WO2013187156A1 - フィン・アンド・チューブ型熱交換器用伝熱管及びそれを用いたフィン・アンド・チューブ型熱交換器 - Google Patents

フィン・アンド・チューブ型熱交換器用伝熱管及びそれを用いたフィン・アンド・チューブ型熱交換器 Download PDF

Info

Publication number
WO2013187156A1
WO2013187156A1 PCT/JP2013/062918 JP2013062918W WO2013187156A1 WO 2013187156 A1 WO2013187156 A1 WO 2013187156A1 JP 2013062918 W JP2013062918 W JP 2013062918W WO 2013187156 A1 WO2013187156 A1 WO 2013187156A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
tube
fin
heat exchanger
heat transfer
Prior art date
Application number
PCT/JP2013/062918
Other languages
English (en)
French (fr)
Inventor
史郎 柿山
幹根 笹崎
Original Assignee
住友軽金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友軽金属工業株式会社 filed Critical 住友軽金属工業株式会社
Priority to CN201380031247.3A priority Critical patent/CN104380026A/zh
Priority to JP2014521023A priority patent/JP6360791B2/ja
Priority to KR20147034624A priority patent/KR20150030201A/ko
Publication of WO2013187156A1 publication Critical patent/WO2013187156A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements

Definitions

  • the present invention relates to a heat transfer tube for a fin-and-tube heat exchanger and a fin-and-tube heat exchanger using the same, and more particularly to a fin-and-tube in an air conditioner such as a home air conditioner or a packaged air conditioner.
  • the present invention relates to a heat transfer tube suitably used for a mold heat exchanger and a fin-and-tube heat exchanger using the same.
  • heat exchangers that operate as evaporators or condensers, among them.
  • fin-and-tube heat exchangers having a structure in which fins are assembled to heat transfer tubes have been most commonly used.
  • heat exchangers using natural refrigerants with a low global warming potential have been developed in place of conventional chlorofluorocarbon refrigerants from the viewpoint of protecting the ozone layer and preventing global warming.
  • hot water heaters using a refrigerant mainly composed of carbon dioxide gas have attracted attention and have been developed.
  • the same fin-and-tube as described above is also used for air heat exchangers in such water heaters.
  • a mold heat exchanger is used.
  • such a fin-and-tube heat exchanger is generally used in a structure in which a fin (outer surface fin) subjected to predetermined processing and a heat transfer tube are used and the fin and the heat transfer tube are joined. It is becoming. And in the heat exchanger having such a structure, while circulating the refrigerant in the heat transfer tube, by flowing air as a heat exchange fluid along the fins in a direction perpendicular to the heat transfer tube, Heat exchange is performed between the refrigerant and the air.
  • Hole tubes are known.
  • the flat multi-hole tube is usually obtained by porthole extrusion of aluminum or an aluminum alloy.
  • the cross-sectional shape of such a flat multi-hole tube is, for example, As disclosed in Japanese Laid-Open Patent Publication No. 6-142755 (Patent Document 1), a pipe having a rectangular flow path is generally used. Further, in such a flat multi-hole tube, in order to improve the heat exchange efficiency, it is effective to increase the surface area of the flow path.
  • Patent Document 2 a square is used. A structure that increases the surface area by forming a large number of minute irregularities on the inner surface of the hole has been clarified. By increasing the surface area of the flow path in this way, the contact area between the coolant that can circulate inside the hole and the surface of the hole is increased, and the heat transfer coefficient on the coolant side, that is, the heat between the coolant and the heat transfer tube. By improving the transfer rate, the heat exchange efficiency is improved.
  • Patent Document 1 Japanese Patent Laid-Open No. 6-142755
  • Patent Document 3 Japanese Patent Laid-Open No. 9-72680
  • Patent Document 1 aims at extending the life of a multi-hole tube extrusion die and improving the size and accuracy of a product when performing extrusion molding of a multi-hole tube.
  • a triangular cross-sectional shape is merely mentioned.
  • Patent Document 2 relates to a porous flat tube that can obtain a predetermined thickness and a flat surface by rolling or compression, and that can improve tensile strength by work hardening to give appropriate hardness and elasticity.
  • the hole shape is a cross-sectional shape of an isosceles triangle.
  • the hole shape of the multi-hole pipe formed by extrusion processing is simply a triangular cross-sectional shape
  • the hole shape is merely a cross-sectional shape of an isosceles triangle.
  • no consideration has been given to the specific shape of the triangle or the heat transfer coefficient of the heat transfer tube.
  • the hole formed in the flat multi-hole tube by the extrusion process has a triangular shape, the metal flow at the time of the extrusion process is not good, and the target triangular hole is formed. The manufacturing problem of difficulty is inherent.
  • the present invention has been made in the background of such circumstances, and the problem to be solved is that the heat transfer coefficient on the refrigerant side can be effectively improved and the extrudability can be improved.
  • a heat transfer tube for a fin-and-tube heat exchanger to which a fin made of aluminum or an alloy thereof is assembled is made of aluminum or an alloy thereof.
  • the multi-hole tube having a flat cross-sectional shape as a whole, and a number of trapezoidal cross-sectional holes extending in the tube axis direction provided in the multi-hole tube are arranged in parallel to each other at a distance in the width direction.
  • the length of the upper base of the hole is less than or equal to 1/2 of the length of the lower base, and the height of the hole is equal to or greater than the length of the lower base and the thickness of the multi-hole tube.
  • the fin-and-tube heat exchanger heat transfer tube characterized in that it is configured, it is an gist thereof.
  • adjacent ones of a plurality of holes provided in the multi-hole tube are mutually upside down.
  • the trapezoidal cross-sectional shape is arranged.
  • the cross-sectional shape of the hole is an isosceles trapezoidal shape.
  • the hole has a trapezoidal shape in which the inner angle between the lower base and one leg is 90 °.
  • the present invention provides a fin-and-tube heat exchanger in which a fin made of aluminum or an alloy thereof and a multi-hole tube made of aluminum or an alloy thereof and having a flat cross-sectional shape as a whole are assembled.
  • the multi-hole tube is configured by arranging a large number of trapezoidal cross-sectional holes extending in the tube axis direction and arranged parallel to each other in the width direction, and the length of the upper base of the holes is The length of the bottom is 1 ⁇ 2 or less, and the height of the hole is equal to or more than the length of the bottom, and is 0.5 to 0.8 times the thickness of the multi-hole tube, Then, the ratio (D / h) of hydraulic diameter: D defined by dividing four times the cross-sectional area of the hole by the sum of the lengths of the side of the hole and the height of the hole: h (D / h) is 0. Fin-and-characterized by being configured to fall within the range of 40 to 0.85 Also tube heat exchanger, and the gist thereof
  • a rectangular plate-like fin is used as the fin, and the fin is opened at one end of the plate-like fin.
  • the multi-hole tube and the plate-like fin are assembled by fitting and fixing the multi-hole tube in a slit having a predetermined length provided on the plate.
  • a corrugated fin having a corrugated shape is used as the fin, and a plurality of the corrugated fins and the multi-holes are used.
  • a plurality of tubes are stacked alternately and joined together to be assembled.
  • the hole having a trapezoidal cross-sectional shape is a ratio of the length of the upper base and the lower base in the trapezoidal shape. And the ratio of the height of the hole to the thickness of the heat transfer tube, and also the hydraulic diameter defined by dividing the hole cross section by four times the sum of the lengths of the sides of the hole: D and the hole.
  • the ratio (D / h) to the height: h is set to an appropriate range.
  • the portion with a small hole such as a portion with a small angle in the portion sandwiched between the bottom) and the leg, a portion sandwiched between the upper base and the two legs, which are less than half the length of the lower bottom, and the like Circulates, the area of the inner surface of the multi-hole tube that contacts per unit volume of the refrigerant increases, and between the refrigerant and the heat transfer tube Transmission ratio, i.e. the heat exchange efficiency of the heat transfer tube, it become possible to effectively improve. In addition, when the refrigerant passes through such a narrow hole portion, a local flow state can be induced, and thus the heat exchange efficiency can be increased more effectively.
  • the hole shape is a trapezoidal shape
  • a triangular shape is used. It is easier to produce a metal flow than manufacturing a flat multi-hole tube having a shape hole, and the extrudability can be advantageously improved.
  • the heat transfer coefficient on the refrigerant side in the heat-transfer tube is From the point of being advantageously improved, the high heat exchange performance is exhibited, and the effects such as downsizing and weight reduction of the heat exchanger and reduction of the manufacturing cost are advantageously exhibited.
  • FIG. 2 is an explanatory cross-sectional view showing an enlarged part of a cross section of a flat multi-hole tube constituting the fin-and-tube heat exchanger shown in FIG. 1.
  • FIG. 1 It is front explanatory drawing which shows roughly the fin and tube type heat exchanger for heat exchange performance evaluation used in the Example.
  • FIG. 1 is a perspective view schematically showing one embodiment of a fin-and-tube heat exchanger using a heat-transfer tube for a fin-and-tube heat exchanger according to the present invention.
  • two flat multi-hole tubes 14 and 14 are slits provided in the fins 12 with respect to the plurality of fins 12 arranged in parallel to each other and at a predetermined distance. It is configured by being inserted into and fixed to the assembly hole 16.
  • the fin 12 is formed of a metal material made of aluminum or an aluminum alloy, for example, an aluminum material having a JIS designation of A1000 series, A3000 series, A7000 series or the like, as shown in FIG. As shown, it is composed of thin plate-like fins having a rectangular planar shape.
  • an assembly hole 16 into which the flat multi-hole tube 14 is assembled is formed in the fin 12 as a slit extending from one end of the rectangular fin 12 in the width direction of the fin 12 (left and right in FIG. 2). Has been.
  • a collar portion 18 having a predetermined height is formed integrally with the fin 12 and is erected in a U-shape.
  • the flat multi-hole tube 14 is formed of a metal material made of aluminum or an aluminum alloy, for example, an aluminum material such as JIS name A1000 series, A3000 series, A6000 series, It is composed of a multi-hole tube having a flat shape in which ten holes 20 extending in the tube axis direction are formed.
  • the hole 20 has a trapezoidal cross-sectional shape as shown in FIG. 3 in which a cross-section in a direction perpendicular to the tube axis, that is, a part of a so-called cross-section is enlarged.
  • the length of the upper base: a is less than or equal to 1/2 of the length of the lower base: b
  • the height: h is equal to or greater than the length of the lower base: b.
  • the height: h is set to be 0.5 to 0.8 times as long as the thickness: H of the flat multi-hole tube 14.
  • the trapezoidal shape of the hole 20 is such that the height of the hole: h and the length of the lower base: b are the same length
  • the length of the upper base: a is the length of the lower base: b.
  • the shape is an isosceles trapezoid in which the length is 1 ⁇ 2 and the inner angles of both ends of each base (upper base, lower base) are equal.
  • adjacent holes 20 of the holes 20 having such a shape are mutually spaced apart at a predetermined interval in the width direction of the flat multi-hole tube 14 in a form in which the vertical direction is inverted. They are arranged in parallel.
  • the hole shape of the hole 20 of the flat multi-hole tube 14 is changed to the trapezoidal upper base length: a, lower base length: b, hole height: h, and flat multi-hole tube 14 thickness.
  • the ratio of the length: H, and further the ratio (D / h) of the hydraulic diameter: D to the height of the hole: h (D / h) is set to be a value within the above range, whereby the narrow portion of the hole 20 is cooled. Is effectively passed, and the area of the inner surface of the hole in contact with the unit volume of the refrigerant increases, and the heat transfer coefficient between the refrigerant and the heat transfer tube is advantageously improved. Moreover, since a local fluid state generate
  • the length (a) of the upper base exceeds 1/2 of the length (b) of the lower base, or the hole height (h) is the length of the lower base (b ),
  • the refrigerant easily passes through the hole 20, so that it is difficult to sufficiently transfer the heat between the refrigerant and the heat transfer tube.
  • the hole height (h) is less than 0.5 times the thickness (H) of the heat transfer tube, the hole becomes too small, which makes it difficult to manufacture.
  • the hole height (h) is larger than 0.8 times the thickness (H) of the heat transfer tube, the upper and lower thicknesses of the flat multi-hole tube 14 become too thin. This makes it difficult to manufacture.
  • the length (a) of the upper base of the trapezoidal shape of the hole 20 is preferably 0.1 mm or more. This is because if the length (a) is smaller than 0.1 mm, the metal flow during the extrusion process deteriorates, and it becomes difficult to produce the intended flat multi-hole tube. .
  • the target fin-and-tube heat exchanger 10 is configured by fitting the flat multi-hole tube 14 into the assembly holes 16 that are aligned with each other and fixedly assembling them. It is.
  • the flat assembly of the multi-hole tube 14 and the fins 12 is performed by various known methods such as joining by caulking or brazing or fixing by an adhesive. Thus, it will be completed as an integral fin and tube heat exchanger.
  • both end portions of the flat multi-hole tube 14 which is a heat transfer tube constituting such a fin-and-tube heat exchanger are respectively connected to a header (not shown), and the flat multi-hole tube 14 10
  • the ten holes 20, that is, the ten flow paths through which the refrigerant extending in the tube axis direction is circulated are combined on the refrigerant inlet side and the outlet side to form the fin-and-tube heat exchanger 10. It is.
  • the shape of the hole 20 formed in the flat multi-hole tube 14 is simply the contact between the refrigerant and the inner surface of the hole.
  • the flat multi-hole tube 14 has a trapezoidal shape that not only increases the area but also increases the contact area per unit volume of the refrigerant to advantageously improve the heat transfer coefficient on the refrigerant side.
  • the heat exchange efficiency between the refrigerant circulating in the pipe and the heat transfer pipe is effectively improved, and as a result, the heat exchange performance of the heat exchanger 10 can be advantageously enhanced.
  • the hole 20 formed in the flat multi-hole tube 14 has a trapezoidal shape, the problem that the metal flow deteriorates and the workability deteriorates at the time of extrusion is advantageously solved. Or it will be avoided and high extrudability will be exhibited. Further, by using the flat multi-hole tube 14 exhibiting such a high heat transfer rate, the heat exchanger 10 can be reduced in size and weight, and the effect of reducing the manufacturing cost can be advantageously exhibited. .
  • the fin-and-tube heat exchanger 10 is illustrated in which the flat multi-hole tube 14 is assembled in the assembly hole 16 provided in the plate-like fin 12.
  • a corrugated fin type fin-and-tube heat exchanger 30 constructed by assembling corrugated (corrugated) fins 24 between flat multi-hole tubes 22, 22. It is also possible.
  • the shape of the hole 20 formed in the flat multi-hole tube 14 is the same as the hole height (h) and the length of the lower base (b) in the above embodiment, and the length of the upper base.
  • (A) is an isosceles trapezoidal shape in which the length of the bottom base (b) is 1 ⁇ 2 and the inner angles of both ends of each base are the same, but the hydraulic diameter: D and the hole
  • the ratio of height: h (D / h) is a trapezoidal shape within the specified range in the present invention, in addition to the isosceles trapezoid illustrated, the angles of the inner angles at both ends of the base (lower base)
  • Various trapezoidal shapes such as trapezoids having different angles and trapezoids in which the inner angle between the base (lower base) and one leg is a right angle are appropriately selected.
  • each side (base, leg) of the trapezoid is linear, but if D / h satisfies the relationship described above, a circle having a predetermined radius of curvature. It can also be an arcuate side.
  • the inner surface of the hole 20 is a flat surface here, but may be a surface on which minute irregularities (grooves and ridges) are formed. By forming such irregularities, the contact area between the refrigerant per unit volume and the surface of the hole 20 can be further increased, and the heat transfer coefficient between the refrigerant and the heat transfer tube can be improved more effectively. Become.
  • an aluminum alloy JIS A3003
  • JIS A3003 is extruded to exhibit a cross-sectional shape as shown in FIG. :
  • Extruded flat multi-hole tube 40 having a thickness of 16 mm, a thickness (H) of 1.9 mm, and a number of holes of 12 was prepared. It was set to 1.
  • the shape of the twelve holes (42) provided in 1 is as follows: upper base (a): 0.6 mm, lower base (b): 1.2 mm, height (h): 1.2 mm (heat transfer tube thickness It was made to be an isosceles trapezoid.
  • the hole height (h) is the hole height in the thickness direction of the flat multi-hole tube (40), and the flow path area is the per-hole in the cross section perpendicular to the axial direction.
  • the cross-sectional area of the hole portion and the wet edge length indicate the length of the side of the hole per hole in the cross section.
  • heat transfer tube 44 and 46 having a cross-sectional shape as shown in FIGS. 5 (b) and 5 (c) are prepared.
  • Heat transfer tube no. It was set to 3.
  • heat transfer tube no. 2 is an extruded flat multi-hole tube having a width (W): 16 mm, a thickness (H): 1.9 mm, and the number of holes: 20, and the hole shapes thereof are an upper base: 0.1 mm and a lower base: 0.0.
  • heat transfer tube No. 3 is an extruded flat multi-hole tube having a width (W): 16 mm, a thickness (H): 1.9 mm, and a number of holes: 14, and the hole shapes thereof are an upper base: 0.4 mm and a lower base: 0.0. 7 mm, height: 1.5 mm, and a trapezoidal shape with an inner angle of 90 ° between the base and one leg.
  • the heat transfer tubes 2 and 3 are flat multi-hole tubes that have the same width (W) and thickness (H) as the heat transfer tubes 1 but differ in the hole shape and the number of holes.
  • the heat transfer tube No. 2 and 3 are heat transfer tube Nos. 1 was produced by extruding an aluminum alloy (JIS A3003).
  • JIS A3003 aluminum alloy
  • the heat transfer tube No. The specifications such as the channel area and hydraulic diameter in 2 and 3 are shown in Table 1 below.
  • a flat multi-hole tube 52 having a circular hole shape (a circle having a diameter of 1.2 mm) is prepared.
  • the hole shape is a trapezoidal shape
  • the flat multi-hole tube having a hole shape as shown in FIGS. 7 (a) and 7 (b) assuming that the value of D / h is outside the scope of the present invention. 54 and 56 were prepared. 6.
  • a plurality of flat multi-hole tubes (22) are arranged in parallel to each other as shown in FIG.
  • a heat exchanger (30) in which corrugated fins (24) molded into a corrugated shape are joined between flat multi-hole tubes (22, 22) that match each other is referred to as a heat exchanger No. 1, respectively. 1 to 7 were produced.
  • both ends of the arranged flat multi-hole pipes (22) are respectively connected to the header (26), and the respective holes (in the axial direction of the flat multi-hole pipe (22) ( Are formed on the refrigerant inlet side and the outlet side to form a refrigerant flow path.
  • the fins (24) are all corrugated processed brazing sheets using JIS A3703 series alloy for the core material and JIS A4045 series alloy for the skin material.
  • 75 flat multi-hole tubes (24) were used.
  • the fin (24) and the flat multi-hole tube (22) are joined to the fin (24) and the flat multi-hole tube (22) laminated and assembled in the shape of the target heat exchanger (30).
  • the assembly (2) is heated and held at 600 ° C. for 3 minutes in a brazing furnace (the highest temperature reached) for 3 minutes, and then cooled, whereby the fin (24) and the flat multi-hole tube (22) are brazed. It was made to join.
  • the length of the flat multi-hole tube (22) between the headers (26, 26) is 610 mm
  • the overall size of the heat exchanger (30) is width: 650 mm and height: 610 mm. I did it.
  • test results for each heat exchanger are shown in Table 2 below.
  • the test result shown in this Table 2 shows heat exchanger No.2 whose hole shape of a flat multi-hole pipe is a square. It is shown in a ratio to the case where the heat exchange amount of 4 is 100.
  • the heat exchanger No. 2 has the same flow path area but different hole shapes formed in the flat multi-hole tube.
  • the heat exchanger No. 1 having a trapezoidal hole shape according to the present invention No. 1 is a heat exchanger No. 1 having a square hole shape. 4 or circular heat exchanger No. 4 It was confirmed that the condensation performance was greatly improved than 5.
  • the hole shape is a trapezoidal shape, and the ratio of hydraulic diameter: D to hole height: h: D / h is configured using flat multi-hole tubes 40, 44, 46 within the scope of the present invention.
  • Each heat exchanger No. 1, heat exchanger no. 2 and heat exchanger no. No. 3 is a heat exchanger No.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

 冷媒側の熱伝達率を効果的に向上させることの出来るフィン・アンド・チューブ型熱交換器用伝熱管と、それを用いたフィン・アンド・チューブ型熱交換器を提供すること。 アルミニウム若しくはその合金からなる扁平多穴管14に形成される台形形状の穴20を、上底の長さが下底の長さの1/2以下となるようにすると共に、穴の高さを伝熱管の厚さの0.5~0.8倍とし、更に穴の断面積の4倍を穴の辺の長さの和で除することによって定義される水力直径:Dと穴の高さ:hとの比(D/h)が、0.40~0.85の範囲内となるように構成し、そのような扁平多穴管14と、アルミニウム若しくはその合金からなるフィン12とを組み付けて、フィン・アンド・チューブ型熱交換器10を構成した。

Description

フィン・アンド・チューブ型熱交換器用伝熱管及びそれを用いたフィン・アンド・チューブ型熱交換器
 本発明は、フィン・アンド・チューブ型熱交換器用伝熱管及びそれを用いたフィン・アンド・チューブ型熱交換器に係り、特に、家庭用エアコンやパッケージエアコン等の空調機におけるフィン・アンド・チューブ型熱交換器に好適に用いられる伝熱管と、それを用いたフィン・アンド・チューブ型熱交換器に関するものである。
 従来より、家庭用エアコンや自動車用エアコン、パッケージエアコン等の空調用機器の他、冷蔵庫、ヒートポンプ式給湯器等には、蒸発器又は凝縮器として作動する熱交換器が用いられており、その中でも、家庭用室内エアコンや業務用パッケージエアコンにおいては、伝熱管にフィンを組み付けてなる構造のフィン・アンド・チューブ型熱交換器が、最も一般的に用いられてきている。
 そして、近年では、オゾン層保護や地球温暖化防止等の観点から、従来のフロン系冷媒に代えて、温暖化係数の低い自然冷媒を利用した熱交換器の開発も行われてきており、その中でも、炭酸ガスを主体とする冷媒を用いた給湯器が注目され、その開発が為されてきているが、そのような給湯器における空気熱交換器にも、上記と同様なフィン・アンド・チューブ型熱交換器が用いられている。
 ところで、かかるフィン・アンド・チューブ型熱交換器は、一般に、所定の加工が施されたフィン(外面フィン)と伝熱管とを用い、それらフィンと伝熱管とを接合させてなる構造において、実用化されてきている。そして、そのような構造とされた熱交換器においては、伝熱管内に冷媒を流通せしめる一方、伝熱管に対して直角な方向に、フィンに沿って熱交換流体としての空気を流すことによって、冷媒と空気との間で熱交換が行われるようになっているのである。
 また、そのようなフィン・アンド・チューブ型熱交換器で用いられる伝熱管の一つとして、扁平な形状の管内部を複数の隔壁にて複数の流路に分割してなる構造を有する扁平多穴管が、知られている。そして、この扁平多穴管には、通常、アルミニウム若しくはアルミニウム合金をポートホール押出して得られるものが、用いられているのであるが、そのような扁平多穴管の断面形状としては、例えば、特開平6-142755号公報(特許文献1)にて明らかにされているように、管内部の流路を四角形状としているものが、一般的によく用いられている。更に、そのような扁平多穴管において、熱交換効率を向上させるには、流路の表面積を増やすことが有効であるところから、特開平5-222480号公報(特許文献2)においては、四角形状とされた穴の内面に、微少な凹凸を多数形成して、表面積を増加させる構造が、明らかにされている。このように流路の表面積を増大させることによって、穴の内部を流通せしめられる冷媒と穴表面との接触面積を増大させ、冷媒側の熱伝達率、即ち、冷媒と伝熱管との間の熱伝達率を向上させることによって、熱交換効率の向上を図るのである。
 しかしながら、アルミニウム若しくはアルミニウム合金から、ポートホール押出し等の押出成形にて扁平多穴管を形成する場合には、穴の内面に形成される凹凸の大きさを、充分に小さくすることが出来ないために、表面積を充分に増大させることが出来ないのである。特に、熱交換器を小型化する等の目的のために扁平多穴管を小さくした場合には、形成される穴も小さくなるため、そのような凹凸の形成による表面積の増加に基づくところの熱伝達率の向上効果は、充分とは言えないものであった。
 また、前述の特許文献1(特開平6-142755号公報)の図9(c)や、特開平9-72680号公報(特許文献3)には、扁平多穴管の穴形状を三角形断面形状にしたものが明らかにされている。即ち、特許文献1においては、多穴管の押出成形を行うに際して、多穴管押出用ダイスの寿命の延長や、製品として寸法や精度の向上が目的とされているのであり、そのような多穴管押出用のダイスを用いて作製される多穴管の穴形状の一例として、三角形断面形状のものが挙げられているに過ぎない。また、特許文献2は、圧延又は圧縮によって所定の厚さと平坦な表面を得ると共に、加工硬化によって引っ張り強度を改善して、適正な硬度と弾力性を与えることが出来るようにした多孔扁平管に関するものであり、そのような特性を得られる多孔扁平管の構造として、穴形状が二等辺三角形の断面形状とされたものが、明らかにされている。
 しかしながら、それら特許文献1,3で明らかにされている扁平多穴管にあっては、単に、押出加工によって形成される多穴管の穴形状を三角形断面形状としただけのものであったり、多穴管の硬度や弾力性を改善するために、その穴形状を二等辺三角形の断面形状としているに過ぎないものであった。即ち、三角形の具体的な形状についてや、伝熱管の熱伝達率については、何等検討されているものではなかったのである。更に、そのように、押出加工によって扁平多穴管に形成される穴を三角形形状とした場合にあっては、押出加工時のメタルフローが上手くいかず、目的とする三角形形状の穴を形成し難いという製造上の問題が内在しているのである。
特開平6-142755号公報 特開平5-222480号公報 特開平9-72680号公報
 ここにおいて、本発明は、かかる事情を背景にして為されたものであって、その解決課題とするところは、冷媒側の熱伝達率を効果的に向上させることが出来ると共に、押出加工性にも優れたフィン・アンド・チューブ型熱交換器用伝熱管を提供することにあり、また、そのようなフィン・アンド・チューブ型熱交換器用伝熱管を用いて作製された空気調和機用等のフィン・アンド・チューブ型熱交換器を提供することも、その解決課題としている。
 そして、本発明にあっては、かくの如き課題の解決のために、アルミニウム若しくはその合金からなるフィンが組み付けられるフィン・アンド・チューブ型熱交換器用伝熱管にして、アルミニウム若しくはその合金からなる、全体として扁平な断面形状の多穴管にて構成され、且つ該多穴管に設けられた管軸方向に延びる台形断面形状の多数の穴が、幅方向に離間して互いに平行に配列されてなると共に、かかる穴の上底の長さは下底の長さの1/2以下であり、更に該穴の高さは、下底の長さと同等以上で、且つ該多穴管の厚さの0.5~0.8倍であり、そしてかかる穴の断面積の4倍を該穴の辺の長さの和で除することによって定義される水力直径:Dと該穴の高さ:hとの比(D/h)が、0.40~0.85の範囲内となるように構成されていることを特徴とするフィン・アンド・チューブ型熱交換器用伝熱管を、その要旨とするものである。
 なお、かかる本発明に従うフィン・アンド・チューブ型熱交換器用伝熱管の望ましい態様の一つにあっては、前記多穴管に設けられた多数の穴の隣り合うものは、相互に、上下逆転した台形断面形状となる関係において配設されている。
 また、本発明に従うフィン・アンド・チューブ型熱交換器用伝熱管の別の望ましい態様の一つにあっては、前記穴の横断面形状は、等脚台形形状であり、更に別の好ましい態様の一つにあっては、前記穴の横断面形状は、下底と一方の脚との内角が90°となる台形形状である。
 さらに、本発明にあっては、アルミニウム若しくはその合金からなるフィンと、アルミニウム若しくはその合金からなる、全体として扁平な断面形状の多穴管とを組み付けてなるフィン・アンド・チューブ型熱交換器にして、前記多穴管が、管軸方向に延びる台形断面形状の多数の穴を、幅方向に離間して互いに平行に配列して、構成されていると共に、かかる穴の上底の長さは下底の長さの1/2以下であり、更に該穴の高さは、下底の長さと同等以上で、且つ該多穴管の厚さの0.5~0.8倍であり、そしてかかる穴の断面積の4倍を該穴の辺の長さの和で除することによって定義される水力直径:Dと該穴の高さ:hとの比(D/h)が、0.40~0.85の範囲内となるように構成されていることを特徴とするフィン・アンド・チューブ型熱交換器をも、その要旨としている。
 また、そのような本発明に従うフィン・アンド・チューブ型熱交換器の好ましい態様の一つによれば、前記フィンとして、矩形の板状フィンを用いると共に、該板状フィンの一端に開口するように設けられた所定長さのスリット内に前記多穴管を嵌め込んで、固定することにより、それら多穴管と板状フィンとが組付けられることとなる。
 更にまた、本発明に従うフィン・アンド・チューブ型熱交換器の別の好ましい態様の一つにあっては、前記フィンとして、波形形状のコルゲートフィンを用いると共に、該コルゲートフィンの複数と前記多穴管の複数とが交互に積層されて、互いに接合することによって、組み付けられることとなる。
 従って、このような本発明に従う構成とされたフィン・アンド・チューブ型熱交換器用伝熱管によれば、台形断面形状とされた穴が、その台形形状における上底と下底の長さの比率や該穴の高さと伝熱管の厚さとの比率、更には、かかる穴の断面積の4倍を該穴の辺の長さの和で除することによって定義される水力直径:Dと該穴の高さ:hとの比(D/h)を、適切な範囲に設定して、形成されているところから、伝熱管の穴の内部を冷媒が流れる際に、台形断面形状の底辺(下底)と脚に挟まれた部位のうちの角度の小さい部分や、下底の1/2以下の長さとされた上底と2つの脚とに挟まれた部位等、穴の狭い部分を冷媒が流通することにより、冷媒の単位体積あたりに接触する多穴管内面の面積が増加して、冷媒と伝熱管との間の熱伝達率、即ち伝熱管の熱交換効率を、効果的に向上させることが可能となるのである。しかも、そのような穴の狭い部分を冷媒が通過することによって、局所的な流動状態を惹き起こすことが出来るため、より効果的に熱交換効率を上げることが可能となるのである。
 さらに、かかる本発明に従う構成とされたフィン・アンド・チューブ型熱交換器用伝熱管にあっては、穴形状が台形形状とされているところから、押出加工によって伝熱管を製造する際に、三角形状の穴とされた扁平多穴管を製造するよりもメタルフローを生じさせ易く、押出加工性を有利に向上することが出来るのである。
 そして、このような構成とされたフィン・アンド・チューブ型熱交換器用伝熱管を用いて作製されたフィン・アンド・チューブ型熱交換器にあっては、伝熱管において冷媒側の熱伝達率が有利に向上せしめられているところから、高い熱交換性能を発揮すると共に、熱交換器の小型化や軽量化、更には製造コストの低減といった効果が、有利に発揮されることとなる。
本発明に従うフィン・アンド・チューブ型熱交換器の一例を示す斜視説明図である。 図1に示されるフィン・アンド・チューブ型熱交換器を構成するフィンを示す斜視説明図である。 図1に示されるフィン・アンド・チューブ型熱交換器を構成する扁平多穴管の横断面の一部を拡大して示す断面説明図である。 実施例において用いられた、熱交換性能評価用フィン・アンド・チューブ型熱交換器を概略的に示す正面説明図である。 実施例において用いられた熱交換器を構成するために準備した扁平多穴管の横断面を示す説明図であって、(a)は、穴形状が等脚台形形状のものを、(b)は、穴形状が底辺と一方の脚の内角が直角とされた台形形状のものを、(c)は、(b)とは寸法の違う台形形状のものを、それぞれ示している。 実施例において比較のために用いられた熱交換器を構成するために準備した扁平多穴管の横断面を示す説明図であって、(a)は、四角形形状の穴形状のものを、(b)は、円形形状の穴形状のものを、それぞれ示している。 実施例において比較のために用いられた熱交換器を構成するために更に準備した扁平多穴管の横断面を示す説明図であって、(a)及び(b)は、それぞれ、本発明規格外の台形形状の穴形状を有するものを示している。
 以下、本発明を更に具体的に明らかにするために、本発明の実施の形態について、図面を参照しつつ、詳細に説明することとする。
 先ず、図1には、本発明に従うフィン・アンド・チューブ型熱交換器用伝熱管を用いたフィン・アンド・チューブ型熱交換器の実施形態の一つが、斜視図の形態において、概略的に示されている。そこにおいて、熱交換器10は、互いに平行に且つ一定距離を隔てて配置された複数枚のフィン12に対して、2本の扁平多穴管14,14が、かかるフィン12に設けられたスリット状の組付け孔16に挿入、固着されることによって、構成されている。
 より詳細には、フィン12は、従来と同様に、アルミニウム若しくはアルミニウム合金からなる金属材料、例えばJIS呼称がA1000系、A3000系、A7000系等のアルミニウム材質にて形成された、図2にも示されているように、矩形の平面形状を呈した薄肉の板状フィンにて構成されている。また、かかるフィン12には、扁平多穴管14が組み付けられる組付け孔16が、矩形形状のフィン12の一端からフィン12の幅方向(図2においては、左右方向)に延びるスリットとして、形成されている。更に、かかる組付け孔16の周りには、所定高さのカラー部18が、フィン12と一体的に形成されて、U字形状において立設されている。
 一方、扁平多穴管14は、よく知られている如く、アルミニウム若しくはアルミニウム合金からなる金属材料、例えばJIS呼称がA1000系、A3000系、A6000系等のアルミニウム材質にて形成された、ここでは、管軸方向に延びる10個の穴20が形成されてなる、扁平形状を呈する多穴管にて、構成されている。そこにおいて、穴20は、管軸に垂直な方向における断面、所謂横断面の一部を拡大した図3にも示されるように、台形の断面形状を呈しており、その台形の2つの底辺のうち上底の長さ:aが下底の長さ:bの1/2以下とされていると共に、高さ:hが下底の長さ:bと同等以上とされ、更に、かかる穴の高さ:hが扁平多穴管14の厚さ:Hの0.5~0.8倍の長さとなるようにされている。そして、ここでは、かかる穴20の台形形状は、穴の高さ:hと下底の長さ:bが同一の長さとされ、上底の長さ:aが下底の長さ:bの1/2の長さとされると共に、それぞれの底辺(上底、下底)の両端の内角が等しい角度とされた等脚台形形状とされている。なお、そのような形状とされた穴20の、隣り合う穴20同士は、図示の如く、それぞれ、上下方向が反転した形態において、扁平多穴管14の幅方向に所定間隔を隔てて、互いに平行に配列されている。
 さらに、そのような穴20においては、その断面積の4倍を、穴の辺の長さの和で除することによって定義される水力直径:Dと、穴の高さ:hとの比(D/h)が、0.40~0.85の範囲内となるように、構成されている。即ち、ここでは、穴20は、穴高さ(h)と下底の長さ(b)とが同一で、上底の長さ(a)が下底の長さ(b)の1/2とされた等脚台形形状であるところから、D/h=0.84となり、上記で規定されるD/hの範囲内となるように構成されているのである。
 このように、扁平多穴管14の穴20の穴形状を、台形の上底の長さ:aと下底の長さ:bと穴の高さ:h、及び扁平多穴管14の厚さ:Hの比率、更には水力直径:Dと穴の高さ:hとの比(D/h)を、上記範囲内の値となるように設定することによって、穴20の狭い部分を冷媒が効果的に通過するようになり、冷媒の単位体積あたりに接触する穴内面の面積が増加して、冷媒と伝熱管との間の熱伝達率が有利に向上されることとなる。また、そのような穴20の狭い部分を冷媒が通過することによって、局所的な流動状態が発生するため、より効果的に熱伝達率を上げることも可能となるのである。
 ところで、上記の扁平多穴管14において、上底の長さ(a)が下底の長さ(b)の1/2を超えたり、穴高さ(h)が下底の長さ(b)よりも小さくなった場合には、冷媒が穴20内を通過し易くなるため、冷媒と伝熱管との間の熱伝達が充分に行い難くなる。また、穴高さ(h)が、伝熱管の厚さ(H)の0.5倍未満となると、穴が小さくなり過ぎてしまい、製造が困難となってしまう問題を生ずる。一方、穴高さ(h)が、伝熱管の厚さ(H)の0.8倍よりも大きくされた場合にあっても、扁平多穴管14の上下の肉厚が薄くなり過ぎてしまい、製造が困難となってしまうのである。なお、穴20の台形形状の上底の長さ(a)は、好ましくは0.1mm以上とされることとなる。これは、かかる長さ(a)が0.1mmよりも小さくされると、押出加工の際のメタルフローが悪化して、目的とする扁平多穴管の製造が困難となってしまうからである。
 さらに、水力直径:Dと穴高さ:hとの関係にあっても、かかるD/hの値が0.40よりも小さくなる場合にあっては、穴20が小さくなり過ぎてしまい、扁平多穴管の製造が困難となってしまうため、実用的でなくなってしまうことになる。一方、D/hの値が0.85よりも大きくなる場合には、冷媒の単位体積あたりの接触面積の増加が充分でなくなり、熱伝達率の向上効果が有利に発揮され難くなるのである。
 そして、そのような扁平多穴管14とフィン12を用いて、かかるフィン12の複数枚を、それぞれに形成された組付け孔16を一致させた状態下において、互いに平行に且つ一定距離を隔てるように配置せしめ、その一致させた組付け孔16内に、扁平多穴管14を嵌め込んで、固定的に組み付けることにより、目的とするフィン・アンド・チューブ型熱交換器10が構成されるのである。なお、この扁平多穴管14とフィン12との固定的な組付けは、よく知られているように、カチコミやろう付けによる接合、或いは接着剤による固着等、公知の各種の手法によって行われて、一体的なフィン・アンド・チューブ型熱交換器として完成されることとなる。また、そのようなフィン・アンド・チューブ型熱交換器を構成する伝熱管たる扁平多穴管14のそれぞれの両端部は、ここでは図示しないヘッダにそれぞれ接続されて、扁平多穴管14の10個の穴20、即ち、管軸方向に延びる冷媒が流通せしめられる10本の流路が、冷媒の入口側と出口側においてそれぞれまとめられて、フィン・アンド・チューブ型熱交換器10とされているのである。
 従って、このような本発明に従う構成とされたフィン・アンド・チューブ型熱交換器10においては、扁平多穴管14に形成された穴20の形状が、単純に、冷媒と穴内面との接触面積を増大させるだけでなく、冷媒の単位体積当たりの接触面積を増大させて、冷媒側の熱伝達率を有利に向上せしめることが可能な台形形状とされているところから、扁平多穴管14において、管内を流通する冷媒と伝熱管との間の熱交換効率が、効果的に向上せしめられ、その結果、熱交換器10の熱交換性能を、有利に高めることが出来るのである。また、かかる扁平多穴管14に形成された穴20が台形形状とされていることによって、押出加工の際にメタルフローが悪化して、加工性が低下してしまうような問題が有利に解消乃至は回避され、以て高い押出加工性が発揮されることとなるのである。更に、そのように高い熱伝達率を発揮する扁平多穴管14を用いることによって、熱交換器10を小型、軽量化し得ると共に、製造コストの低減といった効果も、有利に発揮されることとなる。
 以上、本発明の代表的な実施形態の一つについて詳述してきたが、それは、あくまでも例示に過ぎないものであって、本発明は、そのような実施形態に係る具体的な記述によって、何等限定的に解釈されるものではないことが、理解されるべきである。
 例えば、前述の実施形態においては、板状のフィン12に設けられた組付け孔16に扁平多穴管14が組み付けられて構成されるフィン・アンド・チューブ型の熱交換器10を例示したが、例えば、図4に示されるような、扁平多穴管22,22の間にコルゲート状(波状)のフィン24を組み付けて構成された、コルゲートフィン式のフィン・アンド・チューブ型熱交換器30とすることも可能である。
 また、扁平多穴管14に形成される穴20の形状は、上記の実施形態においては、穴高さ(h)と下底(b)の長さが同一であると共に、上底の長さ(a)が下底の長さ(b)の1/2とされ、且つそれぞれの底辺の両端の内角が等しい角度とされた等脚台形形状とされているが、水力直径:Dと穴の高さ:hとの比(D/h)が、本発明における規定の範囲内とされる台形形状であれば、例示した等脚台形以外にも、底辺(下底)の両端の内角の角度が異なっている台形や、底辺(下底)と一方の脚との内角が直角とされた台形等、各種の台形形状が、適宜に選択されることとなる。更に、例示の台形形状においては、台形のそれぞれの辺(底辺、脚)が直線状とされていたが、D/hが前述した関係を満たすものであれば、所定の曲率半径をもった円弧状の辺とすることも可能である。
 加えて、かかる穴20の内表面は、ここでは、平坦な面としていたが、微少な凹凸(溝や突条)を形成した面であってもよい。そのような凹凸を形成することによって、単位体積当たりの冷媒と穴20の表面との接触面積を更に増大させ、冷媒と伝熱管との熱伝達率を、より効果的に向上させることが可能となる。
 その他、一々列挙はしないが、本発明が、当業者の知識に基づいて、種々なる変更、修正、改良等を加えた態様において実施されるものであり、またそのような実施の態様が、本発明の趣旨を逸脱しない限りにおいて、何れも、本発明の範疇に属するものであることは、言うまでもないところである。
 以下に、本発明の代表的な実施例を示し、本発明を更に具体的に明らかにすることとするが、本発明が、そのような実施例の記載によって、何等の制約をも受けるものでないことは、言うまでもないところである。
 先ず、本発明に従うフィン・アンド・チューブ型熱交換器用伝熱管として、アルミニウム合金(JIS A3003)を押出加工することによって、図5(a)に示されるような断面形状を呈する、幅(W):16mm、厚さ(H):1.9mm、穴数:12の押出扁平多穴管40を準備し、これを伝熱管No.1とした。かかる伝熱管No.1に設けられた12個の穴(42)の形状は、上底(a):0.6mm、下底(b):1.2mm、高さ(h):1.2mm(伝熱管厚さの0.63倍)の等脚台形となるようにした。その他、水力直径等の各諸元は、下記表1に示す通りとした。なお、下記表1において、穴高さ(h)は、扁平多穴管(40)の厚さ方向における穴の高さを、流路面積は、軸方向に垂直な断面における穴一つ当たりの穴部分の断面積を、濡縁長さは、断面における穴一つ当たりの穴の辺の長さを、それぞれ示している。
 また、本発明に従うフィン・アンド・チューブ型熱交換器用伝熱管の別の例として、図5(b)及び図5(c)に示される如き断面形状の、扁平多穴管44,46を準備し、それぞれ、伝熱管No.2、伝熱管No.3とした。ここで、伝熱管No.2は、幅(W):16mm、厚さ(H):1.9mm、穴数:20の押出扁平多穴管であり、その穴形状は、上底:0.1mm、下底:0.7mm、高さ:1.5mm(伝熱管厚さの0.79倍)、底辺(下底)と一方の脚との内角が90°となる台形形状とした。また、伝熱管No.3は、幅(W):16mm、厚さ(H):1.9mm、穴数:14の押出扁平多穴管であり、その穴形状は、上底:0.4mm、下底:0.7mm、高さ:1.5mm、底辺と一方の脚との内角が90°となる台形形状とした。即ち、伝熱管2,3は、伝熱管1と幅(W)と厚さ(H)が同一であるものの、穴形状と穴数が異なる扁平多穴管となっている。なお、かかる伝熱管No.2,3は、伝熱管No.1と同様に、アルミニウム合金(JIS A3003)を押出加工することによって作製した。また、それら伝熱管No.2,3における流路面積や水力直径等の各諸元は、下記表1に併せ示した。
 そして、比較のための伝熱管として、図6(a)に示されるような、穴形状が四角形(一辺の長さ:1mmの正方形)の扁平多穴管50と、図6(b)に示される如き、穴形状が円形(直径:1.2mmの円)の扁平多穴管52を準備し、それぞれ、伝熱管No.4、伝熱管No.5とした。更に、穴形状が台形形状ではあるものの、D/hの値が本発明の範囲外のものとして、図7(a)及び図7(b)に示される如き穴形状とされた扁平多穴管54,56を準備し、それぞれ、伝熱管No.6、伝熱管No.7とした。ここで、伝熱管No.6の穴形状は、上底:0.2mm、下底:0.5mm、高さ:1.5mm(伝熱管厚さの0.79倍)で、底辺と一方の脚との内角が90°となる台形形状とした。また、伝熱管No.7の穴形状は、上底:0.8mm、下底:1.2mm、高さ:1.2mm(伝熱管厚さの0.63倍)で、底辺と一方の脚との内角が90°となる台形形状とした。なお、それら伝熱管No.4~7に関しても、伝熱管No.1~3と同様に、アルミニウム合金(JIS A3003)を押出加工することによって作製し、その幅や厚さは、全て、伝熱管No.1と同一の、幅(W):16mm、厚さ(H):1.9mmとした。ただし、穴数においては、伝熱管No.4,5,7は12個、伝熱管No.6は18個とした。また、それら伝熱管No.4~7における流路面積や水力直径等の各諸元は、下記表1に併せ示した。
Figure JPOXMLDOC01-appb-T000001
 そして、このように準備されたそれぞれの扁平多穴管(伝熱管No.1~7)を用いて、図4に示される如く、扁平多穴管(22)が互いに平行に複数配列され、隣り合う扁平多穴管(22,22)の間に、波形形状に成形加工されたコルゲートフィン(24)が接合されてなる熱交換器(30)を、それぞれ、熱交換器No.1~7として作製した。なお、かかる熱交換器(30)において、配列された扁平多穴管(22)の両端は、それぞれヘッダ(26)に接続され、扁平多穴管(22)の軸方向に延びるそれぞれの穴(流路)が、冷媒の入口側と出口側においてそれぞれまとめられて、冷媒の流路が形成されている。また、ここで製作したそれぞれの熱交換器(30)において、フィン(24)は、全て、心材にJIS A3703系合金、皮材にJIS A4045系合金を用いたブレージングシートをコルゲート状に加工したものを使用し、一つの熱交換器を作製するにあたり、75本の扁平多穴管(24)を用いた。なお、そのようなフィン(24)と扁平多穴管(22)の接合は、目的とする熱交換器(30)の形状に積層して組み立てたフィン(24)と扁平多穴管(22)との組付け体を、ろう付け炉内にて(最高到達温度)600℃で3分間加熱保持した後、冷却することによって、フィン(24)と扁平多穴管(22)とが、ろう付け接合されるようにした。そして、ヘッダ(26,26)間の扁平多穴管(22)の長さは610mmとなるようにし、熱交換器(30)の全体の大きさは、幅:650mm、高さ:610mmとなるようにした。
 その後、このように準備された熱交換器No.1~7を用いて、それぞれの熱交換器の単体性能評価試験を行った。試験方法は、各熱交換器を、恒温恒湿試験室内に設けられた風洞装置に設置し、試験室内の空気温度(乾球:35℃、湿球:24℃)、風速(1.5m/s)に対して、冷媒(R-410A)を、熱交換器入口温度:64℃(SH=20K)、凝縮温度:44℃、熱交換器出口温度:39℃(SC=5K)の条件に設定し、空気と冷媒の熱バランスがとれた状態の熱交換量をそれぞれ測定した。各熱交換器における試験結果を、下記表2に示す。なお、かかる表2に示した試験結果は、扁平多穴管の穴形状が四角形である熱交換器No.4の熱交換量を100とした場合に対する比率において、示されている。
Figure JPOXMLDOC01-appb-T000002
 以上の結果より、流路面積が略同一であるものの、扁平多穴管に形成される穴形状が異なっている熱交換器No.1,4,5の対比において、本発明に従う台形形状の穴形状とされた熱交換器No.1は、穴形状が四角形形状とされた熱交換器No.4や円形状とされた熱交換器No.5よりも、大きく凝縮性能を向上させることが確認された。また、穴形状が台形形状とされ、水力直径:Dと穴の高さ:hとの比:D/hが本発明の範囲内である扁平多穴管40,44,46を用いて構成されたそれぞれの熱交換器No.1、熱交換器No.2及び熱交換器No.3は、何れも、扁平多穴管の穴形状が一般的な四角形とされた熱交換器No.4よりも、2%以上の熱交換性能の向上が確認された。一方、穴形状が台形形状であるものの、D/hが本発明の範囲外である熱交換器No.6,7に関しては、穴形状が四角形形状(正方形)とされた熱交換器No.4よりも性能が低下しており、穴形状を台形とすることによる扁平多穴管における冷媒側の熱伝達率の向上効果が、効果的に発揮されないことが確認された。
 10 熱交換器
 12 フィン
 14 扁平多穴管
 16 組付け孔
 18 カラー部
 20 穴

Claims (7)

  1.  アルミニウム若しくはその合金からなるフィンが組み付けられるフィン・アンド・チューブ型熱交換器用伝熱管にして、
     アルミニウム若しくはその合金からなる、全体として扁平な断面形状の多穴管にて構成され、且つ該多穴管に設けられた管軸方向に延びる台形断面形状の多数の穴が、幅方向に離間して互いに平行に配列されてなると共に、かかる穴の上底の長さは下底の長さの1/2以下であり、更に該穴の高さは、下底の長さと同等以上で、且つ該多穴管の厚さの0.5~0.8倍であり、そしてかかる穴の断面積の4倍を該穴の辺の長さの和で除することによって定義される水力直径:Dと該穴の高さ:hとの比(D/h)が、0.40~0.85の範囲内となるように構成されていることを特徴とするフィン・アンド・チューブ型熱交換器用伝熱管。
  2.  前記多穴管に設けられた多数の穴の隣り合うものが、相互に、上下逆転した台形断面形状となる関係において配設されている請求項1に記載のフィン・アンド・チューブ型熱交換器用伝熱管。
  3.  前記穴の横断面形状が、等脚台形形状である請求項1又は請求項2に記載のフィン・アンド・チューブ型熱交換器用伝熱管。
  4.  前記穴の横断面形状が、下底と一方の脚との内角が90°となる台形形状である請求項1又は請求項2に記載のフィン・アンド・チューブ型熱交換器用伝熱管。
  5.  アルミニウム若しくはその合金からなるフィンと、アルミニウム若しくはその合金からなる、全体として扁平な断面形状の多穴管とを組み付けてなるフィン・アンド・チューブ型熱交換器にして、
     前記多穴管が、管軸方向に延びる台形断面形状の多数の穴を、幅方向に離間して互いに平行に配列して、構成されていると共に、かかる穴の上底の長さは下底の長さの1/2以下であり、更に該穴の高さは、下底の長さと同等以上で、且つ該多穴管の厚さの0.5~0.8倍であり、そしてかかる穴の断面積の4倍を該穴の辺の長さの和で除することによって定義される水力直径:Dと該穴の高さ:hとの比(D/h)が、0.40~0.85の範囲内となるように構成されていることを特徴とするフィン・アンド・チューブ型熱交換器。
  6.  前記フィンとして、矩形の板状フィンを用いると共に、該板状フィンの一端に開口するように設けられた所定長さのスリット内に前記多穴管を嵌め込んで、固定することにより、それら多穴管と板状フィンとが組付けられている請求項5に記載のフィン・アンド・チューブ型熱交換器。
  7.  前記フィンとして、波形形状のコルゲートフィンを用いると共に、該コルゲートフィンの複数と前記多穴管の複数とが交互に積層されて、互いに接合することによって、組み付けられている請求項5に記載のフィン・アンド・チューブ型熱交換器。
PCT/JP2013/062918 2012-06-13 2013-05-08 フィン・アンド・チューブ型熱交換器用伝熱管及びそれを用いたフィン・アンド・チューブ型熱交換器 WO2013187156A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380031247.3A CN104380026A (zh) 2012-06-13 2013-05-08 翅片管式换热器用传热管和使用了其的翅片管式换热器
JP2014521023A JP6360791B2 (ja) 2012-06-13 2013-05-08 フィン・アンド・チューブ型熱交換器用伝熱管及びそれを用いたフィン・アンド・チューブ型熱交換器
KR20147034624A KR20150030201A (ko) 2012-06-13 2013-05-08 핀·앤드·튜브형 열 교환기용 전열관 및 그것을 사용한 핀·앤드·튜브형 열 교환기

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-133856 2012-06-13
JP2012133856 2012-06-13

Publications (1)

Publication Number Publication Date
WO2013187156A1 true WO2013187156A1 (ja) 2013-12-19

Family

ID=49757988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/062918 WO2013187156A1 (ja) 2012-06-13 2013-05-08 フィン・アンド・チューブ型熱交換器用伝熱管及びそれを用いたフィン・アンド・チューブ型熱交換器

Country Status (4)

Country Link
JP (1) JP6360791B2 (ja)
KR (1) KR20150030201A (ja)
CN (1) CN104380026A (ja)
WO (1) WO2013187156A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101694670B1 (ko) 2015-03-31 2017-01-10 (주)누리 열교환기용 입출구파이프 연결부재
KR101694671B1 (ko) 2016-01-25 2017-01-10 (주)누리 입출구파이프를 포함한 열교환기 제조방법
KR20160117376A (ko) 2016-06-09 2016-10-10 (주)누리 입출구파이프를 포함한 열교환기 제조방법
CN106683830A (zh) * 2017-03-06 2017-05-17 常熟市友邦散热器有限责任公司 非均匀油道片式散热器
KR102565006B1 (ko) * 2018-01-10 2023-08-10 주식회사 두원공조 응축기

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4854354U (ja) * 1971-10-21 1973-07-13
JPS6126978U (ja) * 1984-07-20 1986-02-18 昭和アルミニウム株式会社 熱交換器
JPH06142755A (ja) * 1992-11-05 1994-05-24 Nippondenso Co Ltd 多穴管押出用ダイスおよびこの多穴管押出用ダイスを用いて製造された多穴管
JPH1144498A (ja) * 1997-05-30 1999-02-16 Showa Alum Corp 熱交換器用偏平多孔チューブ及び同チューブを用いた熱交換器
JP2005351600A (ja) * 2004-06-14 2005-12-22 Nikkei Nekko Kk アルミ製熱交換器及びそのスケール付着防止方法
JP2009529621A (ja) * 2006-03-16 2009-08-20 ベール ゲーエムベーハー ウント コー カーゲー 自動車用熱交換器
JP2011064403A (ja) * 2009-09-17 2011-03-31 Mitsubishi Electric Corp 熱交換器および熱交換器用フィンとその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3521914A1 (de) * 1984-06-20 1986-01-02 Showa Aluminum Corp., Sakai, Osaka Waermetauscher in fluegelplattenbauweise
US7080683B2 (en) * 2004-06-14 2006-07-25 Delphi Technologies, Inc. Flat tube evaporator with enhanced refrigerant flow passages

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4854354U (ja) * 1971-10-21 1973-07-13
JPS6126978U (ja) * 1984-07-20 1986-02-18 昭和アルミニウム株式会社 熱交換器
JPH06142755A (ja) * 1992-11-05 1994-05-24 Nippondenso Co Ltd 多穴管押出用ダイスおよびこの多穴管押出用ダイスを用いて製造された多穴管
JPH1144498A (ja) * 1997-05-30 1999-02-16 Showa Alum Corp 熱交換器用偏平多孔チューブ及び同チューブを用いた熱交換器
JP2005351600A (ja) * 2004-06-14 2005-12-22 Nikkei Nekko Kk アルミ製熱交換器及びそのスケール付着防止方法
JP2009529621A (ja) * 2006-03-16 2009-08-20 ベール ゲーエムベーハー ウント コー カーゲー 自動車用熱交換器
JP2011064403A (ja) * 2009-09-17 2011-03-31 Mitsubishi Electric Corp 熱交換器および熱交換器用フィンとその製造方法

Also Published As

Publication number Publication date
JP6360791B2 (ja) 2018-07-18
JPWO2013187156A1 (ja) 2016-02-04
KR20150030201A (ko) 2015-03-19
CN104380026A (zh) 2015-02-25

Similar Documents

Publication Publication Date Title
JP4679542B2 (ja) フィンチューブ熱交換器、およびそれを用いた熱交換器ユニット並びに空気調和機
US20090084129A1 (en) Heat exchanger and refrigeration cycle apparatus having the same
JP4096226B2 (ja) フィンチューブ型熱交換器、その製造方法及び冷凍空調装置
JP6360791B2 (ja) フィン・アンド・チューブ型熱交換器用伝熱管及びそれを用いたフィン・アンド・チューブ型熱交換器
US20130306285A1 (en) Heat exchanger and air conditioner
WO2009154047A1 (ja) 熱交換器及びこの熱交換器を備えた空気調和機
RU2557812C2 (ru) Теплообменник, холодильник, снабженный теплообменником и устройство кондиционирования воздуха, снабженное теплообменником
US20070169922A1 (en) Microchannel, flat tube heat exchanger with bent tube configuration
JP2005326136A (ja) 空気熱交換器用伝熱フィン
JP2018021756A (ja) フィン・アンド・チューブ型熱交換器用伝熱管及びそれを用いたフィン・アンド・チューブ型熱交換器
JP2009063228A (ja) 扁平状伝熱管
WO2017073715A1 (ja) アルミニウム製押出扁平多穴管及び熱交換器
JP2010249343A (ja) フィンチューブ型熱交換器及びこれを用いた空気調和機
JP2015017738A (ja) 熱交換器
JP2011075122A (ja) アルミニウム製内面溝付伝熱管
JP2010249374A (ja) フィンチューブ型熱交換器並びに空調冷凍装置
WO2019039401A1 (ja) 凝縮器
JP2009145010A (ja) 空気調和機用フィンレス熱交換器
WO2017068723A1 (ja) 熱交換器及び冷凍サイクル装置
JP4897968B2 (ja) 伝熱管、及び、伝熱管の製造方法
JP2006098033A (ja) リターンベンド管およびフィンアンドチューブ型熱交換器
JP2014001882A (ja) 熱交換器および空気調和機
WO2012029542A1 (ja) 熱交換器およびこれを備えた車両用空調装置
WO2017110474A1 (ja) 熱交換器
JP2003222436A (ja) ヒートポンプ型空調用熱交換器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13803539

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014521023

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147034624

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13803539

Country of ref document: EP

Kind code of ref document: A1