JPH07183570A - Multichip module - Google Patents

Multichip module

Info

Publication number
JPH07183570A
JPH07183570A JP32713393A JP32713393A JPH07183570A JP H07183570 A JPH07183570 A JP H07183570A JP 32713393 A JP32713393 A JP 32713393A JP 32713393 A JP32713393 A JP 32713393A JP H07183570 A JPH07183570 A JP H07183570A
Authority
JP
Japan
Prior art keywords
substrate
optical waveguide
light
optical
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32713393A
Other languages
Japanese (ja)
Other versions
JP2986140B2 (en
Inventor
Soichi Ito
荘一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP32713393A priority Critical patent/JP2986140B2/en
Publication of JPH07183570A publication Critical patent/JPH07183570A/en
Application granted granted Critical
Publication of JP2986140B2 publication Critical patent/JP2986140B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To make the speed of a system fast by a method wherein the optical waveguide of a multichip module which uses an optical signal in a part is made fine. CONSTITUTION:Parts 8 which are optical waveguides 2 composed of a silicon compound and in which light incident on and radiated from a multichip module substrate 1 composed of silicon is bent so as to be parallel to the face of the substrate at their terminal parts and parts 9 in which light is branched to a plurality of courses parallel to the face of the substrate in half parts of the optical waveguides are formed on the surface of the multichip module substrate. An optical signal which is incident perpendicularly on the face of the substrate is supplied to photodetectors 6 at the inside of semiconductor chips 3 which have been connected facedown to the substrate by means of the optical waveguides.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はシステムの高速動作のた
めに光信号をその一部に使用するマルチチップモジュー
ルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multichip module which uses an optical signal as a part thereof for high speed operation of a system.

【0002】[0002]

【従来の技術】従来、複数の半導体チップでシステムを
構成するマルチチップモジュールに於ては、システムの
動作速度を向上させるべくその一部の信号、例えばクロ
ック信号などに光信号を用いることが提案されている。
例えば特開平4−313269に於てはモジュール内に
発光素子と受光素子とをそなえ、クロック信号に同期し
て発行する発光素子からの光信号を受光素子で受け、そ
れを電気信号に変換して複数の半導体チップに供給する
ことが述べられている。ここに於ける光信号の伝搬系路
はIC収納ボックス内の空間(空気等の気体が存在する
ものと考えられる)を利用するか又はその図9 (本願図
4(b))に示されるように複数チップを搭載するプリ
ント基板内に埋込まれた光ファイバが使用される。ま
た、別の従来例に於てはマルチチップモジュール外で作
られた光信号を光ファイバでモジュールに供給し、モジ
ュール内では上記従来例と同様にその中に設けられた空
間を利用して光信号を受光素子に供給する構造や、その
図7 (本願図4−(a))に示されるように上記従来例
と同様マルチチップモジュール内で発光素子により光信
号を発生し、上記と同様にモジュール内の空間を光信号
が伝搬するものの、異なる伝搬系路から来る光の合成に
よる波形のくずれを防止するべく、マルチチップモジュ
ール内に光を反射し易い部分と光を吸収し反射を少くす
る部分とを設けた構造の光信号伝搬系路が提案されてい
る。
2. Description of the Related Art Conventionally, in a multi-chip module in which a system is composed of a plurality of semiconductor chips, it has been proposed to use an optical signal as a part of the signal, such as a clock signal, in order to improve the operation speed of the system. Has been done.
For example, in Japanese Patent Laid-Open No. 4-313269, a light emitting element and a light receiving element are provided in a module, and an optical signal from the light emitting element issued in synchronization with a clock signal is received by the light receiving element and converted into an electric signal. Supplying to a plurality of semiconductor chips is described. The propagation path of the optical signal here uses the space in the IC storage box (it is considered that a gas such as air exists), or as shown in FIG. 9 (FIG. 4 (b) of the present application). An optical fiber embedded in a printed circuit board on which a plurality of chips are mounted is used. In another conventional example, an optical signal produced outside the multi-chip module is supplied to the module by an optical fiber, and inside the module, the space provided therein is used to perform the optical signal. As shown in FIG. 7 (FIG. 4- (a) of the present application), a structure for supplying a signal to a light receiving element is used. Although the optical signal propagates in the space inside the module, in order to prevent the waveform from being distorted due to the synthesis of light coming from different propagation paths, the part that easily reflects the light in the multichip module and the light is absorbed and the reflection is reduced. An optical signal propagation path having a structure including a portion and a portion has been proposed.

【0003】[0003]

【発明が解決しようとする課題】以上に述べた従来のマ
ルチチップモジュールのうち、光信号の伝搬経路にパッ
ケージ等のボックス状の内部空間を利用するものでは受
光素子が得られる光エネルギは発光素子が発したうちの
ごく一部となって極めてエネルギ効率が悪い。更に、光
の反射経路がパッケージの内壁とモジュール基板との双
方に及び、特にパッケージ内壁に反射を良くする工夫が
必要になるなどパッケージが特殊化することでそのコス
ト低減の可能性を小さくしている。
Among the conventional multi-chip modules described above, in which a box-shaped internal space such as a package is used for the optical signal propagation path, the light energy obtained by the light receiving element is the light emitting element. It becomes a very small part of the noise generated and is extremely inefficient. Furthermore, the possibility of cost reduction is reduced by specializing the package, such that the light reflection path extends to both the package inner wall and the module substrate, and in particular, it is necessary to improve the reflection on the package inner wall. There is.

【0004】また、モジュール基板内に埋め込まれた光
ファイバを使用する方法ではそうした構造を得るため
の、従来の基板生成手法とは異なる製造技術が必要とな
る。すなわち、基板に垂直入射する光を受け取るために
光ファイバの角度を調整し、それを基板面に平行に基板
内で曲げ、再び垂直方向に基板内で光ファイバを曲げて
チップ内の受光素子位置にうまく光を照射することが必
要で、特にこの構造を1mm未満、望ましくは100μ
m未満の寸法で実現することは甚だ困難であり、或いは
いたって高価なものとなる。
Further, the method of using the optical fiber embedded in the module substrate requires a manufacturing technique for obtaining such a structure, which is different from the conventional substrate producing method. That is, the angle of the optical fiber is adjusted to receive the light that is vertically incident on the substrate, it is bent in the substrate parallel to the surface of the substrate, and the optical fiber is bent again in the substrate in the vertical direction to position the light receiving element in the chip. It is necessary to illuminate the structure well, especially if this structure is less than 1 mm, preferably 100 μm.
Realization with dimensions less than m is very difficult or even expensive.

【0005】[0005]

【課題を解決するための手段】本発明のマルチチップモ
ジュールは、単結晶シリコンよりなるマルチチップモジ
ュール基板と、その一連の基板面内に少くともその一部
が埋め込まれて形成されたシリコン系化合物よりなる光
導波路と、当該導波路の末端に設けられ前記基板面に対
して略垂直の方向に光を曲げる手段と、前記導波路の途
上に設けられ、前記基板面で光を複数進路に分岐する手
段と、前記基板上に設けられた金属配線と、表面に電子
回路を形成し前記光導波路にその表面が向き合うように
前記金属配線の一部にバンプを介して接続された複数の
半導体ペレットと、当該半導体ペレット表面に形成され
た受光素子とを備えており、かかる構造をとることによ
って光伝搬経路は永年のノウハウ蓄積豊富なシリコン表
面の微細加工技術、それにバンプによる、シリコンペレ
ットとシリコン基板の接続技術だけで形成できる。
A multi-chip module of the present invention comprises a multi-chip module substrate made of single crystal silicon, and a silicon-based compound formed by embedding at least a part thereof in a series of substrate surfaces. And a means for bending light in a direction substantially perpendicular to the substrate surface, which is provided at the end of the waveguide, and provided on the way of the waveguide to split the light into a plurality of paths at the substrate surface. Means, a metal wiring provided on the substrate, and a plurality of semiconductor pellets connected to a part of the metal wiring via bumps so that an electronic circuit is formed on the surface and the surface faces the optical waveguide. And a light-receiving element formed on the surface of the semiconductor pellet, and by adopting such a structure, the light propagation path has a silicon surface microfabrication technology with a wealth of accumulated know-how over the years. And by the bump can be formed only by connection technology of the silicon pellet and the silicon substrate.

【0006】[0006]

【実施例】図1は本発明の第1の実施例である。単結晶
シリコンよりなるマルチチップモジュール基板1上に発
光素子5を含む化合物半導体ペレット2と受光素子6を
含むシリコン半導体ペレット3とが金製のバンプ4を介
して機械的かつ電気的に接続されており、特に発光素子
より出た光はシリコン系化合物よりなる光導波路7に入
り、反射面8によって方向を変え受光素子に入射する。
(同断面図には光系信号授受を明確にするため電気信号
系の配線はバンプを除いて一切描かれていない。)図1
(b)は平面図で発光素子5 (点線丸)を含む半導体ペ
レット2より光導波路7に光信号が同面垂直方向に照射
され、図1 (a)で示した反射面8にて基板平面方向に
反射され、一方、光導波路の途上に設けられた光分岐点
9を何度か経て最終的に受光素子6に到る。電気系信号
は、モジュール基板上に設けられた金属配線10によっ
てバンプ4を介して半導体ペレットに到る。金属配線と
光導波路とは相互に干渉することはなく、交叉させられ
る。本実施例では光系信号よりはるかに多くの電気系信
号線が存在するが、図を分り易くたるため1ケ所を除き
全く省略されている。本実施例に於ては、クロック信号
を光信号で各チップ内の受光素子に供給している。こう
することによって、各々のクロック信号受端部でのタイ
ミングズレ(クロックスキュー)が電気系信号によって
複数ペレットに供給する場合に比して大きく改善され
る。尚、発光素子には電気系信号でクロック信号が与え
られ、受光素子はその電気系信号出力を同一ペレット上
の電気系素子に与える。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a first embodiment of the present invention. A compound semiconductor pellet 2 including a light emitting element 5 and a silicon semiconductor pellet 3 including a light receiving element 6 are mechanically and electrically connected via a bump 4 made of gold on a multi-chip module substrate 1 made of single crystal silicon. In particular, the light emitted from the light emitting element enters the optical waveguide 7 made of a silicon compound, changes its direction by the reflecting surface 8, and enters the light receiving element.
(In order to clarify transmission and reception of the optical system signal, the wiring of the electric signal system is not drawn at all except the bump in the same sectional view.)
(b) is a plan view, in which a semiconductor pellet 2 including a light emitting element 5 (dotted circle) irradiates an optical waveguide 7 with an optical signal in a direction perpendicular to the same plane, and the reflection plane 8 shown in FIG. In the meantime, the light is reflected in the direction, and finally reaches the light receiving element 6 after passing through an optical branch point 9 provided on the way of the optical waveguide several times. The electric system signal reaches the semiconductor pellet through the bump 4 by the metal wiring 10 provided on the module substrate. The metal wiring and the optical waveguide do not interfere with each other and can be crossed. In the present embodiment, there are far more electric system signal lines than optical system signals, but they are omitted altogether except for one place for the sake of clarity. In this embodiment, a clock signal is supplied as an optical signal to the light receiving element in each chip. By doing so, the timing deviation (clock skew) at each clock signal receiving end is greatly improved as compared with the case where electric signals are supplied to a plurality of pellets. The light emitting element is given a clock signal by an electric system signal, and the light receiving element gives the electric system signal output to the electric system element on the same pellet.

【0007】図2に光導波路の形成方法の一例を示す。
まず単結晶シリコンよりなるマルチチップモジュール基
板1の同基板に垂直方向に光が入・出射する位置に異方
性エッチング技術を用いて45°のテーパ付けエッチン
グを行う(図2 (a))。次の光のモジュール基板に平
行な方向の通路となるべき位置を同様異方性エッチング
により、今度は壁面が垂直になるように行う。この時先
に形成した穴の底面が少し残るようにかつ、同底面と略
同じ深さまでエッチングする(図2 (b))。同図では
バラツキのために少し深めにエッチングされた状態で描
かれている。このエッチング時には、光導波路途上の光
分岐構造も同時に形成される。次に導波路での光乱反射
によるエネルギロスと波形のダレを小さくするためにエ
ッチングシリコン表面をなだらかにするべく薄くシリコ
ンを酸化してSiO2 を表面に形成し(図2 (c))、
次にチッ化膜22を少くともエッチングした深さが埋ま
る厚さで形成する。そして、表面を例えばケミカルメカ
ニカルポリッシング技術等で平坦にして光導波路がシリ
コン基板上に形成される。図2 (e)にその立体イメー
ジの構造を示す。同図の面23が垂直方向反射面、面2
4が光分岐部に於る水平方向反射面である。
FIG. 2 shows an example of a method of forming an optical waveguide.
First, the multi-chip module substrate 1 made of single crystal silicon is subjected to 45 ° taper etching at a position where light enters and exits in the vertical direction by using an anisotropic etching technique (FIG. 2A). Similarly, anisotropic etching is performed at a position to be a passage of the next light in a direction parallel to the module substrate so that the wall surface becomes vertical this time. At this time, etching is performed so that the bottom surface of the hole previously formed remains a little and to the same depth as the bottom surface (FIG. 2B). In the figure, it is drawn in a slightly deeply etched state due to variations. At the time of this etching, an optical branching structure along the optical waveguide is also formed. Next, in order to reduce the energy loss due to diffused reflection in the waveguide and the sag of the waveform, the silicon is thinly oxidized to form a smooth SiO 2 surface and SiO 2 is formed on the surface (FIG. 2 (c)).
Next, the nitride film 22 is formed to have a thickness that fills at least the etched depth. Then, the surface is made flat by, for example, a chemical mechanical polishing technique or the like to form an optical waveguide on the silicon substrate. The structure of the stereoscopic image is shown in FIG. The surface 23 in the figure is the vertical reflection surface, and the surface 2
Reference numeral 4 is a horizontal reflecting surface at the light branching portion.

【0008】さて、以上に述べた形成方法によれば、現
状のシリコン表面加工技術から、光導波路の巾として数
ミクロンのオーダが実現可能である。マルチチップモジ
ュール基板上の光導波路の微細度は図1に示す実施例に
於るクロック信号の場合、半導体チップ上のクロック信
号を必要とする端子の密度を高くても50μm間隔程度
にチップ設計で調整できるので、結果として上記50μ
m間隔で並ぶ受光素子に巾が上記数ミクロンの光導波路
で光を供給することはいたってたやすいことである。光
導波路の深さは1μm程度である。
According to the forming method described above, the width of the optical waveguide can be realized on the order of several microns from the current silicon surface processing technology. In the case of the clock signal according to the embodiment shown in FIG. 1, the fineness of the optical waveguide on the multi-chip module substrate is designed to be about 50 μm intervals even if the density of terminals requiring the clock signal on the semiconductor chip is high. Because it can be adjusted, as a result, the above 50μ
It is very easy to supply light to the light receiving elements arranged at m intervals by the optical waveguide having a width of several microns. The depth of the optical waveguide is about 1 μm.

【0009】尚、図2に於ては、モジュール基板上への
電気系メタル配線の形成を容易にするべくCMP技術に
て表面を平坦にしたが、若干の凹凸ならばその影響は少
く、図2に示したのと全く別の光導波路形成方法によっ
て、光導波路部分が従来の半導体チップ表面と同程度
(約0.5μm)に盛り上っていてもよい。また、光導
波路の側、底面からの乱反射で光が導波路外に抜け出し
光エネルギ量が減少するのを防止するべく導波路上を配
線メタル形成と同一手法で被っても良い。
In FIG. 2, the surface is flattened by the CMP technique in order to facilitate the formation of the electric metal wiring on the module substrate. However, if the surface is slightly uneven, the effect is small. The optical waveguide portion may be raised to the same extent as the conventional semiconductor chip surface (about 0.5 μm) by a completely different optical waveguide forming method shown in FIG. Further, in order to prevent light from leaking out of the waveguide and reducing the amount of light energy due to diffused reflection from the side and bottom of the optical waveguide, the waveguide may be covered by the same method as the wiring metal formation.

【0010】本発明の第2の実施例を図3に示す。本実
施例が第1の実施例と異なるところは光信号を発する発
光素子が無い代わりに光ファイバにてモジュール外部か
ら光信号が与えられている点である。即ち、光ファイバ
31にて外部から送られて来た光信号は反射面8でシリ
コンモジュール基板8面上に形成された光導波路7に添
って進み、反射面8で半導体チップ3に設けられた受光
素子6に入射する。同図に於て32は光ファイバのガイ
ドで基板1の上に固定されており、パッケージ33上面
の穴の位置とのズレは同ガイドで吸収される。
A second embodiment of the present invention is shown in FIG. This embodiment is different from the first embodiment in that there is no light emitting element for emitting an optical signal, but an optical signal is given from outside the module by an optical fiber. That is, an optical signal sent from the outside through the optical fiber 31 travels along the optical waveguide 7 formed on the surface of the silicon module substrate 8 at the reflecting surface 8 and is provided on the semiconductor chip 3 at the reflecting surface 8. It is incident on the light receiving element 6. In the figure, reference numeral 32 denotes an optical fiber guide which is fixed on the substrate 1, and the deviation from the position of the hole on the upper surface of the package 33 is absorbed by the guide.

【0011】[0011]

【発明の効果】以上説明した如く、本発明はマルチチッ
プモジュールに於る光導波路の形成をシリコンを用いた
モジュール基板表面に埋込んだシリコン化合物にて行
い、バンプを介してフェースダウンで同基板に接続され
た半導体チップと光の授受を行う構造としたことで、同
構造の実現が従来のシリコン表面の微細加工技術をベー
スにして行なえるようになった結果、従来手法に比べて
微細でしかも光エネルギ転送効率のよい光導波路の形成
が可能となり、マルチチップモジュールにより多くの光
信号系を導入できるようになり、システムのより小型、
高性能化が図れるという効果を有する。
As described above, according to the present invention, an optical waveguide in a multi-chip module is formed by a silicon compound embedded in the surface of a module substrate using silicon, and the same substrate is faced down via bumps. By adopting a structure that transmits and receives light to and from the semiconductor chip connected to, it has become possible to realize the same structure based on the conventional microfabrication technology for the silicon surface. Moreover, it becomes possible to form an optical waveguide with good optical energy transfer efficiency, and more optical signal systems can be introduced into the multi-chip module.
This has the effect of improving performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示す断面図及び平面
図。
FIG. 1 is a sectional view and a plan view showing a first embodiment of the present invention.

【図2】本発明の根幹をなす光導波路の形成手順の一例
を示す図。
FIG. 2 is a diagram showing an example of a procedure for forming an optical waveguide forming the basis of the present invention.

【図3】本発明の第2の実施例を示す図。FIG. 3 is a diagram showing a second embodiment of the present invention.

【図4】従来例を示す図。FIG. 4 is a diagram showing a conventional example.

【符号の説明】[Explanation of symbols]

1 マルチチップモジュール基板 2 発光素子を有する半導体チップ 3 受光素子を有する半導体チップ 4 接続用チップ 5 発光素子 6 受光素子 7 光導波路 8 その中の光反射面 9 光進路の分岐部 10 メタル配線 21 SiO2 膜 22 Si3 4 膜 23,24 光反射面 31 光ファイバ 32 光ファイバガイド 33,43 モジュールパッケージDESCRIPTION OF SYMBOLS 1 Multi-chip module substrate 2 Semiconductor chip 3 having a light emitting element 3 Semiconductor chip 4 having a light receiving element 4 Connection chip 5 Light emitting element 6 Light receiving element 7 Optical waveguide 8 Light reflecting surface 9 therein Optical path branching portion 10 Metal wiring 21 SiO 2 film 22 Si 3 N 4 film 23, 24 Light reflecting surface 31 Optical fiber 32 Optical fiber guide 33, 43 Module package

【手続補正書】[Procedure amendment]

【提出日】平成6年5月12日[Submission date] May 12, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0002[Name of item to be corrected] 0002

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0002】[0002]

【従来の技術】従来、複数の半導体チップでシステムを
構成するマルチチップモジュールに於ては、システムの
動作速度を向上させるべくその一部の信号、例えばクロ
ック信号などに光信号を用いることが提案されている。
例えば特開平4−313269に於てはモジュール内に
発光素子と受光素子とをそなえ、クロック信号に同期し
て発行する発行素子からの光信号を受光素子で受け、そ
れを電気信号に変換して複数の半導体チップに供給する
ことが述べられている。ここに於ける光信号の伝搬系路
はIC収納ボックス内の空間(空気等の気体が存在する
ものと考えられる)を利用するか又はその図9(本願図
4(b))に示されるように複数チップを搭載するプリ
ント基板内に埋込まれた光ファイバが使用される。ま
た、別の従来例(本願と同一出願人に係る特願平5−2
73338)に於てはマルチチップモジュール外で作ら
れた光信号を光ファイバでモジュールに供給し、モジュ
ール内では上記従来例と同様にその中に設けられた空間
を利用して光信号を受光素子に供給する構造や、その図
7(本願図4−(a))に示されるように上記従来例と
同様マルチチップモジュール内で発光素子により光信号
を発生し、上記と同様にモジュール内の空間を光信号が
伝搬するものの、異なる伝搬系路から来る光の合成によ
る波形のくずれを防止するべく、マルチチップモジュー
ル内に光を反射し易い部分と光を吸収し反射を少くする
部分とを設けた構造の光信号伝搬系路が提案されてい
る。
2. Description of the Related Art Conventionally, in a multi-chip module in which a system is composed of a plurality of semiconductor chips, it has been proposed to use an optical signal as a part of the signal, such as a clock signal, in order to improve the operation speed of the system. Has been done.
For example, in Japanese Patent Laid-Open No. 4-313269, a light emitting element and a light receiving element are provided in a module, and an optical signal from an issuing element which is issued in synchronization with a clock signal is received by the light receiving element and converted into an electric signal. Supplying to a plurality of semiconductor chips is described. The propagation path of the optical signal here uses the space inside the IC storage box (it is considered that a gas such as air exists), or as shown in FIG. 9 (FIG. 4 (b) of the present application). An optical fiber embedded in a printed circuit board on which a plurality of chips are mounted is used. Another conventional example (Japanese Patent Application No. 5-2 of the same applicant as the present application)
73338) , an optical signal produced outside the multi-chip module is supplied to the module by an optical fiber, and the optical signal is received in the module by utilizing the space provided therein as in the conventional example. And the structure for supplying the light to the light source in the multi-chip module as in the conventional example as shown in FIG. Although the optical signal propagates through the multi-chip module, a portion that easily reflects light and a portion that absorbs light and reduces reflection are provided in order to prevent the waveform from being distorted due to the synthesis of light coming from different propagation paths. Optical signal propagation paths with different structures have been proposed.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 31/0232 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location H01L 31/0232

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 単結晶シリコンよりなるマルチチップモ
ジュール基板と、前記基板内に少くともその一部が埋め
込まれて形成されたシリコン系化合物よりなる光導波路
と、当該光導波路の末端に設けられ前記基板面に対して
略垂直方向に光を曲げる手段と、前記光導波路の途上に
設けられ光を前記基板面に平行の複数進路に分岐する手
段と、前記基板上に設けられた金属配線と、表面に電子
回路を形成し前記光導波路にその表面が向き合うように
前記金属配線の一部にバンプを介して接続された複数の
半導体ペレットと、当該半導体ペレット表面に形成され
た受光素子とを有することを特徴とするマルチチップモ
ジュール。
1. A multi-chip module substrate made of single crystal silicon, an optical waveguide made of a silicon compound formed by embedding at least a part of the substrate in the substrate, and an optical waveguide provided at an end of the optical waveguide. A means for bending light in a direction substantially perpendicular to the substrate surface, a means provided on the way of the optical waveguide for branching light into a plurality of paths parallel to the substrate surface, and a metal wiring provided on the substrate, A plurality of semiconductor pellets having an electronic circuit formed on a surface thereof and connected to a part of the metal wiring via bumps so that the surface faces the optical waveguide, and a light receiving element formed on the surface of the semiconductor pellet. A multi-chip module characterized in that
【請求項2】 前記光導波路に入射される光は前記基板
上に設けられた発光素子から発生することを特徴とする
請求項1記載のマルチチップモジュール。
2. The multi-chip module according to claim 1, wherein the light incident on the optical waveguide is generated from a light emitting element provided on the substrate.
【請求項3】 前記光導波路に入射される光は前記基板
外から光導波手段により導入されたことを特徴とする請
求項1記載のマルチチップモジュール。
3. The multichip module according to claim 1, wherein the light incident on the optical waveguide is introduced from outside the substrate by an optical waveguide means.
JP32713393A 1993-12-24 1993-12-24 Multi-chip module Expired - Lifetime JP2986140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32713393A JP2986140B2 (en) 1993-12-24 1993-12-24 Multi-chip module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32713393A JP2986140B2 (en) 1993-12-24 1993-12-24 Multi-chip module

Publications (2)

Publication Number Publication Date
JPH07183570A true JPH07183570A (en) 1995-07-21
JP2986140B2 JP2986140B2 (en) 1999-12-06

Family

ID=18195687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32713393A Expired - Lifetime JP2986140B2 (en) 1993-12-24 1993-12-24 Multi-chip module

Country Status (1)

Country Link
JP (1) JP2986140B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999017143A1 (en) * 1997-10-01 1999-04-08 Hitachi Chemical Company, Ltd. Optical waveguide with micromirror, its manufacturing method, and optical information processor
US6661939B2 (en) 2000-09-26 2003-12-09 Kyocera Corporation Optical module and method for manufacturing same
JP2006195371A (en) * 2005-01-17 2006-07-27 Sony Corp Semiconductor device, substrate manufacturing method, and electronic equipment
US7224859B2 (en) 2004-02-26 2007-05-29 Fujitsu Limited Opto-electronic integrated circuit device, opto-electronic integrated circuit system and transmission method
US7310457B2 (en) 2005-02-23 2007-12-18 Fuji Xerox Co., Ltd. Multi-chip module and method for mounting thereof
JP2008158471A (en) * 2006-11-28 2008-07-10 Sumitomo Bakelite Co Ltd Optical wiring component
WO2008126653A1 (en) * 2007-03-22 2008-10-23 Ngk Insulators, Ltd. Method for manufacturing optical surface mounting waveguide substrate
JP2009063766A (en) * 2007-09-05 2009-03-26 Shinko Electric Ind Co Ltd Method of forming optical waveguide
JP2011128438A (en) * 2009-12-18 2011-06-30 Shinko Electric Ind Co Ltd Method for manufacturing optical waveguide, optical waveguide, and optical transmitter-receiver

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6425580A (en) * 1987-07-22 1989-01-27 Matsushita Electric Ind Co Ltd Printed circuit board
JPH01194477A (en) * 1988-01-29 1989-08-04 Nippon Telegr & Teleph Corp <Ntt> Integrated circuit device
JPH0461175A (en) * 1990-06-22 1992-02-27 Nippon Telegr & Teleph Corp <Ntt> Photo-coupler device
JPH0548073A (en) * 1991-08-14 1993-02-26 Hitachi Ltd Semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6425580A (en) * 1987-07-22 1989-01-27 Matsushita Electric Ind Co Ltd Printed circuit board
JPH01194477A (en) * 1988-01-29 1989-08-04 Nippon Telegr & Teleph Corp <Ntt> Integrated circuit device
JPH0461175A (en) * 1990-06-22 1992-02-27 Nippon Telegr & Teleph Corp <Ntt> Photo-coupler device
JPH0548073A (en) * 1991-08-14 1993-02-26 Hitachi Ltd Semiconductor device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999017143A1 (en) * 1997-10-01 1999-04-08 Hitachi Chemical Company, Ltd. Optical waveguide with micromirror, its manufacturing method, and optical information processor
US6661939B2 (en) 2000-09-26 2003-12-09 Kyocera Corporation Optical module and method for manufacturing same
US7224859B2 (en) 2004-02-26 2007-05-29 Fujitsu Limited Opto-electronic integrated circuit device, opto-electronic integrated circuit system and transmission method
JP2006195371A (en) * 2005-01-17 2006-07-27 Sony Corp Semiconductor device, substrate manufacturing method, and electronic equipment
JP4639810B2 (en) * 2005-01-17 2011-02-23 ソニー株式会社 Semiconductor device, substrate manufacturing method, and electronic apparatus
US7310457B2 (en) 2005-02-23 2007-12-18 Fuji Xerox Co., Ltd. Multi-chip module and method for mounting thereof
JP2008158471A (en) * 2006-11-28 2008-07-10 Sumitomo Bakelite Co Ltd Optical wiring component
WO2008126653A1 (en) * 2007-03-22 2008-10-23 Ngk Insulators, Ltd. Method for manufacturing optical surface mounting waveguide substrate
US8062449B2 (en) 2007-03-22 2011-11-22 Ngk Insulators, Ltd. Method for manufacturing optical surface mounting waveguide substrate
JP5309016B2 (en) * 2007-03-22 2013-10-09 日本碍子株式会社 Method for manufacturing waveguide substrate for optical surface mounting
JP2009063766A (en) * 2007-09-05 2009-03-26 Shinko Electric Ind Co Ltd Method of forming optical waveguide
JP2011128438A (en) * 2009-12-18 2011-06-30 Shinko Electric Ind Co Ltd Method for manufacturing optical waveguide, optical waveguide, and optical transmitter-receiver

Also Published As

Publication number Publication date
JP2986140B2 (en) 1999-12-06

Similar Documents

Publication Publication Date Title
US7430127B2 (en) Electronic circuit board
CN101180562B (en) Optically enabled hybrid semiconductor package
CN100397122C (en) Optical signal input device and electronic apparatus using the same
KR100770853B1 (en) Optical module
JP4859677B2 (en) Photovoltaic module fabrication system and method
JP3413839B2 (en) Optoelectronic integrated circuit device
US20060177173A1 (en) Vertical stacking of multiple integrated circuits including SOI-based optical components
US20050100264A1 (en) Packaging apparatus for optical interconnection on optical printed circuit board
JPH07183570A (en) Multichip module
JP2006258835A (en) Optical waveguide module, photoelectric converter and optical waveguide member
US20090153229A1 (en) Method for Signal Transmission between Semiconductor Substrates, and Semiconductor Component Comprising Such Semiconductor Substrates
KR19980045943A (en) Micro-mirror for hybrid optical integrated circuit, manufacturing method thereof, micro mirror-photodetector assembly and hybrid optical integrated circuit assembly for optical reception
JPS61242069A (en) Hybrid optical integrated circuit and manufacture thereof
US6856721B2 (en) Light guide configuration for serial bi-directional signal transmission, optical circuit board, and fabrication method
CN101128761A (en) Vertical stacking of multiple integrated circuits including SOI-based optical components
JP3230506B2 (en) Light receiving module
JPH0645584A (en) Optically coupled integrated circuit
JP2004022666A (en) Semiconductor device
US11300740B1 (en) Optical module package
JP2007019133A (en) Photoelectric conversion device, its manufacturing method, and optical information process device
JPH07234345A (en) Photodetecting structure of waveguide type optical device
US6888990B2 (en) Package to die optical coupler having high coupling efficiency and alignment tolerance
KR100317397B1 (en) Architecture of a free-space optical interconnection module
TW579448B (en) Optical interconnect structure, system and transceiver including the structure, and method of forming the same
JP2006052992A (en) Inspection method of optical waveguide wiring board or photoelectric mixed mounting circuit board

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19970318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 13