WO2013190844A1 - Probe card-securing device, probe inspection device, probe inspection method, and probe card - Google Patents

Probe card-securing device, probe inspection device, probe inspection method, and probe card Download PDF

Info

Publication number
WO2013190844A1
WO2013190844A1 PCT/JP2013/003865 JP2013003865W WO2013190844A1 WO 2013190844 A1 WO2013190844 A1 WO 2013190844A1 JP 2013003865 W JP2013003865 W JP 2013003865W WO 2013190844 A1 WO2013190844 A1 WO 2013190844A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe card
probe
support
connection ring
card
Prior art date
Application number
PCT/JP2013/003865
Other languages
French (fr)
Japanese (ja)
Inventor
山崎 俊彦
Original Assignee
旭化成エレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成エレクトロニクス株式会社 filed Critical 旭化成エレクトロニクス株式会社
Priority to JP2014520958A priority Critical patent/JP5816749B2/en
Priority to KR1020147008159A priority patent/KR101569303B1/en
Publication of WO2013190844A1 publication Critical patent/WO2013190844A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2886Features relating to contacting the IC under test, e.g. probe heads; chucks
    • G01R31/2891Features relating to contacting the IC under test, e.g. probe heads; chucks related to sensing or controlling of force, position, temperature

Definitions

  • the present invention relates to a probe card fixing device, a probe inspection device, a probe inspection method, and a probe card, and in particular, a probe that can suppress fluctuations in the tip position of a probe needle caused by thermal expansion of the probe card or card holder.
  • the present invention relates to a card fixing device, a probe inspection device, a probe inspection method, and a probe card.
  • a probe card used for inspecting an IC chip formed on a wafer has a card substrate and a plurality of probe needles (also called needles).
  • the electrical characteristics of the IC chip are measured by bringing a plurality of probe needles into contact with the electrode pads of the IC chip.
  • the electrical characteristics of an IC chip are measured with the wafer at a high temperature (see, for example, Patent Documents 1 to 3).
  • the pitch of probe needles has been reduced, and there has been a demand for more accurate alignment between probe needles and electrode pads.
  • JP-A-7-98330 Japanese Patent Laid-Open No. 2009-200272 Japanese Patent Laid-Open No. 2005-181284
  • the stage on which the wafer is fixed is heated by a heater built in the stage. Thereby, the wafer is heated to a preset temperature.
  • the probe card since the probe card is arranged above the wafer, the lower surface of the probe card is heated by the radiant heat from the wafer and the conduction heat from the probe needle in contact with the electrode pad, and the temperature rises. .
  • the temperature difference between the upper and lower surfaces of the probe card is due to the thickness of the probe card, low heat transfer compared to metal, and the absence of a high-temperature heat source on the upper surface side. (Thermal gradient) occurs.
  • the probe card due to the temperature difference between the upper and lower surfaces, the probe card has a problem that “warping deformation that protrudes downward” occurs.
  • the card holder that holds the probe card also expands due to the influence of radiant heat, causing deformation.
  • the degree of deformation varies depending on the positional relationship between the wafer and the probe card (card holder). For example, when inspecting the IC chip 411 located on the outer periphery of the wafer 410 and when inspecting the IC chip 411 located in the center of the wafer 410, the magnitude of radiant heat received by the lower surface 401 of the probe card 400 is large. There is a difference in the warpage deformation.
  • FIGS. 18A and 18B when inspecting the IC chip 411 located on the outer periphery of the wafer 410, a part of the probe card 400 is moved from the upper side to the outer side of the stage 420. Since it has come out, the radiant heat which the part which has come out outside receives is small, and the temperature of the probe card 400 becomes relatively low. Therefore, the warp deformation that occurs in the probe card 400 is small. When the warp deformation is small, the downward displacement amount of the tip position of the probe needle 402 is small. Therefore, the force (that is, the pressing pressure) with which the probe needle 402 presses the electrode pad is a preset value (that is, a set value). Within the range of. For this reason, as shown in FIG. 18B, the needle trace formed on the electrode pad by the contact with the probe needle 402 can be small.
  • the probe card 400 when inspecting the IC chip 411 located at the center of the wafer 410, the probe card 400 does not protrude from above the stage 420.
  • the lower surface 401 receives a large amount of radiant heat, and the temperature of the probe card 400 becomes relatively large. Therefore, the warp deformation generated in the probe card 400 is large.
  • warping deformation is large, the amount of downward displacement of the tip position of the probe needle 402 is large, and the pressing pressure exceeds the set value. For this reason, as shown in FIG.19 (b), the needle trace which remains in an electrode pad becomes large.
  • the tip of the probe needle 402 protrudes while rubbing the electrode pad to reach the passivation film, and there is a possibility that the passivation film is rubbed and damaged.
  • the tip of the probe needle 402 may break through the electrode pad and destroy the device structure below.
  • the cited document 1 describes that the displacement of the needle position is reduced by fixing the probe needle to a support plate having a small linear expansion coefficient.
  • the needle position is affected by the expansion (i.e., thermal expansion) due to the heat of the substrate.
  • the vertical linear expansion of the free-cutting ceramic needle presser cannot be ignored.
  • Reference 2 describes that heat dissipation from the probe substrate to the reinforcing plate is enhanced by interposing a heat transfer member between the probe substrate and the reinforcing plate.
  • cited document 3 discloses a card holder for holding a probe card.
  • the card holder is provided with a plurality of cut portions and through holes (hereinafter referred to as slits) from the opening end of the opening located at the center thereof toward the outer peripheral end.
  • slits cut portions and through holes
  • the present invention has been made in view of such circumstances, and a probe card fixing device capable of suppressing fluctuations in the tip position of the probe needle caused by thermal expansion of the probe card or the card holder, An object is to provide a probe inspection device, a probe inspection method, and a probe card.
  • a probe card fixing device is a probe card fixing device for fixing a probe card to a prober, and a connection ring for fixing the probe card to a housing of the prober, A card holder for sandwiching an outer peripheral portion of the probe card between the connection ring and a lock device for fixing a central portion of the probe card and the connection ring.
  • the “card holder” is, for example, an annular support plate that holds the outer periphery of the probe card.
  • the “connection ring” is, for example, an annular relay board that electrically connects a probe card and a tester.
  • the locking device includes a first component fixed to the center portion of the probe card, a second component fixed to the connection ring, and the first component. And a third part for connecting and fixing the second part.
  • the first component includes a support member disposed apart from a surface of the probe card that is in contact with the connection ring, and a space between the probe card and the support member.
  • a plurality of struts interposed between the plurality of struts, and the plurality of struts may be made of a material having a smaller linear expansion coefficient than the second component.
  • a probe inspection apparatus includes the above-described probe card fixing device and a probe card, and the probe card fixing device is attached to the probe card.
  • the probe inspection method when performing probe inspection using a probe card whose outer peripheral portion is sandwiched between a card holder and a connection ring, a side of the probe card that contacts the connection ring in advance.
  • a locking device is disposed on the surface of the probe card, and the central portion of the probe card and the connection ring are fixed using the locking device.
  • a probe card includes a probe card substrate in which a tip of a probe needle is positioned on one surface side, a support member disposed separately on the other surface side of the probe card substrate, A plurality of struts interposed between the probe card substrate and the support member, wherein the plurality of struts are a first strut and a central portion of the probe card substrate than the first strut A second support column disposed away from the first support column, wherein the second support column has a thermal expansion coefficient larger than that of the first support column.
  • the plurality of struts each include a plurality of the first struts and the second struts, and the plurality of first struts are formed on the probe card substrate.
  • the plurality of second support columns are arranged at equal intervals on a first circumference having a center of a circle in the center, and the first circumference is concentric with the first circumference. It is good also as arrange
  • the plurality of support columns further include a third support column disposed on a center portion of the probe card substrate, and the coefficient of thermal expansion of the third support column is the first support column. It may be characterized by being smaller than the thermal expansion coefficient of the column.
  • the central portion of the probe card substrate is a so-called dead space in which it is difficult to place electronic components.
  • the reason for the dead space in the center is that it is often desirable to place electronic components as close as possible to the connection point between the probe needle and the probe card board in order to improve electrical characteristics, while the probe needles are arranged radially. This is because the center of the probe card substrate is often GND, and as a result, the number of components mounted on the probe card is extremely small.
  • the number of the second support columns may be larger than that of the first support columns.
  • a portion (for example, the central portion) inside the outer peripheral portion of the probe card is connected and fixed to the connection ring by the probe card fixing device.
  • the connection ring can be fixed to the housing of the prober.
  • the prober housing is away from the heat source for high-temperature inspection (for example, a heater in the stage), and the thermal fluctuation is small.
  • the probe card support point can be a housing with small thermal fluctuations, it suppresses the probe card's downward warping deformation and the downward movement of the probe card due to the displacement and deformation of the card holder. can do. Thereby, the fluctuation
  • a force against warping deformation is applied to the probe card substrate due to the difference in thermal expansion coefficient between the first and second support columns.
  • Sectional drawing which shows the principal part structural example of the probe test
  • the perspective view which shows the structural example of the lower part 51 and the upper part 61 of PCLS50.
  • the top view which shows the structural example of PCLS50.
  • the conceptual diagram which shows force F1, F2 and F3 which are added to the probe card 10 at the time of a high temperature test
  • FIG. The figure which shows the modification of the probe card 300.
  • FIG. The figure which shows the structural example of the support plate 330 which concerns on 4th Embodiment of this invention.
  • FIG. 1 is a cross-sectional view showing a configuration example of a main part of a probe inspection apparatus 100 according to the first embodiment of the present invention.
  • the probe inspection apparatus 100 is an apparatus for inspecting the electrical characteristics and functions of an IC chip formed on a wafer, for example.
  • the probe inspection apparatus 100 holds a stage 1 on which a wafer is placed and fixed, a housing 3, a probe card 10 disposed above the stage 1, and the probe card 10.
  • a card holder 20, a connection ring 30 for electrically connecting the probe card 10 and a tester (not shown), and a PCLS (Probe Card Lock System) 50 are provided.
  • Stage 1 and housing 3 are part of a prober.
  • the stage 1 incorporates a heat source such as a heater.
  • the wafer mounted on the stage 1 is heated by a heater built in the stage 1.
  • the wafer can be heated to a preset temperature and a high temperature inspection can be performed.
  • the housing 3 covers a part of the upper surface side and the side surface side of the prober, and is made of a highly rigid metal such as a coated iron plate or stainless steel plate.
  • the probe card 10 has a card substrate 11.
  • the card substrate 11 is made of, for example, glass epoxy.
  • the shape (namely, planar shape) of the card substrate 11 in plan view is, for example, a circle.
  • the card substrate 11 has a diameter of 100 to 300 mm and a thickness of 3.2 to 4.8 mm.
  • a circuit or an electronic component (not shown) is attached on the upper surface 11a of the card substrate 11.
  • a plurality of probe needles 13 connected to the above-described circuits and electronic components are attached to the card substrate 11.
  • the probe needle 13 is fixed by a needle presser 15 arranged on the lower surface 11 b side of the card substrate 11, and its tip 13 a is located on the lower surface 11 b side of the card substrate 11.
  • the number and arrangement interval of the probe needles 13 correspond to the number and arrangement interval of the electrode pads of the inspection object (that is, the IC chip formed on the wafer). Further, the card substrate 11 is provided with a plurality of screw holes penetrating between the upper surface 11a and the lower surface 11b in order to connect to a plurality of pillars described later.
  • the card holder 20 holds the probe card 10 in a detachable manner.
  • the planar shape of the card holder 20 is, for example, an annular shape (that is, a shape having an opening at the center). Further, a thin plate portion 21 having a smaller thickness than the other portions is provided on the edge of the opening of the card holder 20. The outer peripheral portion of the probe card 10 is placed on the thin plate portion 21. Moreover, the level
  • the step 23 is formed along the outer periphery of the probe card 10 and restricts the movement of the probe card 10 placed on the thin plate portion 21 in the horizontal direction (for example, X and Y axis directions).
  • a clamp mechanism is provided on the outer periphery of the card holder 20 to be connected and fixed to the housing 3.
  • the card holder 20 is close to the stage 1 and is disposed at a position where it is easily subjected to heat during a high temperature inspection. For this reason, it is preferable that the card holder 20 is made of a material having a relatively small linear expansion coefficient, such as Novinite (registered trademark). Novinite (registered trademark) has a linear expansion coefficient of, for example, 2 to 5 ppm / ° C. Thereby, it can suppress that the card holder 20 thermally expands at the time of a high temperature test
  • Novinite registered trademark
  • the connection ring 30 is for electrically connecting, for example, a test head of a tester (not shown) and the probe card 10.
  • the connection ring 30 is provided with a plurality of pogo pins (that is, movable pins whose tips are extended and contracted by springs) 31 penetrating therethrough.
  • the connection ring 30 is disposed on the upper surface 11 a side of the probe card 10.
  • One end of the pogo pin 31 is in contact with the electrode portion of the probe card 10 (that is, in contact with the probe card 10), and the other end of the pogo pin 31 is in contact with the electrode portion of the test head.
  • the outer peripheral portion of the probe card 10 is sandwiched from above and below by the thin plate portion 21 of the card holder 20 and the pogo pin 31 of the connection ring 30.
  • connection ring 30 is connected and fixed to the housing 3 by passing the screws 35 through the screw holes in the outer peripheral portion and the screw holes in the housing 3 (that is, screwing). Have been).
  • the PCLS 50 is disposed on the upper surface 11 a side of the probe card 10, that is, on the surface in contact with the connection ring 30 of the probe card 10, and is connected to a portion (for example, the central portion) inside the outer peripheral portion of the probe card 10. 30 is connected and fixed.
  • the PCLS 50 includes, for example, a lower part 51 fixed to the center part of the probe card 10, an upper part 61 fixed to the connection ring 30, an upper part 61 and a lower part 51. And a screw 71 for connecting and fixing.
  • the lower part 51 includes a lower support portion 52 that is spaced apart from the upper surface 11a of the probe card 10, a plurality of columns 53 that are interposed between the probe card 10 and the lower support portion 52, and a lower side.
  • a screw 54 for fixing the support portion 52 to one end side of each column 53 and a screw 55 for fixing the probe card 10 to the other end of each column 53 are provided.
  • the lower support portion 52 supports the probe card 10.
  • means a coefficient of thermal expansion.
  • 0 to 100 ° C. means a value of coefficient of thermal expansion in the range of 0 to 100 ° C.
  • the stainless steel material is suitable as a material for the lower support portion 52 because it is inexpensive, easy to process, and can easily obtain high rigidity.
  • FIG. 2A and 2B are perspective views showing a configuration example of the lower part 51 and the upper part 61 of the PCLS 50.
  • FIG. 2A the shape of the lower support portion 52 is, for example, a cross shape.
  • the size of the lower support 52 is, for example, a length from one end to the other end of the cross of 100 to 300 mm, and a thickness of 5 to 20 mm.
  • the lower support portion 52 has a plurality of screw holes for connecting to the respective pillars 53 and a connection to the upper part 61 (that is, for passing the screw 71). Each screw hole is provided.
  • Each strut 53 connects the probe card 10 and the support member.
  • the length of each column 53 is, for example, 10 to 20 mm.
  • the length of each column 53 corresponds to the distance between the probe card 10 and the lower support portion 52.
  • pillar 53 is provided with the screw hole penetrated in the length direction (for example, Z-axis direction). By passing the screw 54 through the screw hole provided in the lower support portion 52 and the screw hole of the support post 53, each support post 53 is connected and fixed to the lower support portion 52.
  • each column 53 is connected and fixed to the probe card 10.
  • pillar 53 also consist of a material with a very small thermal expansion coefficient, such as a super invar alloy.
  • the material constituting the column 53 and the screws 54 and 55 is not limited to Super Invar alloy.
  • between the screw 54 and the screw 55 which opposes, even when the screws 54 and 55 thermally expand, space should be ensured so that these may not press each other. preferable.
  • the upper part 61 includes an upper support part 62, a connection part 63 that connects the upper support part 62 to the connection ring 30, a screw 64 for fixing the upper support part 62 to the connection part 63, and a connection part 63.
  • a screw 65 (for example, see FIG. 2B) for fixing to the ring 30 is provided.
  • the upper support portion 62 supports the probe card 10.
  • the upper support 62 is made of, for example, a stainless steel material such as SUS430 or SUS410 according to JIS standards. As described above, the stainless steel material is inexpensive and easy to process, and high rigidity can be easily obtained. For this reason, the stainless steel material is suitable not only for the lower support portion 52 but also for the upper support portion 62.
  • the shape of the upper support portion 62 is, for example, a cross shape.
  • the size of the upper support 62 is, for example, a length from one end to the other end of the cross of 100 to 300 mm and a thickness of 5 to 20 mm.
  • the upper support portion 62 has a plurality of screw holes for connecting to the connecting portion 63 and a portion for connecting to the lower part 51 (that is, for passing the screw 71). Each screw hole is provided.
  • the connecting part 63 connects and fixes the PCLS 50 to the connection ring 30 and is made of, for example, a stainless steel material such as SUS430 or SUS410 according to JIS standards.
  • the shape of the connecting portion 63 is, for example, an annular shape.
  • the outer peripheral surface of the connecting portion 63 is along the inner peripheral surface of the connection ring 30.
  • the connecting portion 63 is provided with a plurality of screw holes for connecting to the upper support portion 62 and a plurality of screw holes for connecting to the connection ring 30.
  • the screw 64 By passing the screw 64 through the screw hole of the upper support part 62 and the screw hole provided in the connection part 63, the upper support part 62 is connected and fixed to the connection part 63.
  • the connecting portion 63 is fixedly connected to the connection ring by passing the screw 65 through the screw hole of the connecting portion 63.
  • the screws 64 and 65 are made of, for example, a stainless steel material.
  • FIG. 3 is a plan view illustrating a configuration example of the PCLS 50. As shown in FIG. 3, the upper support portion 62 is larger than the lower support portion 52 in plan view, for example. The upper support portion 62 is disposed on the lower support portion so as to cover the entire upper surface of the lower support portion 52, and is fixed with screws 71.
  • FIG. 4 is a conceptual diagram showing the forces F1, F2 and F3 applied to the probe card 10 during the high temperature inspection.
  • the stage is heated by energizing a heater built in the stage while the wafer is fixed on the stage shown in FIG. As a result, the temperature of the wafer rises through the stage to, for example, 150 ° C. to 200 ° C.
  • the probe needle of the probe card 10 is brought into contact with the electrode pad of the IC chip formed on the wafer, and the electrical characteristics of the IC chip are measured.
  • the card holder 20 that holds the probe card 10 also receives thermal radiation from the wafer and the stage and thermally expands, and tends to be displaced or deformed downward.
  • a force F2 is generated in the probe card 10 to move downward due to gravity.
  • the inner side (for example, the center part) of the outer periphery of the probe card 10 is connected and fixed to the connection ring 30 by the PCLS 50.
  • the connection ring 30 is fixed to the housing 3 of the prober.
  • the housing 3 of the prober is away from the heat source such as a stage, and the heat fluctuation is small.
  • the PCLS 50 can apply the force F3 having the opposite direction to the forces F1 and F2 to the probe card 10 using the prober housing 3 as a support point.
  • This force F3 cancels the forces F1 and F2, and reduces the forces F1 and F2.
  • the amount of radiant heat received by the probe card 10 and the card holder 20 varies, and the forces F1 and F2 also vary.
  • the probe needle moves from the center of the wafer to the outer periphery
  • the force F1 and F2 also vary.
  • FIG. 18 when the probe needle moves from the center of the wafer to the outer periphery, when moving to the cleaning area, at least a part of the probe card 10 moves away from above the stage 1.
  • the probe card 10 is moved away from the upper side of the stage 1
  • the amount of radiant heat received by the lower surface 11b of the probe card 10 is reduced, so that the temperature difference between the upper and lower surfaces is reduced.
  • the distribution and size of the force F ⁇ b> 1 that causes “downward convex warping deformation” in the probe card changes.
  • the force F3 transmitted from the PCLS 50 to the probe card 10 also changes, for example, according to the law of action / reaction of the force at each column 53. For this reason, also when inspecting the IC chip located on the outer peripheral portion of the wafer, the force F3 cancels the forces F1 and F2 and reduces the forces F1 and F2.
  • the lower part 51 corresponds to the “first part” of the present invention
  • the upper part 61 corresponds to the “second part” of the present invention
  • the screw 71 corresponds to the “first part” of the present invention. 3 parts ".
  • the lower support portion 52 corresponds to the “support member” of the present invention.
  • the PCLS 50 corresponds to the “lock device” of the present invention.
  • the combination of the connection ring 30, the card holder 20, and the PCLS 50 corresponds to the “probe card fixing device” of the present invention.
  • the first embodiment of the present invention has the following effects.
  • (1) The center portion of the probe card 01 is connected and fixed to the connection ring 30 by the PCLS 50.
  • the connection ring 30 is fixed to the housing 3 of the prober.
  • the prober casing 3 is away from the heat source for high temperature inspection, and the thermal fluctuation is small. Since the housing 3 with small thermal fluctuation can be used as a support point of the probe card 10, the probe card 10 is caused by “warping deformation protruding downward” due to thermal expansion of the probe card 10, or by displacement or deformation of the card holder 20. The movement to the lower side can be suppressed.
  • the probe needle 13 can be restrained from changing in the position of the tip 13a (that is, the tip position) in a non-contact state where it is not in contact with the electrode pad or the like of the IC chip.
  • the amount of displacement of can be made extremely small.
  • the PCLS 50 is a screw for connecting and fixing the lower part 51 fixed to the center of the probe card 10, the upper part 61 fixed to the connection ring 30, and the lower part 51 and the upper part 61. 71.
  • the PCLS 50 can be easily attached to and detached from the probe card 10 and the connection ring 30.
  • the lower part is attached to the probe card 10 in advance.
  • 51 is attached.
  • the upper part 61 is attached to the connection ring 30 in advance.
  • the lower part 51 and the upper part 61 are connected and fixed using the screw 71.
  • the screw 71 is removed from the screw hole before the probe card 10 and the connection ring 30 are unloaded from the prober, and the connection state of the lower part 51 and the upper part 61 is released.
  • the probe card 10 and the connection ring 30 are unloaded from the prober.
  • the lower part 51 is removed from the probe card 10.
  • the upper part 61 is removed from the connection ring 30.
  • casing 3 of a prober may be arbitrary timings, if it is before performing a probe test
  • each column 53 is made of a super invar alloy having a very small linear expansion coefficient.
  • pillar 53 thermally expands and pushes the probe card 10 below. It is possible to prevent the probe card 10 from being “warped and deformed downward” due to thermal expansion of each column 53.
  • FIG. 6 is a graph showing the result of verifying the effect of PCLS performed by the present inventor.
  • the horizontal axis in FIG. 6 indicates time.
  • the vertical axis represents the displacement [ ⁇ m] of the tip position of the probe needle.
  • the plus (+) on the vertical axis represents the amount of displacement toward the + side (ie, the upper side) in the Z-axis direction, and the minus ( ⁇ ) represents the amount of displacement toward the ⁇ side (ie, the lower side) in the Z-axis direction.
  • a wafer is placed on the stage 1 of the prober, and in this state, the stage 1 is heated to 150 ° C. to perform a high temperature inspection. Then, the tip position of the probe needle 13 in the non-contact state was measured every 5 minutes, and the amount of displacement in the Z-axis direction with respect to the tip position (initial value: 0) before the high temperature inspection was recorded. This measurement and recording were performed by continuously inspecting four wafers at a high temperature. As shown in FIG. 6, it was confirmed that the variation of the tip position of the probe needle 13 was within ⁇ 5 ⁇ m in each of the four wafers.
  • the average value of the displacement amount in the first sheet was lower than the average value of the displacement amount in the second and subsequent sheets.
  • the present inventor is immediately after starting the high temperature inspection, and the temperature of each device constituting the probe inspection apparatus 100 such as the probe card 10, the card holder 20, the connection ring 30, and the PCLS 50 is stable. I think it was related to what I didn't do.
  • the shapes of the lower support portion 52 and the upper support portion 62 are not limited to this.
  • the lower support portion 52 may have a cross shape and the upper support portion 62 may have a rectangular shape extending in one direction.
  • the lower support portion 52 may have a cross shape and the upper support portion 62 may have a circular shape. Even in such a case, the same effects as the effects (1) to (3) of the first embodiment are obtained.
  • FIG. 9 is a diagram showing a configuration example of a probe card 200 according to the second embodiment of the present invention, in which FIG. 9A is a plan view, FIG. 9B is a side view, and FIG. -X 'sectional view.
  • the probe card 200 includes a probe card substrate 110, a support member 130 that is spaced from the upper surface 111 of the probe card substrate 110, and a probe card substrate 110. And a plurality of support columns 150 interposed between the support member 130 and the support member 130.
  • the probe card substrate 110 is used by being attached to a prober (not shown), and is made of, for example, glass epoxy.
  • the shape of the probe card substrate 110 in plan view (that is, the planar shape) is, for example, a regular circle.
  • the probe card substrate 110 has, for example, a diameter of 100 to 300 mm and a thickness of 3.2 to 4.8 mm.
  • a circuit or an electronic component (not shown) is attached on the upper surface 111 of the probe card substrate 110.
  • a plurality of probe needles 120 connected to the above-described circuits and electronic components are attached to the probe card substrate 110.
  • the probe needle 120 is fixed by, for example, a needle presser 123 arranged on the lower surface 112 side of the probe card substrate 110, and the tip 121 thereof is located on the lower surface 112 side of the probe card substrate 110.
  • the number and arrangement interval of the probe needles 120 correspond to, for example, the number and arrangement interval of electrode pads of a product to be inspected (that is, an IC chip formed on a wafer).
  • the probe card substrate 110 is provided with a plurality of screw holes 113 penetrating between the upper surface 111 and the lower surface 112 in order to fix the lower ends of the plurality of columns 150.
  • the support member 130 supports the probe card substrate 110 and is made of, for example, a stainless steel material.
  • the support member 130 is used in a state of being fixed to a prober (not shown), for example.
  • the planar shape of the support member 130 is, for example, a cross shape.
  • the size of the support member 130 is, for example, a length from one end to the other end of the cross of 100 to 300 mm and a thickness of 5 to 20 mm.
  • the support member 130 is provided with a plurality of screw holes 133 penetrating between the upper surface 131 and the lower surface 132 of the support member 130 in order to fix the upper ends of the plurality of support columns 150.
  • the plurality of struts 150 connect the probe card substrate 110 and the support member 130, and their length L is, for example, 10 to 20 mm. This length L corresponds to the distance between the probe card substrate 110 and the support member 130.
  • the plurality of support columns 150 include, for example, a plurality of first support columns 151 and a plurality of second support columns 152.
  • the plurality of first support columns 151 are arranged at equal intervals on the first circumference 171.
  • the first circumference 171 is a perfect circle, for example, and is a virtual circumference having the center of the circle at the center of the probe card substrate 110.
  • the plurality of second support columns 152 are arranged at equal intervals on the second circumference 172.
  • the second circumference 172 is, for example, a circumference of a perfect circle, is concentric with the first circumference 171 (that is, shares the center of the circle), and has a diameter larger than that of the first circumference 171. Is a large virtual circumference.
  • four first support columns 151 are arranged at equal intervals on the first circumference 171
  • four second support columns 152 are arranged at equal intervals on the first circumference 171.
  • the case where the first support column 151 and the second support column 152 form a line in the radial direction of the circle for example, the X-axis direction and the Y-axis direction
  • first support column 151 and the second support column 152 are provided with, for example, screw holes penetrating from the lower end to the upper end.
  • first support column 151 is fixed with a screw 161 from the probe card substrate 110 side and is fixed with a screw 166 from the support member 130 side.
  • a space is secured between the screw 161 and the screw 166 at an intermediate portion in the length direction (for example, the Z-axis direction) of the first support column 151.
  • the second support column 152 is fixed with screws 162 from the probe card substrate 110 side and fixed with screws 167 from the support member 130 side.
  • a space is secured between the screw 162 and the screw 167 at an intermediate portion in the length direction of the second support column 152.
  • the thermal expansion coefficient (thermal expansion coefficient) of the second support column 152 is larger than the thermal expansion coefficient of the first support column 151. That is, when the coefficient of thermal expansion of the first support column 151 is ⁇ 1 and the coefficient of thermal expansion of the second support column 152 is ⁇ 2, the first support column 151 and the second support column 151 are set so that the following equation (1) is satisfied.
  • a material is selected for each of the columns 152. ⁇ 2> ⁇ 1 (1)
  • the second support column 152 is SUS430 or JIS standard. It may be SUS410.
  • each material of the first support column 151 and the second support column 152 may be arbitrarily selected on condition that the expression (1) is satisfied.
  • the screws 161 and 166 for fixing the first support column 51 are preferably made of the same material as that of the first support column 151.
  • the first support column 151 and the screws 161 and 166 coincide with each other, the first support column 151 and the screws 161 and 166 can be regarded as one body, and the first support column 151 of the heating test can be regarded as an integrated object. It becomes easy to control the volume change amount of the expansion / contraction (change amount of the length L).
  • the screws 162 and 167 for fixing the second support column 152 are preferably made of the same material as that of the second support column 152.
  • FIG. 10 is a conceptual diagram showing the forces F1 and F2 applied to the probe card substrate 110 during the high temperature inspection.
  • the stage is heated by energizing a heater built in the stage with the wafer fixed on the stage.
  • the temperature of the wafer rises through the stage to, for example, 150 ° C. to 200 ° C.
  • the probe needle 120 is brought into contact with the electrode pad of the IC chip formed on the wafer to The mechanical characteristics.
  • the radiant heat and conduction heat are also transmitted through the probe card substrate 110 to the plurality of columns 150 arranged on the upper surface 111 side of the probe card substrate 110. Then, due to heat transfer from the probe card substrate 110, the temperature of each of the plurality of support columns 150 rises.
  • the thermal expansion coefficient ⁇ 2 of the second support column 152 is larger than the thermal expansion coefficient ⁇ 1 of the first support column 151.
  • pillar 152 expand
  • a force F ⁇ b> 2 is applied to the probe card substrate 110 in a direction that causes “upward warping deformation”.
  • the force F2 that tries to cause “warping deformation that protrudes upward” cancels out the force F1 that causes “warping deformation that protrudes downward”.
  • the force F1 can be reduced, it is possible to reduce “warping deformation that protrudes downward” due to the temperature difference between the upper and lower surfaces of the probe card substrate 110.
  • a part or all of a plurality of IC chips formed on the wafer are inspected while the probe card 200 is moved relative to the wafer.
  • an IC chip located on the outer periphery of the wafer may be inspected, or the probe card 200 may be moved to a cleaning area outside the stage. In this case, at least a part of the probe card 200 leaves from above the stage.
  • the probe card 200 is separated from the upper side of the stage, the amount of radiant heat received by the lower surface 112 of the probe card substrate 110 is reduced, so that the temperature difference between the upper and lower surfaces is reduced.
  • the force F ⁇ b> 1 that causes the “downward convex warping deformation” is reduced, and the warp deformation of the probe card substrate 110 tends to converge. Further, since the amount of heat transferred from the probe card substrate 110 to each column 150 is also small, each column 150 contracts according to the coefficient of thermal expansion. As a result, the force F ⁇ b> 2 that causes “warping deformation that protrudes upward” is also reduced.
  • the lower surface 112 of the probe card substrate 110 corresponds to “one surface” of the present invention
  • the upper surface 111 corresponds to “the other surface” of the present invention.
  • the probe card of the present invention has the following effects.
  • the probe card 200 is located between the probe card substrate 110 and the support member 130, and the position (for example, outer periphery) farther from the center of the probe card substrate 110 than the first column 151.
  • a second support column 152 disposed in the section).
  • the thermal expansion coefficient ⁇ 2 of the second support column 152 is larger than the thermal expansion coefficient ⁇ 1 of the first support column 151.
  • first support columns 151 and a plurality of second support columns 152 are prepared, and the first support columns 151 are arranged on the first circumference 171 at equal intervals, and the second support columns 151 152 are arranged at equal intervals on the second circumference 172.
  • the pressing force set in this way is a force F2 that causes the probe card board 110 to generate a “warp deformation that protrudes upward”, and this force F2 causes “a warp deformation that protrudes downward”. It works in the opposite direction to the force F1 to be generated. For this reason, the warp deformation caused by the temperature difference between the upper and lower surfaces of the probe card substrate 110 can be more effectively reduced.
  • the amount of displacement of the tip position of the probe needle 120 can be reduced. Thereby, the pressing force of the probe needle 120 against the electrode pad can be made uniform. Further, since the amount of displacement of the tip position of the probe needle 120 can be reduced and the pressing pressure can be made uniform, the temperature of the high temperature inspection can be further increased (for example, a temperature exceeding 200 ° C.).
  • the plurality of support columns 150 includes, for example, a plurality of first support columns 151 and a plurality of second support columns 152 has been described.
  • the plurality of struts 150 are not limited to the two types of the first struts 151 and the second struts 152.
  • the plurality of support columns 150 may include a third support column 153 in addition to the first support column 151 and the second support column 152.
  • the third support column 153 is disposed on the center portion of the probe card substrate 110.
  • the center portion of the probe card substrate 110 is a so-called dead space in which it is difficult to place electronic components, but the third support column 153 is placed here.
  • the thermal expansion coefficient of the third support column 153 is smaller than the thermal expansion coefficient of the first support column 151. That is, when the coefficient of thermal expansion of the third support column 153 is ⁇ 3, the material of the third support column 153 is selected so that the following expression (3) is satisfied. ⁇ 2> ⁇ 1> ⁇ 3 (3)
  • the third support 153 is a super invar whose thermal expansion coefficient is much smaller than these. An alloy can be selected.
  • the number of support columns 150 can be increased without sacrificing the arrangement space for the electronic components in the probe card substrate 110.
  • the third support column 153 functions as a heat transfer path, thereby efficiently radiating heat from the central portion of the probe card substrate 110 to the support member 130 side. It becomes possible to do.
  • a screw 163 that instructs the third support column 153 from the support member 130 side and a screw that fixes the third support column 153 from the probe card substrate 110 side. is preferably made of the same material as the third support column 153.
  • the first support column 151 shown in FIG. 11 may be omitted. That is, as shown in FIGS. 12A and 12B, the third support column 153 is disposed at the center portion of the probe card substrate 110, the second support column 152 is disposed at the outer peripheral portion, and the central portion and the outer peripheral portion.
  • the strut 150 may not be disposed in the middle portion between the two. With such a configuration, for example, it is easy to secure a space on the upper surface 111 side of the intermediate portion of the probe card substrate 110.
  • Various electronic components 155 such as a coil, a capacitor, or a packaged IC element can be arranged in the reserved space. Thereby, the mounting density of the electronic components on the probe card substrate 110 can be increased.
  • the third support column 153 corresponds to the “first support column” of the present invention.
  • the thermal expansion coefficient ⁇ 2 of the second support column 152 may be larger than the thermal expansion coefficient ⁇ b of the probe card substrate 110.
  • ⁇ 2> ⁇ b> ⁇ 1 (2) ′ For example, by configuring the second support column 152 with a resin material, or configuring the second support column 152 and the screws 162 and 167 with the same resin material, the expression (2) ′ can be satisfied.
  • FIG. 13 is a plan view showing a configuration example of a probe card 300 according to the third embodiment of the present invention. As shown in FIG.
  • the probe card 300 includes a probe card substrate 110, a support plate 230 that is spaced apart from the upper surface 111 of the probe card substrate 110, and a space between the probe card substrate 110 and the support member 130. And a plurality of support columns 150 interposed therebetween.
  • the support plate 230 supports the probe card 300 and is made of, for example, a stainless steel material.
  • the support plate 230 is used in a state of being fixed to a prober (not shown), for example.
  • the support plate 230 has a planar shape of, for example, a regular circle. Similar to the support member 130 shown in FIG. 9, the support plate 230 is also provided with a plurality of screw holes penetrating between the upper surface 111 and the lower surface 112 of the support plate 230 in order to fix the upper end of the support column 150. .
  • the first support column 151 and the second support column 152 have the same functions as those of the second embodiment.
  • the third embodiment has the same effects as the effects (1) to (3) of the second embodiment. Also in the third embodiment, the modifications (1) to (3) described in the second embodiment may be applied.
  • the plurality of support columns 150 may include a third support column 153 in addition to the first support column 151 and the second support column 152.
  • the third support column 153 is disposed on the center portion of the probe card substrate 110, for example.
  • pillar 153 is each selected so that said (3) Formula may be formed. With such a configuration, the same effect as that of the modified example (1) of the second embodiment is obtained.
  • the first support column 151 may be omitted. That is, as shown in FIG. 15, the third support column 153 is disposed at the center portion of the probe card substrate 110, the second support column 152 is disposed at the outer peripheral portion, and the intermediate portion between the central portion and the outer peripheral portion is disposed. The first support column 150 may not be disposed. With such a configuration, the same effect as the modification (2) of the second embodiment is obtained.
  • the number of the second support columns 152 may be larger than that of the first support columns 151.
  • the arrangement interval of the second support columns 152 on the second circumference 172 can be made closer to the arrangement interval of the first support columns 151 on the first circumference 171.
  • the distribution of the pressing force by the second column 152 can be made more uniform.
  • the support plate 230 corresponds to the “support member” of the present invention.
  • FIG. 17 is a plan view showing a configuration example of a support plate 330 according to the fourth embodiment of the present invention.
  • the planar shape of the support plate 330 is, for example, a perfect circle, and a number of threaded holes 133 penetrating from the upper surface 111 to the lower surface 112 are formed.
  • a number of screw holes 133 are formed in the support plate 330.
  • a plurality of screw holes 133 are arranged at equal intervals on each circumference of a plurality of concentric circles with the center of the support plate 330 as the center of the circle.
  • a screw hole 133 may be formed at the center of this circle.
  • the circumference here is a virtual circumference like 2nd and 3rd embodiment.
  • an arbitrary screw hole 133 can be selected from the plurality of screw holes 133, and the column 150 can be fixed through the screw through the selected screw hole 133. Since the screw hole 133 of the support plate 330 can be selected according to the position of the screw hole 133 of the probe card substrate 110 and the support 150 can be fixed thereto, the versatility of the support plate 330 can be improved.
  • the present invention is not limited to the embodiments described above. Based on the knowledge of those skilled in the art, design changes and the like can be added to each embodiment, and such a modified embodiment is also included in the scope of the present invention.

Abstract

Provided are a probe card-securing device, a probe inspection device, a probe inspection method, and a probe card, in which fluctuations in the distal end position of the probe needle caused by thermal expansion of the probe card and the card holder can be minimized. A probe card-securing device for securing a probe card (10) to a prober, the probe card-securing device comprising: a connection ring (30) for securing to the prober casing; a card holder (20) for holding the external peripheral part of the probe card (10) between the connection ring (30) and the card holder (20); and a PCLS (50) for securing the center part of the probe card (10) and the connection ring (30).

Description

プローブカード固定装置、プローブ検査装置、プローブ検査方法及びプローブカードProbe card fixing device, probe inspection device, probe inspection method, and probe card
 本発明は、プローブカード固定装置、プローブ検査装置、プローブ検査方法及びプローブカードに関し、特に、プローブカードやカードホルダの熱膨張に起因して生じるプローブ針の先端位置の変動を抑制できるようにしたプローブカード固定装置、プローブ検査装置、プローブ検査方法及びプローブカードに関する。 The present invention relates to a probe card fixing device, a probe inspection device, a probe inspection method, and a probe card, and in particular, a probe that can suppress fluctuations in the tip position of a probe needle caused by thermal expansion of the probe card or card holder. The present invention relates to a card fixing device, a probe inspection device, a probe inspection method, and a probe card.
 ウエーハに形成されたICチップを検査するために用いられるプローブカードは、カード基板と、複数本のプローブ針(ニードルとも呼ばれる。)と、を有する。検査工程では、複数本のプローブ針をICチップの電極パッドにそれぞれ接触させて、ICチップの電気的特性を測定する。また、検査効率の向上等を目的に、ウエーハを高温状態にしてICチップの電気的特性を測定することが行われている(例えば、特許文献1~3を参照。)。また、近年では、半導体装置の微細化、高集積化に伴ってプローブ針の狭ピッチ化が進み、プローブ針と電極パッドとの位置合わせをより高精度なものとすることが要求されている。 A probe card used for inspecting an IC chip formed on a wafer has a card substrate and a plurality of probe needles (also called needles). In the inspection process, the electrical characteristics of the IC chip are measured by bringing a plurality of probe needles into contact with the electrode pads of the IC chip. For the purpose of improving the inspection efficiency, etc., the electrical characteristics of an IC chip are measured with the wafer at a high temperature (see, for example, Patent Documents 1 to 3). Further, in recent years, with the miniaturization and high integration of semiconductor devices, the pitch of probe needles has been reduced, and there has been a demand for more accurate alignment between probe needles and electrode pads.
特開平7-98330号公報JP-A-7-98330 特開2009-200272号公報Japanese Patent Laid-Open No. 2009-200272 特開2005-181284号公報Japanese Patent Laid-Open No. 2005-181284
 ウエーハを高温状態にして検査を行う(即ち、高温検査を行う)場合、ウエーハを固定しているステージを、ステージに内蔵されたヒータで加熱する。これにより、ウエーハは予め設定された温度まで加熱される。ここで、ウエーハの上方にはプローブカードが配置されているため、ウエーハからの放射熱や、電極パッドと接するプローブ針からの伝導熱によって、プローブカードの下面は温められて、その温度が上昇する。このとき、プローブカードには厚みがあり、また金属と比べて伝熱性が低く、さらに上面の側には高温の熱源がないこと等の理由から、プローブカードの上面と下面との間で温度差(熱勾配)が生じる。そして、この上下面の温度差を原因として、プローブカードには「下側に凸となる反り変形」が生じてしまう、という課題があった。また、プローブカードを保持するカードホルダも放射熱の影響を受けて膨張し、変形を生じてしまう。 When performing inspection with the wafer in a high temperature state (ie, performing high temperature inspection), the stage on which the wafer is fixed is heated by a heater built in the stage. Thereby, the wafer is heated to a preset temperature. Here, since the probe card is arranged above the wafer, the lower surface of the probe card is heated by the radiant heat from the wafer and the conduction heat from the probe needle in contact with the electrode pad, and the temperature rises. . At this time, the temperature difference between the upper and lower surfaces of the probe card is due to the thickness of the probe card, low heat transfer compared to metal, and the absence of a high-temperature heat source on the upper surface side. (Thermal gradient) occurs. Then, due to the temperature difference between the upper and lower surfaces, the probe card has a problem that “warping deformation that protrudes downward” occurs. In addition, the card holder that holds the probe card also expands due to the influence of radiant heat, causing deformation.
 さらに、変形の度合いは、ウエーハとプローブカード(カードホルダ)との位置関係によって変動する。例えば、ウエーハ410の外周部に位置するICチップ411を検査するときと、ウエーハ410の中心部に位置するICチップ411を検査するときとでは、プローブカード400の下面401が受ける放射熱の大きさに差異があり、反り変形の大きさが異なる。 Furthermore, the degree of deformation varies depending on the positional relationship between the wafer and the probe card (card holder). For example, when inspecting the IC chip 411 located on the outer periphery of the wafer 410 and when inspecting the IC chip 411 located in the center of the wafer 410, the magnitude of radiant heat received by the lower surface 401 of the probe card 400 is large. There is a difference in the warpage deformation.
 具体的には、図18(a)及び(b)に示すように、ウエーハ410の外周部に位置するICチップ411を検査するときは、プローブカード400の一部はステージ420の上方から外側へ出ているため、この外側に出ている部分が受ける放射熱は小さく、プローブカード400の温度は相対的に低くなる。それゆえ、プローブカード400に生じる反り変形は小さい。反り変形が小さいと、プローブ針402の先端位置の下側への変位量は小さいため、プローブ針402が電極パッドを押圧する力(即ち、押し圧)は予め設定した値(即ち、設定値)の範囲内に収まる。このため、図18(b)に示すように、プローブ針402との接触により電極パッドに形成される針跡は小さくて済む。 Specifically, as shown in FIGS. 18A and 18B, when inspecting the IC chip 411 located on the outer periphery of the wafer 410, a part of the probe card 400 is moved from the upper side to the outer side of the stage 420. Since it has come out, the radiant heat which the part which has come out outside receives is small, and the temperature of the probe card 400 becomes relatively low. Therefore, the warp deformation that occurs in the probe card 400 is small. When the warp deformation is small, the downward displacement amount of the tip position of the probe needle 402 is small. Therefore, the force (that is, the pressing pressure) with which the probe needle 402 presses the electrode pad is a preset value (that is, a set value). Within the range of. For this reason, as shown in FIG. 18B, the needle trace formed on the electrode pad by the contact with the probe needle 402 can be small.
 一方、図19(a)及び(b)に示すように、ウエーハ410の中心部に位置するICチップ411を検査するときは、プローブカード400はステージ420の上方からはみ出さないため、プローブカード400の下面401が受ける放射熱は大きく、プローブカード400の温度は相対的に大きくなる。それゆえ、プローブカード400に生じる反り変形は大きい。反り変形が大きいと、プローブ針402の先端位置の下側への変位量は大きいため、押し圧は設定値を超える。このため、図19(b)に示すように、電極パッドに残される針跡は大きくなる。
 押し圧が大きい場合は、プローブ針402の先端は電極パッドを擦りながらはみ出してパシベーション膜に至り、さらにパシベーション膜を擦って傷めてしまう可能性があった。また、プローブ針402の先端が電極パッドを突き破って、下方のデバイス構造を破壊してしまう可能性もあった。
On the other hand, as shown in FIGS. 19A and 19B, when inspecting the IC chip 411 located at the center of the wafer 410, the probe card 400 does not protrude from above the stage 420. The lower surface 401 receives a large amount of radiant heat, and the temperature of the probe card 400 becomes relatively large. Therefore, the warp deformation generated in the probe card 400 is large. When warping deformation is large, the amount of downward displacement of the tip position of the probe needle 402 is large, and the pressing pressure exceeds the set value. For this reason, as shown in FIG.19 (b), the needle trace which remains in an electrode pad becomes large.
When the pressing force is large, the tip of the probe needle 402 protrudes while rubbing the electrode pad to reach the passivation film, and there is a possibility that the passivation film is rubbed and damaged. In addition, the tip of the probe needle 402 may break through the electrode pad and destroy the device structure below.
 なお、引用文献1には、線膨張率の小さい支持板にプローブ針を固定することで針位置の変位を軽減することが記載されている。しかし、この方式でも温度が非常に高温低温の場合は、基板の熱による膨張(即ち、熱膨張)の影響を針位置は受けてしまう。また、快削セラミック製の針押さえの縦方向の線膨張も無視できない。また、引用文献2には、プローブ基板と補強板との間に伝熱部材を介在させることにより、プローブ基板から補強板への放熱性を高めることが記載されている。しかし、この方式でもプローブ基板の上下面間の温度差を小さくすることは困難であり、上下面間の温度差に起因した反り変形を軽減することは難しい。 Incidentally, the cited document 1 describes that the displacement of the needle position is reduced by fixing the probe needle to a support plate having a small linear expansion coefficient. However, even in this method, when the temperature is very high and low, the needle position is affected by the expansion (i.e., thermal expansion) due to the heat of the substrate. Also, the vertical linear expansion of the free-cutting ceramic needle presser cannot be ignored. Reference 2 describes that heat dissipation from the probe substrate to the reinforcing plate is enhanced by interposing a heat transfer member between the probe substrate and the reinforcing plate. However, even with this method, it is difficult to reduce the temperature difference between the upper and lower surfaces of the probe substrate, and it is difficult to reduce warping deformation caused by the temperature difference between the upper and lower surfaces.
 さらに、引用文献3には、プローブカードを保持するカードホルダが開示されている。このカードホルダには、その中心部に位置する開口部の開口端から外周端に向けて切り込み部や透孔(以下、スリット)が複数設けられている。しかし、この方式では、カードホルダが熱膨張することにより生じる横方向への応力は、横方向に沿って設けられたスリットが変形することにより吸収可能であるが、厚さ方向への応力は、例えばスリットが厚さ方向に沿って設けられているわけでないので、十分に吸収することはできないと考える。 Furthermore, cited document 3 discloses a card holder for holding a probe card. The card holder is provided with a plurality of cut portions and through holes (hereinafter referred to as slits) from the opening end of the opening located at the center thereof toward the outer peripheral end. However, in this method, the stress in the lateral direction caused by the thermal expansion of the card holder can be absorbed by the deformation of the slit provided along the lateral direction, but the stress in the thickness direction is For example, since the slit is not provided along the thickness direction, it cannot be sufficiently absorbed.
 また、厚さ方向への応力に対応する方法として、カードホルダを従来よりも厚くする方法も考えられる。しかし、この方法では、カードホルダとウエーハとの離間距離を確保するために、カードホルダを厚くした分だけプローブ針を長くする必要があり、プローブ針の変位量のばらつきが大きくなる可能性がある。
 そこで、この発明はこのような事情に鑑みてされたものであって、プローブカードやカードホルダの熱膨張に起因して生じるプローブ針の先端位置の変動を抑制できるようにしたプローブカード固定装置、プローブ検査装置、プローブ検査方法及びプローブカードを提供することを目的とする。
Further, as a method of dealing with stress in the thickness direction, a method of making the card holder thicker than before can be considered. However, in this method, in order to secure a separation distance between the card holder and the wafer, it is necessary to lengthen the probe needle by an amount corresponding to an increase in the thickness of the card holder, which may cause a large variation in the displacement amount of the probe needle. .
Accordingly, the present invention has been made in view of such circumstances, and a probe card fixing device capable of suppressing fluctuations in the tip position of the probe needle caused by thermal expansion of the probe card or the card holder, An object is to provide a probe inspection device, a probe inspection method, and a probe card.
 上記課題を解決するために、本発明の一態様に係るプローブカード固定装置は、プローブカードをプローバに固定するプローブカード固定装置であって、前記プローバの筐体に固定するためのコネクションリングと、前記コネクションリングとの間で前記プローブカードの外周部を挟持するためのカードホルダと、前記プローブカードの中央部と前記コネクションリングとを固定するためのロック装置と、を備えることを特徴とする。ここで、「カードホルダ」とは、例えば、プローブカードの外周部を保持する環状の支持板のことである。また、「コネクションリング」とは、例えば、プローブカードとテスターとを電気的に接続する環状の中継基板のことである。 In order to solve the above problems, a probe card fixing device according to an aspect of the present invention is a probe card fixing device for fixing a probe card to a prober, and a connection ring for fixing the probe card to a housing of the prober, A card holder for sandwiching an outer peripheral portion of the probe card between the connection ring and a lock device for fixing a central portion of the probe card and the connection ring. Here, the “card holder” is, for example, an annular support plate that holds the outer periphery of the probe card. The “connection ring” is, for example, an annular relay board that electrically connects a probe card and a tester.
 また、上記のプローブカード固定装置において、前記ロック装置は、前記プローブカードの前記中央部に固定される第1の部品と、前記コネクションリングに固定される第2の部品と、前記第1の部品と前記第2の部品とを連結して固定する第3の部品と、を有することを特徴としてもよい。
 また、上記のプローブカード固定装置において、前記第1の部品は、前記プローブカードの前記コネクションリングと接する側の面から離間して配置された支持部材と、前記プローブカードと前記支持部材との間に介在する複数本の支柱と、を有し、前記複数本の支柱は、前記第2の部品よりも線膨張係数の小さい材料で構成されていることを特徴としてもよい。
In the probe card fixing device, the locking device includes a first component fixed to the center portion of the probe card, a second component fixed to the connection ring, and the first component. And a third part for connecting and fixing the second part.
Further, in the above probe card fixing device, the first component includes a support member disposed apart from a surface of the probe card that is in contact with the connection ring, and a space between the probe card and the support member. A plurality of struts interposed between the plurality of struts, and the plurality of struts may be made of a material having a smaller linear expansion coefficient than the second component.
 本発明の別の態様に係るプローブ検査装置は、上記のプローブカード固定装置と、プローブカードと、を備え、前記プローブカードに前記プローブカード固定装置が取り付けられていることを特徴とする。
 本発明のさらに別の態様に係るプローブ検査方法は、カードホルダとコネクションリングとによって外周部が挟持されるプローブカードを用いてプローブ検査を行う際に予め、前記プローブカードの前記コネクションリングと接する側の面上にロック装置を配置し、該ロック装置を用いて、前記プローブカードの前記中央部と前記コネクションリングとを固定しておくことを特徴とする。
A probe inspection apparatus according to another aspect of the present invention includes the above-described probe card fixing device and a probe card, and the probe card fixing device is attached to the probe card.
In the probe inspection method according to still another aspect of the present invention, when performing probe inspection using a probe card whose outer peripheral portion is sandwiched between a card holder and a connection ring, a side of the probe card that contacts the connection ring in advance. A locking device is disposed on the surface of the probe card, and the central portion of the probe card and the connection ring are fixed using the locking device.
 また、上記のプローブ検査方法において、前記プローブ検査を行う際に予め、前記コネクションリングをプローバの筐体に固定しておくことを特徴としてもよい。
 本発明のさらに別の態様に係るプローブカードは、一方の面側にプローブ針の先端が位置するプローブカード基板と、前記プローブカード基板の他方の面側に離間して配置された支持部材と、前記プローブカード基板と前記支持部材との間に介在する複数本の支柱と、を備え、前記複数本の支柱は、第1の支柱と、前記第1の支柱よりも前記プローブカード基板の中心部から離れて配置された第2の支柱と、を有し、前記第2の支柱の熱膨張率は、前記第1の支柱の熱膨張率よりも大きいことを特徴とする。
In the probe inspection method, the connection ring may be fixed to a prober housing in advance when the probe inspection is performed.
A probe card according to still another aspect of the present invention includes a probe card substrate in which a tip of a probe needle is positioned on one surface side, a support member disposed separately on the other surface side of the probe card substrate, A plurality of struts interposed between the probe card substrate and the support member, wherein the plurality of struts are a first strut and a central portion of the probe card substrate than the first strut A second support column disposed away from the first support column, wherein the second support column has a thermal expansion coefficient larger than that of the first support column.
 また、上記のプローブカードにおいて、前記複数本の支柱は、前記第1の支柱と前記第2の支柱とをそれぞれ複数本ずつ有し、前記複数本の第1の支柱は、前記プローブカード基板の中心部に円の中心がある第1の円周上で等間隔に配置されており、前記複数本の第2の支柱は、前記第1の円周と同心円で、且つ前記第1の円周よりも径が大きい第2の円周上で等間隔に配置されていることを特徴としてもよい。 Further, in the above probe card, the plurality of struts each include a plurality of the first struts and the second struts, and the plurality of first struts are formed on the probe card substrate. The plurality of second support columns are arranged at equal intervals on a first circumference having a center of a circle in the center, and the first circumference is concentric with the first circumference. It is good also as arrange | positioning at equal intervals on the 2nd periphery with a larger diameter.
 また、上記のプローブカードにおいて、前記複数本の支柱は、前記プローブカード基板の中心部上に配置された第3の支柱をさらに有し、前記第3の支柱の熱膨張率は、前記第1の支柱の熱膨張率よりも小さいことを特徴としてもよい。ここで、プローブカード基板の中心部は、電子部品を配置することが難しい、いわゆるデッドスペースである。中心部がデッドスペースである理由は、電気特性を有利にするため、電子部品をプローブ針とプローブカード基板の接続点にできる限り近づけたい場合が多く、一方、プローブ針は放射状に配置される場合が多く、さらにプローブカード基板の中心部をGNDにする場合が多く、結果的にプローブカードに中心に部品を実装する場合は極めて少なくなるためである。
 また、上記のプローブカードにおいて、前記第2の支柱は前記第1の支柱よりも本数が多いことを特徴としてもよい。
Further, in the above probe card, the plurality of support columns further include a third support column disposed on a center portion of the probe card substrate, and the coefficient of thermal expansion of the third support column is the first support column. It may be characterized by being smaller than the thermal expansion coefficient of the column. Here, the central portion of the probe card substrate is a so-called dead space in which it is difficult to place electronic components. The reason for the dead space in the center is that it is often desirable to place electronic components as close as possible to the connection point between the probe needle and the probe card board in order to improve electrical characteristics, while the probe needles are arranged radially. This is because the center of the probe card substrate is often GND, and as a result, the number of components mounted on the probe card is extremely small.
In the probe card described above, the number of the second support columns may be larger than that of the first support columns.
 本発明の一態様によれば、プローブカードの外周部よりも内側の部位(例えば、中心部)は、プローブカード固定装置によってコネクションリングに連結されて固定される。そして、コネクションリングはプローバの筐体に固定することができる。プローバの筐体は、高温検査の熱源(例えば、ステージ内のヒータ)から離れており、熱変動は小さい。熱変動の小さい筐体をプローブカードの支持点とすることできるので、プローブカードの「下側に凸となる反り変形」や、カードホルダの変位や変形によるプローブカードの下側への移動を抑制することができる。これにより、プローブ針の先端位置の変動を抑制する(例えば、変位量を極めて小さくする)ことができる。 According to one aspect of the present invention, a portion (for example, the central portion) inside the outer peripheral portion of the probe card is connected and fixed to the connection ring by the probe card fixing device. The connection ring can be fixed to the housing of the prober. The prober housing is away from the heat source for high-temperature inspection (for example, a heater in the stage), and the thermal fluctuation is small. Since the probe card support point can be a housing with small thermal fluctuations, it suppresses the probe card's downward warping deformation and the downward movement of the probe card due to the displacement and deformation of the card holder. can do. Thereby, the fluctuation | variation of the front-end | tip position of a probe needle can be suppressed (for example, displacement amount can be made very small).
 本発明の一態様によれば、第1、第2の支柱の熱膨張率の差により、プローブカード基板には反り変形に対抗する力が加わる。これら2つの力が相殺し合うことにより、プローブカード基板の上下面の温度差に起因して生じる反り変形を軽減することができる。これにより、プローブ針の先端位置の変位量を小さくすることができる。 According to one aspect of the present invention, a force against warping deformation is applied to the probe card substrate due to the difference in thermal expansion coefficient between the first and second support columns. When these two forces cancel each other, the warp deformation caused by the temperature difference between the upper and lower surfaces of the probe card substrate can be reduced. Thereby, the amount of displacement of the tip position of the probe needle can be reduced.
本発明の第1実施形態に係るプローブ検査装置100の要部構成例を示す断面図。Sectional drawing which shows the principal part structural example of the probe test | inspection apparatus 100 which concerns on 1st Embodiment of this invention. PCLS50の下側部品51と上側部品61の構成例を示す斜視図。The perspective view which shows the structural example of the lower part 51 and the upper part 61 of PCLS50. PCLS50の構成例を示す平面図。The top view which shows the structural example of PCLS50. 高温検査時にプローブカード10に加わる力F1、F2及びF3を示す概念図。The conceptual diagram which shows force F1, F2 and F3 which are added to the probe card 10 at the time of a high temperature test | inspection. PCLS50の着脱例を示す図。The figure which shows the example of attachment or detachment of PCLS50. 発明者が行ったPCLSの効果を検証した結果を示す図。The figure which shows the result of having verified the effect of PCLS which the inventor performed. PCLS50の変形例を示す図。The figure which shows the modification of PCLS50. PCLS50の変形例を示す図。The figure which shows the modification of PCLS50. 本発明の第2実施形態に係るプローブカード200の構成例を示す図。The figure which shows the structural example of the probe card 200 which concerns on 2nd Embodiment of this invention. 高温検査時にプローブカード基板110に加わる力F1、F2を示す図。The figure which shows the force F1 and F2 which are added to the probe card board | substrate 110 at the time of a high temperature test | inspection. プローブカード200の変形例を示す図。The figure which shows the modification of the probe card. プローブカード200の変形例を示す図。The figure which shows the modification of the probe card. 本発明の第3実施形態に係るプローブカード300の構成例を示す図。The figure which shows the structural example of the probe card 300 which concerns on 3rd Embodiment of this invention. プローブカード300の変形例を示す図。The figure which shows the modification of the probe card 300. FIG. プローブカード300の変形例を示す図。The figure which shows the modification of the probe card 300. FIG. プローブカード300の変形例を示す図。The figure which shows the modification of the probe card 300. FIG. 本発明の第4実施形態に係る支持板330の構成例を示す図。The figure which shows the structural example of the support plate 330 which concerns on 4th Embodiment of this invention. 課題を説明するための図。The figure for demonstrating a subject. 課題を説明するための図。The figure for demonstrating a subject.
 以下、本発明による実施形態を、図面を用いて説明する。なお、以下に説明する各図において、同一の構成で同一の機能を有する部分には同一の符号を付し、その繰り返しの説明は省略する。
《第1実施形態》
(構成)
 図1は、本発明の第1実施形態に係るプローブ検査装置100の要部構成例を示す断面図である。プローブ検査装置100は、例えばウエーハに形成されたICチップの電気的特性や機能を検査するための装置である。図1に示すように、このプローブ検査装置100は、ウエーハを載置して固定するステージ1と、筐体3と、ステージ1の上方に配置されたプローブカード10と、プローブカード10を保持するカードホルダ20と、プローブカード10と図示しないテスターとを電気的に接続するコネクションリング30と、PCLS(Probe Card Lock System)50とを備える。
Hereinafter, embodiments according to the present invention will be described with reference to the drawings. Note that, in each drawing described below, parts having the same configuration and the same function are denoted by the same reference numerals, and repeated description thereof is omitted.
<< First Embodiment >>
(Constitution)
FIG. 1 is a cross-sectional view showing a configuration example of a main part of a probe inspection apparatus 100 according to the first embodiment of the present invention. The probe inspection apparatus 100 is an apparatus for inspecting the electrical characteristics and functions of an IC chip formed on a wafer, for example. As shown in FIG. 1, the probe inspection apparatus 100 holds a stage 1 on which a wafer is placed and fixed, a housing 3, a probe card 10 disposed above the stage 1, and the probe card 10. A card holder 20, a connection ring 30 for electrically connecting the probe card 10 and a tester (not shown), and a PCLS (Probe Card Lock System) 50 are provided.
 ステージ1及び筐体3は、プローバの一部である。ステージ1には、例えばヒータ等の熱源が内蔵されている。ステージ1に内蔵されたヒータにより、ステージ1上に載置されているウエーハを加熱する。これにより、ウエーハを予め設定した温度まで加熱して、高温検査を行うことが可能となる。また、筐体3は、プローバの上面側の一部及び側面側を覆っており、例えば塗装された鉄板又はステンレス板など、高剛性の金属からなる。 Stage 1 and housing 3 are part of a prober. The stage 1 incorporates a heat source such as a heater. The wafer mounted on the stage 1 is heated by a heater built in the stage 1. As a result, the wafer can be heated to a preset temperature and a high temperature inspection can be performed. The housing 3 covers a part of the upper surface side and the side surface side of the prober, and is made of a highly rigid metal such as a coated iron plate or stainless steel plate.
 プローブカード10は、カード基板11を有する。カード基板11は、例えばガラスエポキシからなる。カード基板11の平面視による形状(即ち、平面形状)は、例えば円形である。カード基板11の大きさは、例えば、直径が100~300mm、厚さが3.2~4.8mmである。また、カード基板11の上面11aには、例えば、図示しない回路や電子部品等が取り付けられている。さらに、カード基板11には、上記の回路や電子部品等に接続された複数本のプローブ針13が取り付けられている。プローブ針13は、例えば、カード基板11の下面11b側に配置された針押え15によって固定されており、その先端13aはカード基板11の下面11b側に位置する。プローブ針13の本数や配置間隔は、検査対象(即ち、ウエーハに形成されたICチップ)の電極パッドの個数と配置間隔に対応している。また、カード基板11には、後述する複数本の支柱と連結するために、上面11aと下面11bとの間を貫通する複数のネジ穴が設けられている。 The probe card 10 has a card substrate 11. The card substrate 11 is made of, for example, glass epoxy. The shape (namely, planar shape) of the card substrate 11 in plan view is, for example, a circle. For example, the card substrate 11 has a diameter of 100 to 300 mm and a thickness of 3.2 to 4.8 mm. Further, on the upper surface 11a of the card substrate 11, for example, a circuit or an electronic component (not shown) is attached. Furthermore, a plurality of probe needles 13 connected to the above-described circuits and electronic components are attached to the card substrate 11. For example, the probe needle 13 is fixed by a needle presser 15 arranged on the lower surface 11 b side of the card substrate 11, and its tip 13 a is located on the lower surface 11 b side of the card substrate 11. The number and arrangement interval of the probe needles 13 correspond to the number and arrangement interval of the electrode pads of the inspection object (that is, the IC chip formed on the wafer). Further, the card substrate 11 is provided with a plurality of screw holes penetrating between the upper surface 11a and the lower surface 11b in order to connect to a plurality of pillars described later.
 カードホルダ20は、プローブカード10を着脱可能に保持するものである。このカードホルダ20の平面形状は、例えば環状(即ち、中心部に開口部を有する形状)である。また、カードホルダ20の開口部の縁辺には、他の部分と比べて厚みの小さい薄板部21が設けられている。この薄板部21にプローブカード10の外周部が載置される。また、薄板部21と、薄板部21の外側に位置する他の部分との間には段差23が設けられており、薄板部21は他の部分よりも一段低くなっている。この段差23は、プローブカード10の外周に沿って形成されており、薄板部21に載せられたプローブカード10の水平方向(例えば、X、Y軸方向)への移動を制限している。カードホルダ20の薄板部21の厚さは例えば2mm、他の部分の厚さは例えば5mm、段差は例えば3mm(=5mm-2mm)である。また、カードホルダ20の外周部には、図示しないが、筐体3に連結して固定されるためのクランプ機構が設けられている。 The card holder 20 holds the probe card 10 in a detachable manner. The planar shape of the card holder 20 is, for example, an annular shape (that is, a shape having an opening at the center). Further, a thin plate portion 21 having a smaller thickness than the other portions is provided on the edge of the opening of the card holder 20. The outer peripheral portion of the probe card 10 is placed on the thin plate portion 21. Moreover, the level | step difference 23 is provided between the thin plate part 21 and the other part located in the outer side of the thin plate part 21, and the thin plate part 21 is one step lower than the other part. The step 23 is formed along the outer periphery of the probe card 10 and restricts the movement of the probe card 10 placed on the thin plate portion 21 in the horizontal direction (for example, X and Y axis directions). The thickness of the thin plate portion 21 of the card holder 20 is, for example, 2 mm, the thickness of other portions is, for example, 5 mm, and the step is, for example, 3 mm (= 5 mm−2 mm). Further, although not shown, a clamp mechanism is provided on the outer periphery of the card holder 20 to be connected and fixed to the housing 3.
 なお、カードホルダ20はステージ1に近く、高温検査時に熱を受け易い位置に配置されている。このため、カードホルダ20は、例えばノビナイト(登録商標)など、線膨張係数が比較的小さい材料からなることが好ましい。ノビナイト(登録商標)の線膨張係数は、例えば2~5ppm/℃である。これにより、高温検査時にカードホルダ20が熱膨張することを抑制することができる。 Note that the card holder 20 is close to the stage 1 and is disposed at a position where it is easily subjected to heat during a high temperature inspection. For this reason, it is preferable that the card holder 20 is made of a material having a relatively small linear expansion coefficient, such as Novinite (registered trademark). Novinite (registered trademark) has a linear expansion coefficient of, for example, 2 to 5 ppm / ° C. Thereby, it can suppress that the card holder 20 thermally expands at the time of a high temperature test | inspection.
 コネクションリング30は、例えば、図示しないテスターのテストヘッドと、プローブカード10とを電気的に接続するものである。このコネクションリング30には、複数のポゴピン(即ち、ピンの先端がバネで伸縮する可動型ピン)31が貫通して設けられている。コネクションリング30は、プローブカード10の上面11a側に配置されている。そして、ポゴピン31の一端はプローブカード10の電極部に当接(即ち、突き当てた状態で接触)し、ポゴピン31の他端はテストヘッドの電極部に当接している。これにより、プローブカード10の外周部は、カードホルダ20の薄板部21とコネクションリング30のポゴピン31とによって上下から挟持されている。 The connection ring 30 is for electrically connecting, for example, a test head of a tester (not shown) and the probe card 10. The connection ring 30 is provided with a plurality of pogo pins (that is, movable pins whose tips are extended and contracted by springs) 31 penetrating therethrough. The connection ring 30 is disposed on the upper surface 11 a side of the probe card 10. One end of the pogo pin 31 is in contact with the electrode portion of the probe card 10 (that is, in contact with the probe card 10), and the other end of the pogo pin 31 is in contact with the electrode portion of the test head. Thus, the outer peripheral portion of the probe card 10 is sandwiched from above and below by the thin plate portion 21 of the card holder 20 and the pogo pin 31 of the connection ring 30.
 また、コネクションリング30の外周部には、このコネクションリング30と例えばプローバの筐体3とを連結するためのネジ穴が設けられている。この外周部のネジ穴と、筐体3のネジ穴とにネジ35を通す(即ち、螺合する)ことによって、コネクションリング30は筐体3に連結して固定されている(即ち、ネジ止めされている)。
 PCLS50は、プローブカード10の上面11a側、つまり、プローブカード10のコネクションリング30と接する側の面上に配置され、プローブカード10の外周部よりも内側の部位(例えば、中心部)とコネクションリング30とを連結して固定するものである。図1に示すように、PCLS50は、例えば、プローブカード10の中心部に固定される下側部品51と、コネクションリング30に固定される上側部品61と、上側部品61と下側部品51とを連結して固定するためのネジ71と、を有する。
In addition, a screw hole for connecting the connection ring 30 and, for example, the housing 3 of the prober is provided on the outer periphery of the connection ring 30. The connection ring 30 is connected and fixed to the housing 3 by passing the screws 35 through the screw holes in the outer peripheral portion and the screw holes in the housing 3 (that is, screwing). Have been).
The PCLS 50 is disposed on the upper surface 11 a side of the probe card 10, that is, on the surface in contact with the connection ring 30 of the probe card 10, and is connected to a portion (for example, the central portion) inside the outer peripheral portion of the probe card 10. 30 is connected and fixed. As shown in FIG. 1, the PCLS 50 includes, for example, a lower part 51 fixed to the center part of the probe card 10, an upper part 61 fixed to the connection ring 30, an upper part 61 and a lower part 51. And a screw 71 for connecting and fixing.
 まず、下側部品51について説明する。下側部品51は、プローブカード10の上面11aから離間して配置された下側支持部52と、プローブカード10と下側支持部52との間に介在する複数本の支柱53と、下側支持部52を各支柱53の一端側に固定するためのネジ54、及び、プローブカード10を各支柱53の他端に固定するためのネジ55を有する。 First, the lower part 51 will be described. The lower part 51 includes a lower support portion 52 that is spaced apart from the upper surface 11a of the probe card 10, a plurality of columns 53 that are interposed between the probe card 10 and the lower support portion 52, and a lower side. A screw 54 for fixing the support portion 52 to one end side of each column 53 and a screw 55 for fixing the probe card 10 to the other end of each column 53 are provided.
 下側支持部52はプローブカード10を支持するものである。下側支持部52は、例えば、JIS規格でSUS430(β=10.4×10-6℃、0~100℃)、又は、SUS410(β=11.0×10-6℃、0~100℃)などのステンレス鋼材からなる。ここで、βは熱膨張率を意味する。また、0~100℃とは、0~100℃の範囲における熱膨張率の値であることを意味する。ステンレス鋼材は安価で加工し易く、しかも高い剛性を容易に得ることができるため、下側支持部52の材料として好適である。 The lower support portion 52 supports the probe card 10. The lower support 52 is, for example, SUS430 (β = 10.4 × 10 −6 ° C, 0 to 100 ° C.) or SUS410 (β = 11.0 × 10 −6 ° C, 0 to 100 ° C. according to JIS standards. ) And other stainless steel materials. Here, β means a coefficient of thermal expansion. Further, 0 to 100 ° C. means a value of coefficient of thermal expansion in the range of 0 to 100 ° C. The stainless steel material is suitable as a material for the lower support portion 52 because it is inexpensive, easy to process, and can easily obtain high rigidity.
 図2(a)及び(b)は、PCLS50の下側部品51と上側部品61の構成例を示す斜視図である。図2(a)に示すように、下側支持部52の形状は、例えば十字(クロス)形である。また、下側支持部52の大きさは、例えば、十字形の一端から他端までの長さが100~300mmであり、厚さが5~20mmである。さらに、図1に示すように、下側支持部52には、各支柱53と連結するための複数のネジ穴、及び、上側部品61と連結するための(即ち、ネジ71を通すための)ネジ穴がそれぞれ設けられている。 2A and 2B are perspective views showing a configuration example of the lower part 51 and the upper part 61 of the PCLS 50. FIG. As shown in FIG. 2A, the shape of the lower support portion 52 is, for example, a cross shape. The size of the lower support 52 is, for example, a length from one end to the other end of the cross of 100 to 300 mm, and a thickness of 5 to 20 mm. Further, as shown in FIG. 1, the lower support portion 52 has a plurality of screw holes for connecting to the respective pillars 53 and a connection to the upper part 61 (that is, for passing the screw 71). Each screw hole is provided.
 各支柱53は、プローブカード10と支持部材とを連結するものである。各支柱53の長さは例えば10~20mmである。各支柱53の長さは、プローブカード10と下側支持部52との離間距離に相当する。また、図1に示すように、各支柱53は、その長さ方向(例えば、Z軸方向)に貫通したネジ穴が設けられている。下側支持部52に設けられているネジ穴と、支柱53のネジ穴とにネジ54を通すことによって、各支柱53は下側支持部52に連結して固定されている。 Each strut 53 connects the probe card 10 and the support member. The length of each column 53 is, for example, 10 to 20 mm. The length of each column 53 corresponds to the distance between the probe card 10 and the lower support portion 52. Moreover, as shown in FIG. 1, each support | pillar 53 is provided with the screw hole penetrated in the length direction (for example, Z-axis direction). By passing the screw 54 through the screw hole provided in the lower support portion 52 and the screw hole of the support post 53, each support post 53 is connected and fixed to the lower support portion 52.
 また、プローブカード10に形成されているネジ穴と、支柱53に形成されているネジ穴とにネジ55を通すことによって、各支柱53はプローブカード10に連結して固定されている。
 各支柱53は、PCLS50を構成する各部品の中で、プローブカード10に最も近く、高温検査時に熱を最も受け易い位置に配置される。このため、各支柱53は例えばスーパーインバー合金(β=±0.1×10-6/℃、0~100℃)など、熱膨張率の極めて小さい材料からなることが好ましい。また、各支柱53のネジ穴に通すネジ54、55(特に、ネジ55)も、例えばスーパーインバー合金など、熱膨張率の極めて小さい材料からなることが好ましい。但し、本第1実施形態において、支柱53やネジ54、55を構成する材料はスーパーインバー合金に限定されるものではない。なお、各支柱53のネジ穴内において、対向するネジ54とネジ55との間には、ネジ54、55が熱膨張した場合でもこれらが互いを押圧しないように、スペースが確保されていることが好ましい。
Further, by passing the screw 55 through the screw hole formed in the probe card 10 and the screw hole formed in the column 53, each column 53 is connected and fixed to the probe card 10.
Each of the columns 53 is disposed at a position closest to the probe card 10 among the components constituting the PCLS 50 and most susceptible to heat during a high temperature inspection. Therefore, each support 53 is preferably made of a material having a very small coefficient of thermal expansion, such as a super invar alloy (β = ± 0.1 × 10 −6 / ° C., 0 to 100 ° C.). Moreover, it is preferable that the screws 54 and 55 (especially the screw 55) passed through the screw hole of each support | pillar 53 also consist of a material with a very small thermal expansion coefficient, such as a super invar alloy. However, in the first embodiment, the material constituting the column 53 and the screws 54 and 55 is not limited to Super Invar alloy. In addition, in the screw hole of each support | pillar 53, between the screw 54 and the screw 55 which opposes, even when the screws 54 and 55 thermally expand, space should be ensured so that these may not press each other. preferable.
 次に、上側部品61について説明する。上側部品61は、上側支持部62と、上側支持部62をコネクションリング30に連結する連結部63と、上側支持部62を連結部63に固定するためのネジ64、及び、連結部63をコネクションリング30に固定するためのネジ65(例えば、図2(b)参照)を有する。
 上側支持部62は、プローブカード10を支持するものである。上側支持部62は、例えば、JIS規格でSUS430又はSUS410などのステンレス鋼材からなる。上述したようにステンレス鋼材は安価で加工し易く、しかも高い剛性を容易に得ることができる。このため、ステンレス鋼材は下側支持部52だけでなく、上側支持部62の材料としても好適である。
Next, the upper part 61 will be described. The upper part 61 includes an upper support part 62, a connection part 63 that connects the upper support part 62 to the connection ring 30, a screw 64 for fixing the upper support part 62 to the connection part 63, and a connection part 63. A screw 65 (for example, see FIG. 2B) for fixing to the ring 30 is provided.
The upper support portion 62 supports the probe card 10. The upper support 62 is made of, for example, a stainless steel material such as SUS430 or SUS410 according to JIS standards. As described above, the stainless steel material is inexpensive and easy to process, and high rigidity can be easily obtained. For this reason, the stainless steel material is suitable not only for the lower support portion 52 but also for the upper support portion 62.
 図2(b)に示すように、上側支持部62の形状は、例えば十字(クロス)形である。また、上側支持部62の大きさは、例えば、十字形の一端から他端までの長さが100~300mmであり、厚さが5~20mmである。また、図1に示すように、上側支持部62には、連結部63と連結するための複数のネジ穴、及び、下側部品51と連結するための(即ち、ネジ71を通すための)ネジ穴がそれぞれ設けられている。 2B, the shape of the upper support portion 62 is, for example, a cross shape. The size of the upper support 62 is, for example, a length from one end to the other end of the cross of 100 to 300 mm and a thickness of 5 to 20 mm. Further, as shown in FIG. 1, the upper support portion 62 has a plurality of screw holes for connecting to the connecting portion 63 and a portion for connecting to the lower part 51 (that is, for passing the screw 71). Each screw hole is provided.
 連結部63は、PCLS50をコネクションリング30に連結して固定するものであり、例えば、JIS規格でSUS430又はSUS410などのステンレス鋼材からなる。連結部63の形状は、例えば環状である。連結部63の外周面はコネクションリング30の内周面に沿っている。連結部63がコネクションリング30に取り付けられると、コネクションリング30の内周面が連結部63を囲み、連結部63の水平方向への移動を制限する。 The connecting part 63 connects and fixes the PCLS 50 to the connection ring 30 and is made of, for example, a stainless steel material such as SUS430 or SUS410 according to JIS standards. The shape of the connecting portion 63 is, for example, an annular shape. The outer peripheral surface of the connecting portion 63 is along the inner peripheral surface of the connection ring 30. When the connecting part 63 is attached to the connection ring 30, the inner peripheral surface of the connection ring 30 surrounds the connecting part 63 and restricts the movement of the connecting part 63 in the horizontal direction.
 また、この連結部63には、上側支持部62と連結するための複数のネジ穴、及び、コネクションリング30と連結するための複数のネジ穴がそれぞれ設けられている。上側支持部62のネジ穴と連結部63に設けられているネジ穴とにネジ64を通すことによって、上側支持部62は連結部63に連結して固定されている。さらに、図2(b)に示すように、連結部63のネジ穴にネジ65を通すことによって、連結部63はコネクションリングに連結して固定されている。なお、ネジ64、65は、例えば、ステンレス鋼材からなる。
 図3は、PCLS50の構成例を示す平面図である。図3に示すように、上側支持部62は、例えば下側支持部52よりも平面視で大きい。上側支持部62は、下側支持部52の上面を全て覆うように下側支持部上に配置されて、ネジ71で固定される。
The connecting portion 63 is provided with a plurality of screw holes for connecting to the upper support portion 62 and a plurality of screw holes for connecting to the connection ring 30. By passing the screw 64 through the screw hole of the upper support part 62 and the screw hole provided in the connection part 63, the upper support part 62 is connected and fixed to the connection part 63. Further, as shown in FIG. 2B, the connecting portion 63 is fixedly connected to the connection ring by passing the screw 65 through the screw hole of the connecting portion 63. The screws 64 and 65 are made of, for example, a stainless steel material.
FIG. 3 is a plan view illustrating a configuration example of the PCLS 50. As shown in FIG. 3, the upper support portion 62 is larger than the lower support portion 52 in plan view, for example. The upper support portion 62 is disposed on the lower support portion so as to cover the entire upper surface of the lower support portion 52, and is fixed with screws 71.
(動作・作用)
 図4は、高温検査時にプローブカード10に加わる力F1、F2及びF3を示す概念図である。プローブカード10を使用して高温検査を行う場合は、図1に示したステージ上にウエーハを固定した状態で、ステージに内蔵されたヒータに通電してステージを加熱する。これにより、ウエーハはステージを介して、例えば150℃~200℃まで温度が上昇する。そして、ウエーハの温度が安定したら、ウエーハに形成されたICチップの電極パッドにプローブカード10のプローブ針を接触させて、ICチップの電気的特性を測定する。
(Operation / Action)
FIG. 4 is a conceptual diagram showing the forces F1, F2 and F3 applied to the probe card 10 during the high temperature inspection. When performing a high temperature inspection using the probe card 10, the stage is heated by energizing a heater built in the stage while the wafer is fixed on the stage shown in FIG. As a result, the temperature of the wafer rises through the stage to, for example, 150 ° C. to 200 ° C. When the wafer temperature is stabilized, the probe needle of the probe card 10 is brought into contact with the electrode pad of the IC chip formed on the wafer, and the electrical characteristics of the IC chip are measured.
 この過程で、プローブカード10の下面11bには、ウエーハからの放射熱やプローブ針からの伝導熱が伝わる。これにより、プローブカード10は下面11bの側から温度が上昇し、下面11bと上面11aとの間で温度差(熱勾配)が生じる。図4に示すように、この温度差によって、プローブカード10には「下側に凸となる反り変形」を生じさせようとする力F1が加わる。 In this process, radiant heat from the wafer and conduction heat from the probe needle are transmitted to the lower surface 11b of the probe card 10. Thereby, the temperature of the probe card 10 rises from the lower surface 11b side, and a temperature difference (thermal gradient) is generated between the lower surface 11b and the upper surface 11a. As shown in FIG. 4, due to this temperature difference, a force F <b> 1 is applied to the probe card 10 to cause “warping deformation that protrudes downward”.
 また、プローブカード10を保持するカードホルダ20も、ウエーハやステージから放射熱を受けて熱膨張し、下側に変位したり変形しようとする。カードホルダ20が下側に変位、変形すると、プローブカードはカードホルダに支えられているので重力により、プローブカード10には下側へ移動しようとする力F2が生じる。
 ここで、プローブカード10の外周部よりも内側(例えば、中心部)は、PCLS50によってコネクションリング30に連結して固定されている。そして、コネクションリング30はプローバの筐体3に固定されている。プローバの筐体3はステージ等の熱源から離れており、熱変動が小さい。このため、プローバの筐体3を支持点として、PCLS50はプローブカード10に上記の力F1、F2と向きが反対の力F3を加えることができる。この力F3が力F1、F2を相殺し、力F1、F2を小さくする。
The card holder 20 that holds the probe card 10 also receives thermal radiation from the wafer and the stage and thermally expands, and tends to be displaced or deformed downward. When the card holder 20 is displaced and deformed downward, since the probe card is supported by the card holder, a force F2 is generated in the probe card 10 to move downward due to gravity.
Here, the inner side (for example, the center part) of the outer periphery of the probe card 10 is connected and fixed to the connection ring 30 by the PCLS 50. The connection ring 30 is fixed to the housing 3 of the prober. The housing 3 of the prober is away from the heat source such as a stage, and the heat fluctuation is small. For this reason, the PCLS 50 can apply the force F3 having the opposite direction to the forces F1 and F2 to the probe card 10 using the prober housing 3 as a support point. This force F3 cancels the forces F1 and F2, and reduces the forces F1 and F2.
 また、高温検査では、ウエーハに対してプローブカード10を相対的に移動させるため、プローブカード10やカードホルダ20が受ける放射熱量は変動し、力F1、F2も変動する。例えば、図18に示したように、ウエーハの中心部から外周部へプローブ針が移動する場合は、クリーニングエリアへ移動する場合は、プローブカード10の少なくとも一部がステージ1の上方から離れる。プローブカード10がステージ1の上方から離れると、プローブカード10の下面11bが受ける放射熱量は小さくなるため、上下面の温度差が小さくなる。これにより、「下側に凸となる反り変形」を生じさせようとする力F1は、プローブカード内での分布や大きさが変化する。このとき、PCLS50からプローブカード10に伝わる力F3も、例えば各支柱53で力の作用・反作用の法則にしたがい変化する。このため、ウエーハの外周部に位置するICチップを検査する場合も、力F3は力F1、F2を相殺し、力F1、F2を小さくする。 Further, in the high temperature inspection, since the probe card 10 is moved relative to the wafer, the amount of radiant heat received by the probe card 10 and the card holder 20 varies, and the forces F1 and F2 also vary. For example, as shown in FIG. 18, when the probe needle moves from the center of the wafer to the outer periphery, when moving to the cleaning area, at least a part of the probe card 10 moves away from above the stage 1. When the probe card 10 is moved away from the upper side of the stage 1, the amount of radiant heat received by the lower surface 11b of the probe card 10 is reduced, so that the temperature difference between the upper and lower surfaces is reduced. As a result, the distribution and size of the force F <b> 1 that causes “downward convex warping deformation” in the probe card changes. At this time, the force F3 transmitted from the PCLS 50 to the probe card 10 also changes, for example, according to the law of action / reaction of the force at each column 53. For this reason, also when inspecting the IC chip located on the outer peripheral portion of the wafer, the force F3 cancels the forces F1 and F2 and reduces the forces F1 and F2.
 この第1実施形態では、下側部品51が本発明の「第1の部品」に対応し、上側部品61が本発明の「第2の部品」に対応し、ネジ71が本発明の「第3の部品」に対応している。また、下側支持部52が本発明の「支持部材」に対応している。さらに、PCLS50が本発明の「ロック装置」に対応している。また、コネクションリング30とカードホルダ20及びPCLS50の組み合わせが、本発明の「プローブカード固定装置」に対応している。 In the first embodiment, the lower part 51 corresponds to the “first part” of the present invention, the upper part 61 corresponds to the “second part” of the present invention, and the screw 71 corresponds to the “first part” of the present invention. 3 parts ". The lower support portion 52 corresponds to the “support member” of the present invention. Further, the PCLS 50 corresponds to the “lock device” of the present invention. The combination of the connection ring 30, the card holder 20, and the PCLS 50 corresponds to the “probe card fixing device” of the present invention.
(第1実施形態の効果)
 本発明の第1実施形態は、以下の効果を奏する。
(1)プローブカード01の中心部は、PCLS50によってコネクションリング30に連結されて固定されている。そして、コネクションリング30はプローバの筐体3に固定されている。プローバの筐体3は、高温検査の熱源から離れており、熱変動は小さい。熱変動の小さい筐体3をプローブカード10の支持点とすることできるので、プローブカード10の熱膨張による「下側に凸となる反り変形」や、カードホルダ20の変位や変形によるプローブカード10の下側への移動を抑制することができる。これにより、プローブ針13について、ICチップの電極パッド等と接触していない非接触状態での先端13aの位置(即ち、先端位置)の変動を抑制することができ、非接触状態での先端位置の変位量を極めて小さくすることができる。
(Effect of 1st Embodiment)
The first embodiment of the present invention has the following effects.
(1) The center portion of the probe card 01 is connected and fixed to the connection ring 30 by the PCLS 50. The connection ring 30 is fixed to the housing 3 of the prober. The prober casing 3 is away from the heat source for high temperature inspection, and the thermal fluctuation is small. Since the housing 3 with small thermal fluctuation can be used as a support point of the probe card 10, the probe card 10 is caused by “warping deformation protruding downward” due to thermal expansion of the probe card 10, or by displacement or deformation of the card holder 20. The movement to the lower side can be suppressed. As a result, the probe needle 13 can be restrained from changing in the position of the tip 13a (that is, the tip position) in a non-contact state where it is not in contact with the electrode pad or the like of the IC chip. The amount of displacement of can be made extremely small.
(2)PCLS50は、プローブカード10の中心部に固定される下側部品51と、コネクションリング30に固定される上側部品61と、下側部品51と上側部品61とを連結して固定するネジ71と、を有する。これにより、プローブカード10及びコネクションリング30に対する、PCLS50の着脱が容易となっている。
 例えば図5に示すように、プローブカード10及びコネクションリング30にPCLS50を取り付ける場合は、プローブ検査を行う前であって、プローブカード10をプローバにロードする前に予め、プローブカード10に下側部品51を取り付けておく。また、コネクションリング30をプローバにロードする前に、コネクションリング30に上側部品61を予め取り付けておく。そして、プローブカード10及びコネクションリング30をプローバにロードした後で、ネジ71を用いて下側部品51と上側部品61を連結して固定する。
(2) The PCLS 50 is a screw for connecting and fixing the lower part 51 fixed to the center of the probe card 10, the upper part 61 fixed to the connection ring 30, and the lower part 51 and the upper part 61. 71. As a result, the PCLS 50 can be easily attached to and detached from the probe card 10 and the connection ring 30.
For example, as shown in FIG. 5, when the PCLS 50 is attached to the probe card 10 and the connection ring 30, before the probe inspection is performed and before the probe card 10 is loaded onto the prober, the lower part is attached to the probe card 10 in advance. 51 is attached. Further, before loading the connection ring 30 to the prober, the upper part 61 is attached to the connection ring 30 in advance. Then, after loading the probe card 10 and the connection ring 30 onto the prober, the lower part 51 and the upper part 61 are connected and fixed using the screw 71.
 また、PCLS50を取り外す場合は、プローブカード10及びコネクションリング30をプローバからアンロードする前に、ネジ71をネジ穴から取り外して、下側部品51と上側部品61の連結状態を解く。次に、プローブカード10及びコネクションリング30をプローバからアンロードする。その後、プローブカード10から下側部品51を取り外す。また、コネクションリング30から上側部品61を取り外す。
 このように、PCLS50を下側部品51と上側部品61及びネジ71で構成することにより、プローブカード10及びコネクションリング30に対して、PCLS50を容易に着脱することが可能である。なお、コネクションリング30をプローバの筐体3に固定するタイミングは、プローブ検査を行う前であれば、任意のタイミングでよい。
When the PCLS 50 is removed, the screw 71 is removed from the screw hole before the probe card 10 and the connection ring 30 are unloaded from the prober, and the connection state of the lower part 51 and the upper part 61 is released. Next, the probe card 10 and the connection ring 30 are unloaded from the prober. Thereafter, the lower part 51 is removed from the probe card 10. Further, the upper part 61 is removed from the connection ring 30.
Thus, by configuring the PCLS 50 with the lower part 51, the upper part 61, and the screw 71, the PCLS 50 can be easily attached to and detached from the probe card 10 and the connection ring 30. In addition, the timing which fixes the connection ring 30 to the housing | casing 3 of a prober may be arbitrary timings, if it is before performing a probe test | inspection.
(3)PCLS50を構成する各部品のうちで、プローブカード10に最も近く、高温検査時に熱を最も受け易い複数本の支柱53は、その上側に位置する上側部品61よりも線膨張係数が小さい材料からなる。例えば、各支柱53は、線膨張係数が極めて小さいスーパーインバー合金からなる。これにより、高温検査を行う際に、各支柱53が熱膨張してプローブカード10を下側に押すことを防ぐことができる。各支柱53の熱膨張が原因でプローブカード10に「下側に凸となる反り変形」が生じることを防ぐことができる。 (3) Among the components constituting the PCLS 50, the plurality of columns 53 that are closest to the probe card 10 and are most susceptible to heat during high-temperature inspection have a smaller linear expansion coefficient than the upper component 61 positioned on the upper side. Made of material. For example, each column 53 is made of a super invar alloy having a very small linear expansion coefficient. Thereby, when performing a high temperature test | inspection, it can prevent that each support | pillar 53 thermally expands and pushes the probe card 10 below. It is possible to prevent the probe card 10 from being “warped and deformed downward” due to thermal expansion of each column 53.
(検証及びその結果)
 本発明者は、PCLSによるプローブ針の先端位置の変動抑制効果について検証を行った。この検証の結果について説明する。
 図6は、本発明者が行ったPCLSの効果を検証した結果を示すグラフ図である。図6の横軸は時間を示す。また、縦軸は、プローブ針の先端位置の変位量[μm]を示す。縦軸のプラス(+)はZ軸方向の+側(即ち、上側)への変位量を示し、マイナス(-)はZ軸方向の-側(即ち、下側)への変位量を示す。この検証では、図1に示したプローブ検査装置100において、プローバのステージ1上にウエーハを載置し、この状態でステージ1を150℃まで加熱して、高温検査を行う。そして、プローブ針13の非接触状態での先端位置を5分ごとに測定し、高温検査を行う前の先端位置(初期値:0)に対するZ軸方向の変位量を記録した。この測定と記録は、4枚のウエーハを連続して高温検査して行った。図6に示すように、4枚のウエーハの各々において、プローブ針13の先端位置の変動は±5μmに収まることを確認した。
(Verification and results)
The inventor has verified the effect of suppressing fluctuations in the tip position of the probe needle by PCLS. The result of this verification will be described.
FIG. 6 is a graph showing the result of verifying the effect of PCLS performed by the present inventor. The horizontal axis in FIG. 6 indicates time. The vertical axis represents the displacement [μm] of the tip position of the probe needle. The plus (+) on the vertical axis represents the amount of displacement toward the + side (ie, the upper side) in the Z-axis direction, and the minus (−) represents the amount of displacement toward the − side (ie, the lower side) in the Z-axis direction. In this verification, in the probe inspection apparatus 100 shown in FIG. 1, a wafer is placed on the stage 1 of the prober, and in this state, the stage 1 is heated to 150 ° C. to perform a high temperature inspection. Then, the tip position of the probe needle 13 in the non-contact state was measured every 5 minutes, and the amount of displacement in the Z-axis direction with respect to the tip position (initial value: 0) before the high temperature inspection was recorded. This measurement and recording were performed by continuously inspecting four wafers at a high temperature. As shown in FIG. 6, it was confirmed that the variation of the tip position of the probe needle 13 was within ± 5 μm in each of the four wafers.
 なお、1枚目における変位量の平均値は、2枚目以降における変位量の平均値よりも低かった。この理由について、本発明者は、1枚目は高温検査を開始した直後であり、プローブカード10やカードホルダ20、コネクションリング30、PCLS50など、プローブ検査装置100を構成する各機器の温度が安定していなかったことが関係していると考えている。 In addition, the average value of the displacement amount in the first sheet was lower than the average value of the displacement amount in the second and subsequent sheets. For this reason, the present inventor is immediately after starting the high temperature inspection, and the temperature of each device constituting the probe inspection apparatus 100 such as the probe card 10, the card holder 20, the connection ring 30, and the PCLS 50 is stable. I think it was related to what I didn't do.
(変形例)
 上記の第1実施形態では、下側支持部52及び上側支持部62のそれぞれの平面形状が十字(クロス)形である場合について説明した。しかしながら、第1実施形態において、下側支持部52及び上側支持部62の形状はこれに限定されるものではない。例えば、図7に示すように、下側支持部52が十字形で、上側支持部62が一方向に長く延びる矩形であってもよい。また、図8に示すように、下側支持部52が十字形で、上側支持部62が円形であってもよい。このような場合であっても、上記の第1実施形態の効果(1)~(3)と同様の効果を奏する。
(Modification)
In the first embodiment, the case where the planar shapes of the lower support portion 52 and the upper support portion 62 are cross shapes has been described. However, in the first embodiment, the shapes of the lower support portion 52 and the upper support portion 62 are not limited to this. For example, as shown in FIG. 7, the lower support portion 52 may have a cross shape and the upper support portion 62 may have a rectangular shape extending in one direction. Further, as shown in FIG. 8, the lower support portion 52 may have a cross shape and the upper support portion 62 may have a circular shape. Even in such a case, the same effects as the effects (1) to (3) of the first embodiment are obtained.
《第2実施形態》
(構成)
 図9は、本発明の第2実施形態に係るプローブカード200の構成例を示す図であり、図9(a)は平面図、図9(b)は側面図、図9(c)はX-X´断面図である。
 図9(a)~(c)に示すように、このプローブカード200は、プローブカード基板110と、プローブカード基板110の上面111側に離間して配置された支持部材130と、プローブカード基板110と支持部材130との間に介在する複数本の支柱150とを備える。
 プローブカード基板110は、図示しないプローバに取り付けて使用されるものであり、例えばガラスエポキシからなる。プローブカード基板110の平面視による形状(即ち、平面形状)は、例えば正円形である。プローブカード基板110の大きさは、例えば、直径が100~300mm、厚さが3.2~4.8mmである。
<< Second Embodiment >>
(Constitution)
FIG. 9 is a diagram showing a configuration example of a probe card 200 according to the second embodiment of the present invention, in which FIG. 9A is a plan view, FIG. 9B is a side view, and FIG. -X 'sectional view.
As shown in FIGS. 9A to 9C, the probe card 200 includes a probe card substrate 110, a support member 130 that is spaced from the upper surface 111 of the probe card substrate 110, and a probe card substrate 110. And a plurality of support columns 150 interposed between the support member 130 and the support member 130.
The probe card substrate 110 is used by being attached to a prober (not shown), and is made of, for example, glass epoxy. The shape of the probe card substrate 110 in plan view (that is, the planar shape) is, for example, a regular circle. The probe card substrate 110 has, for example, a diameter of 100 to 300 mm and a thickness of 3.2 to 4.8 mm.
 また、このプローブカード基板110の上面111には、例えば、図示しない回路や電子部品等が取り付けられている。さらに、プローブカード基板110には、上記の回路や電子部品等に接続された複数本のプローブ針120が取り付けられている。プローブ針120は、例えば、プローブカード基板110の下面112側に配置された針押え123によって固定されており、その先端121はプローブカード基板110の下面112側に位置する。プローブ針120の本数や配置間隔は、例えば、検査対象となる製品(即ち、ウエーハに形成されたICチップ)の電極パッドの個数と配置間隔に対応している。 In addition, on the upper surface 111 of the probe card substrate 110, for example, a circuit or an electronic component (not shown) is attached. Furthermore, a plurality of probe needles 120 connected to the above-described circuits and electronic components are attached to the probe card substrate 110. The probe needle 120 is fixed by, for example, a needle presser 123 arranged on the lower surface 112 side of the probe card substrate 110, and the tip 121 thereof is located on the lower surface 112 side of the probe card substrate 110. The number and arrangement interval of the probe needles 120 correspond to, for example, the number and arrangement interval of electrode pads of a product to be inspected (that is, an IC chip formed on a wafer).
 また、プローブカード基板110には、複数本の支柱150の下端をそれぞれ固定するために、上面111と下面112との間を貫通する複数のネジ穴113が設けられている。
 支持部材130はプローブカード基板110を支持するものであり、例えばステンレス鋼材からなる。支持部材130は、例えば、図示しないプローバに固定された状態で使用される。図9(a)に示すように、この支持部材130の平面形状は、例えば十字(クロス)形である。支持部材130の大きさは、例えば、十字形の一端から他端までの長さが100~300mmであり、厚さが5~20mmである。また、この支持部材130には、複数本の支柱150の上端を固定するために、支持部材130の上面131と下面132との間を貫通する複数のネジ穴133が設けられている。
In addition, the probe card substrate 110 is provided with a plurality of screw holes 113 penetrating between the upper surface 111 and the lower surface 112 in order to fix the lower ends of the plurality of columns 150.
The support member 130 supports the probe card substrate 110 and is made of, for example, a stainless steel material. The support member 130 is used in a state of being fixed to a prober (not shown), for example. As shown in FIG. 9A, the planar shape of the support member 130 is, for example, a cross shape. The size of the support member 130 is, for example, a length from one end to the other end of the cross of 100 to 300 mm and a thickness of 5 to 20 mm. The support member 130 is provided with a plurality of screw holes 133 penetrating between the upper surface 131 and the lower surface 132 of the support member 130 in order to fix the upper ends of the plurality of support columns 150.
 複数本の支柱150は、プローブカード基板110と支持部材130とを連結するものであり、その長さLは例えば10~20mmである。この長さLは、プローブカード基板110と支持部材130との離間距離に相当する。また、複数本の支柱150は、例えば、複数本の第1の支柱151と、複数本の第2の支柱152とで構成される。
 複数本の第1の支柱151は、第1の円周171上で等間隔に配置されている。ここで、第1の円周171は例えば正円の円周であり、プローブカード基板110の中心部に円の中心がある仮想円周である。また、複数本の第2の支柱152は、第2の円周172上で等間隔に配置されている。ここで、第2の円周172は例えば正円の円周であり、第1の円周171と同心円で(即ち、円の中心を共有し)、且つ、第1の円周171よりも径が大きい仮想円周である。図9は、4本の第1の支柱151が第1の円周171上で等間隔に配置され、4本の第2の支柱152が第1の円周171上で等間隔に配置され、且つ、第1の支柱151と第2の支柱152とが円の径方向(例えば、X軸方向、Y軸方向)で列をなしている場合を例示している。
The plurality of struts 150 connect the probe card substrate 110 and the support member 130, and their length L is, for example, 10 to 20 mm. This length L corresponds to the distance between the probe card substrate 110 and the support member 130. In addition, the plurality of support columns 150 include, for example, a plurality of first support columns 151 and a plurality of second support columns 152.
The plurality of first support columns 151 are arranged at equal intervals on the first circumference 171. Here, the first circumference 171 is a perfect circle, for example, and is a virtual circumference having the center of the circle at the center of the probe card substrate 110. In addition, the plurality of second support columns 152 are arranged at equal intervals on the second circumference 172. Here, the second circumference 172 is, for example, a circumference of a perfect circle, is concentric with the first circumference 171 (that is, shares the center of the circle), and has a diameter larger than that of the first circumference 171. Is a large virtual circumference. In FIG. 9, four first support columns 151 are arranged at equal intervals on the first circumference 171, and four second support columns 152 are arranged at equal intervals on the first circumference 171. In addition, the case where the first support column 151 and the second support column 152 form a line in the radial direction of the circle (for example, the X-axis direction and the Y-axis direction) is illustrated.
 また、第1の支柱151及び第2の支柱152には、例えば、下端から上端に至る貫通したネジ穴がそれぞれ設けられている。そして、図9(c)に示すように、例えば、第1の支柱151はプローブカード基板110の側からネジ161で固定されると共に、支持部材130の側からネジ166で固定されている。第1の支柱151の長さ方向(例えば、Z軸方向)の中間部で、ネジ161とネジ166との間にスペースが確保されている。同様に、第2の支柱152はプローブカード基板110の側からネジ162で固定されると共に、支持部材130の側からネジ167で固定されている。第2の支柱152の長さ方向の中間部で、ネジ162とネジ167との間にスペースが確保されている。 Further, the first support column 151 and the second support column 152 are provided with, for example, screw holes penetrating from the lower end to the upper end. As shown in FIG. 9C, for example, the first support column 151 is fixed with a screw 161 from the probe card substrate 110 side and is fixed with a screw 166 from the support member 130 side. A space is secured between the screw 161 and the screw 166 at an intermediate portion in the length direction (for example, the Z-axis direction) of the first support column 151. Similarly, the second support column 152 is fixed with screws 162 from the probe card substrate 110 side and fixed with screws 167 from the support member 130 side. A space is secured between the screw 162 and the screw 167 at an intermediate portion in the length direction of the second support column 152.
 また、本発明の第2実施形態では、第2の支柱152の熱膨張率(熱膨張係数)は、第1の支柱151の熱膨張率よりも大きい。即ち、第1の支柱151の熱膨張率をβ1とし、第2の支柱152の熱膨張率をβ2としたとき、下記の(1)式が成り立つように、第1の支柱151と第2の支柱152はそれぞれ材料が選択されている。
   β2>β1…(1)
 例えば、第1の支柱151の材料はJIS規格でSUS430(β=10.4×10-6℃、0~100℃)であり、第2の支柱152の材料はJIS規格でSUS410(β=11.0×10-6℃、0~100℃)である。0~100℃とは、0~100℃の範囲における熱膨張率の値であることを意味する。或いは、第1の支柱151は熱膨張率がごく小さいスーパーインバー合金(β=±0.1×10-6/℃、0~100℃)であり、第2の支柱152はJIS規格でSUS430若しくはSUS410であってもよい。本発明の第2実施形態では、(1)式を満たすことを条件に、第1の支柱151と第2の支柱152の各材料を任意に選択してよい。
In the second embodiment of the present invention, the thermal expansion coefficient (thermal expansion coefficient) of the second support column 152 is larger than the thermal expansion coefficient of the first support column 151. That is, when the coefficient of thermal expansion of the first support column 151 is β1 and the coefficient of thermal expansion of the second support column 152 is β2, the first support column 151 and the second support column 151 are set so that the following equation (1) is satisfied. A material is selected for each of the columns 152.
β2> β1 (1)
For example, the material of the first support column 151 is SUS430 (β = 10.4 × 10 −6 ° C., 0 to 100 ° C.) in JIS standard, and the material of the second support column 152 is SUS410 (β = 11 in JIS standard). 0.0 × 10 −6 ° C., 0 to 100 ° C.). 0 to 100 ° C. means a value of coefficient of thermal expansion in the range of 0 to 100 ° C. Alternatively, the first support column 151 is a super invar alloy (β = ± 0.1 × 10 −6 / ° C., 0 to 100 ° C.) having a very low coefficient of thermal expansion, and the second support column 152 is SUS430 or JIS standard. It may be SUS410. In the second embodiment of the present invention, each material of the first support column 151 and the second support column 152 may be arbitrarily selected on condition that the expression (1) is satisfied.
 また、プローブカード基板110の熱膨張係数をβbとしたとき、β1、β2及びβbの間には、例えば、下記の(2)式が成り立つ。
   βb>β2>β1…(2)
 なお、本発明の第2実施形態では、第1の支柱51を固定するネジ161、166は、第1の支柱151と同じ材料からなることが好ましい。これにより、第1の支柱151とネジ161、166の熱膨張率が一致するため、第1の支柱151とネジ161、166を一体物とみなすことができ、加熱試験における第1の支柱151の膨張・収縮の体積変化量(長さLの変化量)を制御することが容易となる。また、膨張・収縮の過程で、第1の支柱151とネジ161、166との間に熱膨張率の差に起因するストレスが蓄積することを防ぐことができる。同様の理由から、第2の支柱152を固定するネジ162、167も、第2の支柱152と同じ材料からなることが好ましい。
Further, when the thermal expansion coefficient of the probe card substrate 110 is βb, for example, the following equation (2) is established between β1, β2, and βb.
βb>β2> β1 (2)
In the second embodiment of the present invention, the screws 161 and 166 for fixing the first support column 51 are preferably made of the same material as that of the first support column 151. Thereby, since the thermal expansion coefficients of the first support column 151 and the screws 161 and 166 coincide with each other, the first support column 151 and the screws 161 and 166 can be regarded as one body, and the first support column 151 of the heating test can be regarded as an integrated object. It becomes easy to control the volume change amount of the expansion / contraction (change amount of the length L). In addition, during the expansion / contraction process, it is possible to prevent accumulation of stress due to the difference in thermal expansion coefficient between the first support column 151 and the screws 161 and 166. For the same reason, the screws 162 and 167 for fixing the second support column 152 are preferably made of the same material as that of the second support column 152.
(動作・作用)
 図10は、高温検査時にプローブカード基板110に加わる力F1、F2を示す概念図である。プローブカード200を使用して高温検査を行う場合は、図19に示したように、ステージ上にウエーハを固定した状態で、ステージに内蔵されたヒータに通電してステージを加熱する。これにより、ウエーハはステージを介して、例えば150℃~200℃まで温度が上昇する。また、ウエーハの上方(即ち、ステージの上方)にプローブカード200を配置し、ウエーハの温度が安定したら、ウエーハに形成されたICチップの電極パッドにプローブ針120を接触させて、ICチップの電気的特性を測定する。
(Operation / Action)
FIG. 10 is a conceptual diagram showing the forces F1 and F2 applied to the probe card substrate 110 during the high temperature inspection. When performing a high-temperature inspection using the probe card 200, as shown in FIG. 19, the stage is heated by energizing a heater built in the stage with the wafer fixed on the stage. As a result, the temperature of the wafer rises through the stage to, for example, 150 ° C. to 200 ° C. When the probe card 200 is arranged above the wafer (that is, above the stage) and the wafer temperature is stabilized, the probe needle 120 is brought into contact with the electrode pad of the IC chip formed on the wafer to The mechanical characteristics.
 この過程で、ウエーハの上方に配置されたプローブカード基板110の下面112には、ウエーハからの放射熱やプローブ針からの伝導熱が伝わる。これにより、プローブカード基板110は下面112の側から温度が上昇し、下面112と上面111との間で温度差(熱勾配)が生じる。図10に示すように、この温度差によって、プローブカード基板110には「下側に凸となる反り変形」を生じさせる方向の力F1が加わる。 In this process, radiant heat from the wafer and conduction heat from the probe needle are transmitted to the lower surface 112 of the probe card substrate 110 disposed above the wafer. As a result, the temperature of the probe card substrate 110 rises from the lower surface 112 side, and a temperature difference (thermal gradient) occurs between the lower surface 112 and the upper surface 111. As shown in FIG. 10, due to this temperature difference, a force F <b> 1 is applied to the probe card substrate 110 in a direction that causes “warping deformation that protrudes downward”.
 一方で、プローブカード基板110の上面111側に配置された複数本の支柱150にも、上記の放射熱や伝導熱がプローブカード基板110を介して伝わる。そして、このプローブカード基板110からの伝熱により、複数本の支柱150はそれぞれ温度が上昇する。ここで、(1)式に示したように、第2の支柱152の熱膨張率β2は、第1の支柱151の熱膨張率β1よりも大きい。このため、第2の支柱152は第1の支柱151よりも膨張し、第2の支柱152は第1の支柱151よりもプローブカード基板110を下方(即ち、ウエーハ側)に強く押す。その結果、図10に示すように、プローブカード基板110には「上側に凸となる反り変形」を生じさせる方向の力F2が加わる。「上側に凸となる反り変形」を生じさせようとする力F2は、「下側に凸となる反り変形」を生じさせようとする力F1を相殺する。これにより、力F1を小さくすることができるので、プローブカード基板110の上下面の温度差に起因した「下側に凸となる反り変形」を軽減することができる。 On the other hand, the radiant heat and conduction heat are also transmitted through the probe card substrate 110 to the plurality of columns 150 arranged on the upper surface 111 side of the probe card substrate 110. Then, due to heat transfer from the probe card substrate 110, the temperature of each of the plurality of support columns 150 rises. Here, as shown in the equation (1), the thermal expansion coefficient β2 of the second support column 152 is larger than the thermal expansion coefficient β1 of the first support column 151. For this reason, the 2nd support | pillar 152 expand | swells rather than the 1st support | pillar 151, and the 2nd support | pillar 152 pushes the probe card board | substrate 110 downward (namely, wafer side) rather than the 1st support | pillar 151. FIG. As a result, as shown in FIG. 10, a force F <b> 2 is applied to the probe card substrate 110 in a direction that causes “upward warping deformation”. The force F2 that tries to cause “warping deformation that protrudes upward” cancels out the force F1 that causes “warping deformation that protrudes downward”. Thereby, since the force F1 can be reduced, it is possible to reduce “warping deformation that protrudes downward” due to the temperature difference between the upper and lower surfaces of the probe card substrate 110.
 また、高温検査では、ウエーハに対してプローブカード200を相対的に移動させつつ、ウエーハに形成された複数のICチップの一部又は全部を検査する。この過程では、図18に示したように、ウエーハの外周部に位置するICチップを検査する場合や、プローブカード200をステージ外のクリーニングエリアへ移動させる場合がある。この場合、プローブカード200の少なくとも一部がステージの上方から離れる。プローブカード200がステージの上方から離れると、プローブカード基板110の下面112が受ける放射熱量は小さくなるため、上下面の温度差が小さくなる。これにより、「下側に凸となる反り変形」を生じさせようとする力F1は小さくなり、プローブカード基板110の反り変形は収束に向かう。また、プローブカード基板110から各支柱150への伝熱量も小さくなるため、各支柱150は熱膨張率に応じて収縮する。これにより、「上側に凸となる反り変形」を生じさせようとする力F2も小さくなる。
 この第2実施形態では、プローブカード基板110の下面112が本発明の「一方の面」に対応し、上面111が本発明の「他方の面」に対応している。
In the high temperature inspection, a part or all of a plurality of IC chips formed on the wafer are inspected while the probe card 200 is moved relative to the wafer. In this process, as shown in FIG. 18, an IC chip located on the outer periphery of the wafer may be inspected, or the probe card 200 may be moved to a cleaning area outside the stage. In this case, at least a part of the probe card 200 leaves from above the stage. When the probe card 200 is separated from the upper side of the stage, the amount of radiant heat received by the lower surface 112 of the probe card substrate 110 is reduced, so that the temperature difference between the upper and lower surfaces is reduced. As a result, the force F <b> 1 that causes the “downward convex warping deformation” is reduced, and the warp deformation of the probe card substrate 110 tends to converge. Further, since the amount of heat transferred from the probe card substrate 110 to each column 150 is also small, each column 150 contracts according to the coefficient of thermal expansion. As a result, the force F <b> 2 that causes “warping deformation that protrudes upward” is also reduced.
In the second embodiment, the lower surface 112 of the probe card substrate 110 corresponds to “one surface” of the present invention, and the upper surface 111 corresponds to “the other surface” of the present invention.
(第2実施形態の効果)
 本発明のプローブカードは、以下の効果を奏する。
(1)プローブカード200は、プローブカード基板110と支持部材130との間に、第1の支柱151と、第1の支柱151よりもプローブカード基板110の中心部から離れた位置(例えば、外周部)に配置された第2の支柱152と、を有する。ここで、第2の支柱152の熱膨張率β2は、第1の支柱151の熱膨張率β1よりも大きい。
 これにより、プローブカード200を使用して高温検査を行う際に、プローブカード基板110には「下側に凸となる反り変形」を生じさせようとする力F1が加わる。また、第1の支柱151と、第2の支柱152の熱膨張率の差により、プローブカード基板110には反り変形に対抗する力が加わる。これら2つの力が相殺し合うことにより、プローブカード基板110の上下面の温度差に起因して生じる反り変形を軽減することができる。
(Effect of 2nd Embodiment)
The probe card of the present invention has the following effects.
(1) The probe card 200 is located between the probe card substrate 110 and the support member 130, and the position (for example, outer periphery) farther from the center of the probe card substrate 110 than the first column 151. And a second support column 152 disposed in the section). Here, the thermal expansion coefficient β2 of the second support column 152 is larger than the thermal expansion coefficient β1 of the first support column 151.
As a result, when a high-temperature inspection is performed using the probe card 200, a force F1 is applied to the probe card substrate 110 so as to cause “warping deformation that protrudes downward”. Further, due to the difference in coefficient of thermal expansion between the first support column 151 and the second support column 152, a force against warping deformation is applied to the probe card substrate 110. When these two forces cancel each other, the warp deformation caused by the temperature difference between the upper and lower surfaces of the probe card substrate 110 can be reduced.
(2)また、第1の支柱151と第2の支柱152はそれぞれ複数本ずつ用意されており、第1の支柱151は第1の円周171上で等間隔に配置され、第2の支柱152は第2の円周172上で等間隔に配置されている。これにより、プローブカード基板110を下方に押す力(即ち、押下力)の分布を、プローブカード基板110の中心部を同心円状に囲み、且つ、該円の中心から外周に向かって大きくなるように設定することができる。このように設定された押下力は、プローブカード基板110に「上側に凸となる反り変形」を生じさせようとする力F2であり、この力F2は「下側に凸となる反り変形」を生じさせようとする力F1と正反対の方向に働く。このため、プローブカード基板110の上下面の温度差に起因して生じる反り変形を、より効果的に軽減することができる。 (2) In addition, a plurality of first support columns 151 and a plurality of second support columns 152 are prepared, and the first support columns 151 are arranged on the first circumference 171 at equal intervals, and the second support columns 151 152 are arranged at equal intervals on the second circumference 172. Thereby, the distribution of the force that pushes the probe card substrate 110 downward (that is, the pressing force) is concentrically surrounded by the center of the probe card substrate 110 and increases from the center of the circle toward the outer periphery. Can be set. The pressing force set in this way is a force F2 that causes the probe card board 110 to generate a “warp deformation that protrudes upward”, and this force F2 causes “a warp deformation that protrudes downward”. It works in the opposite direction to the force F1 to be generated. For this reason, the warp deformation caused by the temperature difference between the upper and lower surfaces of the probe card substrate 110 can be more effectively reduced.
(3)高温検査時に、プローブカード基板110の反り変形を軽減できるため、プローブ針120の先端位置の変位量を小さくすることができる。これにより、プローブ針120の電極パッドに対する押し圧を均一化することができる。また、プローブ針120の先端位置の変位量を小さくでき、押し圧を均一化できるため、高温検査の温度をさらに高くする(例えば、200℃を超える温度とする)ことも可能となる。 (3) Since the warp deformation of the probe card substrate 110 can be reduced during the high temperature inspection, the amount of displacement of the tip position of the probe needle 120 can be reduced. Thereby, the pressing force of the probe needle 120 against the electrode pad can be made uniform. Further, since the amount of displacement of the tip position of the probe needle 120 can be reduced and the pressing pressure can be made uniform, the temperature of the high temperature inspection can be further increased (for example, a temperature exceeding 200 ° C.).
(変形例)
(1)なお、複数本の支柱150は、例えば、複数本の第1の支柱151と、複数本の第2の支柱152とで構成される場合について説明した。しかしながら、第2実施形態において、複数本の支柱150は第1の支柱151及び第2の支柱152の2種類に限定されるものではない。例えば図11に示すように、複数本の支柱150には、第1の支柱151及び第2の支柱152に加え、第3の支柱153が含まれていてもよい。この例では、第3の支柱153はプローブカード基板110の中心部上に配置されている。プローブカード基板110の中心部は、電子部品を配置することが難しい、いわゆるデッドスペースであるが、ここに第3の支柱153を配置する。
(Modification)
(1) In addition, the case where the plurality of support columns 150 includes, for example, a plurality of first support columns 151 and a plurality of second support columns 152 has been described. However, in the second embodiment, the plurality of struts 150 are not limited to the two types of the first struts 151 and the second struts 152. For example, as shown in FIG. 11, the plurality of support columns 150 may include a third support column 153 in addition to the first support column 151 and the second support column 152. In this example, the third support column 153 is disposed on the center portion of the probe card substrate 110. The center portion of the probe card substrate 110 is a so-called dead space in which it is difficult to place electronic components, but the third support column 153 is placed here.
 また、第3の支柱153の熱膨張率は、第1の支柱151の熱膨張率よりも小さい。即ち、第3の支柱153の熱膨張率をβ3としたとき、下記の(3)式が成り立つように、第3の支柱153は材料が選択される。
    β2>β1>β3…(3)
 例えば、第1の支柱151の材料がJIS規格でSUS430であり、第2の支柱152の材料がJIS規格でSUS410の場合、第3の支柱153として、これらよりも熱膨張率がごく小さいスーパーインバー合金を選択することができる。
Further, the thermal expansion coefficient of the third support column 153 is smaller than the thermal expansion coefficient of the first support column 151. That is, when the coefficient of thermal expansion of the third support column 153 is β3, the material of the third support column 153 is selected so that the following expression (3) is satisfied.
β2>β1> β3 (3)
For example, when the material of the first support column 151 is SUS430 according to the JIS standard and the material of the second support column 152 is SUS410 according to the JIS standard, the third support 153 is a super invar whose thermal expansion coefficient is much smaller than these. An alloy can be selected.
 このような構成であれば、プローブカード基板110において、電子部品の配置スペースを犠牲にすることなく、支柱150の本数を増やすことができる。また、プローブカード基板110の中心部は熱がこもり易い部位であるが、第3の支柱153が伝熱経路として機能することにより、プローブカード基板110の中心部から支持部材130側へ効率良く放熱することが可能となる。
 なお、第1の支柱151及び第2の支柱152と同様、第3の支柱153を支持部材130の側から指示するネジ163と、第3の支柱153をプローブカード基板110の側から固定するネジ(図示せず)も、第3の支柱153と同じ材料からなることが好ましい。
With such a configuration, the number of support columns 150 can be increased without sacrificing the arrangement space for the electronic components in the probe card substrate 110. In addition, although the central portion of the probe card substrate 110 is a portion where heat is likely to be trapped, the third support column 153 functions as a heat transfer path, thereby efficiently radiating heat from the central portion of the probe card substrate 110 to the support member 130 side. It becomes possible to do.
Similar to the first support column 151 and the second support column 152, a screw 163 that instructs the third support column 153 from the support member 130 side and a screw that fixes the third support column 153 from the probe card substrate 110 side. (Not shown) is preferably made of the same material as the third support column 153.
(2)また、第2実施形態では、図11に示した第1の支柱151を省略してもよい。即ち、図12(a)及び(b)に示すように、プローブカード基板110の中心部に第3の支柱153が配置され、外周部に第2の支柱152が配置され、中心部と外周部との間の中間部には支柱150が配置されていなくてもよい。
 このような構成であれば、例えば、プローブカード基板110の中間部の上面111側にスペースを確保することが容易となる。そして、この確保したスペースにコイル、キャパシタ又はパッケージ化されたIC素子など、種々の電子部品155を配置することができる。これにより、プローブカード基板110における電子部品の実装密度を高めることができる。なお、図12に示す変形例では、第3の支柱153が本発明の「第1の支柱」に対応する。
(2) In the second embodiment, the first support column 151 shown in FIG. 11 may be omitted. That is, as shown in FIGS. 12A and 12B, the third support column 153 is disposed at the center portion of the probe card substrate 110, the second support column 152 is disposed at the outer peripheral portion, and the central portion and the outer peripheral portion. The strut 150 may not be disposed in the middle portion between the two.
With such a configuration, for example, it is easy to secure a space on the upper surface 111 side of the intermediate portion of the probe card substrate 110. Various electronic components 155 such as a coil, a capacitor, or a packaged IC element can be arranged in the reserved space. Thereby, the mounting density of the electronic components on the probe card substrate 110 can be increased. In the modification shown in FIG. 12, the third support column 153 corresponds to the “first support column” of the present invention.
(3)また、上記の第2実施形態では、(2)式の関係が成り立つ場合、即ち、プローブカード基板110の熱膨張率βbが第2の支柱152の熱膨張率β2よりも大きい場合について説明した。しかしながら、第2実施形態において、熱膨張率の大小関係はこれに限定されるものではない。即ち、下記の式(2)´に示すように、第2の支柱152の熱膨張率β2は、プローブカード基板110の熱膨張率βbより大きくてもよい。
   β2>βb>β1…(2)´
 例えば、第2の支柱152を樹脂材料で構成する、又は、第2の支柱152とネジ162、167を同一の樹脂材料で構成することにより、(2)´式を満たすことが可能である。(2)´式が成り立つときは、第1の支柱151及び第2の支柱152の熱膨張率の差はさらに大きく、第2の支柱152はプローブカード基板110の外周部をさらに下方に押すことができる。このため、プローブカード200に生じる「下側に凸となる反り変形」をさらに軽減することが可能となる。
(3) In the second embodiment, when the relationship of the expression (2) is satisfied, that is, when the thermal expansion coefficient βb of the probe card substrate 110 is larger than the thermal expansion coefficient β2 of the second support column 152. explained. However, in the second embodiment, the magnitude relationship between the thermal expansion coefficients is not limited to this. That is, as shown in the following formula (2) ′, the thermal expansion coefficient β2 of the second support column 152 may be larger than the thermal expansion coefficient βb of the probe card substrate 110.
β2>βb> β1 (2) ′
For example, by configuring the second support column 152 with a resin material, or configuring the second support column 152 and the screws 162 and 167 with the same resin material, the expression (2) ′ can be satisfied. When the formula (2) ′ holds, the difference in the coefficient of thermal expansion between the first support column 151 and the second support column 152 is larger, and the second support column 152 pushes the outer peripheral portion of the probe card board 110 further downward. Can do. For this reason, it is possible to further reduce the “warping deformation that protrudes downward” that occurs in the probe card 200.
《第3実施形態》
 上記の第2実施形態では、支持部材の平面形状が十字形である場合について説明した。しかしながら、本発明の実施形態において、支持部材の平面形状はこれに限定されるものではない。支持部材の平面形状は、例えば、四角形、六角形などの多角形、或いは、正円形でもよい。また、支持部材は、縦横の寸法に対して厚みが小さい板状のものでもよい。
 図13は、本発明の第3実施形態に係るプローブカード300の構成例を示す平面図である。図13に示すように、このプローブカード300は、プローブカード基板110と、プローブカード基板110の上面111側に離間して配置された支持板230と、プローブカード基板110と支持部材130との間に介在する複数本の支柱150とを備える。支持板230はプローブカード300を支持するものであり、例えばステンレス鋼材からなる。支持板230は、例えば、図示しないプローバに固定された状態で使用される。
<< Third Embodiment >>
In the second embodiment, the case where the planar shape of the support member is a cross shape has been described. However, in the embodiment of the present invention, the planar shape of the support member is not limited to this. The planar shape of the support member may be, for example, a polygon such as a quadrangle or a hexagon, or a regular circle. Further, the support member may be a plate having a small thickness with respect to vertical and horizontal dimensions.
FIG. 13 is a plan view showing a configuration example of a probe card 300 according to the third embodiment of the present invention. As shown in FIG. 13, the probe card 300 includes a probe card substrate 110, a support plate 230 that is spaced apart from the upper surface 111 of the probe card substrate 110, and a space between the probe card substrate 110 and the support member 130. And a plurality of support columns 150 interposed therebetween. The support plate 230 supports the probe card 300 and is made of, for example, a stainless steel material. The support plate 230 is used in a state of being fixed to a prober (not shown), for example.
 この支持板230は、図13に示すように、この支持板230の平面形状は、例えば正円形である。図9に示した支持部材130と同様、この支持板230にも支柱150の上端を固定するために、支持板230の上面111と下面112との間を貫通するネジ穴が複数設けられている。
 このプローブカード300において、第1の支柱151及び第2の支柱152は、第2実施形態と同一の構成で同一の機能を有する。これにより、第3実施形態は、第2実施形態の効果(1)~(3)と同様の効果を奏する。また、第3実施形態においても、第2実施形態で説明した変形例(1)~(3)を適用してよい。
As shown in FIG. 13, the support plate 230 has a planar shape of, for example, a regular circle. Similar to the support member 130 shown in FIG. 9, the support plate 230 is also provided with a plurality of screw holes penetrating between the upper surface 111 and the lower surface 112 of the support plate 230 in order to fix the upper end of the support column 150. .
In this probe card 300, the first support column 151 and the second support column 152 have the same functions as those of the second embodiment. Thereby, the third embodiment has the same effects as the effects (1) to (3) of the second embodiment. Also in the third embodiment, the modifications (1) to (3) described in the second embodiment may be applied.
 例えば図14に示すように、複数本の支柱150は、第1の支柱151及び第2の支柱152に加え、第3の支柱153を有していてもよい。第3の支柱153は、例えばプローブカード基板110の中心部上に配置されている。また、上記の(3)式が成り立つように、第1の支柱151と第2の支柱152及び第3の支柱153を構成する材料がそれぞれ選択されている。このような構成であれば、第2実施形態の変形例(1)と同様の効果を奏する。 For example, as shown in FIG. 14, the plurality of support columns 150 may include a third support column 153 in addition to the first support column 151 and the second support column 152. The third support column 153 is disposed on the center portion of the probe card substrate 110, for example. Moreover, the material which comprises the 1st support | pillar 151, the 2nd support | pillar 152, and the 3rd support | pillar 153 is each selected so that said (3) Formula may be formed. With such a configuration, the same effect as that of the modified example (1) of the second embodiment is obtained.
 また、図14では第1の支柱151を省略してもよい。即ち、図15に示すように、プローブカード基板110の中心部に第3の支柱153が配置され、外周部に第2の支柱152が配置され、中心部と外周部との間の中間部には第1の支柱150が配置されていなくてもよい。このような構成であれば、第2実施形態の変形例(2)と同様の効果を奏する。 In FIG. 14, the first support column 151 may be omitted. That is, as shown in FIG. 15, the third support column 153 is disposed at the center portion of the probe card substrate 110, the second support column 152 is disposed at the outer peripheral portion, and the intermediate portion between the central portion and the outer peripheral portion is disposed. The first support column 150 may not be disposed. With such a configuration, the same effect as the modification (2) of the second embodiment is obtained.
 さらに、図16に示すように、第2の支柱152は第1の支柱151よりも本数が多くてもよい。このような構成であれば、第2の円周172上における第2の支柱152の配置間隔を第1の円周171上における第1の支柱151の配置間隔に近づけることが可能となる。これにより、第1の円周171上と比較して、第2の円周172上における押下力の分布が疎となることを防ぐことができる。第2の円周172上において、第2の支柱152による押下力の分布をより均一に近づけることができる。
 この第3実施形態では、支持板230が本発明の「支持部材」に対応している。
Furthermore, as shown in FIG. 16, the number of the second support columns 152 may be larger than that of the first support columns 151. With such a configuration, the arrangement interval of the second support columns 152 on the second circumference 172 can be made closer to the arrangement interval of the first support columns 151 on the first circumference 171. Thereby, it is possible to prevent the pressing force distribution on the second circumference 172 from becoming sparse compared to the first circumference 171. On the second circumference 172, the distribution of the pressing force by the second column 152 can be made more uniform.
In the third embodiment, the support plate 230 corresponds to the “support member” of the present invention.
《第4実施形態》
 図17は、本発明の第4実施形態に係る支持板330の構成例を示す平面図である。この支持板330の平面形状は例えば正円形であり、その上面111から下面112に至る貫通したネジ穴133が多数形成されている。この支持板330には、多数のネジ穴133が形成されている。具体的には、支持板330の中心部を円の中心とする複数の同心円の各円周上で、複数のネジ穴133がそれぞれ等間隔に配置されている。また、この円の中心にもネジ穴133が形成されていてもよい。なお、ここでいう円周とは、第2、第3実施形態と同様、仮想円周のことである。
<< 4th Embodiment >>
FIG. 17 is a plan view showing a configuration example of a support plate 330 according to the fourth embodiment of the present invention. The planar shape of the support plate 330 is, for example, a perfect circle, and a number of threaded holes 133 penetrating from the upper surface 111 to the lower surface 112 are formed. A number of screw holes 133 are formed in the support plate 330. Specifically, a plurality of screw holes 133 are arranged at equal intervals on each circumference of a plurality of concentric circles with the center of the support plate 330 as the center of the circle. Also, a screw hole 133 may be formed at the center of this circle. In addition, the circumference here is a virtual circumference like 2nd and 3rd embodiment.
 このような構成であれば、例えば、複数のネジ穴133の中から任意のネジ穴133を選択し、選択したネジ穴133にネジを通して支柱150を固定することができる。プローブカード基板110のネジ穴133の位置に応じて、支持板330のネジ穴133を選択し、そこに支柱150を固定することができるため、支持板330の汎用性を高めることができる。
 本発明は、以上に記載した各実施形態に限定されうるものではない。当業者の知識に基づいて各実施形態に設計の変更等を加えることが可能であり、そのような変形が加えられた態様も本発明の範囲に含まれる。
With such a configuration, for example, an arbitrary screw hole 133 can be selected from the plurality of screw holes 133, and the column 150 can be fixed through the screw through the selected screw hole 133. Since the screw hole 133 of the support plate 330 can be selected according to the position of the screw hole 133 of the probe card substrate 110 and the support 150 can be fixed thereto, the versatility of the support plate 330 can be improved.
The present invention is not limited to the embodiments described above. Based on the knowledge of those skilled in the art, design changes and the like can be added to each embodiment, and such a modified embodiment is also included in the scope of the present invention.
 1 ステージ
3 筐体
10 プローブカード
11 カード基板
11a 上面
11b 下面
13 プローブ針
13a 先端
20 カードホルダ
21 薄板部
23 段差
30 コネクションリング
31 ポゴピン
51 下側部品
52 下側支持部
53 支柱
35、54、55、64、65、71 ネジ
61 上側部品
62 上側支持部
63 連結部
100 プローブ検査装置
110 プローブカード基板
111 (プローブカード基板の)上面
112 (プローブカード基板の)下面
113 ネジ穴
120 プローブ針
121 先端
130 支持部材
131 (支持部材の)上面
132 (支持部材の)下面
133 ネジ穴
150 支柱
151 第1の支柱
152 第2の支柱
153 第3の支柱
155 電子部品
161、162、163、166、167 ネジ
171 第1の円周
172 第2の円周
200、300 プローブカード
230、330 支持板(正円形で、板状の支持部材)
F1~F3 力
DESCRIPTION OF SYMBOLS 1 Stage 3 Case 10 Probe card 11 Card board 11a Upper surface 11b Lower surface 13 Probe needle 13a Tip 20 Card holder 21 Thin plate part 23 Step 30 Connection ring 31 Pogo pin 51 Lower part 52 Lower support part 53 Supports 35, 54, 55, 64, 65, 71 Screw 61 Upper part 62 Upper support part 63 Connection part 100 Probe inspection device 110 Probe card board 111 (Probe card board) upper face 112 (Probe card board) lower face 113 Screw hole 120 Probe needle 121 Tip 130 Support Member 131 (Supporting member) Upper surface 132 (Supporting member) Lower surface 133 Screw hole 150 Column 151 First column 152 Second column 153 Third column 155 Electronic components 161, 162, 163, 166, 167 Screw 171 First 1 circumference 172 2nd circumference 00,300 probe card 230, 330 supporting plate (in a round, plate-like support member)
F1 ~ F3 force

Claims (10)

  1.  プローブカードをプローバに固定するプローブカード固定装置であって、
     前記プローバの筐体に固定するためのコネクションリングと、
     前記コネクションリングとの間で前記プローブカードの外周部を挟持するためのカードホルダと、
     前記プローブカードの中央部と前記コネクションリングとを固定するためのロック装置と、を備えることを特徴とするプローブカード固定装置。
    A probe card fixing device for fixing a probe card to a prober,
    A connection ring for fixing to the prober housing;
    A card holder for sandwiching the outer periphery of the probe card between the connection ring,
    A probe card fixing device, comprising: a lock device for fixing a central portion of the probe card and the connection ring.
  2.  前記ロック装置は、
     前記プローブカードの前記中央部に固定される第1の部品と、
     前記コネクションリングに固定される第2の部品と、
     前記第1の部品と前記第2の部品とを連結して固定する第3の部品と、を有することを特徴とする請求項1に記載のプローブカード固定装置。
    The locking device is
    A first component fixed to the central portion of the probe card;
    A second part fixed to the connection ring;
    The probe card fixing device according to claim 1, further comprising: a third component that connects and fixes the first component and the second component.
  3.  前記第1の部品は、
     前記プローブカードの前記コネクションリングと接する側の面から離間して配置された支持部材と、
     前記プローブカードと前記支持部材との間に介在する複数本の支柱と、を有し、
     前記複数本の支柱は、前記第2の部品よりも線膨張係数の小さい材料で構成されていることを特徴とする請求項2に記載のプローブカード固定装置。
    The first part is:
    A support member disposed away from the surface of the probe card that contacts the connection ring;
    A plurality of struts interposed between the probe card and the support member,
    3. The probe card fixing device according to claim 2, wherein the plurality of support columns are made of a material having a smaller linear expansion coefficient than the second component.
  4.  請求項1から請求項3の何れか一項に記載のプローブカード固定装置と、
     プローブカードと、を備え、
     前記プローブカードに前記プローブカード固定装置が取り付けられていることを特徴とするプローブ検査装置。
    The probe card fixing device according to any one of claims 1 to 3,
    A probe card,
    A probe inspection apparatus, wherein the probe card fixing device is attached to the probe card.
  5.  カードホルダとコネクションリングとによって外周部が挟持されるプローブカードを用いてプローブ検査を行う際に予め、
     前記プローブカードの前記コネクションリングと接する側の面上にロック装置を配置し、該ロック装置を用いて、前記プローブカードの前記中央部と前記コネクションリングとを固定しておくことを特徴とするプローブ検査方法。
    When performing probe inspection using a probe card in which the outer periphery is sandwiched between the card holder and the connection ring,
    A probe is provided on a surface of the probe card that is in contact with the connection ring, and the central portion of the probe card and the connection ring are fixed using the lock device. Inspection method.
  6.  前記プローブ検査を行う際に予め、
     前記コネクションリングをプローバの筐体に固定しておくことを特徴とする請求項5に記載のプローブ検査方法。
    When performing the probe inspection,
    The probe inspection method according to claim 5, wherein the connection ring is fixed to a housing of a prober.
  7.  一方の面側にプローブ針の先端が位置するプローブカード基板と、
     前記プローブカード基板の他方の面側に離間して配置された支持部材と、
     前記プローブカード基板と前記支持部材との間に介在する複数本の支柱と、を備え、
     前記複数本の支柱は、第1の支柱と、前記第1の支柱よりも前記プローブカード基板の中心部から離れて配置された第2の支柱と、を有し、
     前記第2の支柱の熱膨張率は、前記第1の支柱の熱膨張率よりも大きいことを特徴とするプローブカード。
    A probe card substrate in which the tip of the probe needle is located on one surface side;
    A support member that is spaced apart from the other surface of the probe card substrate;
    A plurality of struts interposed between the probe card substrate and the support member,
    The plurality of struts include a first strut and a second strut disposed farther from the center of the probe card substrate than the first strut,
    The probe card according to claim 1, wherein a thermal expansion coefficient of the second support column is larger than a thermal expansion coefficient of the first support column.
  8.  前記複数本の支柱は、前記第1の支柱と前記第2の支柱とをそれぞれ複数本ずつ有し、
     前記複数本の第1の支柱は、前記プローブカード基板の中心部に円の中心がある第1の円周上で等間隔に配置されており、
     前記複数本の第2の支柱は、前記第1の円周と同心円で、且つ前記第1の円周よりも径が大きい第2の円周上で等間隔に配置されていることを特徴とする請求項7に記載のプローブカード。
    The plurality of struts each include a plurality of the first struts and the second struts,
    The plurality of first support columns are arranged at equal intervals on a first circumference having a center of a circle at the center of the probe card substrate,
    The plurality of second support columns are arranged at equal intervals on a second circumference which is concentric with the first circumference and has a diameter larger than that of the first circumference. The probe card according to claim 7.
  9.  前記複数本の支柱は、前記プローブカード基板の中心部上に配置された第3の支柱をさらに有し、
     前記第3の支柱の熱膨張率は、前記第1の支柱の熱膨張率よりも小さいことを特徴とする請求項8に記載のプローブカード。
    The plurality of struts further includes a third strut disposed on a center portion of the probe card substrate,
    The probe card according to claim 8, wherein the thermal expansion coefficient of the third support column is smaller than the thermal expansion coefficient of the first support column.
  10.  前記第2の支柱は前記第1の支柱よりも本数が多いことを特徴とする請求項7から請求項9の何れか一項に記載のプローブカード。 The probe card according to any one of claims 7 to 9, wherein the number of the second support columns is larger than that of the first support columns.
PCT/JP2013/003865 2012-06-22 2013-06-20 Probe card-securing device, probe inspection device, probe inspection method, and probe card WO2013190844A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014520958A JP5816749B2 (en) 2012-06-22 2013-06-20 Probe card fixing device, probe inspection device
KR1020147008159A KR101569303B1 (en) 2012-06-22 2013-06-20 Probe card-securing device, probe inspection device, and probe card

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012140685 2012-06-22
JP2012-140685 2012-06-22
JP2012224932 2012-10-10
JP2012-224932 2012-10-10

Publications (1)

Publication Number Publication Date
WO2013190844A1 true WO2013190844A1 (en) 2013-12-27

Family

ID=49768457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/003865 WO2013190844A1 (en) 2012-06-22 2013-06-20 Probe card-securing device, probe inspection device, probe inspection method, and probe card

Country Status (4)

Country Link
JP (1) JP5816749B2 (en)
KR (1) KR101569303B1 (en)
TW (1) TWI513984B (en)
WO (1) WO2013190844A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108603915A (en) * 2016-02-29 2018-09-28 泰拉丁公司 The thermal control of probe card assembly

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106338625B (en) * 2015-07-06 2019-07-26 创意电子股份有限公司 Probe card
TWI597503B (en) * 2016-08-24 2017-09-01 美亞國際電子有限公司 Probe card
TWI747553B (en) * 2020-10-15 2021-11-21 華邦電子股份有限公司 Wafer probe device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004205487A (en) * 2002-11-01 2004-07-22 Tokyo Electron Ltd Probe card fixing mechanism
JP2006108456A (en) * 2004-10-07 2006-04-20 Japan Electronic Materials Corp Probe device
JP2008082912A (en) * 2006-09-28 2008-04-10 Micronics Japan Co Ltd Electrical connection device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007294489A (en) * 2006-04-20 2007-11-08 Mitsumi Electric Co Ltd Inspection method of semiconductor device
JP2009133722A (en) * 2007-11-30 2009-06-18 Tokyo Electron Ltd Probe device
TWI414793B (en) * 2009-09-15 2013-11-11 Mpi Corp High frequency probe card

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004205487A (en) * 2002-11-01 2004-07-22 Tokyo Electron Ltd Probe card fixing mechanism
JP2006108456A (en) * 2004-10-07 2006-04-20 Japan Electronic Materials Corp Probe device
JP2008082912A (en) * 2006-09-28 2008-04-10 Micronics Japan Co Ltd Electrical connection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108603915A (en) * 2016-02-29 2018-09-28 泰拉丁公司 The thermal control of probe card assembly

Also Published As

Publication number Publication date
TWI513984B (en) 2015-12-21
JP5816749B2 (en) 2015-11-18
JPWO2013190844A1 (en) 2016-02-08
TW201405131A (en) 2014-02-01
KR20140054380A (en) 2014-05-08
KR101569303B1 (en) 2015-11-13

Similar Documents

Publication Publication Date Title
KR100626199B1 (en) Mechanism for fixing a probe card
KR101142760B1 (en) Fixing device of probe card and electronic component testing apparatus
WO2006001476A1 (en) Probe card
JP5816749B2 (en) Probe card fixing device, probe inspection device
TWI396846B (en) Probe card
JP6209376B2 (en) Electrical connection device
JP6209375B2 (en) Electrical connection device
JP2011145279A (en) Probe card and inspection device
KR20080085322A (en) Probe card
KR20150070766A (en) Tester and testing equipment for semiconductor devices having the same
KR100967339B1 (en) Probe card for wafer test
JP3096197B2 (en) Probe card
JP4815192B2 (en) Electrical connection device
JP4642603B2 (en) Probe card
KR20090014755A (en) Probe card and apparatus for testing a wafer having the probe card
JP4498829B2 (en) Card holder
KR101081901B1 (en) Probe card
JP5031618B2 (en) Probe card
KR20100089694A (en) Probe card
JP4941169B2 (en) Probe card mechanism
JP3313031B2 (en) Probe card
KR101646624B1 (en) Probe card
JP2007101345A (en) Card holder and prober
JP5581234B2 (en) Probe card
WO2023227538A1 (en) Probe card with improved temperature control

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13807311

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014520958

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147008159

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13807311

Country of ref document: EP

Kind code of ref document: A1