JPH0548073A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0548073A
JPH0548073A JP20430291A JP20430291A JPH0548073A JP H0548073 A JPH0548073 A JP H0548073A JP 20430291 A JP20430291 A JP 20430291A JP 20430291 A JP20430291 A JP 20430291A JP H0548073 A JPH0548073 A JP H0548073A
Authority
JP
Japan
Prior art keywords
chip
semiconductor device
optical waveguide
substrate
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20430291A
Other languages
Japanese (ja)
Inventor
Masao Kondo
将夫 近藤
Katsutada Horiuchi
勝忠 堀内
Yoshinori Imamura
慶憲 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20430291A priority Critical patent/JPH0548073A/en
Publication of JPH0548073A publication Critical patent/JPH0548073A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12043Photo diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits

Abstract

PURPOSE:To provide a multichip method of semiconductor device where the delay in signal transmission by the resistance, the capacity, and the inductance of the electric wiring between chips. CONSTITUTION:A light waveguide 3 and metallic wiring 14 are made on an Si substrate 1. An optoelectronic integrated circuit chip 4, where a photodiode 12a, a laser diode 12b and an electronic integrated circuit are arranged on the same chip, is stuck to this Si substrate 1, and besides a chip 4 is positioned so that photodiode 12a and the laser diode 12b and an optical waveguide 3 may be connected electrically, and that the metallic wiring 14 on the Si substrate and the bonding pad on the chip may be electrically connected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、大型計算機の中央演算
処理部(CPU)等に用いられるマルチチップ方式の半
導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-chip type semiconductor device used in a central processing unit (CPU) of a large-scale computer.

【0002】[0002]

【従来の技術】従来の大型計算機のCPU等に用いられ
るマルチチップ方式の半導体装置については、例えば
「超高速バイポーラデバイス」(培風館、昭和60年)
240頁に記載されており、図5に示すような構造であ
る。すなわち、金属配線14が形成されたSi基板1上
に、Si集積回路チップ19がはんだバンプを介して貼
り付けられた構造となっている。また、金属配線14は
ボンディングワイヤ6によってリードフレーム7を有す
るSiC基板8と電気的に接続する。
2. Description of the Related Art A conventional multi-chip type semiconductor device used for a CPU or the like of a large-scale computer is, for example, "Ultra High Speed Bipolar Device" (Baifukan, 1985).
It is described on page 240 and has a structure as shown in FIG. That is, it has a structure in which the Si integrated circuit chip 19 is attached via the solder bumps onto the Si substrate 1 on which the metal wiring 14 is formed. The metal wiring 14 is electrically connected to the SiC substrate 8 having the lead frame 7 by the bonding wire 6.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術における
半導体装置内のSi集積回路チップ19間の信号伝送は
金属配線14によって行われている。システムの処理速
度を決める要因としては、Si集積回路チップ自体の演
算速度のほかに、Si集積回路チップ間配線の抵抗、容
量、インダクタンスによって信号伝達が遅れるいわゆる
配線遅延がある。システムの規模が大きくなってSi集
積回路チップ数が多くなると配線の数、長さが増加する
ため、システム全体の遅延の中でこの配線遅延が占める
割合が増大するという問題があった。本発明の目的は、
配線遅延を減少させたマルチチップ方式の半導体装置を
提供することにある。
The signal transmission between the Si integrated circuit chips 19 in the semiconductor device in the above-mentioned prior art is performed by the metal wiring 14. Factors that determine the processing speed of the system include so-called wiring delay in which signal transmission is delayed due to resistance, capacitance, and inductance of wiring between Si integrated circuit chips in addition to the calculation speed of the Si integrated circuit chips themselves. When the system scale becomes large and the number of Si integrated circuit chips increases, the number and length of wirings increase, so that there is a problem that the wiring delay accounts for a large proportion of the delay of the entire system. The purpose of the present invention is to
An object of the present invention is to provide a multi-chip semiconductor device with reduced wiring delay.

【0004】[0004]

【課題を解決するための手段】上記目的は、(1)電子
素子集積回路と光素子とが同一基板上に設けられた光電
子集積回路のチップの複数個が配置され、かつ光導波路
が設けられた支持基板を有し、該チップは、該光素子と
該光導波路とが光学的に接続する位置に配置されたこと
を特徴とする半導体装置、(2)上記1記載の半導体装
置において、上記支持基板の光導波路の上層又は下層
に、配線層を有することを特徴とする半導体装置、
(3)上記2記載の半導体装置において、上記配線層は
上記チップの電極と電気的に接続されることを特徴とす
る半導体装置、(4)上記1、2又は3記載の半導体装
置において、上記支持基板は、上記光導波路の複数の層
を有することを特徴とする半導体装置、(5)支持基板
上に、(i)電子素子集積回路と光素子とが同一基板上
に設けられた光電子集積回路のチップの複数個、(i
i)所望のパターンの光導波路及び(iii)所望のパ
ターンの配線層が配置され、かつ、該チップの光素子と
該光導波路とが光学的に接続され、該チップの配線と該
配線層とは電気的に接続されることを特徴とする半導体
装置、(6)上記5記載の半導体装置において、上記支
持基板は、上記光導波路の複数の層を有することを特徴
とする半導体装置にとって達成される。
The above objects are (1) a plurality of optoelectronic integrated circuit chips in which an electronic element integrated circuit and an optical element are provided on the same substrate, and an optical waveguide is provided. A semiconductor device having a supporting substrate, and the chip is disposed at a position where the optical element and the optical waveguide are optically connected to each other, A semiconductor device having a wiring layer as an upper layer or a lower layer of the optical waveguide of the supporting substrate,
(3) In the semiconductor device described in 2 above, the wiring layer is electrically connected to an electrode of the chip, (4) In the semiconductor device described in 1) or 2), A supporting substrate has a plurality of layers of the above-mentioned optical waveguide, and (5) a supporting substrate, and (i) an optoelectronic integrated device in which an electronic element integrated circuit and an optical element are provided on the same substrate. A plurality of circuit chips, (i
i) An optical waveguide having a desired pattern and (iii) a wiring layer having a desired pattern are arranged, and an optical element of the chip and the optical waveguide are optically connected, and wiring of the chip and the wiring layer Is electrically connected to the semiconductor device, (6) In the semiconductor device according to the above item 5, the support substrate has a plurality of layers of the optical waveguide. It

【0005】[0005]

【作用】本発明は、電子素子が集積された半導体基板上
にレーザーダイオード、ホトダイオード等の光素子を配
置した光電子集積回路のチップを用い、チップ間の信号
伝送を電気配線で行なう代りに光信号を光導波路に通し
て行なうため、チップ間配線の抵抗、容量、インダクタ
ンスに起因する遅延がなくなる。また光信号を伝送する
光導波路は従来の電気配線と同様にフォトリソグラフィ
によってパターニングされるため製造歩留まり及び信頼
度に優れている。
The present invention uses a chip of an optoelectronic integrated circuit in which optical elements such as laser diodes and photodiodes are arranged on a semiconductor substrate on which electronic elements are integrated, and instead of performing signal transmission between chips by electrical wiring, optical signals are used. Is conducted through the optical waveguide, the delay due to the resistance, capacitance and inductance of the inter-chip wiring is eliminated. Further, the optical waveguide for transmitting an optical signal is patterned by photolithography similarly to the conventional electric wiring, so that the manufacturing yield and reliability are excellent.

【0006】[0006]

【実施例】実施例1 本発明の第1の実施例の半導体装置を図1により説明す
る。図1(a)はこの半導体装置の全体図で、図1
(b)はその断面図である。Si基板1の表面に、Si
2膜15、その上に金属配線14が形成されており、
さらにその上に誘電体の窒化Si(SiN)膜の細線よ
りなる光導波路3がSiO2膜16とSiO膜2の間
に挾み込まれて設けられている。この光導波路3等の層
が除去された領域に、Si集積回路と光素子が同一基板
上に形成された光電子集積回路のチップ4が貼り付けら
れ、光導波路3とチップ4上のホトダイオード12a、
レーザーダイオード12bとは光学的に接続するように
位置合わせされている。またチップ4上の電気配線は、
ボンディングパッド上に形成されたはんだバンプ13を
介してSi基板1上の金属配線14と電気的に接続され
ている。
Embodiment 1 A semiconductor device according to a first embodiment of the present invention will be described with reference to FIG. FIG. 1A is an overall view of this semiconductor device.
(B) is the sectional drawing. On the surface of the Si substrate 1, Si
The O 2 film 15 and the metal wiring 14 formed thereon are
Further thereon, an optical waveguide 3 made of a thin wire of a dielectric Si nitride (SiN) film is provided sandwiched between the SiO 2 film 16 and the SiO 2 film 2. A chip 4 of an optoelectronic integrated circuit in which a Si integrated circuit and an optical element are formed on the same substrate is attached to the region where the layers such as the optical waveguide 3 are removed, and the optical waveguide 3 and the photodiode 12a on the chip 4 are attached.
The laser diode 12b is aligned so as to be optically connected. The electrical wiring on the chip 4 is
It is electrically connected to the metal wiring 14 on the Si substrate 1 through the solder bumps 13 formed on the bonding pads.

【0007】光導波路3はSi基板1の端まで達してそ
こで光ファイバー5と結合し、その光ファイバー5はパ
ッケージのキャップ11に設けられた孔を通ってパッケ
ージ外に出ている。Si基板1上の金属配線14はSi
基板1に設けられたボンディングパッドまで達し、そこ
からボンディングワイヤ6によってリードフレーム7に
接続されている。なお、図において、8はSiC基板、
9はムライト枠、10は放熱フィンである。
The optical waveguide 3 reaches the end of the Si substrate 1 and is coupled with the optical fiber 5 there, and the optical fiber 5 goes out of the package through a hole provided in a cap 11 of the package. The metal wiring 14 on the Si substrate 1 is made of Si
It reaches a bonding pad provided on the substrate 1 and is connected to a lead frame 7 by a bonding wire 6 from there. In the figure, 8 is a SiC substrate,
Reference numeral 9 is a mullite frame, and 10 is a radiation fin.

【0008】次に本実施例の半導体装置の動作を説明す
る。まず外部から光信号が光ファイバー5とそれに結合
した光導波路3を通ってパッケージ内のあるチップ4の
入力用のホトダイオード12aに送られ、そこで電気信
号に変換される。次にその信号はそのチップ内で演算処
理され、その結果が出力用のレーザーダイオード12b
に送られそこで再び光信号に変換される。さらにその光
信号は光導波路3を通って他のチップ4の入力用のホト
ダイオード12aに送られる。そのチップにおいてまた
演算処理が行なわれて、その結果が出力用のレーザーダ
イオード12bと光導波路3を通ってさらに別のチップ
(図示せず)に送られる。最後にチップから出た光信号
は、光導波路3と接続した光ファイバー5を通ってパッ
ケージ外に出ていく。
Next, the operation of the semiconductor device of this embodiment will be described. First, an optical signal is sent from the outside through the optical fiber 5 and the optical waveguide 3 coupled thereto to the input photodiode 12a of the chip 4 in the package, where it is converted into an electric signal. Next, the signal is processed in the chip, and the result is the laser diode 12b for output.
To be converted into an optical signal again. Further, the optical signal is sent through the optical waveguide 3 to the input photodiode 12a of the other chip 4. In that chip, arithmetic processing is performed again, and the result is sent to another chip (not shown) through the laser diode 12b for output and the optical waveguide 3. Finally, the optical signal emitted from the chip goes out of the package through the optical fiber 5 connected to the optical waveguide 3.

【0009】次に本実施例の半導体装置の製造方法につ
いて、特にチップ4とSi基板1上の光導波路3及び金
属配線14との接続部分に関して、その部分の断面を拡
大した図2により説明する。本半導体装置のその他の部
分の製造方法は、従来の方法と基本的に同じである。ま
ずSiO膜15が形成されたSi基板1上に金属膜を
蒸着法により堆積し、ホトリソグラフィとエッチングに
より金属配線14を形成した後、プラズマ気相成長法に
よりSiO2膜16を堆積する(図2(b))。次に誘
電体の窒化Si(SiN)膜をプラズマ気相成長法によ
り堆積し、ホトリソグラフィとエッチングによりパター
ニングして光導波路3を形成する(図2(c))。
Next, a method of manufacturing the semiconductor device according to the present embodiment will be described with reference to FIG. 2 which is an enlarged sectional view of a connection portion between the chip 4 and the optical waveguide 3 and the metal wiring 14 on the Si substrate 1. .. The method of manufacturing the other parts of the semiconductor device is basically the same as the conventional method. First, a metal film is deposited on the Si substrate 1 on which the SiO 2 film 15 is formed by a vapor deposition method, a metal wiring 14 is formed by photolithography and etching, and then a SiO 2 film 16 is deposited by a plasma vapor deposition method ( FIG. 2B). Next, a dielectric silicon nitride (SiN) film is deposited by plasma vapor deposition and patterned by photolithography and etching to form the optical waveguide 3 (FIG. 2C).

【0010】さらに、プラズマ気相成長法によりSiO
2膜2を堆積した後、チップ4が貼り付けられる部分の
SiO2膜2をホトリソグラフィとエッチングにより選
択的に除去する。さらにボンディングパッドが形成され
ている部分のSiO2膜16をホトリソグラフィとエッ
チングにより選択的に除去し、ボンディングパッド上に
通常の方法によりはんだバンプ13を形成する(図2
(d))。
Further, SiO is formed by plasma vapor deposition.
After depositing the 2 film 2, the portion of the SiO 2 film 2 to which the chip 4 is attached is selectively removed by photolithography and etching. Further, the SiO 2 film 16 in the portion where the bonding pad is formed is selectively removed by photolithography and etching, and the solder bump 13 is formed on the bonding pad by a normal method (FIG. 2).
(D)).

【0011】最後に、表面にホトダイオード12a、レ
ーザーダイオード12bとはんだバンプ13が形成され
たチップ4をSi基板1上にバンプ同士の結合によって
取付ける。その場合、ホトダイオード12a、レーザー
ダイオード12bが光導波路3に光学的に接続するよう
に、またチップ4上のはんだバンプ13がSi基板1上
のはんだバンプ13と電気的に接続するように位置合わ
せし固定する(図2(e))。以下通常の方法によっ
て、(図2(a))に示した半導体装置が製造できた。
Finally, the chip 4 having the photodiode 12a, the laser diode 12b, and the solder bump 13 formed on the surface thereof is mounted on the Si substrate 1 by bonding the bumps. In that case, the photodiode 12a and the laser diode 12b are aligned so that they are optically connected to the optical waveguide 3 and that the solder bumps 13 on the chip 4 are electrically connected to the solder bumps 13 on the Si substrate 1. Fix it (Fig. 2 (e)). The semiconductor device shown in FIG. 2A could be manufactured by the usual method.

【0012】本半導体装置ではチップ間の信号のやりと
りが光導波路を通して光信号によって行なわれるため、
電気信号による場合の配線の抵抗、容量、インダクタン
スによる信号伝達遅延がなくなり、システムの演算処理
速度が向上するという効果がある。また光信号を伝送す
る光導波路は従来の電気配線と同様にフォトリソグラフ
ィによってパターニングされるため、電気配線と同等の
製造歩留まり及び信頼度が得られた。
In this semiconductor device, since signals are exchanged between chips by optical signals through the optical waveguide,
There is an effect that signal transmission delay due to wiring resistance, capacitance, and inductance in the case of using an electric signal is eliminated, and the processing speed of the system is improved. Further, since the optical waveguide for transmitting an optical signal is patterned by photolithography like the conventional electric wiring, the manufacturing yield and reliability equivalent to those of the electric wiring can be obtained.

【0013】実施例2 次に本発明の第2の実施例の半導体装置及びその製造方
法を図3により説明する。図3は本実施例の半導体装置
の主要部分の断面図及びその製造工程を説明する断面図
である。図3(a)において、1はSi基板、18はL
iNbO3基板、3はLiNbO3基板に選択的にTiを
拡散することにより形成した光導波路である。16はS
iO2膜、4はSi集積回路とホトダイオード12a、
レーザーダイオード12bが同一基板上に形成されたチ
ップ、14は金属配線である。本半導体装置においても
第1の実施例と同様、ホトダイオード12a、レーザー
ダイオード12bと光導波路3は光学的に接続してお
り、またチップ4上の電極パッドと金属配線14は電気
的に接続している。
Second Embodiment Next, a semiconductor device and a method of manufacturing the same according to a second embodiment of the present invention will be described with reference to FIG. 3A and 3B are a cross-sectional view of a main part of the semiconductor device of this embodiment and a cross-sectional view illustrating the manufacturing process thereof. In FIG. 3A, 1 is a Si substrate, 18 is L
The iNbO 3 substrate and 3 are optical waveguides formed by selectively diffusing Ti into the LiNbO 3 substrate. 16 is S
iO 2 film, 4 are Si integrated circuit and photodiode 12a,
The laser diode 12b is a chip formed on the same substrate, and 14 is a metal wiring. Also in this semiconductor device, as in the first embodiment, the photodiode 12a, the laser diode 12b and the optical waveguide 3 are optically connected, and the electrode pad on the chip 4 and the metal wiring 14 are electrically connected. There is.

【0014】次に本半導体装置の製造方法を説明する。
まずLiNbO3基板18上にホトリソグラフィ及びT
iの熱拡散により光導波路3を形成する。すなわちLi
NbO3基板18上にSiO2膜を形成し、ホトレジスト
パターンを用いてSiO2膜をエッチングしてパターン
とし、ホトレジストを除き、表面にTiを蒸着してさら
に熱拡散し、次にSiO2膜パターンとTiを除き、拡
散したTiにより光導波路3を形成する。次にSi基板
1と、光導波路3が形成されたLiNbO3基板18を
はんだを接着剤として貼り合わせる(図3(b))。
Next, a method of manufacturing the present semiconductor device will be described.
First, on the LiNbO 3 substrate 18, photolithography and T
The optical waveguide 3 is formed by thermal diffusion of i. That is, Li
A SiO 2 film is formed on the NbO 3 substrate 18, the SiO 2 film is etched into a pattern using a photoresist pattern, the photoresist is removed, and Ti is vapor-deposited on the surface to further diffuse heat, and then the SiO 2 film pattern is formed. Except for Ti and Ti, the optical waveguide 3 is formed of diffused Ti. Next, the Si substrate 1 and the LiNbO 3 substrate 18 on which the optical waveguide 3 is formed are bonded together by using solder as an adhesive (FIG. 3B).

【0015】次にホトリソグラフィとSiO2膜16を
マスクにしたエッチングによりLiNbO3基板18の
一部を選択的に除去した後、その凹部にはんだを接着材
料として、光電子集積回路のチップ4を、光素子12と
光導波路3が光学的に接続するように位置合わせしてS
i基板1に貼り付ける(図3(c))。
Next, a portion of the LiNbO 3 substrate 18 is selectively removed by photolithography and etching using the SiO 2 film 16 as a mask, and then the chip 4 of the optoelectronic integrated circuit is bonded to the recess with solder as an adhesive material. The optical element 12 and the optical waveguide 3 are aligned so that they are optically connected, and S
It is attached to the i substrate 1 (FIG. 3C).

【0016】次にチップ4とLiNbO3基板18の隙
間に透明な樹脂であるポリイミドを埋め込んだ後金属膜
を蒸着法により堆積し、ホトリソグラフィとエッチング
によりチップ4上の電極パッドからLiNbO3基板1
8上に延びる金属配線14を形成する(図3(a))。
本実施例の半導体装置の動作及び効果は本発明の第1の
実施例の半導体装置と基本的に同じであった。
Next, polyimide, which is a transparent resin, is embedded in the gap between the chip 4 and the LiNbO 3 substrate 18, and then a metal film is deposited by the vapor deposition method, and the LiNbO 3 substrate 1 is deposited from the electrode pads on the chip 4 by photolithography and etching.
The metal wiring 14 extending over the wiring 8 is formed (FIG. 3A).
The operation and effect of the semiconductor device of this example were basically the same as those of the semiconductor device of the first example of the present invention.

【0017】実施例3 次に、本発明の第3の実施例の半導体装置を図4を用い
て説明する。図4(a)はその主要部分の断面図、図4
(b)はそのA部分の拡大斜視図である。本半導体装置
の構造及び動作は、本発明の第2の実施例の半導体装置
と基本的に同じであるが、光導波路3の構造が異なって
いる。すなわち、SiO2膜2中にSiN膜よりなる光
導波路3が2層に形成されている。ただしホトダイオー
ド12a、レーザーダイオード12bと光学的に接続す
る部分の光導波路3の端面はホトダイオード12a、レ
ーザーダイオード12bと同じ高さに揃えられている。
Third Embodiment Next, a semiconductor device according to a third embodiment of the present invention will be described with reference to FIG. FIG. 4A is a cross-sectional view of the main part of FIG.
(B) is an enlarged perspective view of the portion A. The structure and operation of this semiconductor device are basically the same as those of the semiconductor device of the second embodiment of the present invention, but the structure of the optical waveguide 3 is different. That is, the optical waveguide 3 made of a SiN film is formed in two layers in the SiO 2 film 2. However, the end surface of the optical waveguide 3 in a portion optically connected to the photodiode 12a and the laser diode 12b is arranged at the same height as the photodiode 12a and the laser diode 12b.

【0018】この2層の光導波路3も単層の場合と同様
にプラズマ気相成長による薄膜堆積とホトリソグラフィ
及びエッチングを用いたパターニングにより形成され
る。すなわち、まず、SiO2膜2の一部を下層の光導
波路3の下の位置まで形成する。ついで下層の光導波路
3となるSiN膜のパターンを形成し、SiO2膜2の
一部分を形成し、上層の光導波路3となるSiN膜のパ
ターンを形成し、さらに光導波路3の間にSiO2膜2
を設ける。本実施例の半導体装置によれば光導波路3が
2層構造であるため交差及び積層が可能となり、配線の
ための自由度が増加してより複雑なチップ間の接続が容
易にできるようになった。
This two-layer optical waveguide 3 is also formed by thin film deposition by plasma vapor deposition and patterning using photolithography and etching, as in the case of a single layer. That is, first, a part of the SiO 2 film 2 is formed to a position below the lower optical waveguide 3. Then forming a pattern of the SiN film serving as the lower layer of the optical waveguide 3, forms a portion of the SiO 2 film 2, to form a pattern of the SiN film serving as the upper layer of the optical waveguide 3, SiO 2 further between the optical waveguide 3 Membrane 2
To provide. According to the semiconductor device of this embodiment, since the optical waveguide 3 has a two-layer structure, crossing and stacking are possible, the degree of freedom for wiring is increased, and more complicated connection between chips can be facilitated. It was

【0019】[0019]

【発明の効果】本発明によれば、マルチチップ方式の半
導体装置のチップ間の電気配線の抵抗、容量、インダク
タンスによる遅れがなくなるため、パッケージ内のシス
テムの演算処理速度が約50パーセント向上した。また
光信号を伝送する光導波路は従来の電気配線と同様にフ
ォトリソグラフィによってパターニングされるため、電
気配線と同等の製造歩留まり及び信頼度が得られた。
According to the present invention, the delay due to the resistance, capacitance and inductance of the electric wiring between the chips of the multi-chip type semiconductor device is eliminated, so that the processing speed of the system in the package is improved by about 50%. Further, since the optical waveguide for transmitting an optical signal is patterned by photolithography like the conventional electric wiring, the manufacturing yield and reliability equivalent to those of the electric wiring can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の半導体装置の全体図及
び縦断面図である。
FIG. 1 is an overall view and a vertical sectional view of a semiconductor device according to a first embodiment of the present invention.

【図2】本発明の第1の実施例の半導体装置の主要部分
の縦断面図及びその製造方法を示す工程図である。
2A and 2B are a longitudinal sectional view of a main part of a semiconductor device of a first embodiment of the present invention and process drawings showing a manufacturing method thereof.

【図3】本発明の第2の実施例の半導体装置の主要部分
の縦断面図及びその製造方法を示す工程図である。
3A and 3B are a longitudinal sectional view of a main part of a semiconductor device of a second embodiment of the present invention and a process drawing showing the manufacturing method thereof.

【図4】本発明の第3の実施例の半導体装置の主要部分
の縦断面図と部分拡大斜視図である。
FIG. 4 is a longitudinal sectional view and a partially enlarged perspective view of a main part of a semiconductor device according to a third embodiment of the present invention.

【図5】従来のマルチチップ方式の半導体装置の全体図
である。
FIG. 5 is an overall view of a conventional multi-chip semiconductor device.

【符号の説明】[Explanation of symbols]

1 Si基板 2、15、16 SiO2膜 3 光導波路 4 チップ 5 光ファイバー 6 ボンディングワイヤ 7 リードフレーム 8 SiC基板 9 ムライト枠 10 放熱フィン 11 キャップ 12a ホトダイオード 12b レーザーダイオード 13 はんだバンプ 14 金属配線 17 ポリイミド 18 LiNbO3基板 19 Si集積回路チップ1 Si substrate 2, 15, 16 SiO 2 film 3 Optical waveguide 4 Chip 5 Optical fiber 6 Bonding wire 7 Lead frame 8 SiC substrate 9 Mullite frame 10 Heat radiation fin 11 Cap 12a Photo diode 12b Laser diode 13 Solder bump 14 Metal wiring 17 Polyimide 18 LiNbO 3 substrate 19 Si integrated circuit chip

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 23/538 25/04 25/16 A 7220−4M 25/18 27/14 31/12 J 7210−4M 33/00 J 8934−4M H01S 3/18 9170−4M H03K 3/42 A 7328−5J 8223−4M H01L 27/14 Z ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H01L 23/538 25/04 25/16 A 7220-4M 25/18 27/14 31/12 J 7210 -4M 33/00 J 8934-4M H01S 3/18 9170-4M H03K 3/42 A 7328-5J 8223-4M H01L 27/14 Z

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】電子素子集積回路と光素子とが同一基板上
に設けられた光電子集積回路のチップの複数個が配置さ
れ、かつ光導波路が設けられた支持基板を有し、該チッ
プは、該光素子と該光導波路とが光学的に接続する位置
に配置されたことを特徴とする半導体装置。
1. A support substrate having a plurality of optoelectronic integrated circuit chips in which an electronic device integrated circuit and an optical device are provided on the same substrate, and an optical waveguide is provided, the chip comprising: A semiconductor device, wherein the optical element and the optical waveguide are arranged at a position where they are optically connected.
【請求項2】請求項1記載の半導体装置において、上記
支持基板の光導波路の上層又は下層に、配線層を有する
ことを特徴とする半導体装置。
2. The semiconductor device according to claim 1, further comprising a wiring layer above or below the optical waveguide of the supporting substrate.
【請求項3】請求項2記載の半導体装置において、上記
配線層は上記チップの電極と電気的に接続されることを
特徴とする半導体装置。
3. The semiconductor device according to claim 2, wherein the wiring layer is electrically connected to an electrode of the chip.
【請求項4】請求項1、2又は3記載の半導体装置にお
いて、上記支持基板は、上記光導波路の複数の層を有す
ることを特徴とする半導体装置。
4. The semiconductor device according to claim 1, wherein the support substrate has a plurality of layers of the optical waveguide.
【請求項5】支持基板上に、(1)電子素子集積回路と
光素子とが同一基板上に設けられた光電子集積回路のチ
ップの複数個、(2)所望のパターンの光導波路及び
(3)所望のパターンの配線層が配置され、かつ、該チ
ップの光素子と該光導波路とが光学的に接続され、該チ
ップの配線と該配線層とは電気的に接続されることを特
徴とする半導体装置。
5. A plurality of chips of an optoelectronic integrated circuit in which an electronic device integrated circuit and an optical device are provided on the same substrate on a supporting substrate, (2) an optical waveguide having a desired pattern, and (3) ) A wiring layer having a desired pattern is arranged, the optical element of the chip and the optical waveguide are optically connected, and the wiring of the chip and the wiring layer are electrically connected. Semiconductor device.
【請求項6】請求項5記載の半導体装置において、上記
支持基板は、上記光導波路の複数の層を有することを特
徴とする半導体装置。
6. The semiconductor device according to claim 5, wherein the supporting substrate has a plurality of layers of the optical waveguide.
JP20430291A 1991-08-14 1991-08-14 Semiconductor device Pending JPH0548073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20430291A JPH0548073A (en) 1991-08-14 1991-08-14 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20430291A JPH0548073A (en) 1991-08-14 1991-08-14 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH0548073A true JPH0548073A (en) 1993-02-26

Family

ID=16488234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20430291A Pending JPH0548073A (en) 1991-08-14 1991-08-14 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0548073A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07183570A (en) * 1993-12-24 1995-07-21 Nec Corp Multichip module
JP2000133793A (en) * 1998-10-27 2000-05-12 Sony Corp Light transmission path and method of forming the same
JP2000188418A (en) * 1998-10-13 2000-07-04 Sony Corp Optoelectronic integrated circuit device
JP2002009379A (en) * 2000-06-19 2002-01-11 Sony Corp Optical wiring module and method for manufacturing the same
WO2002086972A1 (en) * 2001-04-23 2002-10-31 Plasma Ireland Limited Illuminator
EP1605525A2 (en) * 2004-06-10 2005-12-14 LG Electronics Inc. High power LED package
JP2007079283A (en) * 2005-09-15 2007-03-29 Sony Corp Optical integrated circuit
WO2011129415A1 (en) * 2010-04-15 2011-10-20 株式会社リキッド・デザイン・システムズ Three-dimensional led substrate and led lighting device
JP2012199259A (en) * 2012-07-27 2012-10-18 Liquid Design Systems:Kk Led lighting system
WO2013191175A1 (en) * 2012-06-19 2013-12-27 住友ベークライト株式会社 Optical waveguide, optical interconnection component, optical module, opto-electric hybrid board, and electronic device
JP2014026268A (en) * 2012-06-19 2014-02-06 Sumitomo Bakelite Co Ltd Optical waveguide, optical wiring component, optical module, photoelectric hybrid board, and electronic apparatus
US9720171B2 (en) 2012-06-19 2017-08-01 Sumitomo Bakelite Co., Ltd. Optical waveguide, optical interconnection component, optical module, opto-electric hybrid board, and electronic device

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07183570A (en) * 1993-12-24 1995-07-21 Nec Corp Multichip module
JP2000188418A (en) * 1998-10-13 2000-07-04 Sony Corp Optoelectronic integrated circuit device
JP4529194B2 (en) * 1998-10-13 2010-08-25 ソニー株式会社 Optoelectronic integrated circuit device
JP2000133793A (en) * 1998-10-27 2000-05-12 Sony Corp Light transmission path and method of forming the same
JP4529193B2 (en) * 1998-10-27 2010-08-25 ソニー株式会社 Method for forming optical transmission line
JP4517461B2 (en) * 2000-06-19 2010-08-04 ソニー株式会社 Manufacturing method of optical wiring module
JP2002009379A (en) * 2000-06-19 2002-01-11 Sony Corp Optical wiring module and method for manufacturing the same
WO2002086972A1 (en) * 2001-04-23 2002-10-31 Plasma Ireland Limited Illuminator
US6995405B2 (en) 2001-04-23 2006-02-07 Plasma Ireland Limited Illuminator
EP1605525A2 (en) * 2004-06-10 2005-12-14 LG Electronics Inc. High power LED package
EP1605525A3 (en) * 2004-06-10 2006-10-04 LG Electronics Inc. High power LED package
JP2007079283A (en) * 2005-09-15 2007-03-29 Sony Corp Optical integrated circuit
WO2011129415A1 (en) * 2010-04-15 2011-10-20 株式会社リキッド・デザイン・システムズ Three-dimensional led substrate and led lighting device
JP2011228367A (en) * 2010-04-15 2011-11-10 Liquid Design Systems Inc Three dimensional (3d) light emitting diode (led) substrate and led luminaire
CN102844898A (en) * 2010-04-15 2012-12-26 株式会社理技独设计系统 Three-dimensional led substrate and led lighting device
US8610141B2 (en) 2010-04-15 2013-12-17 Liquid Design Systems, Inc. Three-dimensional LED substrate and LED lighting device
CN103925492A (en) * 2010-04-15 2014-07-16 株式会社理技独设计系统 Led Lighting Device
WO2013191175A1 (en) * 2012-06-19 2013-12-27 住友ベークライト株式会社 Optical waveguide, optical interconnection component, optical module, opto-electric hybrid board, and electronic device
JP2014026268A (en) * 2012-06-19 2014-02-06 Sumitomo Bakelite Co Ltd Optical waveguide, optical wiring component, optical module, photoelectric hybrid board, and electronic apparatus
US9720171B2 (en) 2012-06-19 2017-08-01 Sumitomo Bakelite Co., Ltd. Optical waveguide, optical interconnection component, optical module, opto-electric hybrid board, and electronic device
JP2012199259A (en) * 2012-07-27 2012-10-18 Liquid Design Systems:Kk Led lighting system

Similar Documents

Publication Publication Date Title
US4613891A (en) Packaging microminiature devices
JP2557324B2 (en) Reflected light barrier and method of manufacturing the same
US6998646B2 (en) Integration of top-emitting and top-illuminated optoelectronic devices with micro-optic and electronic integrated circuits
US4124860A (en) Optical coupler
US6825065B2 (en) Method for optical module packaging of flip chip bonding
JP3731542B2 (en) Optical module and optical module mounting method
US20100001305A1 (en) Semiconductor devices and fabrication methods thereof
JPH0548073A (en) Semiconductor device
CN109376726A (en) Optical finger print chip-packaging structure under a kind of screen
JPS6024048A (en) Semiconductor component and method of producing same
WO2003003421A2 (en) Optical chip packaging via through hole
JP2678944B2 (en) Method for bonding a semiconductor chip to a substrate
JPH0667044A (en) Optical circuit and electric circuit mixed substrate
US6433367B1 (en) Semiconductor device with sloping sides, and electronic apparatus including semiconductor devices with sloping sides, modified for crack-free wire bonding
JP4351012B2 (en) Semiconductor device
JP3440679B2 (en) Semiconductor device
JP4646479B2 (en) Semiconductor device
JPH0582810A (en) Photoelectric transfer device
JPH03191572A (en) Optical semiconductor device
US6894269B2 (en) Configuration for detecting optical signals in at least one optical channel in a planar light circuit, attenuator including the configuration, and method for manufacturing the configuration
JP6619701B2 (en) Light receiving element and manufacturing method thereof
KR100317397B1 (en) Architecture of a free-space optical interconnection module
TWI797930B (en) Optoelectronic package structure
CN219642829U (en) Semiconductor packaging structure
JP4671480B2 (en) Optical mounting substrate manufacturing method and optical module manufacturing method