WO2013187409A1 - 中空ばね用シームレス鋼管 - Google Patents

中空ばね用シームレス鋼管 Download PDF

Info

Publication number
WO2013187409A1
WO2013187409A1 PCT/JP2013/066086 JP2013066086W WO2013187409A1 WO 2013187409 A1 WO2013187409 A1 WO 2013187409A1 JP 2013066086 W JP2013066086 W JP 2013066086W WO 2013187409 A1 WO2013187409 A1 WO 2013187409A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
steel pipe
seamless steel
surface layer
Prior art date
Application number
PCT/JP2013/066086
Other languages
English (en)
French (fr)
Inventor
▲琢▼哉 高知
畑野 等
田村 栄一
孝太郎 豊武
Original Assignee
株式会社神戸製鋼所
神鋼メタルプロダクツ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所, 神鋼メタルプロダクツ株式会社 filed Critical 株式会社神戸製鋼所
Priority to CN201380030116.3A priority Critical patent/CN104334763B/zh
Priority to KR1020147034440A priority patent/KR101666292B1/ko
Priority to EP13804561.2A priority patent/EP2860275B1/en
Priority to US14/407,106 priority patent/US9650704B2/en
Publication of WO2013187409A1 publication Critical patent/WO2013187409A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/02Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for springs
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12292Workpiece with longitudinal passageway or stopweld material [e.g., for tubular stock, etc.]

Definitions

  • the present invention relates to a seamless steel pipe for a hollow spring used for a valve spring or a suspension spring of an internal combustion engine such as an automobile.
  • Patent Document 1 After drilling using a Mannesmann Piercer, which should be representative of a piercing and rolling mill (Mannesmann piercing), mandrel mill rolling (stretching rolling) is performed in a cold state, and further at 820 to 940 ° C.
  • Mandrel mill rolling is performed in a cold state, and further at 820 to 940 ° C.
  • a technique has been proposed in which reheating is performed for 10 to 30 minutes, and then finish rolling is performed.
  • Patent Document 2 hot isostatic pressing is performed to form a hollow seamless pipe, and then spheroidizing annealing is performed, followed by cold stretching (drawing) by pilger mill rolling or drawing.
  • the technology that improves both productivity and quality is proposed.
  • This technique also shows that the annealing is finally performed at a predetermined temperature.
  • Patent Document 3 As a method for solving the above problems, a technique as disclosed in Patent Document 3 has also been proposed. In this technique, a rod is hot-rolled, then drilled with a gun drill, and a seamless steel pipe is manufactured by cold working (drawing, rolling), thereby avoiding heating during drilling or extrusion.
  • Coarse carbides remain in an undissolved state during quenching heating, cause hardness reduction and incomplete quenching structure formation, and cause a decrease in fatigue strength (sometimes referred to as “durability degradation”).
  • durability degradation sometimes referred to as “durability degradation”.
  • short-time heat treatment by high-frequency heating has become the mainstream, and undissolved carbide remains remarkably. There is a tendency to become.
  • the present invention has been made under such circumstances, and the object thereof is sufficient in a formed spring by controlling the metallographic structure in the inner surface portion (surface portion of the inner peripheral surface) of the steel pipe (pipe).
  • An object of the present invention is to provide a seamless steel pipe for a hollow spring that can ensure fatigue strength.
  • C 0.2 to 0.7% (meaning “mass%”, the same applies to the chemical component composition), Si: 0.5 to 3%, Mn: 0.1 to 2%, Cr: 3% or less (not including 0%), Al: 0.1% or less (not including 0%), P: 0.02% or less (not including 0%), S: 0.02% or less (0 %) And N: 0.02% or less (not including 0%), respectively, and the residual austenite content in the surface layer portion in the steel pipe is 5% by volume or less, and the ferrite in the surface layer portion in the steel pipe ⁇
  • the “equivalent circle diameter” means the diameter when focusing on the size of carbide and converting it to a circle of the same area.
  • the steel material used as a material further includes (a) B: 0.015% or less (not including 0%), (b) V: 1% or less (0% if necessary). 1) or more selected from the group consisting of Ti: 0.3% or less (not including 0%) and Nb: 0.3% or less (not including 0%), (c) Ni: 3% Or less (excluding 0%) and / or Cu: 3% or less (not including 0%), (d) Mo: 2% or less (not including 0%), (e) Ca: 0.005% or less (Not including 0%), Mg: not more than 0.005% (not including 0%) and REM: not less than 0.02% (not including 0%), (f) Zr: 0.1% or less (not including 0%), Ta: 0.1% or less (not including 0%), and Hf: 0 It is also useful to contain one or more selected from the group consisting of 1% or less (not including 0%), etc., and depending on the type of elements contained,
  • the seamless steel pipe for hollow springs of the present invention appropriately adjusts the chemical composition of the steel material as a raw material, and appropriately adjusts various structures (residual austenite, average grain size of ferrite / pearlite structure, coarse carbide) in the surface layer of the steel pipe. Therefore, sufficient fatigue strength can be secured in the spring formed from the seamless steel pipe for hollow spring.
  • the present inventors have studied the control factors necessary for improving the durability by increasing the fatigue strength from various viewpoints. Conventionally, as factors controlling durability, decarburization depth, dredging depth, and the like have been considered so far, and various techniques have been proposed from this viewpoint. However, under the higher stress region, the durability improvement techniques that have been proposed so far have limitations, and other factors have to be examined to achieve higher durability.
  • the number density of coarse carbides having an equivalent circle diameter of 500 nm or more can be reduced to 1.8 ⁇ 10 ⁇ 2 pieces / ⁇ m 2 or less.
  • the number density of coarse carbides preferably, 1.5 ⁇ 10 -2 cells / [mu] m 2 or less, more preferably 1.2 ⁇ 10 -2 cells / [mu] m 2 or less, more preferably 1.0 ⁇ 10 - 2 / ⁇ m 2 or less.
  • the lower limit of the number density of coarse carbides is zero.
  • the carbides targeted in the present invention include cementite (Fe 3 C) present in the metal structure, as well as carbide-forming elements (for example, Mn, Cr, V, Ti, Nb, Mo, Zr, (Ta, Hf).
  • the number density of carbides in the surface layer portion in the steel pipe can be measured by the following method. In order to observe an arbitrary cross section (a cross section perpendicular to the axis of the pipe), an observation sample is prepared by cutting, embedding resin, mirror polishing, and etching by picral corrosion. Using a scanning electron microscope (SEM), the surface layer portion at a depth of 100 ⁇ m from the outermost surface of the inner peripheral surface is observed (magnification 3000 times). Based on the SEM photograph (measurement location: 3 locations), the carbide area is measured using image analysis software (Image-Pro) and converted to an equivalent circle diameter. The number density is measured and averaged for carbides having a circle equivalent diameter of 500 nm or more.
  • SEM scanning electron microscope
  • the average particle diameter (structure size) of the ferrite / pearlite structure and retained austenite will be described.
  • Conventional solid springs have been subjected to shot peening as a means for improving the durability of the outer surface, which is the starting point of fracture.
  • the hollow spring has a problem that the inner surface of the steel pipe cannot be shot peened, and therefore the inner surface of the steel pipe tends to be a starting point of fracture.
  • the average particle diameter of the ferrite / pearlite structure is the average particle diameter of the mixed structure of ferrite and pearlite.
  • JIS G0551 describes the particle size measurement method for ferrite and pearlite, but only the ferrite portion excluding the pearlite portion.
  • the particle sizes of ferrite and pearlite block (nodules) are measured together. To do.
  • the crystal unit is judged by the contrast after etching.
  • the average particle diameter of the ferrite / pearlite structure of the surface layer portion in the steel pipe can be measured by the following method.
  • an observation sample prepared by cutting, resin embedding, mirror polishing and etching by nital corrosion is prepared.
  • the surface layer portion at a position of 100 ⁇ m from the inner surface is observed with an optical microscope (100 to 400 times), the crystal grain size is measured by a comparative method, and converted to the average crystal grain size from the formula (1) (measurement spot: 4 spots).
  • the metal structure other than the retained austenite is mainly a ferrite / pearlite structure (“mainly” means the largest volume ratio in the entire metal structure), but bainite and martensite are also included. May include.
  • the ratio of the metal structure other than austenite is not particularly limited. This is because the durability can be improved by reducing the retained austenite, which is a factor that impedes durability improvement, and by setting the ferrite-pearlite structure to a predetermined average particle diameter.
  • the average particle diameter of the ferrite / pearlite structure is 18 ⁇ m or less from the viewpoint of improving the durability. .
  • the average particle diameter in the surface layer portion in the steel pipe is 18 ⁇ m or less from the viewpoint of improving the durability. .
  • it is 15 micrometers or less, More preferably, it is 10 micrometers or less, More preferably, you may be 5 micrometers or less.
  • the lower limit is not particularly limited, but is actually 1 nm or more.
  • the content of retained austenite in the surface layer portion in the steel pipe is 5% by volume or less, preferably 3% by volume or less, and more preferably zero.
  • the residual austenite content of the surface layer portion in the steel pipe can be measured by the following method.
  • an observation sample is prepared that has been subjected to electrolytic polishing after cutting, resin embedding, and wet polishing.
  • the amount of retained austenite (unit: volume%) is measured by X-ray diffraction.
  • the seamless steel pipe for a hollow spring of the present invention can be manufactured according to the following procedure for a steel material having an appropriately adjusted chemical component composition (the appropriate chemical component composition will be described later). Each step in this manufacturing method will be described more specifically.
  • Heating temperature during hot extrusion less than 1050 ° C.
  • the heating temperature is preferably 1020 ° C. or lower, more preferably 1000 ° C. or lower.
  • the minimum of the preferable heating temperature is not specifically limited, Since extrusion will become difficult when heating temperature is too low, Preferably it is 900 degreeC or more.
  • the average cooling rate up to 720 ° C. is set to 1.5 ° C./second or more, preferably 2 ° C./second or more.
  • the upper limit of the average cooling rate up to 720 ° C. is not particularly limited, but it is preferably 5 ° C./second or less industrially from the viewpoint of production cost and controllability.
  • the cooling after 720 ° C. is not particularly limited, and may be performed at, for example, about 0.1 to 3 ° C./second.
  • Cold working conditions After performing the controlled cooling as described above, cold working is performed. As the cold working at this time, it is desirable to repeatedly perform drawing and cold rolling to manufacture a steel pipe having a predetermined size. This is because, by performing cold working and subsequent intermediate annealing a plurality of times, it becomes easy to refine the average particle size of the ferrite / pearlite structure to the predetermined size.
  • annealing process After producing a steel pipe having a predetermined size by the cold working, annealing is further performed to reduce the number density of coarse carbides and the amount of retained austenite, and to control the average particle diameter of the ferrite pearlite structure. Moreover, the hardness of the material can be reduced by annealing.
  • the atmosphere is not particularly limited, decarburization that occurs during annealing can be significantly reduced if annealing is performed in a non-oxidizing atmosphere such as Ar, nitrogen, or hydrogen. Further, since the production scale becomes extremely thin, it is possible to shorten the dipping time at the time of pickling performed after annealing, which is advantageous for suppressing the formation of deep pickling pits.
  • the maximum heating temperature (annealing temperature) during annealing is 900 ° C. or higher.
  • the annealing temperature in the prior art (Patent Documents 2 and 3), annealing is performed at a relatively low temperature of 750 ° C. or lower. However, when the annealing temperature is 750 ° C. or less, the coarsening of the carbide proceeds. In the present invention, paying attention to this point, the annealing temperature is not a low temperature as in the prior art, but is annealed at a high temperature (900 ° C. or higher) at which carbides are dissolved.
  • the annealing temperature is preferably 950 ° C. or lower, more preferably 940 ° C. or lower, and further preferably 930 ° C. or lower.
  • the heating (annealing) time is important to control the heating (annealing) time according to the annealing temperature.
  • the residence time in a temperature range of 900 ° C. or higher is set to less than 10 minutes, preferably 7 minutes or less, more preferably 4 minutes or less.
  • the heating time is too short, coarse carbides remain or the material is not uniform in the material. Therefore, it is necessary to secure the heating time so that at least a desired effect can be obtained.
  • the reduction of coarse carbides and the average particle size of the ferrite / pearlite structure can be controlled by setting the time to 5 seconds or longer, preferably 10 seconds or longer, and more preferably 20 seconds or longer.
  • the average cooling rate (cooling rate 1) in the temperature range from 900 ° C. to 750 ° C. is 0.5 ° C./second or more, preferably 1 ° C./second or more, more preferably 2 ° C./second or more.
  • the higher the average cooling rate, the more effective the structure refinement, and the upper limit is not particularly limited. However, in consideration of the controllability of the cooling rate and the effect of the cooling rate, it is industrially preferably 10 ° C./second or less. .
  • cooling rate 2 is gradually cooled at an average cooling rate (cooling rate 2) in a temperature range from 750 ° C. to 600 ° C. below 1 ° C./second, preferably below 0.5 ° C./second. This is because in this temperature range, it is desirable that the transformation is sufficiently allowed to proceed at a high temperature in order to avoid the formation of retained austenite.
  • the average cooling rate is preferably 0.1 ° C./second or more.
  • the cooling rate may be the same or different in the first stage (900 ° C. to 750 ° C.) and the second stage (750 to 600 ° C.). It is preferable to set a cooling rate at which a desired effect is obtained in each cooling stage. Further, the cooling rate after 600 ° C. is not particularly limited, and may be any of cooling, removal, and rapid cooling in consideration of production facilities and manufacturing conditions.
  • heating is performed to 900 ° C. or higher in a non-oxidizing atmosphere, and the average cooling rate (cooling rate 1) in the temperature range of 900 ° C. to 750 ° C. after heating is set to 0. It is characterized by step cooling in which the average cooling rate (cooling rate 2) in the temperature range of 750 ° C. to 600 ° C. is less than 1 ° C./second, whereby the number density of the predetermined coarse carbide, A hollow seamless steel pipe satisfying the average grain size of ferrite / pearlite structure and the amount of retained austenite can be obtained.
  • pickling treatment is performed using sulfuric acid or hydrochloric acid.
  • the pickling treatment becomes longer, large pickling pits are generated and remain as soot. From this point of view, it is advantageous to shorten the pickling time, specifically, it is preferably within 30 minutes, more preferably within 20 minutes.
  • the cold working, annealing (cooling after annealing), and pickling may be performed a plurality of times under the above conditions as necessary.
  • coarse carbide, ferrite and pearlite structure after final annealing, and retained austenite are specified, but by promoting the refinement of the structure by intermediate annealing, etc.
  • Inner surface polishing process when high fatigue strength is required, for example, a process of polishing and grinding the inner surface layer may be employed for the purpose of removing wrinkles and decarburized layers on the inner surface.
  • the amount of polishing and grinding of the inner surface layer is 0.05 mm or more, preferably 0.1 mm or more, more preferably 0.15 mm or more.
  • C is an element necessary for ensuring high strength. For that purpose, it is necessary to contain 0.2% or more.
  • the C content is preferably 0.30% or more, and more preferably 0.35% or more. However, if the C content is excessive, it is difficult to ensure ductility, so 0.7% or less is necessary.
  • the C content is preferably 0.65% or less, and more preferably 0.60% or less.
  • Si is an element effective for improving the sag resistance necessary for the spring.
  • the Si content is 0.5%. It is necessary to do it above. Preferably it is 1.0% or more, More preferably, it is 1.5% or more.
  • Si is also an element that promotes decarburization, if Si is excessively contained, formation of a decarburized layer on the steel surface is promoted. As a result, a peeling process for removing the decarburized layer is required, which is inconvenient in terms of manufacturing cost.
  • the upper limit of the Si content is set to 3% in the present invention. Preferably it is 2.5% or less, More preferably, it is 2.2% or less.
  • Mn is a beneficial element that is used as a deoxidizing element and detoxifies by forming S and MnS, which are harmful elements in steel.
  • Mn 0.1% or more Preferably it is 0.15% or more, more preferably 0.20% or more.
  • the upper limit of the Mn content is set to 2% in the present invention. Preferably it is 1.5% or less, More preferably, it is 1.0% or less.
  • Cr 3% or less (excluding 0%)
  • Cr is an element effective for securing strength and improving corrosion resistance after tempering, and is particularly important for suspension springs that require a high level of corrosion resistance. Element. Such an effect increases as the Cr content increases, but in order to exert such an effect preferentially, it is preferable to contain Cr by 0.2% or more. More preferably, it is 0.5% or more.
  • the Cr content is excessive, a supercooled structure is likely to be generated, and it is concentrated in cementite to lower the plastic deformability, resulting in deterioration of cold workability.
  • the Cr content is preferably suppressed to 3% or less. More preferably, it is 2.0% or less, More preferably, it is 1.7% or less.
  • Al 0.1% or less (not including 0%)
  • Al is mainly added as a deoxidizing element.
  • N and AlN are formed to render the solid solution N harmless and contribute to the refinement of the structure.
  • Al in order to fix the solute N, it is preferable to contain Al so as to exceed twice the N content.
  • Al is an element that promotes decarburization in the same way as Si, it is necessary to suppress the addition of a large amount of Al in the spring steel containing a large amount of Si.
  • it is 0.07% or less, More preferably, it is 0.05% or less.
  • P 0.02% or less (excluding 0%)
  • the content is 0.02% or less.
  • P is 0.010% or less, and more preferably 0.008% or less.
  • P is an impurity inevitably contained in the steel material, and it is difficult to make the amount 0% in industrial production.
  • S 0.02% or less (excluding 0%)
  • S is a harmful element that deteriorates the toughness and ductility of steel as in the case of P described above, it is important to reduce it as much as possible.
  • S is suppressed to 0.02% or less. Preferably it is 0.010% or less, More preferably, it is 0.008% or less.
  • S is an impurity inevitably contained in steel, and it is difficult to make the amount 0% in industrial production.
  • N 0.02% or less (excluding 0%)
  • N has the effect of forming nitrides and refining the structure when Al, Ti, and the like are present, but when present in a solid solution state, N deteriorates the toughness and hydrogen embrittlement resistance of the steel material.
  • the N content is 0.02% or less. Preferably it is 0.010% or less, More preferably, it is 0.0050% or less.
  • the balance is composed of iron and unavoidable impurities (for example, Sn, As, etc.), but may also contain trace components (allowable components) to the extent that the properties are not impaired.
  • trace components allowable components
  • B 0.015% or less (not including 0%)
  • V 1% or less (not including 0%)
  • Ti 0.3% or less (0%) 1) or more selected from the group consisting of 0.3% or less (excluding 0%) and
  • Mo 2% or less (not including 0%)
  • Ca 0.005% or less (not including 0%)
  • Mg 0.005% or less (Not including 0%)
  • REM one or more selected from the group consisting of 0.02% or less (not including 0%)
  • B 0.015% or less (excluding 0%)
  • B has an effect of suppressing fracture from the prior austenite grain boundaries after quenching and tempering of the steel material. In order to exhibit such an effect, it is preferable to contain B 0.001% or more. However, when B is contained excessively, a coarse carbon boride is formed and the characteristics of the steel material are impaired. Moreover, when B is contained more than necessary, it also causes generation of wrinkles in the rolled material. For these reasons, the B content is set to 0.015% or less. More preferably, it is 0.010% or less, and further preferably 0.0050% or less.
  • V 1% or less (not including 0%), Ti: 0.3% or less (not including 0%) and Nb: 0.3% or less (not including 0%) 1 More than species
  • V, Ti, and Nb form carbon / nitrides (carbides, nitrides, and carbonitrides), sulfides, and the like with C, N, S, etc., and have the effect of detoxifying these elements.
  • the carbon / nitride is formed, and the effect of refining the austenite structure during heating in the annealing process at the time of manufacturing the hollow steel pipe and the quenching process at the time of manufacturing the spring is also exhibited. Furthermore, it has the effect of improving delayed fracture resistance.
  • V, V, and Nb in an amount of 0.02% or more (a total of 0.2% or more when containing two or more).
  • content of V, Ti, and Nb it is preferable to make content of V, Ti, and Nb into 1% or less, 0.3% or less, and 0.3% or less, respectively. More preferably, V is 0.5% or less, Ti is 0.1% or less, and Nb is 0.1% or less.
  • Ni is an element effective for suppressing surface decarburization and improving corrosion resistance. In consideration of cost reduction, Ni does not have a lower limit in order to prevent addition. However, when suppressing surface decarburization or improving corrosion resistance, Ni is preferably contained in an amount of 0.1% or more. However, if the Ni content is excessive, a supercooled structure may be generated in the rolled material, or retained austenite may be present after quenching, which may deteriorate the properties of the steel material. For these reasons, when Ni is contained, the content is made 3% or less. From the viewpoint of cost reduction, it is preferably 2.0% or less, more preferably 1.0% or less.
  • Cu is an element effective for suppressing surface layer decarburization and improving corrosion resistance in the same manner as Ni. In order to exhibit such an effect, it is preferable to contain 0.1% or more of Cu. However, if the Cu content is excessive, a supercooled structure may be generated or cracks may occur during hot working. For these reasons, when Cu is contained, the content is made 3% or less. From the viewpoint of cost reduction, it is preferably 2.0% or less, more preferably 1.0% or less.
  • Mo 2% or less (excluding 0%)
  • Mo is an element effective for securing strength and improving toughness after tempering.
  • the Mo content is preferably 2% or less. More preferably, it is 0.5% or less.
  • Ca selected from the group consisting of 0.005% or less (excluding 0%), Mg: 0.005% or less (not including 0%), and REM: 0.02% or less (not including 0%)
  • Ca, Mg, and REM rare earth elements
  • the respective contents of Ca are 0.005% or less, preferably 0.0030% or less
  • Mg is 0.005% or less, preferably 0.0030% or less
  • REM is 0.02% or less, preferably 0.00. It is 010% or less.
  • REM means a lanthanoid element (15 elements from La to Lu), Sc (scandium) and Y (yttrium).
  • molten steels (medium carbon steel) having the chemical composition shown in Table 1 below are melted by a normal melting method, and after the molten steel is cooled and divided and rolled, a prismatic billet having a cross-sectional shape of 155 mm ⁇ 155 mm and After that, a round bar having a diameter of 150 mm was formed by hot forging, and an extrusion billet was produced by machining.
  • REM was added in the form of a misch metal containing about 20% La and about 40-50% Ce.
  • “-” indicates that no element was added.
  • annealing temperature maximum heating temperature
  • annealing time heating time
  • average cooling rate after annealing cooling rate 1, cooling rate 2
  • the number density of coarse carbides, the structure size (average particle diameter), and the amount of retained austenite were investigated by the following methods.
  • tissue size average particle size
  • an observation sample was prepared by cutting, resin embedding, mirror polishing, and etching by nital corrosion.
  • the surface layer portion at a position of 100 ⁇ m from the inner surface was observed with an optical microscope (100 to 400 times), the crystal grain size was measured by a comparative method, and converted into the average crystal grain size from the formula (1) (measurement location: 4 locations).
  • hollow seamless steel pipes No. 1 to 3, 6, 7, 9 to 11, 14, 15, 17 obtained by producing a steel material having an appropriate component composition under appropriate conditions. 20-22, 24-26), the springs with good fatigue strength were obtained.
  • test no. 4 5, 8, 12, 13, 16, 18, 19, 23
  • the requirements specified in the present invention are not satisfied, and the fatigue strength is deteriorated. Recognize.
  • test No. No. 4 is an example in which the cooling rate 1 was slow.
  • the average particle size (structure size) of the ferrite / pearlite structure was coarsened, and the fatigue strength (durability) was lowered.
  • Test No. Nos. 5 and 23 are examples in which the cooling rate 2 is too fast, the amount of retained austenite is increased, and the fatigue strength (durability) is reduced.
  • Test No. Nos. 8 and 16 are examples in which the maximum heating temperature during annealing is high, the average particle size (structure size) is coarse, and the fatigue strength is low.
  • Test No. 12 and 13 are examples in which the heating time at 900 ° C. or higher is too long, and the fatigue characteristics (durability) are deteriorated.
  • Test No. 18 and 19 are examples in which annealing is performed in the atmosphere and the temperature during annealing is low. In these examples, the number density of coarse carbides is increased, and the fatigue strength (durability) is reduced.
  • the seamless steel pipe for hollow springs of the present invention appropriately adjusts the chemical composition of the steel material as a raw material, and appropriately adjusts various structures (residual austenite, average grain size of ferrite / pearlite structure, coarse carbide) in the surface layer of the steel pipe. Therefore, sufficient fatigue strength can be secured in the spring formed from the seamless steel pipe for hollow spring.

Abstract

 C:0.2~0.7質量%、Si:0.5~3質量%、Mn:0.1~2質量%、Cr:3質量%以下(0質量%を含まない)、Al:0.1質量%以下(0質量%を含まない)、P:0.02質量%以下(0質量%を含まない)、S:0.02質量%以下(0質量%を含まない)、およびN:0.02質量%以下(0質量%を含まない)を含有する中空ばね用シームレス鋼管。鋼管内表層部における残留オーステナイト含有率が5体積%以下である。鋼管内表層部におけるフェライト・パーライト組織の平均粒径が18μm以下である。鋼管内表層部に存在する円相当直径で500nm以上の炭化物の個数密度が1.8×10-2個/μm以下である。

Description

中空ばね用シームレス鋼管
 本発明は、自動車等の内燃機関の弁ばねや懸架ばね等に使用される中空ばね用シームレス鋼管に関するものである。
 近年、排ガス低減や燃費改善を目的とする自動車の軽量化や高出力化の要請が高まるにつれて、エンジンやクラッチ、サスペンション等に使用される弁ばね、クラッチばね、懸架ばね等においても高応力設計が志向されている。そのため、これらのばねは、高強度化・細径化していく方向であり、負荷応力が更に増大する傾向にある。こうした傾向に対応するため、耐疲労性や耐へたり性においても一段と高性能なばね用鋼が強く望まれている。
 また、耐疲労性や耐へたり性を維持しつつ軽量化を実現するために、ばねの素材としてこれまで用いられている棒状の線材(即ち、中実の線材)ではなく、中空にしたパイプ状の鋼材であって溶接部分のないもの(即ち、シームレスパイプ)をばねの素材として用いられるようになっている。
 上記のような中空シームレスパイプを製造するための技術についても、これまでにも様々提案されている。例えば、特許文献1には、穿孔圧延機の代表というべきマンネスマンピアサを用いて穿孔を行なった後(マンネスマン穿孔)、冷間でマンドレルミル圧延(延伸圧延)を行ない、更に820~940℃に10~30分の条件で再加熱し、その後仕上げ圧延する技術について提案されている。
 一方、特許文献2では、熱間での静水圧押出しを行なって、中空シームレスパイプの形状とした後、球状化焼鈍を行ない、引続き冷間でピルガーミル圧延や引抜き加工等によって伸展(抽伸)することで、生産性、品質ともに改善する技術について提案されている。また、この技術では最終的に、所定の温度で焼鈍を行なうことも示されている。
 上記のような各技術では、マンネスマン穿孔や熱間静水圧押出しを行う際に、1050℃以上に加熱したり、冷間加工前・後に焼鈍を行う必要があり、熱間での加工あるいは加工時に、更にはその後の熱処理工程において、中空シームレスパイプの内周面および外周面に脱炭が生じやすいという問題がある。また加熱処理後の冷却時においても、フェライトとオーステナイト中への炭素の固溶量の違いに起因する脱炭(フェライト脱炭)が生じる場合がある。
 上記のような脱炭が生じると、ばね製造時の焼入れ段階で、外周面および内周面で表層部が十分硬化しないという事態が生じ、成形されるばねにおいて十分な疲労強度を確保できないという問題が生じる。また、疵が存在すると応力集中部となり、早期折損の要因となる。
 また通常のばねでは外面にショットピーニングなどで残留応力を付与し、疲労強度を向上させることが通常行なわれているが、中空シームレスパイプで成形したばねでは、内周面にショットピーニングができないこと、および従来の加工方法では内周面で疵が発生しやすいことから、中実材よりも脱炭や疵などの品質を厳しく制御する必要がある。
 上記のような問題を解決する方法として、特許文献3のような技術も提案されている。この技術では、棒材を熱間圧延した後、ガンドリルで穿孔して、冷間加工(抽伸、圧延)によってシームレス鋼管を製造することで、穿孔や押出し時における加熱を回避するものである。
日本国特開平1-247532号公報 日本国特開2007-125588号公報 日本国特開2010-265523号公報
 しかしながら、特許文献3の技術では、750℃以下の比較的低温で焼鈍が行われており(この点については、特許文献2の技術についても同様)、このような低温焼鈍を行うと、炭化物の粗大化が進行しやすいという別の問題がある。
 粗大な炭化物は、焼入れ加熱時に未固溶状態で残存し、硬さ低下や不完全焼入れ組織生成を引き起こし、疲労強度の低下(「耐久性劣化」と呼ぶことがある)の原因となる。特に、近年では、ばね製造時における焼入れ工程において、脱炭低減や設備のコンパクト化を図る観点から、高周波加熱による短時間熱処理が主流となっており、未固溶状態の炭化物の残存が顕著になりやすい傾向がある。
 しかも現在では、従来の要求レベルよりも高度な疲労強度が求められており、これまで提案されているような技術では、要求される疲労強度を満足できるものではなく、耐久性の点で不十分である。
 本発明はこうした状況の下になされたものであって、その目的は、鋼管(パイプ)内表層部(内周面の表層部)における金属組織を制御することによって、成形されるばねにおいて十分な疲労強度を確保できるような中空ばね用シームレス鋼管を提供することにある。
 本発明は、C:0.2~0.7%(「質量%」の意味、化学成分組成について以下同じ)、Si:0.5~3%、Mn:0.1~2%、Cr:3%以下(0%を含まない)、Al:0.1%以下(0%を含まない)、P:0.02%以下(0%を含まない)、S:0.02%以下(0%を含まない)、およびN:0.02%以下(0%を含まない)を夫々含有し、鋼管内表層部における残留オーステナイト含有率が5体積%以下であると共に、鋼管内表層部におけるフェライト・パーライト組織の平均粒径が18μm以下であり、且つ鋼管内表層部に存在する円相当直径で500nm以上の炭化物の個数密度が1.8×10-2個/μm以下である中空ばね用シームレス鋼管を提供する。なお、前記「円相当直径」とは、炭化物の大きさに着目し、これを同一面積の円に換算したときの直径を意味する。
 本発明の中空ばね用シームレス鋼管において、素材として用いる鋼材には、必要によって更に(a)B:0.015%以下(0%を含まない)、(b)V:1%以下(0%を含まない)、Ti:0.3%以下(0%を含まない)およびNb:0.3%以下(0%を含まない)よりなる群から選ばれる1種以上、(c)Ni:3%以下(0%を含まない)および/またはCu:3%以下(0%を含まない)、(d)Mo:2%以下(0%を含まない)、(e)Ca:0.005%以下(0%を含まない)、Mg:0.005%以下(0%を含まない)およびREM:0.02%以下(0%を含まない)よりなる群から選ばれる1種以上、(f)Zr:0.1%以下(0%を含まない)、Ta:0.1%以下(0%を含まない)およびHf:0.1%以下(0%を含まない)よりなる群から選ばれる1種以上、等を含有することも有用であり、含有される元素の種類に応じて、中空ばね用シームレス鋼管(すなわち、成形されるばね)の特性が更に改善される。
 本発明の中空ばね用シームレス鋼管は、素材としての鋼材の化学成分組成を適切に調整すると共に、鋼管内表層部の各種組織(残留オーステナイト、フェライト・パーライト組織の平均粒径、粗大炭化物)を適切に制御しているため、こうした中空ばね用シームレス鋼管から成形されるばねにおいて十分な疲労強度を確保できるようになる。
 本発明者らは、高疲労強度化を図って耐久性を向上させるのに必要な制御因子について多角的に検討した。従来、耐久性向上の支配因子としては、これまでは脱炭深さや疵深さ等が考えられ、こうした観点から様々な技術が提案されてきた。しかしながらより高い応力域下では、これまで提案されてきた耐久性向上技術では限界があり、より高い耐久性を達成するには他の要因についても検討する必要があった。
 その結果、鋼管内表層部(内周面の表層部)における各種組織が与える影響も大きいことが判明した。すなわち、粗大炭化物、フェライト・パーライト組織の平均粒径、残留オーステナイト量を制御することによって、疲労強度を著しく向上できることがわかった。
 まず、粗大炭化物について説明する。これまでの製造方法では、750℃以下の比較的低温で焼鈍が行われていた(前記特許文献2、3)。このような低温焼鈍を行うと、鋼管内表層部に存在する炭化物の粗大化が進行しやすいという問題がある。この点に関して本発明者らが検討した結果、粗大炭化物が、焼入れ時に未固溶で残存すると耐久性向上を阻害する要因となることがわかった。そして焼鈍条件を適切にすれば、粗大な炭化物の低減が図られ、耐久性が更に向上し得ることを見出した。具体的には、後述するように焼鈍条件を適切に制御することによって、円相当直径で500nm以上となるような粗大炭化物の個数密度を1.8×10-2個/μm以下に低減でき、その結果、耐久性を向上することができたのである。なお、粗大炭化物の個数密度は、好ましくは、1.5×10-2個/μm以下、より好ましくは1.2×10-2個/μm以下、更に好ましくは1.0×10-2個/μm以下である。なお、粗大炭化物の個数密度の下限は0である。また、本発明で対象とする炭化物とは、金属組織中に存在するセメンタイト(FeC)の他、鋼材成分中の炭化物形成元素(例えばMn、Cr、V、Ti、Nb、Mo、Zr、Ta、Hf)の炭化物を含む趣旨である。
 鋼管内表層部の炭化物の個数密度は、以下の方法により測定することができる。任意の横断面(パイプの軸直角断面)を観察するため、切断、樹脂埋め込み、鏡面研磨した後、ピクラール腐食にてエッチングした観察試料を作製する。走査型電子顕微鏡(SEM)で、内周面の最表面から深さ100μm位置の表層部を観察(倍率3000倍)する。SEM写真に基づき(測定箇所:3箇所)、画像解析ソフト(Image-Pro)を用いて炭化物面積を測定し、円相当直径に換算する。そして円相当直径で500nm以上の炭化物について、個数密度を測定し、平均する。
 次に、フェライト・パーライト組織の平均粒径(組織サイズ)と残留オーステナイトについて説明する。本発明者らが検討した結果、鋼管内表層部におけるフェライト・パーライト組織の平均粒径と残留オーステナイト量が耐久性に影響を及ぼす要因となることがわかった。従来の中実ばねでは、破壊起点となる外面の耐久性を向上させる手段として、ショットピーニング処理を施していた。しかしながら中空ばねでは、鋼管内表層部をショットピーニング処理することができないため、鋼管内面が破壊起点となりやすいという問題があった。しかし鋼管内表層部の金属組織を適切に制御することで、鋼管内表層部にショットピーニング処理を施さなくても、耐久性を向上できることを見出した。その詳細なメカニズムは明らかでないが、ばね製造工程における焼入れ前の金属組織のうち、フェライト・パーライト組織の平均粒径が微細なほど、また、残留オーステナイト量が少ない組織条件であるほど、焼き入れ後のばねの耐久性が向上することがわかった。詳細な理由は不明であるが、焼き入れ前の金属組織を上記のように制御することによって、焼入れ後の金属組織が微細化する傾向を示し、そして焼入れ後の金属組織が微細化されていると高応力下での局所的なひずみ集中が緩和され、その結果、耐久性が向上するものと推察される。
 本発明においてフェライト・パーライト組織の平均粒径とは、フェライトとパーライトの混合組織の平均粒径のことである。平均粒径は、ナイタールでエッチングした上で、JIS G0551に記載の方法に準じた比較法によって結晶粒度Gを測定し、下式(1)を用いて平均粒径dに換算し、求めることができる。
 d=1/(√8×2)・・・式(1)
 なお、JIS G0551にはフェライト・パーライトの粒度測定に関して、パーライト部分を除いたフェライト部分のみの粒度測定法が記載されているが、本発明では、フェライトおよびパーライトブロック(ノジュール)の粒度をまとめて測定する。パーライトブロック(ノジュール)の測定については、日本金属学会誌,42(1978),708.(高橋、南雲、浅野)の記載に基づき、エッチング後のコントラストによって結晶単位を判断する。
 具体的に、鋼管内表層部のフェライト・パーライト組織の平均粒径は、以下の方法により測定することができる。任意の横断面(パイプの軸直角断面)を観察するため、切断、樹脂埋め込み、鏡面研磨した後、ナイタール腐食にてエッチングした観察試料を作製する。光学顕微鏡で内表面から100μm位置の表層部を観察(100~400倍)し、比較法により結晶粒度を測定し、式(1)から平均結晶粒径に換算する(測定箇所:4箇所)。
 また本発明において、残留オーステナイト以外の金属組織としては、主にフェライト・パーライト組織であるが(「主に」とは、金属組織全体中最も多い体積割合を意味する)、更にベイナイトやマルテンサイトを含む場合がある。なお、本発明では、オーステナイト以外の金属組織の割合については特に限定されない。耐久性向上阻害要因である残留オーステナイトを低減すると共に、上記フェライト・パーライト組織を所定の平均粒径とすることによって耐久性を向上できるからである。
 フェライト・パーライト組織の平均粒径は微細なほど耐久性が向上する傾向を示し、具体的には鋼管内表層部における平均粒径は18μm以下とすることが耐久性向上の観点からは必要である。好ましくは15μm以下、より好ましくは10μm以下、更に好ましくは5μm以下とする。フェライト・パーライト組織の平均粒径は微細なほど耐久性が向上する傾向を示すため下限については特に限定されないが、現実的には1nm以上である。
 一方、鋼管内表層部における残留オーステナイトは、耐久性向上阻害要因であり、フェライト・パーライト組織の平均粒径を微細化しても、残留オーステナイトが多いと、耐久性は向上しにくいことがわかった。したがって鋼管内表層部における残留オーステナイトの含有率は5体積%以下、好ましくは3体積%以下、更に好ましくはゼロとする。
 鋼管内表層部の残留オーステナイト含有率は、以下の方法により測定することができる。任意の横断面(パイプの軸直角断面)を観察するため、切断、樹脂埋め込み、湿式研磨の後、電解研磨仕上げを施した観察試料を作製する。X線回折によって残留オーステナイト量(単位は体積%)を測定する。
 本発明の中空ばね用シームレス鋼管は、化学成分組成を適切に調整した鋼材に対して(適切な化学成分組成については後述する)、下記した手順に従って製造することができる。この製造方法における各工程について、より具体的に説明する。
[中空化手法]
 まず中空化手法としては、熱間押出しによって素管を作製した後、圧延または抽伸等の冷間加工、および軟化焼鈍、酸洗処理を複数回繰り返し、所定のサイズ(外径、内径、長さ)まで成形する。
[熱間押出し時の加熱温度:1050℃未満]
 上記の熱間押出しにおいて、その加熱温度は1050℃未満とすることが推奨される。このときの加熱温度が1050℃以上となると、トータル脱炭が多くなる。加熱温度は好ましくは、1020℃以下、より好ましくは1000℃以下である。好ましい加熱温度の下限は特に限定されないが、加熱温度が低すぎると押出しが困難となるため、好ましくは900℃以上である。
[熱間押出し後の冷却条件:押出し後720℃までの平均冷却速度を1.5℃/秒以上]
 上記のような条件で、熱間押出しを行なった後、720℃までを比較的速やかに冷却することによって、冷却中の脱炭を軽減することができる。こうした冷却効果を発揮させるためには、720℃までの平均冷却速度を1.5℃/秒以上、好ましくは2℃/秒以上とする。720℃までの平均冷却速度の上限は特に限定されないが、製造コストや制御容易性の観点から工業的には5℃/秒以下が好ましい。なお、720℃以降の冷却は特に限定されず、例えば0.1~3℃/秒程度で冷却すればよい。
[冷間加工条件]
 上記のような制御冷却を行なった後は、冷間加工を施すが、このときの冷間加工としては、抽伸や冷間圧延を繰り返し実施し、所定寸法の鋼管を製造することが望ましい。冷間加工、及びその後の中間焼鈍を複数回行うことによって、フェライト・パーライト組織の平均粒径などを上記所定の大きさに微細化することが容易となるからである。
[焼鈍工程]
 上記冷間加工によって所定寸法の鋼管を製造した後、更に焼鈍を行って、粗大炭化物の個数密度や残留オーステナイト量を低減すると共に、フェライト・パーライト組織の平均粒径を制御する。また焼鈍を行うことによって、材料の硬度低減を図ることができる。
 雰囲気については特に限定されないが、焼鈍をArや窒素、水素などの非酸化性雰囲気下で実施すると、焼鈍中に発生する脱炭を顕著に軽減できる。また、生成スケールが極めて薄くなるため、焼鈍後に実施する酸洗時の浸漬時間を短縮でき、深い酸洗ピット生成抑制に有利である。
 また、焼鈍時の加熱最高温度(焼鈍温度)は、900℃以上とすることが望ましい。焼鈍温度については、従来技術では(前記特許文献2、3)、750℃以下の比較的低温で焼鈍されている。しかしながら、焼鈍温度が750℃以下では、炭化物の粗大化が進行される。本発明では、この点に着目し、焼鈍温度については従来のような低温ではなく、炭化物が溶解するような高温(900℃以上)で焼鈍するようにした。
 一方、加熱温度が高温になり過ぎるとかえってフェライト・パーライト組織の組織が粗大化する。フェライト・パーライト組織の粗大化を抑制する観点から焼鈍温度は好ましくは950℃以下、より好ましくは940℃以下、更に好ましくは930℃以下とする。
 また、組織を微細化するには焼鈍温度に応じて加熱(焼鈍)時間も制御することが重要である。高温で長時間加熱するとフェライト・パーライト組織が粗大化する。具体的には900℃以上の温度域での滞在時間を10分未満、好ましくは7分以下、より好ましくは4分以下とする。一方、加熱時間が短すぎると粗大炭化物の残存や、材料内の材質不均一を招くため、少なくとも所望の効果が得られるように加熱時間を確保する必要がある。具体的には5秒以上、好ましくは10秒以上、更に好ましくは20秒以上とすることで粗大炭化物の低減とフェライト・パーライト組織の平均粒径を制御できる。
[焼鈍後の冷却]
 上記温度域での焼鈍後に冷却速度を制御して所定の温度域まで冷却することが望ましい。上記のように従来(750℃以下)よりも高温(900℃以上)で焼鈍を行った場合、高温域ではオーステナイトの粒成長が早いため、高温域での滞在時間を短くし、オーステナイトの粒成長を抑制して微細な組織を保つためである。
 具体的には900℃から750℃までの温度域の平均冷却速度(冷却速度1)を0.5℃/秒以上、好ましくは1℃/秒以上、更に好ましくは2℃/秒以上とする。また平均冷却速度は、速いほど組織微細化に有効であり、上限は特に限定されないが、冷却速度の制御容易性や冷却速度の効果などを考慮すると工業的に好ましくは10℃/秒以下である。
 また750℃~600℃までの温度域の平均冷却速度(冷却速度2)を1℃/秒未満、好ましくは0.5℃/秒未満で徐冷する。この温度域では、残留オーステナイトの生成を避けるために、高温で十分に変態を進行させておくことが望ましいからである。また平均冷却速度は、好ましくは0.1℃/秒以上である。
 なお、冷却速度(冷却速度1、2)は、1段階目(900℃~750℃)と2段階目(750~600℃)で同一であってもよく、また異なっていてもよい。好ましくは各冷却段階において所望の効果が得られる冷却速度を設定することである。また600℃以降の冷却速度については特に限定されず、生産設備や製造条件などを考慮して放冷、除冷、急冷のいずれであってもよい。
 以上のように、本発明の焼鈍工程では、非酸化性雰囲気中にて、900℃以上に加熱し、更に加熱後の900℃~750℃の温度域における平均冷却速度(冷却速度1)を0.5℃/秒以上、750℃~600℃の温度域における平均冷却速度(冷却速度2)は1℃/秒未満とするステップ冷却を特徴とし、これにより、上記所定の粗大炭化物の個数密度、フェライト・パーライト組織の平均粒径、残留オーステナイト量を満足する中空シームレス鋼管が得られる。
[酸洗工程]
 上記のような焼鈍を行った後は、材料表層に少なからずスケールが生成しており、圧延、抽伸等の次工程に悪影響を及ぼすため、硫酸や塩酸等を用いて酸洗処理を実施する。ただし、酸洗処理が長くなると、大きな酸洗ピットが生成し、疵として残存することになる。こうした観点から、酸洗時間を短くすることが有利であり、具体的には30分以内とすることが好ましく、より好ましくは20分以内である。
 なお、本発明では上記冷間加工、焼鈍(焼鈍後の冷却)、酸洗を必要に応じて上記条件で複数回行ってもよい。本発明では、最終焼鈍後の粗大炭化物やフェライト・パーライト組織、残留オーステナイトを規定しているが、中間焼鈍などによって組織の微細化などを促進しておくことで、後工程での焼鈍時に炭化物の固溶が促進されると共に、比較的低温、短時間で粗大炭化物の低減やフェライト・パーライト組織の微細化、残留オーステナイト量の低減を図ることができる。
[内表層研磨工程]
 また本発明では、高疲労強度が要求される場合など、必要に応じて、内表面の疵や脱炭層を除去する目的で内表層を研磨・研削する工程を採用してもよい。内表層の研磨・研削量は0.05mm以上、好ましくは0.1mm以上、更に好ましくは0.15mm以上とするのがよい。更に必要に応じて脱脂工程や皮膜処理工程などを行ってもよい。
 本発明の中空シームレス鋼管は、素材となる鋼材の化学成分組成も適正に調整されていることも重要である。以下、化学成分の範囲限定理由を説明する。
[C:0.2~0.7%]
 Cは、高強度を確保するのに必要な元素であり、そのためには0.2%以上含有させる必要がある。C含有量は、好ましくは0.30%以上であり、より好ましくは0.35%以上である。しかしながら、C含有量が過剰になると、延性の確保が困難になので、0.7%以下とする必要がある。C含有量は、好ましくは0.65%以下であり、より好ましくは0.60%以下である。
[Si:0.5~3%]
 Siは、ばねに必要な耐へたり性の向上に有効な元素であり、本発明で対象とする強度レベルのばねに必要な耐へたり性を得るには、Si含有量を0.5%以上とする必要がある。好ましくは1.0%以上、より好ましくは1.5%以上である。しかしながら、Siは脱炭を促進させる元素でもあるため、Siを過剰に含有させると鋼材表面の脱炭層形成を促進させる。その結果、脱炭層削除のためのピーリング工程が必要となるので、製造コストの面で不都合である。こうしたことから、本発明ではSi含有量の上限を3%とした。好ましくは2.5%以下、より好ましくは2.2%以下である。
[Mn:0.1~2%]
 Mnは、脱酸元素として利用されると共に、鋼材中の有害元素であるSとMnSを形成して無害化する有益な元素である。このような効果を有効に発揮させるには、Mnは0.1%以上含有させる必要がある。好ましくは0.15%以上、より好ましくは0.20%以上である。しかしながら、Mn含有量が過剰になると、偏析帯が形成されて材質のばらつきが生じる。こうしたことから、本発明ではMn含有量の上限を2%とした。好ましくは1.5%以下であり、より好ましくは1.0%以下である。
[Cr:3%以下(0%を含まない)]
 冷間加工性を向上させる観点からは、Cr含有量は少ない程好ましいが、Crは焼戻し後の強度確保や耐食性向上に有効な元素であり、特に高レベルの耐食性が要求される懸架ばねに重要な元素である。こうした効果は、Cr含有量が増大するにつれて大きくなるが、こうした効果を優先的に発揮させるためには、Crは0.2%以上含有させることが好ましい。更に好ましくは0.5%以上とするのがよい。しかしながら、Cr含有量が過剰になると、過冷組織が発生し易くなると共に、セメンタイトに濃化して塑性変形能を低下させ、冷間加工性の劣化を招く。またCr含有量が過剰になると、セメンタイトとは異なるCr炭化物が形成されやすくなり、強度と延性のバランスが悪くなる。こうしたことから、本発明で用いる鋼材では、Cr含有量を3%以下に抑えることが好ましい。より好ましくは2.0%以下、更に好ましくは1.7%以下である。
[Al:0.1%以下(0%を含まない)]
 Alは、主に脱酸元素として添加される。また、NとAlNを形成して固溶Nを無害化すると共に組織の微細化にも寄与する。特に固溶Nを固定させるには、N含有量の2倍を超えるようAlを含有させることが好ましい。しかしながら、AlはSiと同様に脱炭を促進させる元素でもあるため、Siを多く含有するばね鋼ではAlの多量添加を抑える必要があり、本発明では0.1%以下とした。好ましくは0.07%以下、より好ましくは0.05%以下である。
[P:0.02%以下(0%を含まない)]
 Pは、鋼材の靭性や延性を劣化させる有害元素であるため、極力低減することが重要であり、本発明ではその含有量を0.02%以下とする。好ましくは0.010%以下、より好ましくは0.008%以下に抑えるのが良い。なお、Pは鋼材に不可避的に含まれる不純物であり、その量を0%にすることは工業生産上困難である。
[S:0.02%以下(0%を含まない)]
 Sは、上記Pと同様に鋼材の靭性や延性を劣化させる有害元素であるため、極力低減することが重要であり、本発明では0.02%以下に抑える。好ましくは0.010%以下、より好ましくは0.008%以下である。なお、Sは鋼に不可避的に含まれる不純物であり、その量を0%とすることは工業生産上困難である。
[N:0.02%以下(0%を含まない)]
 Nは、Al、Ti等が存在すると窒化物を形成して組織を微細化させる効果があるが、固溶状態で存在すると、鋼材の靭延性及び耐水素脆化特性を劣化させる。本発明では、Nの含有量を0.02%以下とする。好ましくは0.010%以下、より好ましくは0.0050%以下である。
 本発明で適用する鋼材において、残部は、鉄および不可避的不純物(例えば、Sn,As等)からなるものであるが、その特性を阻害しない程度の微量成分(許容成分)も含み得るものであり、こうした鋼材も本発明の範囲に含まれるものである。
 また必要によって、更に(a)B:0.015%以下(0%を含まない)、(b)V:1%以下(0%を含まない)、Ti:0.3%以下(0%を含まない)およびNb:0.3%以下(0%を含まない)よりなる群から選ばれる1種以上、(c)Ni:3%以下(0%を含まない)および/またはCu:3%以下(0%を含まない)、(d)Mo:2%以下(0%を含まない)、(e)Ca:0.005%以下(0%を含まない)、Mg:0.005%以下(0%を含まない)およびREM:0.02%以下(0%を含まない)よりなる群から選ばれる1種以上、(f)Zr:0.1%以下(0%を含まない)、Ta:0.1%以下(0%を含まない)およびHf:0.1%以下(0%を含まない)よりなる群から選ばれる1種以上、等を含有させることも有効である。これらの成分を含有させるときの範囲限定理由は、次の通りである。
[B:0.015%以下(0%を含まない)]
 Bは、鋼材の焼入れ・焼戻し後において旧オーステナイト粒界からの破壊を抑制する効果がある。このような効果を発現させるには、Bを0.001%以上含有させることが好ましい。しかしながら、Bを過剰に含有させると、粗大な炭硼化物を形成して鋼材の特性を害する。またBは、必要以上に含有させると圧延材の疵の発生原因にもなる。こうしたことから、Bの含有量を0.015%以下とした。より好ましくは0.010%以下、更に好ましくは0.0050%以下とするのが良い。
[V:1%以下(0%を含まない)、Ti:0.3%以下(0%を含まない)およびNb:0.3%以下(0%を含まない)よりなる群から選ばれる1種以上]
 V,TiおよびNbは、C,N,S等と炭・窒化物(炭化物、窒化物および炭窒化物)、或は硫化物等を形成して、これらの元素を無害化する作用を有する。また上記炭・窒化物を形成して中空鋼管製造時の焼鈍工程やばね製造時の焼入れ工程における加熱時にオーステナイト組織を微細化する効果も発揮する。更に、耐遅れ破壊特性を改善するという効果も有する。これらの効果を発揮させるには、Ti,VおよびNbの少なくとも1種を0.02%以上(2種以上含有させるときは合計で0.2%以上)含有させることが好ましい。しかしながら、これらの元素の含有量が過剰になると、粗大な炭・窒化物が形成されて靭性や延性が劣化する場合がある。よって本発明では、V,TiおよびNbの含有量を、夫々1%以下、0.3%以下、0.3%以下とすることが好ましい。より好ましくは、V:0.5%以下、Ti:0.1%以下、Nb:0.1%以下である。更には、コスト低減の観点からして、V:0.3%以下、Ti:0.05%以下、Nb:0.05%以下とすることが好ましい。
[Ni:3%以下(0%を含まない)および/またはCu:3%以下(0%を含まない)]
 Niは表層脱炭を抑制したり、耐食性を向上するのに有効な元素である。Niは、コスト低減を考慮した場合には、添加を控えるためその下限を特に設けないが、表層脱炭を抑制したり耐食性を向上させる場合には、0.1%以上含有させることが好ましい。しかしながら、Ni含有量が過剰になると、圧延材に過冷組織が発生したり、焼入れ後に残留オーステナイトが存在し、鋼材の特性が劣化する場合がある。こうしたことから、Niを含有させる場合には、その含有量を3%以下とする。コスト低減の観点からは、好ましくは2.0%以下、より好ましくは1.0%以下とするのが良い。
 Cuは、上記Niと同様に表層脱炭を抑制したり耐食性を向上するのに有効な元素である。このような効果を発揮させるには、Cuを0.1%以上含有させることが好ましい。しかしながら、Cuの含有量が過剰になると、過冷組織が発生したり、熱間加工時に割れが生じる場合がある。こうしたことから、Cuを含有させる場合には、その含有量を3%以下とする。コスト低減の観点からは、好ましくは2.0%以下、より好ましくは1.0%以下とするのが良い。
[Mo:2%以下(0%を含まない)]
 Moは焼戻し後の強度確保、靭性向上に有効な元素である。しかしながら、Mo含有量が過剰になると靭性が劣化する。こうしたことからMoの含有量は2%以下とすることが好ましい。より好ましくは0.5%以下とするのが良い。
[Ca:0.005%以下(0%を含まない)、Mg:0.005%以下(0%を含まない)およびREM:0.02%以下(0%を含まない)よりなる群から選ばれる1種以上]
 Ca、MgおよびREM(希土類元素)は、いずれも硫化物を形成し、MnSの伸長を防ぐことで、靭性を改善する効果を有し、要求特性に応じて添加することができる。しかしながら、夫々上記上限を超えて含有させると、逆に靭性を劣化させる。夫々の含有量は、Caで0.005%以下、好ましくは0.0030%以下、Mgで0.005%以下、好ましくは0.0030%以下、REMで0.02%以下、好ましくは0.010%以下である。なお、本発明において、REMとは、ランタノイド元素(LaからLuまでの15元素)およびSc(スカンジウム)とY(イットリウム)を含む意味である。
[Zr:0.1%以下(0%を含まない)、Ta:0.1%以下(0%を含まない)およびHf:0.1%以下(0%を含まない)よりなる群から選ばれる1種以上]
 これの元素は、Nと結びついて窒化物を形成し、中空鋼管製造時の焼鈍工程やばね製造時の焼入れ工程における加熱時にオーステナイト組織を微細化する効果がある。但し、いずれも0.1%を超えて過剰に含有させると窒化物が粗大化し、疲労特性を劣化させるため好ましくない。こうしたことから、いずれもその含有量を0.1%以下とした。より好ましい含有量はいずれも0.050%以下であり、更に好ましい含有量は0.025%以下である。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
 下記表1に示す化学成分組成を有する各種溶鋼(中炭素鋼)を、通常の溶製法によって溶製し、この溶鋼を冷却して分塊圧延後に断面形状が155mm×155mmの角柱形状のビレットとした後、熱間鍛造によって直径:150mmの丸棒に成形し押出し用ビレットを機械加工により作製した。なお、表1において、REMはLaを20%程度とCeを40~50%程度含有するミッシュメタルの形態で添加した。また表1中、「-」は元素を添加していないことを示す。
 上記ビレットを用いて、1000℃に加熱して熱間押出しを行い、外径:54mmφ、内径35mmφの押出し管を作製し(押出し後、720℃までの平均冷却速度:1.5℃/秒、720℃から600℃までの平均冷却速度:0.5℃/秒、その後は放冷)、次に冷間加工(抽伸加工:非連続型ドローベンチ、圧延加工:ピルガー圧延機)、焼鈍、酸洗(酸液の種類:5%塩酸、酸洗条件:15分)を複数回繰り返し、外径16mmφ、内径8.0mmφの中空シームレス鋼管を作製した。なお、焼鈍時の雰囲気、焼鈍温度(加熱最高温度)、焼鈍時間(加熱時間)、焼鈍(加熱)後の平均冷却速度(冷却速度1、冷却速度2)は表2に記載の条件で行った。
 得られた中空シームレス鋼管について、粗大炭化物の個数密度、組織サイズ(平均粒径)、残留オーステナイト量を下記の方法によって調査した。
(粗大炭化物の個数密度)
 鋼管内表層部の炭化物の個数密度に関しては、任意の横断面(パイプの軸直角断面)を観察するため、切断、樹脂埋め込み、鏡面研磨した後、ピクラール腐食にてエッチングした観察試料を作製した。走査型電子顕微鏡(SEM)で、内周面の最表面から深さ100μm位置の表層部を観察(倍率3000倍)した。SEM写真に基づき(測定箇所:3箇所)、画像解析ソフト(Image-Pro)を用いて炭化物面積を測定し、円相当直径に換算した。そして円相当直径で500nm以上の炭化物について、個数密度を測定し、平均した。
(組織サイズ:平均粒径)
 鋼管内表層部の組織サイズに関しては、任意の横断面(パイプの軸直角断面)を観察するため、切断、樹脂埋め込み、鏡面研磨した後、ナイタール腐食にてエッチングした観察試料を作製した。光学顕微鏡で内表面から100μm位置の表層部を観察(100~400倍)し、比較法により結晶粒度を測定し、式(1)から平均結晶粒径に換算した(測定箇所:4箇所)。
(残留オーステナイト量)
 鋼管内表層部の残留オーステナイト量に関しては、任意の横断面(パイプの軸直角断面)を観察するため、切断、樹脂埋め込み、湿式研磨の後、電解研磨仕上げを施した観察試料を作製した。X線回折によって残留オーステナイト量(単位は体積%)を測定した。残留オーステナイト量が5%以下の場合を○、5%超の場合を×と評価した。
(疲労強度試験:耐久性)
 上記各シームレス鋼管を中空ばねに付与される熱処理を想定した下記条件で焼入れ・焼き戻しを行い、JIS試験片(JIS Z2274疲労試験片)に加工した。
(焼入れ・焼戻し条件)
 焼入れ条件:925℃で10分間保持し、その後、油冷
 焼戻し条件:390℃で40分間保持し、その後、水冷
 上記試験片(焼入れ・焼戻しした試験片)に、応力:900MPa、回転速度:1000rpmで回転曲げ疲労試験を行なった。破断までの繰り返し数が1.0×10回以上を疲労強度が良好(「○」)、1.0×10回までに破断したものを疲労強度が不十分(「×」)として評価した。そして、この評価結果を、表2(「耐久試験結果」)に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 これらの結果から明らかなように、適切な成分組成を有する鋼材を適切な条件で製造して得られた中空シームレス鋼管(No.1~3、6、7、9~11、14、15、17、20~22、24~26)では、ばねにおける疲労強度が良好なものが得られた。
 これに対して試験No.4、5、8、12、13、16、18、19、23)では、製造方法が適切でないので、本発明で規定する要件を満足しないものとなって、疲労強度が劣化していることがわかる。
 すなわち、試験No.4は、冷却速度1が遅かった例であり、フェライト・パーライト組織の平均粒径(組織サイズ)が粗大化してしまい、疲労強度(耐久性)が低下している。
 試験No.5、23は、冷却速度2が速すぎた例であり、残留オーステナイト量が多くなってしまい、疲労強度(耐久性)が低下している。
 試験No.8、16は、焼鈍時の加熱最高温度が高い例であり、平均粒径(組織サイズ)が粗大化しており、疲労強度が低下している。
 試験No.12と13は900℃以上での加熱時間が長すぎる例であり、疲労特性(耐久性)が低下している。
 試験No.18、19は、大気中で焼鈍を行い、しかも焼鈍時の温度が低い例である。これらの例では、粗大炭化物の個数密度が多くなっており、疲労強度(耐久性)が低下している。
 本出願を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2012年6月11日出願の日本特許出願(特願2012-132104)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の中空ばね用シームレス鋼管は、素材としての鋼材の化学成分組成を適切に調整すると共に、鋼管内表層部の各種組織(残留オーステナイト、フェライト・パーライト組織の平均粒径、粗大炭化物)を適切に制御しているため、こうした中空ばね用シームレス鋼管から成形されるばねにおいて十分な疲労強度を確保できるようになる。

Claims (9)

  1.  C:0.2~0.7質量%、Si:0.5~3質量%、Mn:0.1~2質量%、Cr:0質量%より大きく3質量%以下、Al:0質量%より大きく0.1質量%以下、P:0質量%より大きく0.02質量%以下、S:0質量%より大きく0.02質量%以下、およびN:0質量%より大きく0.02質量%以下を夫々含有し、鋼管内表層部における残留オーステナイト含有率が5体積%以下であり、鋼管内表層部におけるフェライト・パーライト組織の平均粒径が18μm以下であり、且つ鋼管内表層部に存在する円相当直径で500nm以上の炭化物の個数密度が1.8×10-2個/μm以下であることを特徴とする中空ばね用シームレス鋼管。
  2.  更に、B:0質量%より大きく0.015質量%以下を含有する請求項1に記載の中空ばね用シームレス鋼管。
  3.  更に、V:0質量%より大きく1質量%以下、Ti:0質量%より大きく0.3質量%以下、およびNb:0質量%より大きく0.3質量%以下よりなる群から選ばれる1種以上を含有する請求項2に記載の中空ばね用シームレス鋼管。
  4.  更に、Ni:0質量%より大きく3質量%以下、および、Cu:0質量%より大きく3質量%以下のうち少なくとも1つを含有する請求項3に記載の中空ばね用シームレス鋼管。
  5.  更に、V:0質量%より大きく1質量%以下、Ti:0質量%より大きく0.3質量%以下、およびNb:0質量%より大きく0.3質量%以下よりなる群から選ばれる1種以上を含有する請求項1に記載の中空ばね用シームレス鋼管。
  6.  更に、Ni:0質量%より大きく3質量%以下、および、Cu:0質量%より大きく3質量%以下のうち少なくとも1つを含有する請求項5に記載の中空ばね用シームレス鋼管。
  7.  更に、Mo:0質量%より大きく2質量%以下を含有する請求項1に記載の中空ばね用シームレス鋼管。
  8.  更に、Ca:0質量%より大きく0.005質量%以下、Mg:0質量%より大きく0.005質量%以下、およびREM:0質量%より大きく0.02質量%以下よりなる群から選ばれる1種以上を含有する請求項1に記載の中空ばね用シームレス鋼管。
  9.  更に、Zr:0質量%より大きく0.1質量%以下、Ta:0質量%より大きく0.1質量%以下、およびHf:0質量%より大きく0.1質量%以下よりなる群から選ばれる1種以上を含有する請求項1に記載の中空ばね用シームレス鋼管。
PCT/JP2013/066086 2012-06-11 2013-06-11 中空ばね用シームレス鋼管 WO2013187409A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380030116.3A CN104334763B (zh) 2012-06-11 2013-06-11 中空弹簧用无缝钢管
KR1020147034440A KR101666292B1 (ko) 2012-06-11 2013-06-11 중공 스프링용 심리스 강관
EP13804561.2A EP2860275B1 (en) 2012-06-11 2013-06-11 Seamless steel pipe for hollow spring
US14/407,106 US9650704B2 (en) 2012-06-11 2013-06-11 Seamless steel pipe for hollow spring

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012132104A JP5986434B2 (ja) 2012-06-11 2012-06-11 中空ばね用シームレス鋼管
JP2012-132104 2012-06-11

Publications (1)

Publication Number Publication Date
WO2013187409A1 true WO2013187409A1 (ja) 2013-12-19

Family

ID=49758231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066086 WO2013187409A1 (ja) 2012-06-11 2013-06-11 中空ばね用シームレス鋼管

Country Status (7)

Country Link
US (1) US9650704B2 (ja)
EP (1) EP2860275B1 (ja)
JP (1) JP5986434B2 (ja)
KR (1) KR101666292B1 (ja)
CN (1) CN104334763B (ja)
HU (1) HUE036303T2 (ja)
WO (1) WO2013187409A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170306432A1 (en) * 2014-10-31 2017-10-26 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Method for manufacturing steel for high-strength hollow spring

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105648338A (zh) * 2016-01-27 2016-06-08 太仓捷公精密金属材料有限公司 一种车用高性能弹簧钢
CN105648332A (zh) * 2016-01-27 2016-06-08 太仓捷公精密金属材料有限公司 一种高性能弹簧钢
KR102424956B1 (ko) * 2020-11-27 2022-07-25 주식회사 포스코 소입성 및 연화저항성이 향상된 저탄소 보론강 선재 및 그 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01247532A (ja) 1988-03-29 1989-10-03 Sumitomo Metal Ind Ltd スプリング用継目無鋼管の製造方法
JP2007125588A (ja) 2005-11-04 2007-05-24 Shinko Metal Products Kk シームレス鋼管およびその製造方法
JP2010265523A (ja) 2009-05-15 2010-11-25 Kobe Steel Ltd 高強度ばね用中空シームレスパイプ
JP2011184704A (ja) * 2010-03-04 2011-09-22 Kobe Steel Ltd 高強度中空ばね用シームレス鋼管
JP2011184705A (ja) * 2010-03-04 2011-09-22 Kobe Steel Ltd 高強度中空ばね用シームレス鋼管の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3233188B2 (ja) * 1995-09-01 2001-11-26 住友電気工業株式会社 高靱性ばね用オイルテンパー線およびその製造方法
JP4423254B2 (ja) 2005-12-02 2010-03-03 株式会社神戸製鋼所 コイリング性と耐水素脆化特性に優れた高強度ばね鋼線
JP2008088478A (ja) * 2006-09-29 2008-04-17 Jfe Steel Kk 疲労特性に優れた軸受用鋼部品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01247532A (ja) 1988-03-29 1989-10-03 Sumitomo Metal Ind Ltd スプリング用継目無鋼管の製造方法
JP2007125588A (ja) 2005-11-04 2007-05-24 Shinko Metal Products Kk シームレス鋼管およびその製造方法
JP2010265523A (ja) 2009-05-15 2010-11-25 Kobe Steel Ltd 高強度ばね用中空シームレスパイプ
JP2011184704A (ja) * 2010-03-04 2011-09-22 Kobe Steel Ltd 高強度中空ばね用シームレス鋼管
JP2011184705A (ja) * 2010-03-04 2011-09-22 Kobe Steel Ltd 高強度中空ばね用シームレス鋼管の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKAHASHI; NAGUMO; ASANO, NIPPON KINZOKU GAKKAISHI, vol. 42, 1978, pages 708

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170306432A1 (en) * 2014-10-31 2017-10-26 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Method for manufacturing steel for high-strength hollow spring
EP3214189A4 (en) * 2014-10-31 2018-05-23 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Method for manufacturing steel for high-strength hollow spring

Also Published As

Publication number Publication date
CN104334763B (zh) 2016-11-23
US9650704B2 (en) 2017-05-16
EP2860275A4 (en) 2016-05-11
HUE036303T2 (hu) 2018-06-28
EP2860275A1 (en) 2015-04-15
EP2860275B1 (en) 2017-10-25
JP2013256681A (ja) 2013-12-26
JP5986434B2 (ja) 2016-09-06
US20150159245A1 (en) 2015-06-11
CN104334763A (zh) 2015-02-04
KR101666292B1 (ko) 2016-10-13
KR20150013258A (ko) 2015-02-04

Similar Documents

Publication Publication Date Title
KR101386871B1 (ko) 고강도 스프링용 중공 시임리스 파이프
JP5476597B2 (ja) 高強度中空ばね用シームレス鋼管
JP5088631B2 (ja) 疲労特性と曲げ成形性に優れた機械構造鋼管とその製造方法
WO2016190370A1 (ja) 鋼板及びその製造方法
JPWO2016080315A1 (ja) 冷間鍛造部品用圧延棒鋼または圧延線材
JP5476598B2 (ja) 高強度中空ばね用シームレス鋼管の製造方法
JP6065121B2 (ja) 高炭素熱延鋼板およびその製造方法
JP5986434B2 (ja) 中空ばね用シームレス鋼管
JP5871085B2 (ja) 冷間鍛造性および結晶粒粗大化抑制能に優れた肌焼鋼
JP6018394B2 (ja) 高強度ばね用中空シームレスパイプ
JP5816136B2 (ja) 中空ばね用シームレス鋼管の製造方法
JP2010248630A (ja) 肌焼鋼およびその製造方法
JP5523288B2 (ja) 高強度中空ばね用シームレス鋼管
JP5629598B2 (ja) 高強度中空ばね用シームレス鋼管用素管の製造方法
JP7239729B2 (ja) 鋼線
JP2022122482A (ja) 熱延鋼板およびその製造方法
JP2022122483A (ja) 熱延鋼板およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13804561

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147034440

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013804561

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013804561

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14407106

Country of ref document: US