described embodiments are denoted by the same reference numerals as those described above, and detailed description thereof is omitted.
 第13実施形態は、光電変換部4の絶縁性基板411およびその上面に設けられた電気配線412と、が省略され、一方、クラッド層11の下面に位置する金属層18および光導波路1を貫通し金属層18と電気配線412とを接続する貫通配線18cが形成されている以外、第11実施形態(図28)と同様である。すなわち、図31に示す光電変換部4は、クラッド層11と電気配線412とが接するよう構成されている。このような構造であれば、絶縁性基板411等が省略された分、光素子6とミラー17との離間距離をさらに短くすることができる。その結果、光素子6とミラー17との光結合効率をさらに高めることができる。 In the thirteenth embodiment, the insulating substrate 411 of the photoelectric conversion unit 4 and the electrical wiring 412 provided on the upper surface thereof are omitted, while penetrating the metal layer 18 and the optical waveguide 1 located on the lower surface of the cladding layer 11. This is the same as the eleventh embodiment (FIG. 28) except that a through wiring 18c that connects the metal layer 18 and the electric wiring 412 is formed. That is, the photoelectric conversion unit 4 shown in FIG. 31 is configured such that the cladding layer 11 and the electric wiring 412 are in contact with each other. With such a structure, the distance between the optical element 6 and the mirror 17 can be further shortened as much as the insulating substrate 411 and the like are omitted. As a result, the optical coupling efficiency between the optical element 6 and the mirror 17 can be further increased.
 ≪第14実施形態≫
 次に、本発明の光電気混載基板の第14実施形態、およびそれに含まれる本発明の光モジュール、本発明の光配線部品および本発明の光導波路について説明する。
<< 14th Embodiment >>
Next, a fourteenth embodiment of the opto-electric hybrid board of the present invention, and the optical module of the present invention, the optical wiring component of the present invention, and the optical waveguide of the present invention will be described.
 図32は、本発明の光電気混載基板の第14実施形態の一部を示す断面図である。 FIG. 32 is a cross-sectional view showing a part of a fourteenth embodiment of the opto-electric hybrid board according to the present invention.
 以下、第14実施形態について説明するが、第3実施形態や第10実施形態との相違点を中心に説明し、同様の事項についてはその説明を省略する。なお、図32において前記各実施形態と同様の構成部分については、先に説明したのと同様の符号を付し、その詳細な説明を省略する。 Hereinafter, the fourteenth embodiment will be described, but differences from the third embodiment and the tenth embodiment will be mainly described, and description of similar matters will be omitted. In FIG. 32, the same components as those of the above-described embodiments are denoted by the same reference numerals as those described above, and detailed description thereof is omitted.
 第14実施形態は、光電変換部4とマザーボード5との間に電気インターポーザー(電気配線基板)55が介挿されているとともに、LSI501が電気インターポーザー55に搭載されている以外、第10実施形態と同様である。なお、本実施形態では、前記各実施形態と異なり、電気インターポーザー55が「電気配線基板」に相当する。 In the fourteenth embodiment, an electrical interposer (electric wiring board) 55 is interposed between the photoelectric conversion unit 4 and the mother board 5, and the LSI 501 is mounted on the electrical interposer 55. It is the same as the form. In this embodiment, unlike the above embodiments, the electric interposer 55 corresponds to an “electric wiring board”.
 図32に示す電気インターポーザー55は、コア基板551とその両面に積層されたビルドアップ層552とを備えた多層基板550と、多層基板550の下面に設けられたバンプ553と、を有している。そして、電気インターポーザー55には前述したようにLSI501が搭載されているとともに、電気インターポーザー55の表面および内部に敷設された電気配線と光電変換部4とが電気コネクター(第2の端子)53を介して電気的に接続されている。このような電気インターポーザー55を用いることにより、電気配線の高密度化を容易に図ることができ、信号伝送速度を高めることができる。その結果、LSI501と光電変換部4との間の情報伝送の高速化および大容量化を図ることができ、光通信による高速化の恩恵を最大限に活かすことができる。すなわち、高速かつ大容量の情報処理を可能にする光電気混載基板1000が得られる。 The electric interposer 55 shown in FIG. 32 includes a multilayer substrate 550 having a core substrate 551 and a buildup layer 552 laminated on both surfaces thereof, and bumps 553 provided on the lower surface of the multilayer substrate 550. Yes. As described above, the LSI 501 is mounted on the electric interposer 55, and the electric wiring and the photoelectric conversion unit 4 laid on the surface and inside of the electric interposer 55 are connected to the electric connector (second terminal) 53. It is electrically connected via. By using such an electrical interposer 55, it is possible to easily increase the density of electrical wiring and increase the signal transmission speed. As a result, it is possible to increase the speed and capacity of information transmission between the LSI 501 and the photoelectric conversion unit 4, and to maximize the benefits of speeding up by optical communication. That is, the opto-electric hybrid board 1000 that enables high-speed and large-capacity information processing is obtained.
 ≪第15実施形態≫
 次に、本発明の光電気混載基板の第15実施形態、およびそれに含まれる本発明の光モジュール、本発明の光配線部品および本発明の光導波路について説明する。
«Fifteenth embodiment»
Next, a description will be given of a fifteenth embodiment of the opto-electric hybrid board according to the present invention, and the optical module according to the present invention, the optical wiring component according to the present invention, and the optical waveguide according to the present invention.
 図33(a)は、本発明の光電気混載基板の第15実施形態の一部を示す断面図、図33(b)は、図33(a)の上面図である。 FIG. 33 (a) is a cross-sectional view showing a part of the fifteenth embodiment of the opto-electric hybrid board according to the present invention, and FIG. 33 (b) is a top view of FIG. 33 (a).
 以下、第15実施形態について説明するが、第4実施形態や第10実施形態との相違点を中心に説明し、同様の事項についてはその説明を省略する。なお、図33において前記各実施形態と同様の構成部分については、先に説明したのと同様の符号を付し、その詳細な説明を省略する。 Hereinafter, although the fifteenth embodiment will be described, the differences from the fourth embodiment and the tenth embodiment will be mainly described, and description of similar matters will be omitted. In FIG. 33, the same components as those of the above-described embodiments are denoted by the same reference numerals as those described above, and detailed description thereof is omitted.
 第15実施形態は、光導波路1が、マザーボード5の一部を覆うように広がるシート状の部分1aと、シート状の部分1aから伸びる帯状の部分1bと、を備えた形状をなしており、シート状の部分1aと帯状の部分1bとの接続部1dにおいて帯状の部分1bが90°捻られている以外、第14実施形態と同様である。 In the fifteenth embodiment, the optical waveguide 1 has a shape including a sheet-like portion 1a that extends so as to cover a part of the mother board 5, and a strip-like portion 1b that extends from the sheet-like portion 1a. This is the same as the fourteenth embodiment except that the belt-like portion 1b is twisted by 90 ° at the connecting portion 1d between the sheet-like portion 1a and the belt-like portion 1b.
 すなわち、図33に示す光導波路1は、第14実施形態と同様にマザーボード5や電気インターポーザー55を覆うシート状の部分1aを有しており、このシート状の部分1aには貫通孔19が形成されている。この貫通孔19にLSI501の上部が挿入されることにより、LSI501の放熱性が光導波路1によって阻害されるのを防止することができる。
<光電気混載基板の製造方法>
 次に、本発明の光電気混載基板を製造する方法について説明する。
That is, the optical waveguide 1 shown in FIG. 33 has a sheet-like portion 1a covering the mother board 5 and the electric interposer 55 as in the fourteenth embodiment, and the through-hole 19 is formed in the sheet-like portion 1a. Is formed. By inserting the upper portion of the LSI 501 into the through hole 19, it is possible to prevent the heat dissipation of the LSI 501 from being hindered by the optical waveguide 1.
<Method for manufacturing opto-electric hybrid board>
Next, a method for manufacturing the opto-electric hybrid board according to the present invention will be described.
 まず、光導波路1を製造する。光導波路1は、クラッド層11、コア層13およびクラッド層12をこの順に積層することによって製造されるが、このうちコア層13中にコア部14と側面クラッド部15とを形成するのには、例えばナノインプリント法、直接描画法、直接露光自己形成法等が用いられる。また、直接描画法では、光等の放射線の照射により照射領域と非照射領域との間に屈折率差を形成し得る屈折率変調能を有する被膜に向けて局所的に放射線を照射し、屈折率差を形成することによりコア部14と側面クラッド部15とを形成する。 First, the optical waveguide 1 is manufactured. The optical waveguide 1 is manufactured by laminating the clad layer 11, the core layer 13, and the clad layer 12 in this order. Of these, the core portion 14 and the side clad portion 15 are formed in the core layer 13. For example, a nanoimprint method, a direct drawing method, a direct exposure self-forming method, or the like is used. Also, in the direct drawing method, radiation is irradiated locally toward a film having a refractive index modulation ability capable of forming a refractive index difference between an irradiated region and a non-irradiated region by irradiation of light such as light. The core part 14 and the side clad part 15 are formed by forming the rate difference.
 屈折率変調の原理には、例えばモノマーディフュージョン、フォトブリーチング、光異性化、光二量化等が挙げられ、これらのうちの1種または2種以上を組み合わせたものが用いられる。このうち、屈折率変調の原理としては、特にモノマーディフュージョンが好ましく採用される。モノマーディフュージョンでは、ポリマー中にこのポリマーと屈折率の異なる光重合性モノマーが分散してなる材料で構成された層に対して部分的に光を照射し、光重合性モノマーの重合を生起させるとともに、それに伴って光重合性モノマーを移動、偏在させることにより、層内に屈折率の偏りを生じさせてコア部14および側面クラッド部15を形成する。このような原理の屈折率変調においては、光を照射する領域を選択するのみで、いかなる形状のコア部14をも簡単に形成することができるので、光導波路1を極めて効率よく製造することができる。また、このような原理で形成される屈折率分布は、光重合性モノマーの濃度分布に対応して形成されるため、形成されたコア部14の横断面における屈折率分布は滑らかな屈折率変化を伴うものとなる。その結果、製造される光導波路1は、GI型の屈折率分布を有するものとなり、伝送特性が高く、交差部における混信を確実に抑制し得るものとなる。 Examples of the principle of refractive index modulation include monomer diffusion, photobleaching, photoisomerization, photodimerization, and the like, and one or a combination of two or more of these is used. Of these, monomer diffusion is particularly preferably employed as the principle of refractive index modulation. In monomer diffusion, a layer composed of a material in which a photopolymerizable monomer having a refractive index different from that of the polymer is dispersed in the polymer is partially irradiated with light to cause polymerization of the photopolymerizable monomer. Along with this, the photopolymerizable monomer is moved and unevenly distributed, whereby the refractive index is biased in the layer to form the core portion 14 and the side cladding portion 15. In the refractive index modulation based on such a principle, it is possible to easily form the core portion 14 of any shape simply by selecting the region to be irradiated with light, so that the optical waveguide 1 can be manufactured extremely efficiently. it can. In addition, since the refractive index distribution formed by such a principle is formed corresponding to the concentration distribution of the photopolymerizable monomer, the refractive index distribution in the cross section of the formed core portion 14 has a smooth refractive index change. Will be accompanied. As a result, the manufactured optical waveguide 1 has a GI-type refractive index distribution, has high transmission characteristics, and can reliably suppress interference at the intersection.
 このようなモノマーディフュージョンを生じる材料としては、例えば、特開2010-090328号公報に記載された感光性樹脂組成物等が挙げられる。 Examples of the material that causes such monomer diffusion include a photosensitive resin composition described in Japanese Patent Application Laid-Open No. 2010-090328.
 一方、フォトブリーチング、光異性化および光二量化といった原理による屈折率変調の場合、照射する光の照射量(放射線の照射量)に応じて屈折率の変化量を調整することができる。フォトブリーチングでは、光の照射によって材料中の分子構造が切断され、離脱性基が主鎖から離脱する。これにより材料の屈折率を変化させ、コア部14を形成する。また、光異性化および光二量化では、光の照射によって材料の光異性化または光二量化を生じ、材料の屈折率が変化する。これによりコア部14を形成する。 On the other hand, in the case of refractive index modulation based on the principles of photobleaching, photoisomerization, and photodimerization, the amount of change in refractive index can be adjusted according to the amount of irradiated light (radiation amount). In photobleaching, the molecular structure in the material is cleaved by light irradiation, and the leaving group is detached from the main chain. As a result, the refractive index of the material is changed to form the core portion 14. In photoisomerization and photodimerization, light irradiation causes photoisomerization or photodimerization of the material, and the refractive index of the material changes. Thereby, the core part 14 is formed.
 フォトブリーチングを生じる材料としては、例えば、特開2009-145867号公報に記載されたコアフィルム材料等が挙げられる。 Examples of materials that cause photobleaching include core film materials described in JP-A-2009-145867.
 また、光異性化を生じる材料としては、例えば、特開2005-164650号公報に記載されたノルボルネン系樹脂等が挙げられる。 In addition, examples of materials that cause photoisomerization include norbornene resins described in JP-A-2005-164650.
 また、光二量化を生じる材料としては、例えば、特開2011-105791号公報に記載された感光性樹脂組成物等が挙げられる。 In addition, examples of a material that causes photodimerization include a photosensitive resin composition described in JP 2011-105791 A.
 なお、照射する光の照射量を徐々に変化させることにより、形成される屈折率分布も滑らかな屈折率変化を伴うものとなる。照射する光の照射量を徐々に変化させる方法としては、例えば、グレイトーンマスクやハーフトーンマスクといった多階調マスクを用いる方法、光強度に分布がある光ビームを走査する方法、領域ごとの照射時間を変化させつつ照射する方法等が挙げられる。 Note that, by gradually changing the irradiation amount of the light to be irradiated, the formed refractive index distribution is accompanied by a smooth refractive index change. As a method of gradually changing the irradiation amount of the irradiated light, for example, a method using a multi-tone mask such as a gray-tone mask or a half-tone mask, a method of scanning a light beam having a distribution of light intensity, irradiation for each region Examples include a method of irradiating while changing the time.
 また、ポリマー中に屈折率調整剤を拡散させ、その際、屈折率調整剤の濃度を連続的に変化させることによって屈折率差を形成するようにしてもよい。ポリマー中に屈折率調整剤を供給する方法としては、例えば、塗布、噴霧、付着、浸漬、堆積等の方法が挙げられる。このような供給方法で屈折率調整剤を供給する際、領域ごとの供給量を調整することによって、任意の屈折率分布を形成することができる。なお、屈折率調整剤としては、例えば、特開2006-276735号公報に記載されたものが挙げられる。 Also, the refractive index difference may be formed by diffusing the refractive index adjusting agent in the polymer and continuously changing the concentration of the refractive index adjusting agent. Examples of a method for supplying the refractive index adjusting agent into the polymer include methods such as coating, spraying, adhesion, dipping, and deposition. When supplying the refractive index adjusting agent by such a supply method, an arbitrary refractive index distribution can be formed by adjusting the supply amount for each region. Examples of the refractive index adjusting agent include those described in JP-A-2006-276735.
 また、得られた光導波路1にミラー17を形成するとともにレンズ16を設ける。ミラー17の形成には、例えばダイシング加工、成形型の転写といった機械加工、レーザー加工、電子線加工等が用いられる。 Further, a mirror 17 is formed on the obtained optical waveguide 1 and a lens 16 is provided. For the formation of the mirror 17, for example, mechanical processing such as dicing processing or transfer of a molding die, laser processing, electron beam processing, or the like is used.
 次いで、必要に応じて、クラッド層11の下面およびクラッド層12の上面にそれぞれ金属層18を成膜する。金属層18の成膜方法は、特に限定されないが、例えば、真空蒸着のような物理蒸着法、CVDのような化学蒸着法、めっき法、印刷法等が挙げられる。 Next, a metal layer 18 is formed on each of the lower surface of the cladding layer 11 and the upper surface of the cladding layer 12 as necessary. The method for forming the metal layer 18 is not particularly limited, and examples thereof include physical vapor deposition such as vacuum vapor deposition, chemical vapor deposition such as CVD, plating, and printing.
 また、クラッド層11の下面およびクラッド層12の上面にそれぞれ金属層18を貼り付けるようにしてもよい。この貼り付けには、接着剤や粘着剤、接着シート等を用いることができる。また、クラッド層11の下面およびクラッド層12の上面にそれぞれ金属材料を成膜することにより金属層18を形成するようにしてもよい。 Alternatively, the metal layer 18 may be attached to the lower surface of the cladding layer 11 and the upper surface of the cladding layer 12. For this attachment, an adhesive, a pressure-sensitive adhesive, an adhesive sheet, or the like can be used. Alternatively, the metal layer 18 may be formed by depositing a metal material on the lower surface of the cladding layer 11 and the upper surface of the cladding layer 12.
 また必要に応じ、光導波路1に貫通孔19を形成する。貫通孔19の形成にも、例えば上述した各種加工方法が用いられる。 Further, if necessary, a through hole 19 is formed in the optical waveguide 1. For example, the above-described various processing methods are also used for forming the through hole 19.
 次いで、光導波路1の端部に光コネクター101を取り付ける。これにより、光配線部品10が得られる。 Next, the optical connector 101 is attached to the end of the optical waveguide 1. Thereby, the optical wiring component 10 is obtained.
 次いで、光導波路1の下面に光電変換部4を接着する。これにより、光モジュール100が得られる。 Next, the photoelectric conversion unit 4 is bonded to the lower surface of the optical waveguide 1. Thereby, the optical module 100 is obtained.
 一方、絶縁性基板51上にLSI501等の電気配線基板用電気素子50を搭載し、マザーボード5を製造する。そして、マザーボード5を覆うように光導波路1を重ねるとともに、光電変換部4の電気コネクター42とマザーボード5の電気コネクター53とを接続する。
また光導波路1に貫通孔19を形成する場合、光導波路1に設けられた貫通孔19にLSI501が挿入されるようにする。
On the other hand, an electrical wiring board electrical element 50 such as an LSI 501 is mounted on the insulating substrate 51 to manufacture the mother board 5. Then, the optical waveguide 1 is overlapped so as to cover the mother board 5 and the electric connector 42 of the photoelectric conversion unit 4 and the electric connector 53 of the mother board 5 are connected.
When the through hole 19 is formed in the optical waveguide 1, the LSI 501 is inserted into the through hole 19 provided in the optical waveguide 1.
 以上のようにして光電気混載基板1000が得られる。 The opto-electric hybrid board 1000 is obtained as described above.
 <電子機器>
 上述したような本発明の光電気混載基板1000は、前述したように、光導波路1のコア部14の最短化および高密度化が図られるとともに、内部の光結合効率の向上が図られるため、光信号の伝送効率が高いものとなる。したがって、本発明の光電気混載基板を備えることにより、高品質の光通信を行い得る信頼性の高い電子機器(本発明の電子機器)が得られる。
<Electronic equipment>
As described above, the opto-electric hybrid board 1000 of the present invention as described above can shorten and increase the density of the core portion 14 of the optical waveguide 1 and improve the internal optical coupling efficiency. Optical signal transmission efficiency is high. Therefore, by providing the opto-electric hybrid board of the present invention, a highly reliable electronic device (electronic device of the present invention) capable of performing high-quality optical communication can be obtained.
 また前述したように、光導波路1のコア部14の最短化および高密度化が図られるため、伝送効率が高く、かつ、LSI501の放熱性が高いため、信頼性の高いものとなる。したがって、本発明の光導波路を備えることにより、高品質の光通信を行い得る信頼性の高い電子機器(本発明の電子機器)が得られる。 As described above, since the core portion 14 of the optical waveguide 1 is shortened and densified, the transmission efficiency is high, and the heat radiation of the LSI 501 is high, so that the reliability is high. Therefore, by providing the optical waveguide of the present invention, a highly reliable electronic device (electronic device of the present invention) capable of performing high-quality optical communication can be obtained.
 本発明の光電気混載基板を備える電子機器としては、例えば、携帯電話、ゲーム機、ルーター装置、WDM装置、パソコン、テレビ、ホーム・サーバー等の電子機器類が挙げられる。これらの電子機器では、いずれも、例えばLSI等の演算装置とRAM等の記憶装置との間で、大容量のデータを高速に伝送する必要がある。したがって、このような電子機器が本発明の光電気混載基板を備えることにより、電気配線に特有なノイズ、信号劣化等の不具合が解消され、その性能の飛躍的な向上が期待できる。 Examples of the electronic device including the opto-electric hybrid board of the present invention include electronic devices such as a mobile phone, a game machine, a router device, a WDM device, a personal computer, a television, and a home server. In any of these electronic devices, it is necessary to transmit a large amount of data at high speed between an arithmetic device such as an LSI and a storage device such as a RAM. Therefore, by providing such an electronic device with the opto-electric hybrid board according to the present invention, problems such as noise and signal degradation peculiar to the electric wiring can be solved, and a dramatic improvement in performance can be expected.
 さらに、光導波路部分では、電気配線に比べて発熱量が大幅に削減される。このため、冷却に要する電力を削減することができ、電子機器全体の消費電力を削減することができる。 Furthermore, the amount of heat generated in the optical waveguide portion is greatly reduced compared to electrical wiring. For this reason, the electric power required for cooling can be reduced and the power consumption of the whole electronic device can be reduced.
 また、本発明の光電気混載基板や光導波路は、コネクター等を介してマザーボード5に実装可能になっているため、必要に応じてマザーボード5から取り外すことが容易に行える。このため、光導波路1やマザーボード5を個別に取り出し、交換や修理を行うことができる。 Further, since the opto-electric hybrid board and the optical waveguide of the present invention can be mounted on the mother board 5 via a connector or the like, it can be easily detached from the mother board 5 as necessary. For this reason, the optical waveguide 1 and the mother board 5 can be taken out individually and replaced or repaired.
 以上、本発明の光導波路、光配線部品、光モジュール、光電気混載基板および電子機器を、図示の実施形態に基づいて説明したが、本発明はこれらに限定されるものではない。 The optical waveguide, the optical wiring component, the optical module, the opto-electric hybrid board, and the electronic device according to the present invention have been described based on the illustrated embodiments, but the present invention is not limited to these.
 例えば、光導波路1は、マザーボード5の全面ではなく、一部分を覆うように重ねられたものであってもよく、さらにはマザーボード5の縁部からはみ出るように重ねられたものであってもよい。 For example, the optical waveguide 1 may be stacked not to cover the entire surface of the motherboard 5 but to cover a part thereof, or may be stacked to protrude from the edge of the motherboard 5.
 また、光電変換部4が備える光電変換部基板41は、ビルドアップ層を含む多層基板であってもよい。 Further, the photoelectric conversion unit substrate 41 included in the photoelectric conversion unit 4 may be a multilayer substrate including a buildup layer.
 また、貫通孔19は、平面視において閉じた孔だけでなく、一部が開いた孔であってもよい。 Further, the through hole 19 is not limited to a closed hole in a plan view, but may be a partially opened hole.
 次に、本発明の実施例について説明する。しかしながら本発明はこれら例のみに限定されない。特に問題の無い限り、位置、数、量、種類などの、変更、追加および省略等を行ってもよい。 Next, examples of the present invention will be described. However, the present invention is not limited to these examples. As long as there is no particular problem, the position, number, quantity, type, etc. may be changed, added, omitted, etc.
 
1.図5に示す屈折率分布を有する光導波路の製造
 まず、図5に示す屈折率分布を有する直線状のコア部を有する光導波路をそれぞれ条件を変えて製造し(実施例1~18)、また比較のための比較例1、参考例1~4の光導波路も製造した。また下記に示す3.ではこれら光導波路の評価を行った。
(実施例1)
(1)クラッド層形成用樹脂組成物の製造
 ダイセル化学工業(株)製の脂環式エポキシ樹脂:セロキサイド2081 20g、(株)ADEKA製のカチオン重合開始剤:アデカオプトマーSP-170 0.6g、およびメチルイソブチルケトン80gを撹拌混合して、溶液を調製した。

1. Production of optical waveguide having refractive index distribution shown in FIG. 5 First, optical waveguides having a linear core part having a refractive index distribution shown in FIG. 5 were produced under different conditions (Examples 1 to 18). The optical waveguides of Comparative Example 1 and Reference Examples 1 to 4 for comparison were also manufactured. The following 3. Then, these optical waveguides were evaluated.
Example 1
(1) Manufacture of resin composition for forming clad layer Daicel Chemical Industries, Ltd. alicyclic epoxy resin: 20 g of Celoxide 2081, ADEKA Co., Ltd. Cationic polymerization initiator: Adekaoptomer SP-170 0.6 g , And 80 g of methyl isobutyl ketone were mixed with stirring to prepare a solution.
 次いで、得られた溶液を、0.2μm孔径のPTFEフィルターでろ過して、清浄で無色透明なクラッド層形成用樹脂組成物E1を得た。
(2)感光性樹脂組成物の製造
 エポキシ系ポリマーとして新日鐵化学(株)製のフェノキシ樹脂:YP-50S 20g、モノマーとしてダイセル化学工業(株)製のセロキサイド2021P 5g、および重合開始剤として(株)ADEKA製のアデカオプトマーSP-170 0.2gを、メチルイソブチルケトン80g中に投入し、撹拌溶解して、溶液を調製した。
Next, the obtained solution was filtered with a 0.2 μm pore size PTFE filter to obtain a clean and colorless and transparent resin composition E1 for forming a cladding layer.
(2) Production of photosensitive resin composition 20 g of phenoxy resin manufactured by Nippon Steel Chemical Co., Ltd .: YP-50S as an epoxy polymer, 5 g of Celoxide 2021P manufactured by Daicel Chemical Industries, Ltd. as a monomer, and a polymerization initiator Adekaoptomer SP-170 (0.2 g) manufactured by ADEKA Co., Ltd. was put into 80 g of methyl isobutyl ketone, and dissolved by stirring to prepare a solution.
 次いで、得られた溶液を、0.2μm孔径のPTFEフィルターでろ過して清浄で無色透明な感光性樹脂組成物F1を得た。
(3)下側クラッド層の作製
 クラッド層形成用樹脂組成物E1を、ドクターブレードにより、厚さ25μmのポリイミドフィルム上に均一に塗布した。この後、50℃の乾燥機に10分間投入した。溶媒を完全に除去した後、UV露光機で全面に紫外線を照射し、塗布した樹脂組成物E1を硬化させた。これにより、厚さ10μmの無色透明な下側クラッド層を得た。なお、紫外線の積算光量は500mJ/cmとした。
(4)コア層の作製
 作製した下側クラッド層上に、感光性樹脂組成物F1を、ドクターブレードにより均一に塗布した。この後、40℃の乾燥機に5分間投入した。溶媒を完全に除去して被膜とした後、得られた被膜上に、ライン、スペースの直線パターンが全面に描かれたフォトマスクを圧着した。そして、フォトマスク上から平行露光機により紫外線を照射した。なお、紫外線の積算光量は1000mJ/cmとした。
Next, the obtained solution was filtered through a PTFE filter having a pore size of 0.2 μm to obtain a clean, colorless and transparent photosensitive resin composition F1.
(3) Production of lower clad layer The clad layer-forming resin composition E1 was uniformly applied onto a polyimide film having a thickness of 25 µm by a doctor blade. Thereafter, it was put into a dryer at 50 ° C. for 10 minutes. After completely removing the solvent, the entire surface was irradiated with ultraviolet rays with a UV exposure machine to cure the applied resin composition E1. As a result, a colorless and transparent lower cladding layer having a thickness of 10 μm was obtained. The cumulative amount of ultraviolet light was 500 mJ / cm 2 .
(4) Production of core layer On the produced lower clad layer, the photosensitive resin composition F1 was uniformly applied by a doctor blade. Thereafter, it was put into a dryer at 40 ° C. for 5 minutes. After completely removing the solvent to form a film, a photomask having a linear pattern of lines and spaces drawn on the entire surface was pressure-bonded onto the obtained film. Then, ultraviolet rays were irradiated from above the photomask with a parallel exposure machine. The cumulative amount of ultraviolet light was 1000 mJ / cm 2 .
 次いで、フォトマスクを取り去り、150℃のオーブンに30分間投入した。オーブンから取り出すと、被膜には鮮明な導波路パターンが現れていることが確認された。コア部の平均幅WCOと、側面クラッド部の平均幅WCLとをそれぞれ表1に示す。また、得られたコア層の厚さは50μm、コア部の本数は8本とした。
(5)上側クラッド層の作製
 作製したコア層上に、(3)と同様にしてクラッド層形成用樹脂組成物E1を塗布し、厚さ10μmの無色透明な上側クラッド層を得た。このようにして光導波路を得た。
(6)屈折率分布の評価
 そして、得られた光導波路のコア層の横断面について、干渉顕微鏡により、幅方向の屈折率分布Wを取得した。その結果、屈折率分布Wは、複数の低屈折率領域および高屈折率領域を有し、屈折率が連続的に変化したものであった。
(実施例2~8)
 ポリマーの組成、モノマーの組成と含有率、および紫外線の積算光量を、表1に示すように設定するとともに、コア部の平均幅WCOおよび側面クラッド部の平均幅WCLがそれぞれ表1に示す値になるようにフォトマスクのパターンを設定した以外は、それぞれ実施例1と同様にして、実施例2~8の光導波路を得た。
(実施例9)
(1)(メタ)アクリル系ポリマーの合成
 メタクリル酸メチル(MMA)20.0g、ベンジルメタクリレート(BzMA)30.0g、およびメチルイソブチルケトン450gを、セパラブルフラスコに投入した。これらを撹拌混合したのち、窒素ガスで置換して、モノマー溶液を調製した。
Next, the photomask was removed and placed in an oven at 150 ° C. for 30 minutes. Upon removal from the oven, it was confirmed that a clear waveguide pattern appeared in the coating. Table 1 shows the average width WCO of the core portion and the average width WCL of the side cladding portion. Further, the thickness of the obtained core layer was 50 μm, and the number of core portions was eight.
(5) Production of upper clad layer On the produced core layer, the clad layer forming resin composition E1 was applied in the same manner as in (3) to obtain a colorless and transparent upper clad layer having a thickness of 10 µm. Thus, an optical waveguide was obtained.
(6) Evaluation of refractive index distribution And about the cross section of the core layer of the obtained optical waveguide, the refractive index distribution W of the width direction was acquired with the interference microscope. As a result, the refractive index distribution W had a plurality of low refractive index regions and high refractive index regions, and the refractive index changed continuously.
(Examples 2 to 8)
The composition of the polymer, the composition and content of the monomer, and the cumulative amount of ultraviolet light are set as shown in Table 1, and the average width WCO of the core portion and the average width WCL of the side cladding portions are values shown in Table 1, respectively. The optical waveguides of Examples 2 to 8 were obtained in the same manner as in Example 1 except that the photomask pattern was set as described above.
Example 9
(1) Synthesis of (meth) acrylic polymer 20.0 g of methyl methacrylate (MMA), 30.0 g of benzyl methacrylate (BzMA), and 450 g of methyl isobutyl ketone were charged into a separable flask. These were stirred and mixed, and then replaced with nitrogen gas to prepare a monomer solution.
 一方、重合開始剤としてアゾビスイソブチロニトリル0.25gをメチルイソブチルケトン10gに溶解したのち、窒素ガスで置換して、開始剤溶液を調製した。 On the other hand, 0.25 g of azobisisobutyronitrile as a polymerization initiator was dissolved in 10 g of methyl isobutyl ketone and then replaced with nitrogen gas to prepare an initiator solution.
 そして、前記モノマー溶液を80℃に加熱した状態で撹拌しつつ、シリンジを用いて前記開始剤溶液を前記モノマー溶液に添加した。そのまま80℃で1時間撹拌したのちに冷却し、重合体溶液を調製した。その後、5Lのイソプロパノールをビーカー中に準備し、攪拌機により常温下で撹拌しつつ、ビーカー内に前記重合体溶液を滴下した。滴下が完了してからも引き続き30分間撹拌し、その後沈殿したポリマーを取り出し、真空乾燥機にて減圧下60℃で8時間乾燥させた。これにより、アクリル系ポリマーA1を得た。
(2)クラッド層形成用樹脂組成物の製造
 互応化学工業(株)製の水性アクリレート樹脂溶液:RD-180 20g、イソプロパノール20g、および重合開始剤として日清紡ケミカル(株)製のカルボジライトV-02-L2 0.4gを、撹拌混合して溶液を調製した。
And the said initiator solution was added to the said monomer solution using the syringe, stirring the said monomer solution in the state heated at 80 degreeC. The mixture was stirred at 80 ° C. for 1 hour and then cooled to prepare a polymer solution. Thereafter, 5 L of isopropanol was prepared in a beaker, and the polymer solution was dropped into the beaker while stirring at room temperature with a stirrer. After completion of dropping, the mixture was further stirred for 30 minutes, and then the precipitated polymer was taken out and dried at 60 ° C. under reduced pressure for 8 hours in a vacuum dryer. Thereby, acrylic polymer A1 was obtained.
(2) Production of Cladding Layer Forming Resin Composition Aqueous acrylate resin solution manufactured by Kyoyo Chemical Industry Co., Ltd .: 20 g of RD-180, 20 g of isopropanol, and Carbodilite V-02- manufactured by Nisshinbo Chemical Co., Ltd. as a polymerization initiator A solution was prepared by stirring and mixing 0.4 g of L2.
 次いで、得られた溶液を0.2μm孔径のPTFEフィルターでろ過して、清浄で無色透明なクラッド層形成用樹脂組成物B1を得た。
(3)感光性樹脂組成物の製造
 合成したアクリル系ポリマーA1 20gと、モノマーとしてメタクリル酸シクロヘキシル5gと、重合開始剤としてBASFジャパン(株)製イルガキュア651 0.2gを、メチルイソブチルケトン80g中に投入し、撹拌溶解し、溶液を調製した。
Next, the obtained solution was filtered through a PTFE filter having a pore size of 0.2 μm to obtain a clean and colorless and transparent resin composition B1 for forming a cladding layer.
(3) Production of photosensitive resin composition 20 g of synthesized acrylic polymer A1, 5 g of cyclohexyl methacrylate as a monomer, 0.2 g of Irgacure 651 manufactured by BASF Japan Ltd. as a polymerization initiator, in 80 g of methyl isobutyl ketone The solution was added and dissolved by stirring to prepare a solution.
 次いで、得られた溶液を0.2μm孔径のPTFEフィルターでろ過して、清浄で無色透明な感光性樹脂組成物C1を得た。
(4)下側クラッド層の作製
 クラッド層形成用樹脂組成物B1をドクターブレードにより厚さ25μmのポリイミドフィルム上に均一に塗布した後、80℃の乾燥機に10分間投入した。溶媒を完全に除去した後、さらに150℃のオーブンに10分間投入し、硬化させて、厚さ10μmの無色透明な下側クラッド層を得た。
(5)コア層の作製
 作製した下側クラッド層上に、感光性樹脂組成物C1をドクターブレードにより均一に塗布した。この後、40℃の乾燥機に5分間投入した。溶媒を完全に除去して被膜とした後、得られた被膜上に、ライン、スペースの直線パターンが全面に描かれたフォトマスクを圧着した。そして、フォトマスク上から平行露光機により紫外線を照射した。なお、紫外線の積算光量は800mJ/cmとした。
Subsequently, the obtained solution was filtered with a PTFE filter having a pore size of 0.2 μm to obtain a clean, colorless and transparent photosensitive resin composition C1.
(4) Production of lower clad layer The clad layer-forming resin composition B1 was uniformly applied onto a polyimide film having a thickness of 25 µm by a doctor blade, and then placed in a dryer at 80 ° C for 10 minutes. After completely removing the solvent, it was further put into an oven at 150 ° C. for 10 minutes and cured to obtain a colorless and transparent lower clad layer having a thickness of 10 μm.
(5) Preparation of core layer The photosensitive resin composition C1 was uniformly apply | coated with the doctor blade on the produced lower clad layer. Thereafter, it was put into a dryer at 40 ° C. for 5 minutes. After completely removing the solvent to form a film, a photomask having a linear pattern of lines and spaces drawn on the entire surface was pressure-bonded onto the obtained film. Then, ultraviolet rays were irradiated from above the photomask with a parallel exposure machine. The cumulative amount of ultraviolet light was 800 mJ / cm 2 .
 次いで、フォトマスクを取り去り、150℃のオーブンに30分間投入した。オーブンから取り出すと、被膜には断面が矩形状をなす鮮明な導波路パターンが現れていることが確認された。コア部の平均幅WCOと側面クラッド部の平均幅WCLとをそれぞれ表2に示す。また、得られたコア層の厚さは50μm、コア部の本数は8本とした。
(6)上側クラッド層の作製
 作製したコア層上に、(4)と同様にしてクラッド層形成用樹脂組成物B1を塗布し、厚さ10μmの無色透明な上側クラッド層を得た。上記と同様にして光導波路を得た。
(7)屈折率分布の評価
 そして、得られた光導波路のコア層の横断面について、干渉顕微鏡により、幅方向の屈折率分布Wを取得した。その結果、屈折率分布Wは、複数の低屈折率領域および高屈折率領域を有し、屈折率が連続的に変化したものであった。
(実施例10~12)
 モノマーの組成と含有率、および紫外線の積算光量を、表2に示すように設定するとともに、コア部の平均幅WCOおよび側面クラッド部の平均幅WCLがそれぞれ表2に示す値になるようにフォトマスクのパターンを設定した以外は、それぞれ実施例9と同様にして、実施例10~12の光導波路を得た。
(実施例13)
(1)離脱性基を有するポリオレフィン系樹脂の合成
 水分および酸素濃度がいずれも1ppm以下に制御され、乾燥窒素で満たされたグローブボックス中において、ヘキシルノルボルネン(HxNB)7.2g(40.1mmol)、及びジフェニルメチルノルボルネンメトキシシラン12.9g(40.1mmol)を、500mLバイアル瓶に計量し、脱水トルエン60gと酢酸エチル11gを加えた。このグローブボックスにシリコン製のシーラーを被せて上部を密栓した。
Next, the photomask was removed and placed in an oven at 150 ° C. for 30 minutes. When taken out from the oven, it was confirmed that a clear waveguide pattern having a rectangular cross section appeared on the coating. Table 2 shows the average width WCO of the core portion and the average width WCL of the side cladding portions. Further, the thickness of the obtained core layer was 50 μm, and the number of core portions was eight.
(6) Production of upper clad layer On the produced core layer, the clad layer-forming resin composition B1 was applied in the same manner as in (4) to obtain a colorless and transparent upper clad layer having a thickness of 10 µm. An optical waveguide was obtained in the same manner as above.
(7) Evaluation of refractive index distribution And about the cross section of the core layer of the obtained optical waveguide, the refractive index distribution W of the width direction was acquired with the interference microscope. As a result, the refractive index distribution W had a plurality of low refractive index regions and high refractive index regions, and the refractive index changed continuously.
(Examples 10 to 12)
The composition and content of the monomer, and the cumulative amount of ultraviolet light are set as shown in Table 2, and the photo is taken so that the average width WCO of the core portion and the average width WCL of the side cladding portions are the values shown in Table 2, respectively. Optical waveguides of Examples 10 to 12 were obtained in the same manner as Example 9 except that the mask pattern was set.
(Example 13)
(1) Synthesis of polyolefin-based resin having a leaving group In a glove box filled with dry nitrogen, both moisture and oxygen concentrations are controlled to 1 ppm or less, and 7.2 g (40.1 mmol) of hexylnorbornene (HxNB) , And 12.9 g (40.1 mmol) of diphenylmethylnorbornenemethoxysilane were weighed into a 500 mL vial, and 60 g of dehydrated toluene and 11 g of ethyl acetate were added. The glove box was covered with a silicon sealer and sealed at the top.
 次に、100mLバイアルビン中にNi触媒1.56g(3.2mmol)と脱水トルエン10mLを計量した。スターラーチップを入れてビンを密栓し、触媒を十分に撹拌して完全に溶解させた。 Next, 1.56 g (3.2 mmol) of Ni catalyst and 10 mL of dehydrated toluene were weighed in a 100 mL vial. A stirrer chip was put in, the bottle was sealed, and the catalyst was thoroughly stirred to dissolve completely.
 このNi触媒溶液1mLをシリンジで正確に計量し、上記2種のノルボルネンを溶解させたバイアル瓶中に定量的に注入し、室温で1時間撹拌した。その結果、著しい粘度上昇が確認された。この時点で栓を抜き、テトラヒドロフラン(THF)60gを加えて撹拌を行い、反応溶液を得た。 1 mL of this Ni catalyst solution was accurately weighed with a syringe, and quantitatively injected into a vial bottle in which the two types of norbornene were dissolved, and stirred at room temperature for 1 hour. As a result, a significant increase in viscosity was confirmed. At this point, the stopper was removed, 60 g of tetrahydrofuran (THF) was added, and the mixture was stirred to obtain a reaction solution.
 100mLビーカーに、無水酢酸9.5g、過酸化水素水18g(濃度30%)、及びイオン交換水30gを加えて撹拌し、その場で、過酢酸水溶液を調製した。次にこの水溶液全量を上記反応溶液に加えて12時間撹拌して、Niの還元処理を行った。 In a 100 mL beaker, 9.5 g of acetic anhydride, 18 g of hydrogen peroxide (concentration 30%) and 30 g of ion-exchanged water were added and stirred, and an aqueous peracetic acid solution was prepared on the spot. Next, the total amount of this aqueous solution was added to the above reaction solution and stirred for 12 hours to perform Ni reduction treatment.
 次に、処理の完了した反応溶液を分液ロートに移し替え、下部の水層を除去した。この後、イソプロピルアルコールの30%水溶液を100mL加えて激しく撹拌を行った。静置して完全に二層分離が行われた後で、水層を除去した。この水洗プロセスを合計で3回繰り返した。この後、油層を大過剰のアセトン中に滴下して生成したポリマーを再沈殿させ、ろ過により、ろ液と分別した。この後、60℃に設定した真空乾燥機中で12時間加熱乾燥を行うことにより、ポリマー#1を得た。ポリマー#1の分子量分布は、GPC測定により、Mw=10万、Mn=4万であった。また、ポリマー#1中の各構造単位のモル比は、NMRによる同定により、ヘキシルノルボルネン構造単位が50mol%、ジフェニルメチルノルボルネンメトキシシラン構造単位が50mol%であった。
(2)コア層形成用組成物の製造
 精製した上記ポリマー#1 10gを100mLのガラス容器に秤量し、これに、メシチレン40g、酸化防止剤Irganox1076(チバガイギー社製)0.01g、シクロヘキシルオキセタンモノマー(東亜合成製 CHOX、CAS#483303-25-9、分子量186、沸点125℃/1.33kPa)2g、及び重合開始剤(光酸発生剤) RhodorsilPhotoinitiator 2074(Rhodia社製、CAS# 178233-72-2)(0.0125g、酢酸エチル0.1mL中)を加え均一に溶解させた。この後、0.2μmのPTFEフィルターによりろ過を行い、清浄なコア層形成用組成物を得た。なお、この組成物には、モノマーが含まれていない点で、各実施例に記載の感光性樹脂組成物と異なっている。一方、ポリマー#1は、活性放射線の照射により離脱性基が離脱する機能を有しており、いわゆるフォトブリーチング現象が生じるものである。また、前記重合開始剤は、表1中においてPI 2074と表記する。
(3)クラッド層形成用組成物の製造
 精製した上記ポリマー#1の各構造単位のモル比を、ヘキシルノルボルネン構造単位80mol%、及びジフェニルメチルノルボルネンメトキシシラン構造単位20mol%にそれぞれ変更したものを、前記ポリマー#1に代えて用いるようにした以外は、コア層形成用組成物と同様にして、クラッド層形成用組成物を得た。
(4)下側クラッド層の作製
 クラッド層形成用組成物をドクターブレードにより厚さ25μmのポリイミドフィルム上に均一に塗布した。この後、50℃の乾燥機に10分間投入した。溶媒を完全に除去した後、UV露光機で全面に紫外線を照射し、塗布した組成物を硬化させた。これにより、厚さ10μmの無色透明な下側クラッド層を得た。なお、紫外線の積算光量は500mJ/cmとした。
(5)コア層の作製
 作製した下側クラッド層上に、コア層樹脂組成物をドクターブレードにより均一に塗布した。この後、40℃の乾燥機に5分間投入した。溶媒を完全に除去して被膜とした後、得られた被膜上に、ライン、スペースの直線パターンが全面に描かれたフォトマスクを圧着した。そして、フォトマスク上から平行露光機により紫外線を照射した。なお、紫外線の積算光量は1300mJ/cmとした。
Next, the treated reaction solution was transferred to a separatory funnel, and the lower aqueous layer was removed. Thereafter, 100 mL of a 30% aqueous solution of isopropyl alcohol was added and stirred vigorously. After standing and completely separating two layers, the aqueous layer was removed. This water washing process was repeated three times in total. Thereafter, the oil layer was dropped into a large excess of acetone to reprecipitate the produced polymer, and the filtrate was separated from the filtrate. Then, polymer # 1 was obtained by performing heat drying for 12 hours in the vacuum dryer set to 60 degreeC. The molecular weight distribution of the polymer # 1 was Mw = 100,000 and Mn = 40,000 by GPC measurement. The molar ratio of each structural unit in polymer # 1 was 50 mol% for the hexylnorbornene structural unit and 50 mol% for the diphenylmethylnorbornenemethoxysilane structural unit, as determined by NMR.
(2) Production of composition for forming core layer 10 g of the above-mentioned polymer # 1 was weighed into a 100 mL glass container, and 40 g of mesitylene, 0.01 g of an antioxidant Irganox 1076 (manufactured by Ciba Geigy), cyclohexyloxetane monomer ( Toa Gosei CHOX, CAS # 483303-25-9, molecular weight 186, boiling point 125 ° C./1.33 kPa) 2 g, and polymerization initiator (photoacid generator) Rhodosil Photoinitiator 2074 (manufactured by Rhodia, CAS # 178233-72-2) ) (0.0125 g in 0.1 mL of ethyl acetate) was added and dissolved uniformly. Then, it filtered with a 0.2 micrometer PTFE filter, and obtained the composition for clean core layer formation. In addition, this composition differs from the photosensitive resin composition as described in each Example by the point in which a monomer is not contained. On the other hand, the polymer # 1 has a function of releasing a leaving group upon irradiation with actinic radiation, and a so-called photobleaching phenomenon occurs. The polymerization initiator is expressed as PI 2074 in Table 1.
(3) Manufacture of the composition for forming a clad layer The molar ratio of each structural unit of the purified polymer # 1 was changed to hexyl norbornene structural unit 80 mol% and diphenylmethylnorbornene methoxysilane structural unit 20 mol%, A clad layer forming composition was obtained in the same manner as the core layer forming composition except that the polymer # 1 was used instead.
(4) Production of lower clad layer The clad layer forming composition was uniformly applied onto a polyimide film having a thickness of 25 µm by a doctor blade. Thereafter, it was put into a dryer at 50 ° C. for 10 minutes. After completely removing the solvent, the entire surface was irradiated with UV light by a UV exposure machine to cure the applied composition. As a result, a colorless and transparent lower cladding layer having a thickness of 10 μm was obtained. The cumulative amount of ultraviolet light was 500 mJ / cm 2 .
(5) Preparation of core layer The core layer resin composition was uniformly apply | coated with the doctor blade on the produced lower clad layer. Thereafter, it was put into a dryer at 40 ° C. for 5 minutes. After completely removing the solvent to form a film, a photomask having a linear pattern of lines and spaces drawn on the entire surface was pressure-bonded onto the obtained film. Then, ultraviolet rays were irradiated from above the photomask with a parallel exposure machine. The integrated light quantity of ultraviolet rays was 1300 mJ / cm 2 .
 次いで、フォトマスクを取り去り、150℃のオーブンに30分間投入した。オーブンから取り出すと、被膜には断面が矩形状をなす鮮明な導波路パターンが現れていることが確認された。得られたコア層の厚さは50μmであった。また、コア部の本数は8本とした。
(6)上側クラッド層の作製
 作製したコア層上に、(3)と同様にしてクラッド層形成用樹脂組成物E1を塗布し、厚さ10μmの無色透明な上側クラッド層を得た。以上のようにして光導波路を得た。
(7)屈折率分布の評価
 そして、得られた光導波路のコア層の横断面について、干渉顕微鏡により幅方向の屈折率分布Wを取得した。その結果、屈折率分布Wは、複数の低屈折率領域および高屈折率領域を有し、屈折率が連続的に変化したものであった。
(実施例14、15)
 モノマーの組成と含有率、および紫外線の積算光量を、表3に示すように設定するとともに、コア部の平均幅WCOおよび側面クラッド部の平均幅WCLがそれぞれ表3に示す値になるようにフォトマスクのパターンを設定した以外は、それぞれ実施例13と同様にして光導波路を得た。
(実施例16)
(1)光導波路の製造
 実施例13に用いた光導波路形成用組成物を用い、ダイコーターにより、ポリエーテルスルホン(PES)フィルム上に、多色押出成形(共押出成形)を行った。これにより、コア層形成用組成物を中間層とし、クラッド層形成用組成物を下層および上層とする、3層が押出された、多色成形体を得た。これを55℃の乾燥器に10分間投入し、溶剤を完全に除去した。この後、フォトマスクを圧着して紫外線を1300mJ/cmで選択的に照射した。マスクを取り去り、乾燥機中で150℃、1.5時間の加熱を行った。加熱後、鮮明な導波路パターンが現れており、コア部および側面クラッド部が形成されていることが確認された。その後、得られた光導波路から、長さ10cm分を切り出した。なお、形成された光導波路は、コア部が8本並列に形成されたものである。また、光導波路の全体の厚さを100μmとした。
(2)屈折率分布の評価
 そして、得られた光導波路のコア層の横断面について、干渉顕微鏡により幅方向の屈折率分布Wを取得した。その結果、屈折率分布Wは、複数の低屈折率領域および高屈折率領域を有し、屈折率が連続的に変化したものであった。
Next, the photomask was removed and placed in an oven at 150 ° C. for 30 minutes. When taken out from the oven, it was confirmed that a clear waveguide pattern having a rectangular cross section appeared on the coating. The thickness of the obtained core layer was 50 μm. The number of core portions was eight.
(6) Production of upper clad layer On the produced core layer, the clad layer-forming resin composition E1 was applied in the same manner as in (3) to obtain a colorless and transparent upper clad layer having a thickness of 10 µm. An optical waveguide was obtained as described above.
(7) Evaluation of refractive index distribution And about the cross section of the core layer of the obtained optical waveguide, the refractive index distribution W of the width direction was acquired with the interference microscope. As a result, the refractive index distribution W had a plurality of low refractive index regions and high refractive index regions, and the refractive index changed continuously.
(Examples 14 and 15)
The composition and content of the monomer, and the cumulative amount of UV light are set as shown in Table 3, and the average width WCO of the core portion and the average width WCL of the side cladding portions are set to values shown in Table 3, respectively. An optical waveguide was obtained in the same manner as in Example 13 except that the mask pattern was set.
(Example 16)
(1) Production of Optical Waveguide Using the composition for forming an optical waveguide used in Example 13, a multi-color extrusion molding (coextrusion molding) was performed on a polyethersulfone (PES) film by a die coater. As a result, a multicolor molded body was obtained in which three layers were extruded with the composition for forming the core layer as the intermediate layer and the composition for forming the clad layer as the lower layer and the upper layer. This was put into a dryer at 55 ° C. for 10 minutes to completely remove the solvent. Thereafter, a photomask was pressed and selectively irradiated with ultraviolet rays at 1300 mJ / cm 2 . The mask was removed, and heating was performed at 150 ° C. for 1.5 hours in a dryer. After heating, a clear waveguide pattern appeared, and it was confirmed that a core part and a side cladding part were formed. Thereafter, a length of 10 cm was cut out from the obtained optical waveguide. Note that the formed optical waveguide has eight core portions formed in parallel. The total thickness of the optical waveguide was 100 μm.
(2) Evaluation of refractive index distribution And about the cross section of the core layer of the obtained optical waveguide, the refractive index distribution W of the width direction was acquired with the interference microscope. As a result, the refractive index distribution W had a plurality of low refractive index regions and high refractive index regions, and the refractive index changed continuously.
 一方、光導波路の横断面について、そのコア部の幅の中心を上下方向に通過する中心線に沿って干渉顕微鏡により厚さ方向の屈折率分布Tを取得した。その結果、屈折率分布Tは、その中央部に屈折率が連続的に変化している領域と、その両側に、前記領域より屈折率が低く、かつほぼ一定の値の領域を有していた。すなわち、得られた光導波路の厚さ方向の屈折率分布Tは、いわゆるグレーデッドインデックス型になっていた。
(実施例17、18)
 モノマーの組成と含有率、および紫外線の積算光量を表3に示すように設定するとともに、コア部の平均幅WCOおよび側面クラッド部の平均幅WCLがそれぞれ表3に示す値になるようにフォトマスクのパターンを設定するようにした以外は、それぞれ実施例16と同様にして、実施例17、18の光導波路を得た。
(比較例1)
 コア形成用組成物およびクラッド形成用組成物について、CHOXを添加せず、PI2074の添加量を0.01gとした以外は、実施例13と同様にして、比較例1の光導波路を得た。
On the other hand, regarding the cross section of the optical waveguide, a refractive index distribution T in the thickness direction was obtained by an interference microscope along a center line passing through the center of the width of the core portion in the vertical direction. As a result, the refractive index distribution T had a region where the refractive index continuously changed at the center thereof, and a region having a refractive index lower than that of the region and a substantially constant value on both sides thereof. . That is, the refractive index distribution T in the thickness direction of the obtained optical waveguide was a so-called graded index type.
(Examples 17 and 18)
The composition and content of the monomer and the integrated light quantity of ultraviolet rays are set as shown in Table 3, and the photomask is set so that the average width WCO of the core portion and the average width WCL of the side cladding portions are values shown in Table 3, respectively. The optical waveguides of Examples 17 and 18 were obtained in the same manner as Example 16 except that the above pattern was set.
(Comparative Example 1)
An optical waveguide of Comparative Example 1 was obtained in the same manner as Example 13 except that CHO was not added and the amount of PI2074 added was 0.01 g for the core forming composition and the cladding forming composition.
 なお、得られた光導波路では、コア部の屈折率は一定であり、側面クラッド部の屈折率も一定であり、コア部とクラッド部との屈折率は不連続であった。すなわち、得られた光導波路のコア層の屈折率分布は、いわゆるステップインデックス(SI)型の分布になっていた。
(参考例1、2)
 コア部の平均幅WCOおよび側面クラッド部の平均幅WCLがそれぞれ表1に示す値になるようにフォトマスクのパターンを変更するようにした以外は、それぞれ実施例1、2と同様にして、参考例1、2の光導波路を得た。
(参考例3、4)
 コア部の平均幅WCOおよび側面クラッド部の平均幅WCLがそれぞれ表2に示す値になるようにフォトマスクのパターンを変更するようにした以外は、それぞれ実施例9、10と同様にして、参考例3、4の光導波路を得た。
In the obtained optical waveguide, the refractive index of the core part was constant, the refractive index of the side cladding part was also constant, and the refractive index of the core part and the cladding part was discontinuous. That is, the refractive index distribution of the core layer of the obtained optical waveguide was a so-called step index (SI) type distribution.
(Reference Examples 1 and 2)
Except that the pattern of the photomask was changed so that the average width WCO of the core portion and the average width WCL of the side cladding portions were values shown in Table 1, respectively, in the same manner as in Examples 1 and 2, respectively. The optical waveguides of Examples 1 and 2 were obtained.
(Reference Examples 3 and 4)
Except that the pattern of the photomask was changed so that the average width WCO of the core portion and the average width WCL of the side cladding portions were values shown in Table 2, respectively, in the same manner as in Examples 9 and 10, respectively. The optical waveguides of Examples 3 and 4 were obtained.
 以上の各実施例、各比較例および各参考例で得られた光導波路について、それらの製造条件を、表1、2、3に示す。 Tables 1, 2 and 3 show the manufacturing conditions of the optical waveguides obtained in the above Examples, Comparative Examples and Reference Examples.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
2.図6に示す屈折率分布を有する光導波路の製造
 まず、図6に示す屈折率分布を有する直線状のコア部を有する光導波路を製造し、3.ではその評価を行った。
(実施例19~37、比較例2および参考例5~10)
 製造条件を表4、5、6に示すように変更するとともに、実施例19~31および参考例5~8におけるコア層形成時の乾燥条件を50℃×10分間に、実施例32~37、比較例2および参考例9、10におけるコア層形成時の乾燥条件を60℃×15分間に変更した以外は、それぞれ実施例1と同様にして光導波路を得た。また、実施例35~37では、実施例16と同様の共押出成形により多色成形体を得た後、紫外線を照射するようにした。
Figure JPOXMLDOC01-appb-T000003
2. 2. Production of Optical Waveguide Having Refractive Index Distribution Shown in FIG. 6 First, an optical waveguide having a linear core portion having a refractive index distribution shown in FIG. Then we evaluated it.
(Examples 19 to 37, Comparative Example 2 and Reference Examples 5 to 10)
The manufacturing conditions were changed as shown in Tables 4, 5, and 6, and the drying conditions at the time of forming the core layer in Examples 19 to 31 and Reference Examples 5 to 8 were set to 50 ° C. × 10 minutes. Optical waveguides were obtained in the same manner as in Example 1 except that the drying conditions for forming the core layer in Comparative Example 2 and Reference Examples 9 and 10 were changed to 60 ° C. × 15 minutes. In Examples 35 to 37, a multicolor molded body was obtained by coextrusion molding as in Example 16, and then irradiated with ultraviolet rays.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
3.光導波路の評価
3.1 光導波路の屈折率分布
 得られた光導波路のコア層の横断面について、その厚さ方向の中心線に沿って干渉顕微鏡により屈折率分布を測定し、コア層の横断面の幅方向の屈折率分布を得た。なお、得られた屈折率分布は、コア部ごとに同様の屈折率分布パターンが繰り返されているので、得られた屈折率分布から一部を切り出し、これを屈折率分布Wとした。また、同様にして屈折率分布Tを得た。
Figure JPOXMLDOC01-appb-T000006
3. 3.1 Evaluation of Optical Waveguide 3.1 Refractive Index Distribution of Optical Waveguide With respect to the cross section of the core layer of the obtained optical waveguide, the refractive index distribution is measured with an interference microscope along the center line in the thickness direction, and the cross section of the core layer is measured. A refractive index profile in the width direction of the surface was obtained. In addition, since the obtained refractive index distribution has the same refractive index distribution pattern repeated for every core part, a part was cut out from the obtained refractive index distribution, and this was made into the refractive index distribution W. Similarly, a refractive index distribution T was obtained.
 屈折率分布Wのうち、表1、表2および表3において「GI型」とした分布の形状は、図5に示すような、極大値Wmを含む高屈折率領域WHと低屈折率領域WLとが交互に並んだ形状であった。 Of the refractive index distribution W, the shape of the distribution designated as “GI type” in Tables 1, 2 and 3 is a high refractive index region WH including a maximum value Wm and a low refractive index region WL as shown in FIG. It was a shape in which and were arranged alternately.
 また、屈折率分布Wのうち、表4、表5および表6において「W型」とした分布の形状は、図6に示すような、4つの極小値と5つの極大値とが交互に並んだ形状であった。このW型の屈折率分布Wから、各極小値Ws1、Ws2、Ws3およびWs4および各極大値Wm1、Wm2、Wm3、Wm4およびWm5を求めるとともに、クラッド部における平均屈折率WAを求めた。なお、各実施例および各参考例で得られた光導波路の幅方向の屈折率分布Wは、それぞれ、その全体において屈折率の変化が連続的であった。 Further, in the refractive index distribution W, the distribution shape of “W type” in Tables 4, 5 and 6 has four minimum values and five maximum values alternately arranged as shown in FIG. It was a shape. From this W-type refractive index distribution W, the respective minimum values Ws1, Ws2, Ws3 and Ws4 and the respective maximum values Wm1, Wm2, Wm3, Wm4 and Wm5 were obtained, and the average refractive index WA in the cladding part was obtained. The refractive index distribution W in the width direction of the optical waveguide obtained in each example and each reference example had a continuous change in the refractive index in the whole.
 また、このW型の屈折率分布Wにおいて、コア部に形成された極大値Wm2、Wm4近傍における屈折率が、平均屈折率WA以上の値を有している部分の幅a[μm]、および、各極小値Ws1、Ws2、Ws3およびWs4近傍における屈折率が、平均屈折率WA未満の値を有している部分の幅b[μm]をそれぞれ測定した。 Further, in this W-type refractive index distribution W, the width a [μm] of the portion where the refractive index in the vicinity of the maximum values Wm2 and Wm4 formed in the core portion is equal to or greater than the average refractive index WA, and The width b [μm] of the portion where the refractive index in the vicinity of each local minimum value Ws1, Ws2, Ws3 and Ws4 has a value less than the average refractive index WA was measured.
 また、各光導波路において、漸減部における屈折率の最大の変化率は0.008~0.025の範囲内であった。また、交差部の屈折率の極大値は、いずれも極大値Wmよりも高く、その差は0.003~0.015の範囲内であった。 Further, in each optical waveguide, the maximum change rate of the refractive index in the gradually decreasing portion was in the range of 0.008 to 0.025. Further, the maximum values of the refractive indexes at the intersections were all higher than the maximum value Wm, and the difference was in the range of 0.003 to 0.015.
 以上の測定結果を表7~13に示す。 The above measurement results are shown in Tables 7-13.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 なお、比較例1、2で得られた光導波路の幅方向の屈折率分布Wは、ステップインデックス型であった。
3.2 光導波路の伝送損失
 850nmVCSEL(面発光レーザー)より発せられた光を50μmφの光ファイバーを経由して、各実施例および各比較例で得られた光導波路に導入し、出射光を200μmφの光ファイバーで受光し、光の強度を測定した。なお、伝送損失の測定にはカットバック法を採用した。そして、光導波路の長手方向を横軸にとり、挿入損失を縦軸にとって測定値をプロットしたところ、測定値は直線上に並んだ。そこで、その直線の傾きから伝送損失を算出した。結果を、下記表14~19に示す。
3.3 パルス信号の波形の保持性
 得られた光導波路に対して、レーザーパルス光源からパルス幅1nsのパルス信号を入射し、出射光のパルス幅を測定した。
Figure JPOXMLDOC01-appb-T000013
The refractive index distribution W in the width direction of the optical waveguide obtained in Comparative Examples 1 and 2 was a step index type.
3.2 Transmission loss of optical waveguide Light emitted from an 850 nm VCSEL (surface emitting laser) is introduced into the optical waveguide obtained in each example and each comparative example via an optical fiber of 50 μmφ, and emitted light is 200 μmφ. The light was received by an optical fiber and the light intensity was measured. Note that the cutback method was used to measure the transmission loss. Then, when the measured values were plotted with the longitudinal direction of the optical waveguide taken on the horizontal axis and the insertion loss on the vertical axis, the measured values were arranged on a straight line. Therefore, the transmission loss was calculated from the slope of the straight line. The results are shown in Tables 14 to 19 below.
3.3 Retention of pulse signal waveform A pulse signal with a pulse width of 1 ns was incident on the obtained optical waveguide from a laser pulse light source, and the pulse width of the emitted light was measured.
 そして、測定した出射光のパルス幅について、表14~16では比較例1で得られた光導波路の測定値を1とし、表17~19では比較例2で得られた光導波路の測定値を1としたときの相対値をそれぞれ算出し、これを以下の評価基準にしたがって評価した。結果を、下記表14~19に示す。 Regarding the measured pulse width of the emitted light, in Tables 14 to 16, the measured value of the optical waveguide obtained in Comparative Example 1 is 1, and in Tables 17 to 19, the measured value of the optical waveguide obtained in Comparative Example 2 is shown. The relative value when set to 1 was calculated, and this was evaluated according to the following evaluation criteria. The results are shown in Tables 14 to 19 below.
 <パルス幅の評価基準>
 ◎:パルス幅の相対値が0.5未満である
 ○:パルス幅の相対値が0.5以上0.8未満である
 △:パルス幅の相対値が0.8以上1未満である
 ×:パルス幅の相対値が1以上である
 
<Evaluation criteria for pulse width>
A: Relative value of pulse width is less than 0.5 B: Relative value of pulse width is 0.5 or more and less than 0.8 Δ: Relative value of pulse width is 0.8 or more and less than 1 ×: The relative value of the pulse width is 1 or more
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
 表14~19から明らかなように、各実施例で得られた光導波路では、各比較例で得られた光導波路に比べ、伝送損失およびパルス信号の鈍りがそれぞれ抑えられていることが認められた。
Figure JPOXMLDOC01-appb-T000019
As is apparent from Tables 14 to 19, it is recognized that the transmission loss and the blunting of the pulse signal are suppressed in the optical waveguides obtained in the respective examples as compared with the optical waveguides obtained in the respective comparative examples. It was.
 なお、比較例1で使用したフォトブリーチング現象が生じるコア層形成用組成物について、照射光量に応じて屈折率の変調量を調整することができるので、それを利用し、積算光量が徐々に変化するよう設定したフォトマスクを使用して屈折率分布Wを形成することを試みた。得られた光導波路に対して上述したように屈折率分布を評価したところ、高屈折率領域と低屈折率領域とが確認されたが、屈折率の変化は各実施例ほど連続的ではなかった。また、得られた光導波路については、各実施例に比べて伝送損失が大きく、パルス信号の波形の保持性も低かった。
4.交差部を有する光導波路の製造
 次いで、上記の各実施例、各比較例および各参考例と同様の条件で、以下のように交差部を有する光導波路を製造した。
(実施例A)
 コア層を作製する際に使用するフォトマスクとして交差部を有する光導波路のパターンに対応したものを使用した以外、実施例1と同様にして光導波路を製造することにより、交差部を有する光導波路を製造した。なお、光導波路の製造にあたっては、各交差部における交差角が30°、60°および90°である3種の光導波路をそれぞれ製造した。
(実施例B~Z、a~k、比較例A、Bおよび参考例A~J)
 コア層を作製する際に使用するフォトマスクとして交差部を有するコア部のパターンに対応したものを使用した以外、実施例2~37、比較例1、2および参考例1~10と同様にして光導波路を製造することにより、それぞれ交差部を有する光導波路を製造した。なお、光導波路の製造にあたっては、各交差部における交差角が30°、60°および90°である3種の光導波路をそれぞれ製造した。
5.交差部を有する光導波路の評価
 次いで、得られた交差部を有する光導波路について、両端部間の挿入損失を測定した。算出された交差部における伝送損失を表14~19に示す。その結果、挿入損失の値は、前述した伝送損失と同様の傾向を示した。すなわち、各実施例で得られた交差部を有する光導波路は、挿入損失が十分に小さかった一方、各比較例で得られた交差部を有する光導波路は、挿入損失が比較的大きかった。そして、3.で測定された伝送損失が小さいものほど、混信する信号光の光量も少ないことが認められた。
In addition, about the composition for core layer formation in which the photo bleaching phenomenon used in the comparative example 1 can be adjusted, the amount of modulation of the refractive index can be adjusted according to the amount of irradiation light. An attempt was made to form the refractive index profile W using a photomask set to change. When the refractive index distribution was evaluated as described above for the obtained optical waveguide, a high refractive index region and a low refractive index region were confirmed, but the change in refractive index was not as continuous as in each example. . In addition, the obtained optical waveguide had a larger transmission loss than the respective examples, and the retention of the pulse signal waveform was also low.
4). Manufacture of Optical Waveguide Having Intersection Next, an optical waveguide having an intersection was manufactured as follows under the same conditions as in the above-described Examples, Comparative Examples, and Reference Examples.
(Example A)
An optical waveguide having crossed portions is manufactured by manufacturing an optical waveguide in the same manner as in Example 1 except that a photomask used for producing the core layer is one corresponding to the pattern of the optical waveguide having crossed portions. Manufactured. In the manufacture of the optical waveguide, three types of optical waveguides having intersection angles of 30 °, 60 °, and 90 ° at each intersection were manufactured.
(Examples B to Z, a to k, Comparative Examples A and B, and Reference Examples A to J)
Except that the photomask used for producing the core layer was one corresponding to the pattern of the core part having the intersecting part, the same as in Examples 2 to 37, Comparative Examples 1 and 2, and Reference Examples 1 to 10 By manufacturing the optical waveguide, optical waveguides each having an intersecting portion were manufactured. In the manufacture of the optical waveguide, three types of optical waveguides having intersection angles of 30 °, 60 °, and 90 ° at each intersection were manufactured.
5). Evaluation of Optical Waveguide Having Intersection Next, the insertion loss between both ends of the obtained optical waveguide having the crossing portion was measured. Tables 14 to 19 show the calculated transmission loss at the intersection. As a result, the insertion loss value showed the same tendency as the transmission loss described above. That is, the optical waveguides having the intersections obtained in each example had a sufficiently small insertion loss, whereas the optical waveguides having the intersections obtained in each comparative example had a relatively large insertion loss. And 3. It was confirmed that the smaller the transmission loss measured in (3), the smaller the amount of signal light that interferes.
 また、交差部における伝送損失を算出したところ、各実施例で得られた交差部を有する光導波路は、各比較例で得られた交差部を有する光導波路よりも交差部における伝送損失が小さいことが明らかとなった。なお、交差角度が90°の場合、伝送損失はいずれも0.02dB以下であった。 Further, when the transmission loss at the intersection is calculated, the optical waveguide having the intersection obtained in each example has a smaller transmission loss at the intersection than the optical waveguide having the intersection obtained in each comparative example. Became clear. When the intersection angle was 90 °, the transmission loss was 0.02 dB or less.
 また、交差部における伝送損失の算出方法は、交差数の異なる試料を複数用意し、それらの挿入損失の比較から交差部1つ当たりの伝送損失を算出する方法とした。 Also, the calculation method of the transmission loss at the intersection is a method in which a plurality of samples having different numbers of intersections are prepared and the transmission loss per intersection is calculated from comparison of the insertion loss.
 また、測定対象のコア部と交差しているコア部に混信している信号光の光量(以下、「混信光量」という。)を測定した。そして、測定した混信光量について、表14~16では比較例1で得られた光導波路の測定値を1とし、表17~19では比較例2で得られた光導波路の測定値を1としたときの相対値をそれぞれ算出し、表14~19に示した。 Also, the amount of signal light interfering with the core portion intersecting with the core portion to be measured (hereinafter referred to as “interference light amount”) was measured. Regarding the measured interference light quantity, the measured value of the optical waveguide obtained in Comparative Example 1 is 1 in Tables 14 to 16, and the measured value of the optical waveguide obtained in Comparative Example 2 is 1 in Tables 17 to 19. Relative values were calculated and shown in Tables 14-19.
 その結果、屈折率分布Wを最適化することにより、混信する信号光の光量が低下することが認められた。 As a result, it was confirmed that by optimizing the refractive index distribution W, the amount of interfering signal light is reduced.
 以上のことから、屈折率分布が特定の条件を満たす連続的な分布になっているコア部を有する光導波路では、損失や混信を抑制し得ることが明らかとなった。 From the above, it has been clarified that loss and interference can be suppressed in an optical waveguide having a core portion in which the refractive index distribution is a continuous distribution that satisfies a specific condition.
 本発明によれば、電気素子等の配置による制約を受けることなく光配線が自由に敷設され、電気回路と光配線の高密度実装を可能にした光電気混載基板が得られる。 According to the present invention, it is possible to obtain an opto-electric hybrid board in which optical wiring is freely laid without being restricted by the arrangement of electric elements and the like and high-density mounting of an electric circuit and optical wiring is possible.
 また、光配線が構築された光導波路の取り外しが容易であるため、組み立てや修理が容易な光電気混載基板が得られる。 Also, since the optical waveguide on which the optical wiring is constructed is easy to remove, an opto-electric hybrid board that can be easily assembled and repaired can be obtained.
 また、本発明によれば、上記光電気混載基板を備え、小型化および高性能化が可能な電子機器が得られる。 In addition, according to the present invention, an electronic device that includes the opto-electric hybrid board and can be reduced in size and performance can be obtained.
 さらに本発明によれば、電気配線基板上に重ねるように実装されたとき、電気配線基板上に設けられた電気素子の放熱性を確保しながら、光配線を自由に構築することを可能にした光導波路が得られる。 Furthermore, according to the present invention, when mounted so as to be stacked on the electric wiring board, it is possible to freely construct the optical wiring while ensuring the heat dissipation of the electric element provided on the electric wiring board. An optical waveguide is obtained.
 また、本発明によれば、高密度な光配線を備えた光配線部品、光モジュール、光電気混載基板および電子機器が得られる。 Further, according to the present invention, an optical wiring component, an optical module, an opto-electric hybrid board, and an electronic device having high-density optical wiring can be obtained.
 以上のことから、本発明は産業上極めて有用である。 From the above, the present invention is extremely useful industrially.
 1           光導波路
 1a          シート状の部分
 1b          帯状の部分
 1c          切り欠き
 1d          接続部
 10          光配線部品
 100         光モジュール
 1000        光電気混載基板
 101         光コネクター
 1011        コネクター本体
 1012        脚部
 1013        コネクター蓋体
 11、12       クラッド層
 13          コア層
 14          コア部
 141、142     コア部
 147、148     交差部
 15          側面クラッド部
 151、152、153 側面クラッド部
 16          レンズ
 17          ミラー
 170         凹部
 18          金属層
 18c         貫通配線
 2           支持フィルム
 3           カバーフィルム
 4           光電変換部
 41          光電変換部基板
 411、411a、411b 絶縁性基板
 412、412a、412b 電気配線
 4120        接点
 413         貫通配線
 414         スルーホール
 42          電気コネクター
 44          ヒートスプレッダー
 45          封止材
 5           マザーボード
 50          電気配線基板用電気素子
 501         LSI
 502         コンデンサー
 503         チップ抵抗器
 51          絶縁性基板
 52          電気配線
 53          電気コネクター
 55          電気インターポーザー
 550         多層基板
 551         コア基板
 552         ビルドアップ層
 553         バンプ
 554、555     補強部材
 556         伝熱ポスト
 6           光素子
 60          素子本体
 61          受発光部
 62          端子
 7           光電変換部用電気素子
 70          素子本体
 72          端子
 C1          中心線
 W           屈折率分布
DESCRIPTION OF SYMBOLS 1 Optical waveguide 1a Sheet-shaped part 1b Band-shaped part 1c Notch 1d Connection part 10 Optical wiring component 100 Optical module 1000 Opto-electric hybrid board 101 Optical connector 1011 Connector main body 1012 Leg part 1013 Connector lid body 11, 12 Cladding layer 13 Core Layer 14 Core part 141, 142 Core part 147, 148 Crossing part 15 Side cladding part 151, 152, 153 Side cladding part 16 Lens 17 Mirror 170 Recess 18 Metal layer 18c Through wiring 2 Support film 3 Cover film 4 Photoelectric conversion part 41 Photoelectric Conversion unit substrate 411, 411a, 411b Insulating substrate 41 2, 412a, 412b Electrical wiring 4120 Contact point 413 Through wiring 414 Through hole 42 Electrical connector 44 Heat spreader 45 Sealing material 5 Motherboard 50 Electrical element for electrical wiring board 501 LSI
502 Capacitor 503 Chip Resistor 51 Insulating Board 52 Electrical Wiring 53 Electrical Connector 55 Electrical Interposer 550 Multilayer Board 551 Core Board 552 Build-up Layer 553 Bump 554, 555 Reinforcement Member 556 Heat Transfer Post 6 Optical Element 60 Element Main Body 61 Light Emitting / Receiving Light Part 62 Terminal 7 Electric element for photoelectric conversion part 70 Element body 72 Terminal C1 Center line W Refractive index distribution

Claims (28)

  1.  第1基板と、前記第1基板の内部または表面に敷設された電気配線と、前記第1基板上に搭載された電気素子と、を備える電気配線基板と、
     同一平面上で互いに交差するよう設けられた複数のコア部と前記各コア部の側面に隣接するよう設けられた側面クラッド部とを備え、前記コア部の中心部から前記側面クラッド部に向かって屈折率が連続的に低くなる屈折率分布が形成されているコア層と、前記コア部の光路を変換する光路変換部と、を備えるフィルム状の光導波路と、
    を有し、
     前記光導波路と前記電気配線基板との間で、光電変換を伴う信号の送受信が行われるよう構成されており、
     前記光導波路は、前記電気素子を挟んで前記第1基板の反対側に配置されていることを特徴とする光電気混載基板。
    An electrical wiring board comprising: a first substrate; electrical wiring laid on or on the surface of the first substrate; and an electrical element mounted on the first substrate;
    A plurality of core portions provided so as to intersect with each other on the same plane, and a side clad portion provided adjacent to a side surface of each core portion, from the central portion of the core portion toward the side clad portion A film-shaped optical waveguide comprising: a core layer in which a refractive index distribution in which the refractive index is continuously reduced; and an optical path conversion unit that converts an optical path of the core unit;
    Have
    Between the optical waveguide and the electrical wiring board, configured to transmit and receive signals with photoelectric conversion,
    The opto-electric hybrid board according to claim 1, wherein the optical waveguide is disposed on the opposite side of the first board with the electric element interposed therebetween.
  2.  前記光導波路は、前記電気配線基板に対して着脱可能に設けられている請求項1に記載の光電気混載基板。 The opto-electric hybrid board according to claim 1, wherein the optical waveguide is detachably attached to the electric wiring board.
  3.  当該光電気混載基板は、さらに、第2基板と、前記第2基板の内部または表面に敷設された電気配線と、前記第2基板上に搭載された光素子と、を備えた光電変換部を有するものであり、
     前記光導波路が備える前記光路変換部と前記光電変換部が備える前記光素子とが光学的に接続されているとともに、前記光電変換部が備える前記電気配線と前記電気配線基板が備える前記電気配線とが電気的に接続されている請求項1または2に記載の光電気混載基板。
    The opto-electric hybrid board further includes a photoelectric conversion unit including a second substrate, an electrical wiring laid on or inside the second substrate, and an optical element mounted on the second substrate. Have
    The optical path included in the optical waveguide is optically connected to the optical element included in the photoelectric conversion unit, the electrical wiring included in the photoelectric conversion unit, and the electrical wiring included in the electrical wiring substrate; The opto-electric hybrid board according to claim 1 or 2, wherein are electrically connected.
  4.  前記光電変換部の前記電気配線と前記電気配線基板の前記電気配線との間が、電気コネクターを介して電気的に接続されている請求項3に記載の光電気混載基板。 The opto-electric hybrid board according to claim 3, wherein the electrical wiring of the photoelectric conversion unit and the electrical wiring of the electrical wiring board are electrically connected via an electrical connector.
  5.  前記光電変換部は、さらに、前記光素子に接するように設けられた放熱体を備えている請求項3または4に記載の光電気混載基板。 The photoelectric hybrid substrate according to claim 3 or 4, wherein the photoelectric conversion unit further includes a heat dissipating member provided in contact with the optical element.
  6.  前記光導波路は、さらに、前記コア層の少なくとも一方の面側に設けられた金属層を備える請求項1ないし5のいずれか1項に記載の光電気混載基板。 The opto-electric hybrid board according to any one of claims 1 to 5, wherein the optical waveguide further includes a metal layer provided on at least one surface side of the core layer.
  7.  前記金属層の構成材料は、アルミニウム、鉄および銅の単体またはこれらの基合金を主材料とするものである請求項6に記載の光電気混載基板。 The opto-electric hybrid board according to claim 6, wherein the constituent material of the metal layer is mainly composed of a simple substance of aluminum, iron and copper or a base alloy thereof.
  8.  前記金属層は、前記電気素子と直接接触または熱伝導部を介して接触している請求項6または7に記載の光電気混載基板。 The opto-electric hybrid board according to claim 6 or 7, wherein the metal layer is in direct contact with the electric element or in contact with a heat conducting part.
  9.  前記光導波路は、前記電気配線基板の前記第1基板との間に空間が生じるように配置されている請求項1ないし8のいずれか1項に記載の光電気混載基板。 The opto-electric hybrid board according to any one of claims 1 to 8, wherein the optical waveguide is disposed so that a space is generated between the optical wiring board and the first board.
  10.  マザーボードと、
     前記マザーボード上に搭載された、前記電気配線基板としての電気インターポーザーと、
     前記光導波路と、
    を備え、
     前記光導波路は、前記電気インターポーザーが備える前記電気素子を覆うように、前記電気素子を介して前記第1基板の反対側に配置されている請求項1ないし9のいずれか1項に記載の光電気混載基板。
    With the motherboard,
    An electrical interposer mounted on the motherboard as the electrical wiring board;
    The optical waveguide;
    With
    The said optical waveguide is arrange | positioned on the opposite side of the said 1st board | substrate through the said electrical element so that the said electrical element with which the said electrical interposer is provided is described. Opto-electric hybrid board.
  11.  前記電気配線基板は、前記第1基板の両面側にそれぞれ設けられた金属層と、前記第1基板を貫通して前記金属層同士を接続するように設けられたビアポストと、を備えている請求項10に記載の光電気混載基板。 The electrical wiring board includes a metal layer provided on each side of the first substrate, and a via post provided so as to connect the metal layers through the first substrate. Item 11. The opto-electric hybrid board according to Item 10.
  12.  前記電気配線基板は、前記第1基板の少なくとも一方の面側に設けられた金属層を備えている請求項1ないし11のいずれか1項に記載の光電気混載基板。 The opto-electric hybrid board according to any one of claims 1 to 11, wherein the electric wiring board includes a metal layer provided on at least one surface side of the first board.
  13.  前記光導波路と、前記コア部の端部に設けられた光コネクターと、を有する請求項1ないし12のいずれか1項に記載の光電気混載基板。 The opto-electric hybrid board according to any one of claims 1 to 12, comprising the optical waveguide and an optical connector provided at an end of the core portion.
  14.  請求項1ないし13のいずれか1項に記載の光電気混載基板を備えることを特徴とする電子機器。 An electronic apparatus comprising the opto-electric hybrid board according to any one of claims 1 to 13.
  15.  コア部と前記各コア部の側面に隣接するよう設けられた側面クラッド部とを備えたコア層と、前記コア部の光路を変換する光路変換部と、有する光導波路であって、
     電気素子を備えた電気配線基板に対して当該光導波路が重ねられたとき、前記電気素子が挿入されるよう前記コア層に形成された貫通孔をさらに有していることを特徴とする光導波路。
    An optical waveguide having a core layer including a core portion and a side cladding portion provided so as to be adjacent to a side surface of each core portion, and an optical path conversion portion that converts an optical path of the core portion,
    An optical waveguide, further comprising a through hole formed in the core layer so that the electrical element is inserted when the optical waveguide is overlaid on an electrical wiring board including the electrical element. .
  16.  さらに、前記コア層の一方の面側に設けられた金属層を有しており、
     前記金属層は、前記貫通孔の少なくとも一部を塞ぐよう構成されている請求項15に記載の光導波路。
    Furthermore, it has a metal layer provided on one surface side of the core layer,
    The optical waveguide according to claim 15, wherein the metal layer is configured to close at least a part of the through hole.
  17.  前記金属層の構成材料は、銅単体、銅合金、アルミニウム単体およびアルミニウム合金のいずれかを主成分とするものである請求項16に記載の光導波路。 The optical waveguide according to claim 16, wherein the constituent material of the metal layer is mainly composed of one of copper, copper alloy, aluminum, and aluminum alloy.
  18.  前記コア層は、同一平面上で互いに交差するよう設けられた複数の前記コア部を備えている請求項15ないし17のいずれか1項に記載の光導波路。 The optical waveguide according to any one of claims 15 to 17, wherein the core layer includes a plurality of the core portions provided to cross each other on the same plane.
  19.  前記コア部は、中心部から前記側面クラッド部に向かって屈折率が連続的に低くなる屈折率分布を有している請求項15ないし18のいずれか1項に記載の光導波路。 The optical waveguide according to any one of claims 15 to 18, wherein the core portion has a refractive index distribution in which a refractive index continuously decreases from a central portion toward the side cladding portion.
  20.  さらに、前記コア層の他方の面側に設けられたレンズを有している請求項15ないし19のいずれか1項に記載の光導波路。 The optical waveguide according to claim 15, further comprising a lens provided on the other surface side of the core layer.
  21.  請求項15ないし20のいずれか1項に記載の光導波路と、前記コア部の端部に設けられた光コネクターと、を有することを特徴とする光配線部品。 21. An optical wiring component comprising the optical waveguide according to any one of claims 15 to 20 and an optical connector provided at an end of the core portion.
  22.  請求項15ないし20のいずれか1項に記載の光導波路と、前記コア層の一方の面側に設けられ、前記光路変換部と光学的に接続された光素子と、を有することを特徴とする光モジュール。 21. The optical waveguide according to any one of claims 15 to 20, and an optical element provided on one surface side of the core layer and optically connected to the optical path conversion unit, Optical module.
  23.  さらに、前記光素子を覆うように設けられた放熱体と、を有する請求項22に記載の光モジュール。 The optical module according to claim 22, further comprising a heat radiator provided to cover the optical element.
  24.  さらに、前記コア層と前記光素子との間に設けられた基板と、前記基板の内部または表面に敷設された電気配線と、前記電気配線に接続された第1の端子と、を有する請求項22または23に記載の光モジュール。 Furthermore, it has the board | substrate provided between the said core layer and the said optical element, the electrical wiring laid in the inside or surface of the said board | substrate, and the 1st terminal connected to the said electrical wiring. The optical module according to 22 or 23.
  25.  さらに、マザーボードと、
     前記マザーボード上に搭載され、電気素子を備えた前記電気配線基板としての電気インターポーザーと、
     を有し、
     前記光導波路と前記電気インターポーザーとが重ねられ、かつ、前記電気インターポーザーが備える前記電気素子が前記貫通孔に挿入されるよう構成されている請求項24に記載の光モジュール。
    Furthermore, with the motherboard,
    An electrical interposer as the electrical wiring board mounted on the motherboard and provided with electrical elements;
    Have
    25. The optical module according to claim 24, wherein the optical waveguide and the electric interposer are overlapped, and the electric element included in the electric interposer is inserted into the through hole.
  26.  前記電気インターポーザーは、その内部または表面に敷設された電気配線と、前記電気配線に接続された第2の端子と、を有しており、
     前記第1の端子と、前記電気インターポーザーに設けられた前記第2の端子と、が接続されている請求項25に記載の光モジュール。
    The electrical interposer has electrical wiring laid inside or on the surface thereof, and a second terminal connected to the electrical wiring,
    The optical module according to claim 25, wherein the first terminal and the second terminal provided in the electric interposer are connected.
  27.  請求項15ないし20のいずれか1項に記載の光導波路を備えることを特徴とする光電気混載基板。 An opto-electric hybrid board comprising the optical waveguide according to any one of claims 15 to 20.
  28.  請求項15ないし20のいずれか1項に記載の光導波路を備えることを特徴とする電子機器。 An electronic device comprising the optical waveguide according to any one of claims 15 to 20.
PCT/JP2013/066729 2012-06-19 2013-06-18 Optical waveguide, optical interconnection component, optical module, opto-electric hybrid board, and electronic device WO2013191175A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/408,448 US9720171B2 (en) 2012-06-19 2013-06-18 Optical waveguide, optical interconnection component, optical module, opto-electric hybrid board, and electronic device

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2012138119 2012-06-19
JP2012138120 2012-06-19
JP2012-138120 2012-06-19
JP2012-138118 2012-06-19
JP2012138118 2012-06-19
JP2012-138119 2012-06-19
JP2013-125972 2013-06-14
JP2013-125973 2013-06-14
JP2013125973A JP6251989B2 (en) 2012-06-19 2013-06-14 Opto-electric hybrid board and electronic equipment
JP2013125972A JP2014026268A (en) 2012-06-19 2013-06-14 Optical waveguide, optical wiring component, optical module, photoelectric hybrid board, and electronic apparatus

Publications (1)

Publication Number Publication Date
WO2013191175A1 true WO2013191175A1 (en) 2013-12-27

Family

ID=49768770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066729 WO2013191175A1 (en) 2012-06-19 2013-06-18 Optical waveguide, optical interconnection component, optical module, opto-electric hybrid board, and electronic device

Country Status (1)

Country Link
WO (1) WO2013191175A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103787268A (en) * 2014-01-21 2014-05-14 华进半导体封装先导技术研发中心有限公司 Method for manufacturing high-speed broadband silicon light adapter plate, and silicon-based optical interconnection device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0548073A (en) * 1991-08-14 1993-02-26 Hitachi Ltd Semiconductor device
JP2005070082A (en) * 2003-08-22 2005-03-17 Ngk Spark Plug Co Ltd Optical component support substrate and manufacturing method therefor, optical component support substrate with optical components, and manufacturing method therefor
JP2005252040A (en) * 2004-03-05 2005-09-15 Sony Corp Photoelectric conversion device, interposer and optical information processing device
JP2006039391A (en) * 2004-07-29 2006-02-09 Sony Corp Photoelectronic apparatus and its manufacturing method
JP2007079283A (en) * 2005-09-15 2007-03-29 Sony Corp Optical integrated circuit
JP2007114583A (en) * 2005-10-21 2007-05-10 Fuji Xerox Co Ltd Optical element module, photoelectric wiring board, and optoelectronic composite assembly
JP2008158474A (en) * 2006-11-29 2008-07-10 Sumitomo Bakelite Co Ltd Optical element mounting component and optical element mounted component
JP2011107206A (en) * 2009-11-12 2011-06-02 Fujitsu Ltd Opto-electronic hybrid circuit board and method for manufacturing the same
JP2011221194A (en) * 2010-04-07 2011-11-04 Sumitomo Bakelite Co Ltd Optical waveguide structure and electronic device
WO2012043417A1 (en) * 2010-10-01 2012-04-05 住友ベークライト株式会社 Optical waveguide module, method for producing optical waveguide module, and electronic apparatus
JP2012068632A (en) * 2010-08-27 2012-04-05 Sumitomo Bakelite Co Ltd Optical waveguide and electronic apparatus

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0548073A (en) * 1991-08-14 1993-02-26 Hitachi Ltd Semiconductor device
JP2005070082A (en) * 2003-08-22 2005-03-17 Ngk Spark Plug Co Ltd Optical component support substrate and manufacturing method therefor, optical component support substrate with optical components, and manufacturing method therefor
JP2005252040A (en) * 2004-03-05 2005-09-15 Sony Corp Photoelectric conversion device, interposer and optical information processing device
JP2006039391A (en) * 2004-07-29 2006-02-09 Sony Corp Photoelectronic apparatus and its manufacturing method
JP2007079283A (en) * 2005-09-15 2007-03-29 Sony Corp Optical integrated circuit
JP2007114583A (en) * 2005-10-21 2007-05-10 Fuji Xerox Co Ltd Optical element module, photoelectric wiring board, and optoelectronic composite assembly
JP2008158474A (en) * 2006-11-29 2008-07-10 Sumitomo Bakelite Co Ltd Optical element mounting component and optical element mounted component
JP2011107206A (en) * 2009-11-12 2011-06-02 Fujitsu Ltd Opto-electronic hybrid circuit board and method for manufacturing the same
JP2011221194A (en) * 2010-04-07 2011-11-04 Sumitomo Bakelite Co Ltd Optical waveguide structure and electronic device
JP2012068632A (en) * 2010-08-27 2012-04-05 Sumitomo Bakelite Co Ltd Optical waveguide and electronic apparatus
WO2012043417A1 (en) * 2010-10-01 2012-04-05 住友ベークライト株式会社 Optical waveguide module, method for producing optical waveguide module, and electronic apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103787268A (en) * 2014-01-21 2014-05-14 华进半导体封装先导技术研发中心有限公司 Method for manufacturing high-speed broadband silicon light adapter plate, and silicon-based optical interconnection device

Similar Documents

Publication Publication Date Title
US9720171B2 (en) Optical waveguide, optical interconnection component, optical module, opto-electric hybrid board, and electronic device
JP6251989B2 (en) Opto-electric hybrid board and electronic equipment
JP6003282B2 (en) Optical wiring components and electronic equipment
JP2018141910A (en) Optical waveguide, optical waveguide connection, and electronic apparatus
JP6364884B2 (en) Optical waveguide, opto-electric hybrid board, optical module, and electronic device
JP6268816B2 (en) Optical waveguide member, optical waveguide, optical waveguide manufacturing method, and electronic apparatus
JP6331336B2 (en) Optical waveguide, opto-electric hybrid board, and electronic equipment
WO2013191175A1 (en) Optical waveguide, optical interconnection component, optical module, opto-electric hybrid board, and electronic device
JP5760365B2 (en) Optical waveguide module and electronic device
JP2016012006A (en) Optical waveguide, photoelectric hybrid substrate, and electronic apparatus
JP5760628B2 (en) Optical waveguide, opto-electric hybrid board, and electronic equipment
JP2014026268A (en) Optical waveguide, optical wiring component, optical module, photoelectric hybrid board, and electronic apparatus
JP5703922B2 (en) Optical waveguide, opto-electric hybrid board, and electronic equipment
JP2015087658A (en) Optical waveguide, opto-electric hybrid substrate, and electronic apparatus
JP5799592B2 (en) Optical waveguide, opto-electric hybrid board, and electronic equipment
JP2015106099A (en) Optical wiring component, optical module, photo-electric hybrid board, and electronic equipment
JP6413223B2 (en) Optical waveguide, opto-electric hybrid board, and electronic equipment
JP2015087713A (en) Optical waveguide, opto-electric hybrid substrate, and electronic apparatus
JP2019028117A (en) Method for manufacturing optical waveguide
JP6268817B2 (en) Optical waveguide member, optical waveguide, optical waveguide manufacturing method, and electronic apparatus
JP7031124B2 (en) Optical Waveguide, Optical Waveguide Connectivity and Electronic Devices
WO2012043572A1 (en) Optical waveguide module, process for manufacturing optical waveguide module, and electronic device
JP2007086122A (en) Optical distribution member and its manufacturing method
JP2016012004A (en) Optical waveguide, photoelectric hybrid substrate, and electronic apparatus
JP6413224B2 (en) Optical waveguide, opto-electric hybrid board, and electronic equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13807702

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14408448

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13807702

Country of ref document: EP

Kind code of ref document: A1