WO2013185448A1 - 一种电驱动矿车路面自适应防滑防抱死的控制方法 - Google Patents

一种电驱动矿车路面自适应防滑防抱死的控制方法 Download PDF

Info

Publication number
WO2013185448A1
WO2013185448A1 PCT/CN2012/085908 CN2012085908W WO2013185448A1 WO 2013185448 A1 WO2013185448 A1 WO 2013185448A1 CN 2012085908 W CN2012085908 W CN 2012085908W WO 2013185448 A1 WO2013185448 A1 WO 2013185448A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
preset
specified
wheel
torque
Prior art date
Application number
PCT/CN2012/085908
Other languages
English (en)
French (fr)
Inventor
王建明
戚烈
滕昱棠
Original Assignee
湖南三一智能控制设备有限公司
上海三一重机有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南三一智能控制设备有限公司, 上海三一重机有限公司 filed Critical 湖南三一智能控制设备有限公司
Priority to US14/348,741 priority Critical patent/US9216663B2/en
Publication of WO2013185448A1 publication Critical patent/WO2013185448A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/176Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS
    • B60T8/1761Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS responsive to wheel or brake dynamics, e.g. wheel slip, wheel acceleration or rate of change of brake fluid pressure
    • B60T8/17616Microprocessor-based systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/176Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the invention relates to a control method for adaptive anti-skid anti-locking of an electric drive mine road.
  • the application is submitted to the Chinese Patent Office on June 11, 2012, and the application number is 201210190118.6.
  • the invention name is "an electric drive mine road pavement adaptive anti-skid Priority of Chinese Patent Application for "Anti-lock Control Method", the entire contents of which are incorporated by reference in the technical field of the present application
  • the invention relates to a control method for anti-skid and anti-locking of a vehicle, in particular to a control method for adaptive anti-skid and anti-locking of an electric drive mine road. Background technique
  • the main method is: Proportion Integral Derivative (PCR) based on genetic algorithm. , fuzzy control method, sliding mode variable structure control method, optimal control method, etc.
  • PCR Proportion Integral Derivative
  • the logic threshold control method is easy to implement, but the threshold value is not easy to determine, and the fluctuation of the wheel speed gives the driver a bad feeling, and the wheel is not stably maintained at the optimal slip ratio.
  • other intelligent control methods have better control effects, the control algorithm is complex, and requires a more accurate mathematical model and vehicle speed sensor, and the cost is high. Summary of the invention
  • the invention relates to a control method for adaptive anti-skid anti-locking of an electric drive mine road, wherein the specific steps include the following steps:
  • Step S1 determining whether the vehicle is in the driving mode, if the result is otherwise, proceeding to step S10;
  • Step S2 determining whether the specified driving wheel speed of the vehicle is greater than a preset value of the wheel speed, and determining whether the slip ratio of the specified driving wheel is greater than a preset value of the slip ratio, if any of the two determinations is otherwise exiting;
  • Step S3 determining whether the vehicle speed is greater than the first vehicle speed preset value, if the result is otherwise, proceeding to step S7;
  • Step S4 adjusting the torque of the specified driving wheel by a preset high-speed anti-skid movement strategy; Step S5, determining whether the specified driving wheel speed is less than the preset speed of the wheel speed, and exiting if the result is yes;
  • Step S6 determining whether the torque distribution coefficient of the specified driving wheel is greater than a preset value of the torque distribution coefficient, and if the result is otherwise, returning to step S4, if the result is yes, exiting;
  • Step S7 adjusting the torque of the specified driving wheel by a preset low-speed anti-skid movement strategy; Step S8, determining whether the specified driving wheel speed is less than the preset speed of the wheel speed, and exiting if the result is yes;
  • Step S9 determining whether the torque distribution coefficient of the specified driving wheel is greater than a preset value of the torque distribution coefficient, and if the result is otherwise, returning to step S7, if the result is yes, exiting;
  • Step S10 determining whether the vehicle is in the braking mode, if the result is otherwise exiting; Step S11, determining whether the vehicle speed is greater than the second vehicle speed preset value, and determining whether the specified driving wheel slip ratio is greater than the slip ratio preset Value, if any of the two judgments is otherwise exited;
  • Step S12 Adjusting the braking force of the designated driving wheel by using a preset anti-locking strategy
  • Step S13 determining whether the vehicle speed is less than a preset value of the second vehicle speed, and if the result is yes, exiting;
  • Step S14 Determine whether the slip ratio of the designated driving wheel is less than a preset value of the minimum slip ratio. If the result is otherwise, return to step S12, and if the result is yes, exit.
  • the preset speed of the wheel speed is 2 km/h.
  • the preset value of the slip ratio is 15%.
  • the torque distribution coefficient has a preset value of 0.48.
  • the first vehicle speed preset value is 10 km/h
  • the second vehicle speed preset value is 2 km/h.
  • the minimum slip ratio is preset to be 6%.
  • the preset high-speed anti-skid shifting strategy specifically includes the following steps: the acceleration of the specified driving wheel rises to a preset acceleration threshold value or the slip ratio rises to a preset slip rate upper threshold value. Calculating a rate of the specified drive wheel torque drop by a preset speed reduction function according to a current slip ratio of the designated drive wheel, and decreasing the designated drive wheel and the speed according to the rate at which the specified drive wheel torque decreases Describe the torque of the wheel on which the drive wheel is coaxial;
  • a speed function calculates a rate at which the specified drive wheel torque rises, and increases a torque of the designated drive wheel and a wheel coaxial with the designated drive wheel based on the rate at which the specified drive wheel torque increases;
  • the speed reduction function is a speed reduction function preset by an interpolation method, with the specified drive wheel slip rate as an independent variable, and the specified drive wheel torque reduction rate as a function value, and An adjustable parameter is reserved in the speed function;
  • the speed increasing function is a speed increasing function preset by an interpolation method, using the specified driving wheel slip rate as an independent variable, and the specified driving wheel torque rising rate as a function value, and the speed increasing function A tunable parameter is reserved in the middle.
  • the preset low-speed anti-skid shifting strategy specifically includes the following steps: the acceleration of the specified driving wheel rises to a preset acceleration threshold value or the slip ratio rises to a preset slip rate upper threshold value.
  • the speed function calculates a rate at which the specified drive wheel torque drops, and reduces the specified drive wheel torque based on the rate at which the specified drive wheel torque drops, and synchronously increases the torque of the wheel that is coaxial with the designated drive wheel;
  • the preset slip is adopted according to the current slip ratio of the designated driving wheel.
  • the speed function calculates a rate at which the specified drive wheel torque rises, and increases the torque of the designated drive wheel and the wheel coaxial with the designated drive wheel according to the rate at which the specified drive wheel torque rises, and simultaneously reduces and reduces Describe the torque of the wheel on which the drive wheel is coaxial;
  • the speed reduction function is a speed reduction function preset by an interpolation method, with the specified drive wheel slip rate as an independent variable, and the specified drive wheel torque reduction rate as a function value, and An adjustable parameter is reserved in the speed function;
  • the speed increasing function is a speed increasing function preset by an interpolation method, using the specified driving wheel slip rate as an independent variable, and the specified driving wheel torque rising rate as a function value, and the speed increasing function A tunable parameter is reserved in the middle.
  • the preset anti-locking strategy specifically includes the following steps:
  • the preset slip speed function is used to calculate the current slip rate of the specified wheel. Determining a rate at which the wheel torque drops, and reducing the specified wheel torque by controlling the braking device based on the rate at which the specified wheel torque drops;
  • the deceleration function is a deceleration function preset by an interpolation method, using the specified wheel slip ratio as an independent variable, and the specified wheel torque reduction rate as a function value, and the deceleration function A tunable parameter is reserved in the middle.
  • the speed of the specified drive wheel torque increase is reduced by adjusting the adjustable parameter of the acceleration function.
  • a set of representative slip ratios of the specified drive wheels is utilized in advance a value, by which the torque reduction rate of a specified set of driving wheels is calculated, and a set of specified slip values of the specified driving wheels are used in advance, and a set of designation is calculated by the speed increasing function
  • the torque up rate of the drive wheel, the torque drop rate of the designated drive wheel and the torque up rate of the designated drive wheel are stored in a table to obtain the results in the form of a look-up table.
  • the control method is simple, easy to implement, strong in adaptability, low in requirements on sensors, and low in cost for easy on-board commissioning.
  • FIG. 1 is a flow chart showing an embodiment of a method for controlling an adaptive anti-skid anti-locking of an electrically driven mine car road surface according to the present invention
  • FIG. 2 is a flow chart showing a preset high-speed anti-skid movement strategy of an embodiment of an adaptive anti-skid anti-lock control method for an electrically driven mine car road surface according to the present invention
  • FIG. 3 is a flow chart showing a preset low-speed anti-skid movement strategy of an embodiment of an adaptive anti-skid anti-lock control method for an electrically driven mine car road surface according to the present invention
  • FIG. 4 is a flow chart showing a preset anti-locking strategy of an embodiment of an adaptive anti-skid anti-lock control method for an electrically driven mine car road surface according to the present invention
  • FIG. 5 is a graph showing a deceleration function of an embodiment of an adaptive anti-skid anti-lock control method for an electrically driven mine car road surface according to the present invention
  • FIG. 6 is a graph showing an ascending speed function of an embodiment of an adaptive anti-skid anti-lock control method for an electrically driven mine car road surface according to the present invention
  • Fig. 7 is a graph showing a deceleration function and a speed increasing function of an embodiment of an adaptive anti-skid anti-lock control method for an electrically driven mine car road surface by an adjustable parameter.
  • an embodiment of a method for controlling an adaptive anti-skid anti-locking of an electric drive mine vehicle road surface comprises the following steps:
  • Step S1 determining whether the vehicle is in the driving mode, if the result is otherwise, proceeding to step S10;
  • Step S2 determining whether the specified driving wheel speed of the vehicle is greater than a preset value of the wheel speed, and determining whether the slip ratio of the designated driving wheel is greater than the slip ratio The preset value, if any of the two judgments is otherwise exited;
  • Step S3 determining whether the vehicle speed is greater than the first vehicle speed preset value, if the result is otherwise, proceeding to step S7;
  • Step S4 Adjusting the torque of the specified driving wheel by a preset high-speed anti-skid movement strategy; Step S5, determining whether the specified driving wheel speed is less than the preset speed of the wheel speed, and exiting if the result is yes;
  • Step S6 determining whether the torque distribution coefficient of the designated driving wheel is greater than a preset value of the torque distribution coefficient, and if the result is otherwise, returning to step S4, if the result is yes, exiting;
  • Step S7 adjusting the torque of the specified driving wheel by a preset low-speed anti-skid movement strategy; Step S8, determining whether the specified driving wheel speed is less than the preset speed of the wheel speed, and exiting if the result is yes;
  • Step S9 determining whether the torque distribution coefficient of the designated driving wheel is greater than a preset value of the torque distribution coefficient, and if the result is otherwise, returning to step S7, if the result is yes, exiting;
  • Step S10 determining whether the vehicle is in the braking mode, if the result is otherwise exiting; Step S11, determining whether the vehicle speed is greater than a preset value of the second vehicle speed, and determining whether the slip ratio of the designated driving wheel is greater than a preset value of the slip ratio, If the result of the two determinations is otherwise exited; Step S12, adjusting the braking force of the designated driving wheel by the preset anti-locking strategy; Step S13, determining whether the vehicle speed is less than the preset value of the second vehicle speed, such as the result If yes, exit; step S14, determining whether the slip ratio of the designated driving wheel is less than a preset value of the minimum slip ratio, such as a knot If yes, return to step S12, and exit if the result is yes.
  • the preferred selection of the wheel speed preset value can be set to 2km/h, the slip ratio preset value can be set to 15%, the torque distribution coefficient preset value can be set to 0.48, and the first vehicle speed preset value is 10km/h.
  • the second speed preset value can be set to 2km/h, and the minimum slip rate preset value can be set to 6%.
  • the preset high-speed anti-skid strategy specifically includes the following steps:
  • Step a1 preset by the interpolation method to specify a driving wheel slip rate as an independent variable, a specified speed reduction function of the driving wheel torque reduction rate as a function value, and reserve a adjustable parameter in the speed reduction function;
  • the interpolation method presets a speed-up function that specifies the driving wheel slip rate as an independent variable, specifies the driving wheel torque rising rate as a function value, and reserves an adjustable parameter in the speed increasing function;
  • Step a3 specifies the acceleration of the driving wheel When rising to a preset acceleration threshold or when the slip rate rises to a preset upper slip ratio threshold, the specified drive wheel is calculated by the deceleration function preset in step a1 according to the current slip ratio of the specified drive wheel.
  • the rate at which the torque is reduced, and the torque of the specified drive wheel and the wheel coaxial with the designated drive wheel is reduced according to the rate at which the specified drive wheel torque drops; the deceleration of the designated drive wheel is raised to a preset deceleration threshold or slip ratio
  • the specified drive wheel torque is calculated according to the current slip ratio of the specified drive wheel through the speed increase function preset in step a2.
  • the preset low-speed anti-skid moving strategy specifically includes the following steps:
  • Step bl preset by a interpolation method to specify a driving wheel slip rate as an independent variable, a specified speed reduction function of the driving wheel torque reduction rate as a function value, and reserve a adjustable parameter in the speed reduction function;
  • step b2 The interpolation method presets a speed-up function that specifies the driving wheel slip rate as an independent variable, specifies the driving wheel torque rising rate as a function value, and reserves an adjustable parameter in the speed increasing function;
  • Step b3 specifies the acceleration of the driving wheel Rise to a preset acceleration threshold or slip ratio When rising to the preset upper slip ratio threshold, the speed of the specified drive wheel torque drop is calculated according to the current slip ratio of the specified drive wheel through the deceleration function preset in step b1, and the torque is decreased according to the specified drive wheel torque.
  • the speed decreases the specified drive wheel torque and synchronously increases the torque of the wheel coaxial with the designated drive wheel; the specified drive wheel deceleration rises to a preset deceleration threshold or the slip rate drops to a preset slip rate At the threshold value, the speed of the specified drive wheel torque rise is calculated according to the current slip rate of the specified drive wheel through the speed increase function preset in step b2, and the designated drive wheel is upgraded according to the rate at which the specified drive wheel torque rises.
  • the torque of the wheel that drives the wheel coaxially, and simultaneously reduces the torque of the wheel that is coaxial with the designated drive wheel.
  • the preset anti-locking strategy specifically includes the following steps:
  • Step cl preset by a interpolation method to specify a wheel slip rate as an independent variable, a specified speed reduction function of the wheel torque reduction rate as a function value, and reserve an adjustable parameter in the speed reduction function;
  • Step c2 When the acceleration of the specified wheel rises to a preset acceleration threshold value or the slip ratio rises to a preset upper limit of the slip ratio, the speed reduction preset in step c1 is adopted according to the current slip ratio of the designated wheel.
  • the function calculates the rate at which the specified wheel torque drops and lowers the specified wheel torque by controlling the brakes based on the rate at which the specified wheel torque drops.
  • the acceleration threshold, deceleration threshold, slip ratio upper threshold, and slip ratio lower threshold can be set according to the specific road conditions and vehicle type.
  • the embodiment of the present invention uses the acceleration and the slip ratio as the control threshold for judging the slip.
  • the control system considers that the wheel has a slip trend. And reduce the twist of the specified drive wheel by reducing the driving force Moment, which reduces the wheel speed.
  • the control system increases the torque of the specified drive wheel by slowly increasing the driving force. , to achieve control of wheel slip.
  • the slip ratio can be used only as the threshold value for independent use.
  • the adjustable parameters of the speed reduction function and the speed increasing function are adjusted to form curves of various speeds as shown in Fig. 7.
  • the drive torque should be reduced, but in order to avoid the cycle, the adjustable torque adjustment by adjusting the deceleration function reduces the rate of torque reduction, which is equivalent to the control torque at the maximum slip rate. constant.
  • the treatment method of the present invention is to reduce the rate of increasing the torque again by adjusting the adjustable parameters of the speed increasing function after each cycle, and increase after several cycles. The speed of the torque is very small, which is equivalent to a constant torque.
  • a set of representative specified drive wheels is used in advance to calculate a torque drop rate of a specified set of drive wheels by using a deceleration function
  • a set of representative designated drive wheels are used in advance.
  • the slip rate value is calculated by the speed increase function to calculate the torque up rate of a specified set of drive wheels, and the torque drop rate of the specified drive wheel and the torque up rate of the designated drive wheel are stored in a table to obtain the result in the form of a look-up table.
  • This mode of operation speed reduces the overhead that the controller uses to calculate functions. It also facilitates the calculation of curves that are difficult to express using equations.
  • the invention provides an adaptive anti-skid anti-lock control method for an electric drive mine road surface, which can effectively control the anti-skid anti-locking of the vehicle, and the control method is simple, easy to implement, strong in adaptability, low in demand on the sensor, and cost Low on-line debugging. Therefore, the present invention has industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Power Engineering (AREA)
  • Regulating Braking Force (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

一种电驱动矿车路面自适应防滑防抱死的控制方法,包括如下步骤:判断车辆是否处于驱动模式,如结果为否则转入判断是否处于制动模式的步骤;判断车辆指定驱动轮速度是否大于轮速预设值,并判断所述指定驱动轮的滑移率是否大于滑移率预设值;如该两次判断中任一结果为否则退出;判断车辆速度是否大于第一车速预设值,如结果为是则采用高速防滑移策略调整所述指定驱动轮的扭矩,如果结果为否则采用低速防滑移策略;在制动模式下判断车速和指定驱动轮的滑移率是否大于相应的预设值,以确定是否采用防抱死策略。本发明的控制方法简单,容易实现,自适应能力强,对传感器要求不高,成本低方便上车调试。

Description

一种电驱动矿车路面自适应防滑防抱死的控制方法 本申请要求于 2012 年 6 月 11 日提交中国专利局、 申请号为 201210190118.6、发明名称为 "一种电驱动矿车路面自适应防滑防抱死的控 制方法" 的中国专利申请的优先权, 其全部内容通过引用结合在本申请 技术领域
本发明涉及一种车辆防滑防抱死的控制方法, 尤其是一种电驱动矿车 路面自适应防滑防抱死的控制方法。 背景技术
目前防滑防抱死系统的控制方法主要有两类, 一是逻辑门限值控制算 法, 另一类是智能控制算法主要有: 基于遗传算法的比例积分微分控制器 ( PID, Proportion Integral Derivative )方法、 模糊控制方法、 滑模变结构控 制方法、 最优控制方法等。 其中逻辑门限值控制方法筒单, 易于实现, 但 门限值不容易确定, 且轮速有波动给驾驶员带来不好的感觉, 也不能使车 轮稳定维持在最佳滑移率上。 其他智能控制方法虽然有较好的控制效果, 但控制算法复杂, 需要有较精确的数学模型和车速传感器, 成本较高。 发明内容
针对现有的车辆防滑防抱死系统存在的上述问题, 现提供一种电驱动 矿车路面自适应防滑防抱死的控制方法。
具体解决技术问题所采用的技术手段为:
一种电驱动矿车路面自适应防滑防抱死的控制方法, 其中, 具体包括 如下步骤:
步骤 Sl、 判断车辆是否处于驱动模式, 如结果为否则转入步骤 S10; 步骤 S2、 判断车辆指定驱动轮速度是否大于轮速预设值, 并判断所述 指定驱动轮的滑移率是否大于滑移率预设值, 如该两次判断中任一结果为 否则退出;
步骤 S3、 判断车辆速度是否大于第一车速预设值, 如结果为否则转入 步骤 S7;
步骤 S4、 通过预置的高速防滑移策略调整所述指定驱动轮的扭矩; 步骤 S5、 判断所述指定驱动轮速度是否小于所述轮速预设值, 如结果 为是则退出;
步骤 S6、 判断所述指定驱动轮的扭矩分配系数是否大于扭矩分配系数 预设值, 如结果为否则返回步骤 S4, 如结果为是则退出;
步骤 S7、 通过预置的低速防滑移策略调整所述指定驱动轮的扭矩; 步骤 S8、 判断所述指定驱动轮速度是否小于所述轮速预设值, 如结果 为是则退出;
步骤 S9、 判断所述指定驱动轮的扭矩分配系数是否大于扭矩分配系数 预设值, 如结果为否则返回步骤 S7, 如结果为是则退出;
步骤 S10、 判断车辆是否处于制动模式, 如结果为否则退出; 步骤 Sll、判断车辆速度是否大于第二车速预设值, 并判断所述指定驱 动轮的滑移率是否大于滑移率预设值, 如该两次判断中任一结果为否则退 出;
步骤 S12、 通过预置的防抱死策略调整所述指定驱动轮的制动力; 步骤 S13、判断车辆速度是否小于第二所述车速预设值,如结果为是则 退出;
步骤 S14、 判断所述指定驱动轮的滑移率是否小于最小滑移率预设值, 如结果为否则返回步骤 S12, 如结果为是则退出。
优选的, 其中, 所述轮速预设值为 2km/h。 优选的, 其中, 所述滑移率预设值为 15%。
优选的, 其中, 所述扭矩分配系数预设值为 0.48。
优选的, 其中, 所述第一车速预设值为 10km/h, 所述第二车速预设值 为 2km/h。
优选的, 其中, 所述最小滑移率预设值为 6%。
优选的, 其中, 所述预置的高速防滑移策略具体包括如下步骤: 所述指定驱动轮的加速度上升至预设的加速度门限值或者滑移率上升 至预设的滑移率上门限值时, 根据指定驱动轮当前的滑移率通过预置的降 速函数计算得到所述指定驱动轮扭矩下降的速率, 并根据所述指定驱动轮 扭矩下降的速率降低所述指定驱动轮及与所述指定驱动轮同轴的车轮的扭 矩;
所述指定驱动轮的减速度上升至预设的减速度门限值或者滑移率下降 至预设的滑移率下门限值时, 根据指定驱动轮当前的滑移率通过预置的升 速函数计算得到所述指定驱动轮扭矩上升的速率, 并根据所述指定驱动轮 扭矩上升的速率提升所述指定驱动轮及与所述指定驱动轮同轴的车轮的扭 矩;
其中, 所述降速函数是以插值方法预置的、 以所述指定驱动轮滑移率 为自变量、 以所述指定驱动轮扭矩降低速率为函数值的降速函数, 并于所 述降速函数中预留一可调参数;
所述升速函数是以插值方法预置的、 以所述指定驱动轮滑移率为自变 量、 以所述指定驱动轮扭矩上升速率为函数值的升速函数, 并于所述升速 函数中预留一可调参数。
优选的, 其中, 所述预置的低速防滑移策略具体包括如下步骤: 所述指定驱动轮的加速度上升至预设的加速度门限值或者滑移率上升 至预设的滑移率上门限值时, 根据指定驱动轮当前的滑移率通过预置的降 速函数计算得到所述指定驱动轮扭矩下降的速率, 并根据所述指定驱动轮 扭矩下降的速率降低所述指定驱动轮扭矩, 并同步增加与所述指定驱动轮 同轴的车轮的扭矩;
所述指定驱动轮的减速度上升至预设的减速度门限值或者滑移率下降 至预设的滑移率下门限值时, 根据指定驱动轮当前的滑移率通过预置的升 速函数计算得到所述指定驱动轮扭矩上升的速率, 并根据所述指定驱动轮 扭矩上升的速率提升所述指定驱动轮及与所述指定驱动轮同轴的车轮的扭 矩, 并同步降低与所述指定驱动轮同轴的车轮的扭矩;
其中, 所述降速函数是以插值方法预置的、 以所述指定驱动轮滑移率 为自变量、 以所述指定驱动轮扭矩降低速率为函数值的降速函数, 并于所 述降速函数中预留一可调参数;
所述升速函数是以插值方法预置的、 以所述指定驱动轮滑移率为自变 量、 以所述指定驱动轮扭矩上升速率为函数值的升速函数, 并于所述升速 函数中预留一可调参数。
优选的, 其中, 所述预置的防抱死策略具体包括如下步骤:
所述指定车轮的加速度上升至预设的加速度门限值或者滑移率上升至 预设的滑移率上门限值时, 根据指定车轮当前的滑移率通过预置的降速函 数计算得到所述指定车轮扭矩下降的速率, 并根据所述指定车轮扭矩下降 的速率, 通过控制制动装置降低所述指定车轮扭矩;
其中, 所述降速函数是以插值方法预置的、 以所述指定车轮滑移率为 自变量、 以所述指定车轮扭矩降低速率为函数值的降速函数, 并于所述降 速函数中预留一可调参数。
优选的, 其中, 所述指定驱动轮的扭矩连续提升时, 通过调整所述升 速函数的可调参数降低所述指定驱动轮扭矩提升的速度。
优选的, 其中, 预先利用一组具有代表性的所述指定驱动轮的滑移率 值, 通过所述降速函数计算出一组指定驱动轮的扭矩下降速率, 预先利用 一组具有代表性的所述指定驱动轮的滑移率值, 通过所述升速函数计算出 一组指定驱动轮的扭矩上速率, 将所述指定驱动轮的扭矩下降速率和所述 指定驱动轮的扭矩上速率存入表格, 以查表的形式获得结果。
上述技术方案的有益效果是:
控制方法筒单, 容易实现, 自适应能力强, 对传感器要求不高, 成本 低方便上车调试。 附图说明
图 1 是本发明一种电驱动矿车路面自适应防滑防抱死的控制方法的实 施例的流程框图;
图 2是本发明一种电驱动矿车路面自适应防滑防抱死的控制方法的实 施例的预置的高速防滑移策略的流程框图;
图 3是本发明一种电驱动矿车路面自适应防滑防抱死的控制方法的实 施例的预置的低速防滑移策略的流程框图;
图 4是本发明一种电驱动矿车路面自适应防滑防抱死的控制方法的实 施例的预置的防抱死策略的流程框图;
图 5是本发明一种电驱动矿车路面自适应防滑防抱死的控制方法的实 施例的降速函数的曲线图;
图 6是本发明一种电驱动矿车路面自适应防滑防抱死的控制方法的实 施例的升速函数的曲线图;
图 7是本发明一种电驱动矿车路面自适应防滑防抱死的控制方法的实 施例通过可调参数调整后的降速函数和升速函数的曲线图。 具体实施方式
下面结合附图和具体实施例对本发明作进一步说明, 但不作为本发明 的限定。
如图 1 所示, 本发明一种电驱动矿车路面自适应防滑防抱死的控制方 法的实施例, 其中, 具体包括如下步骤:
步骤 Sl、 判断车辆是否处于驱动模式, 如结果为否则转入步骤 S10; 步骤 S2、 判断车辆指定驱动轮速度是否大于轮速预设值, 并判断指定 驱动轮的滑移率是否大于滑移率预设值, 如该两次判断中任一结果为否则 退出;
步骤 S3、 判断车辆速度是否大于第一车速预设值, 如结果为否则转入 步骤 S7;
步骤 S4、 通过预置的高速防滑移策略调整指定驱动轮的扭矩; 步骤 S5、 判断指定驱动轮速度是否小于轮速预设值, 如结果为是则退 出;
步骤 S6、 判断指定驱动轮的扭矩分配系数是否大于扭矩分配系数预设 值, 如结果为否则返回步骤 S4, 如结果为是则退出;
步骤 S7、 通过预置的低速防滑移策略调整指定驱动轮的扭矩; 步骤 S8、 判断指定驱动轮速度是否小于轮速预设值, 如结果为是则退 出;
步骤 S9、 判断指定驱动轮的扭矩分配系数是否大于扭矩分配系数预设 值, 如结果为否则返回步骤 S7, 如结果为是则退出;
步骤 S10、 判断车辆是否处于制动模式, 如结果为否则退出; 步骤 Sll、判断车辆速度是否大于第二车速预设值, 并判断指定驱动轮 的滑移率是否大于滑移率预设值, 如该两次判断中任一结果为否则退出; 步骤 S12、 通过预置的防抱死策略调整指定驱动轮的制动力; 步骤 S 13、判断车辆速度是否小于第二车速预设值,如结果为是则退出; 步骤 S14、判断指定驱动轮的滑移率是否小于最小滑移率预设值,如结 果为否则返回步骤 S12, 如结果为是则退出。
较优的选择轮速预设值可以设置为 2km/h, 滑移率预设值可以设置为 15%, 扭矩分配系数预设值可以设置为 0.48, 第一车速预设值为 10km/h, 第二车速预设值可以设置为 2km/h, 最小滑移率预设值可以设置为 6%。 以 上列出的数值仅用于说明, 并非限制本发明的保护范围。
于上述技术方案基础上, 如图 2所示, 预置的高速防滑移策略具体包 括如下步骤:
步骤 al、 以插值方法预置以指定驱动轮滑移率为自变量、 指定驱动轮 扭矩降低速率为函数值的降速函数, 并于降速函数中预留一可调参数; 步骤 a2、 以插值方法预置以指定驱动轮滑移率为自变量、 指定驱动轮 扭矩上升速率为函数值的升速函数, 并于升速函数中预留一可调参数; 步骤 a3、 指定驱动轮的加速度上升至预设的加速度门限值或者滑移率 上升至预设的滑移率上门限值时, 根据指定驱动轮当前的滑移率通过步骤 al 中预置的降速函数计算得到指定驱动轮扭矩下降的速率, 并根据指定驱 动轮扭矩下降的速率降低指定驱动轮及与指定驱动轮同轴的车轮的扭矩; 指定驱动轮的减速度上升至预设的减速度门限值或者滑移率下降至预设的 滑移率下门限值时, 根据指定驱动轮当前的滑移率通过步骤 a2中预置的升 速函数计算得到指定驱动轮扭矩上升的速率, 并根据指定驱动轮扭矩上升 的速率提升指定驱动轮及与指定驱动轮同轴的车轮的扭矩。
如图 3所示, 预置的低速防滑移策略具体包括如下步骤:
步骤 bl、 以插值方法预置以指定驱动轮滑移率为自变量、 指定驱动轮 扭矩降低速率为函数值的降速函数, 并于降速函数中预留一可调参数; 步骤 b2、 以插值方法预置以指定驱动轮滑移率为自变量、 指定驱动轮 扭矩上升速率为函数值的升速函数, 并于升速函数中预留一可调参数; 步骤 b3、 指定驱动轮的加速度上升至预设的加速度门限值或者滑移率 上升至预设的滑移率上门限值时, 根据指定驱动轮当前的滑移率通过步骤 bl 中预置的降速函数计算得到指定驱动轮扭矩下降的速率, 并根据指定驱 动轮扭矩下降的速率降低指定驱动轮扭矩, 并同步增加与指定驱动轮同轴 的车轮的扭矩; 指定驱动轮的减速度上升至预设的减速度门限值或者滑移 率下降至预设的滑移率下门限值时, 根据指定驱动轮当前的滑移率通过步 骤 b2中预置的升速函数计算得到指定驱动轮扭矩上升的速率, 并根据指定 驱动轮扭矩上升的速率提升指定驱动轮及与指定驱动轮同轴的车轮的扭 矩, 并同步降低与指定驱动轮同轴的车轮的扭矩。
如图 4所示, 预置的防抱死策略具体包括如下步骤:
步骤 cl、 以插值方法预置以指定车轮滑移率为自变量、 指定车轮扭矩 降低速率为函数值的降速函数, 并于降速函数中预留一可调参数;
步骤 c2、 指定车轮的加速度上升至预设的加速度门限值或者滑移率上 升至预设的滑移率上门限值时, 根据指定车轮当前的滑移率通过步骤 cl中 预置的降速函数计算得到指定车轮扭矩下降的速率, 并根据指定车轮扭矩 下降的速率, 通过控制制动装置降低指定车轮扭矩。
加速度门限值、 减速度门限值、 滑移率上门限值和滑移率下门限值可 根据具体的路况以及车型进行设定。
当发现轮胎打滑时, 应该迅速降低指定驱动轮的扭矩, 并且滑移率越 大降低扭矩的速率也应该越大, 因此插值形成的降速函数的图形可以采用 如图 5所示的曲线, 增加扭矩时, 由于可增加量较少, 应緩' f曼增加, 因此 插值形成的升速函数可以采用如图 6所示的曲线, 上述两个例子仅为说明 两种函数的区别并不以此限制本发明的保护范围。
本发明的实施例采用加速度和滑移率作为判断打滑的控制门限, 当指 定驱动轮加速度或滑移率达到加速度门限值或滑移率上门限值后, 控制系 统认为该车轮有打滑趋势, 并通过降低驱动力的方式降低指定驱动轮的扭 矩, 使轮速降低, 当实测车轮减速度或滑移率达到减速度门限值或滑移率 下门限值时, 控制系统通过緩慢增加驱动力的方式增加指定驱动轮的扭矩, 如此循环, 实现对车轮打滑的控制。 当在泥土路面加速度变化不明显时, 可只采用滑移率作为独立使用的门限值。
为实现不同路面的自适应, 只需调节降速函数和升速函数的可调参数 以形成如图 7所示的各种速率的曲线, 对于泥土路面即没有明显拐点的路 面, 当指定驱动轮达到设定的最大滑移率时, 应该降低驱动扭矩, 但此时 为了避免循环, 通过调整降速函数的可调参数调节使降低扭矩的速率变小, 即相当于控制扭矩在最大滑动率处不变。 对于有峰值而峰值处滑移率不同 的路面, 本发明的处理方法是, 在每一次循环后都通过调整升速函数的可 调参数, 降低再次增加扭矩的速率, 当经过几次循环后增加扭矩的速度就 很小了, 即相当于扭矩恒定。
进一步的, 其中, 预先利用一组具有代表性的指定驱动轮的滑移率值, 通过降速函数计算出一组指定驱动轮的扭矩下降速率, 预先利用一组具有 代表性的指定驱动轮的滑移率值, 通过升速函数计算出一组指定驱动轮的 扭矩上速率, 将指定驱动轮的扭矩下降速率和指定驱动轮的扭矩上速率存 入表格, 以查表的形式获得结果。 此方式运算速度, 减少控制器用于计算 函数的开销。 同时也利于一些难于用算式表达的曲线的计算。
以上所述仅为本发明较佳的实施例, 并非因此限制本发明的申请专利 范围, 所以凡运用本发明说明书及图示内容所作出的等效结构变化, 或者 本领域技术人员惯用的技术手段进行替换, 均包含在本发明的保护范围内。 工业实用性
本发明提供的电驱动矿车路面自适应防滑防抱死的控制方法, 能够有 效控制车辆防滑防抱死, 并且该控制方法筒单, 容易实现, 自适应能力强, 对传感器要求不高, 成本低方便上车调试。 因此, 本发明具有工业实用性。

Claims

权利要求书
1. 一种电驱动矿车路面自适应防滑防抱死的控制方法, 其特征在于, 具体包括如下步骤:
步骤 Sl、 判断车辆是否处于驱动模式, 如结果为否则转入步骤 S10; 步骤 S2、 判断车辆指定驱动轮速度是否大于轮速预设值,
并判断所述指定驱动轮的滑移率是否大于滑移率预设值, 如该两次判 断中任一结果为否则退出;
步骤 S3、 判断车辆速度是否大于第一车速预设值, 如结果为否则转入 步骤 S7;
步骤 S4、 通过预置的高速防滑移策略调整所述指定驱动轮的扭矩; 步骤 S5、 判断所述指定驱动轮速度是否小于所述轮速预设值, 如结果 为是则退出;
步骤 S6、 判断所述指定驱动轮的扭矩分配系数是否大于扭矩分配系数 预设值, 如结果为否则返回步骤 S4, 如结果为是则退出;
步骤 S7、 通过预置的低速防滑移策略调整所述指定驱动轮的扭矩; 步骤 S8、 判断所述指定驱动轮速度是否小于所述轮速预设值, 如结果 为是则退出;
步骤 S9、 判断所述指定驱动轮的扭矩分配系数是否大于扭矩分配系数 预设值, 如结果为否则返回步骤 S7, 如结果为是则退出;
步骤 S10、 判断车辆是否处于制动模式, 如结果为否则退出; 步骤 Sll、判断车辆速度是否大于第二车速预设值, 并判断所述指定驱 动轮的滑移率是否大于滑移率预设值, 如该两次判断中任一结果为否则退 出;
步骤 S12、 通过预置的防抱死策略调整所述指定驱动轮的制动力; 步骤 S13、判断车辆速度是否小于所述第二车速预设值,如结果为是则 退出;
步骤 S14、 判断所述指定驱动轮的滑移率是否小于最小滑移率预设值, 如结果为否则返回步骤 S12 , 如结果为是则退出。
2. 如权利要求 1所述电驱动矿车路面自适应防滑防抱死的控制方法, 其特征在于, 所述轮速预设值为 2km/h。
3. 如权利要求 1所述电驱动矿车路面自适应防滑防抱死的控制方法, 其特征在于, 所述滑移率预设值为 15%。
4. 如权利要求 1所述电驱动矿车路面自适应防滑防抱死的控制方法, 其特征在于, 所述扭矩分配系数预设值为 0.48。
5. 如权利要求 1所述电驱动矿车路面自适应防滑防抱死的控制方法, 其特征在于,所述第一车速预设值为 10km/h,所述第二车速预设值为 2km/h。
6. 如权利要求 1所述电驱动矿车路面自适应防滑防抱死的控制方法, 其特征在于, 所述最小滑移率预设值为 6%。
7. 如权利要求 1所述电驱动矿车路面自适应防滑防抱死的控制方法, 其特征在于, 所述预置的高速防滑移策略具体包括如下步骤:
所述指定驱动轮的加速度上升至预设的加速度门限值或者滑移率上升 至预设的滑移率上门限值时, 根据指定驱动轮当前的滑移率通过预置的降 速函数计算得到所述指定驱动轮扭矩下降的速率, 并根据所述指定驱动轮 扭矩下降的速率降低所述指定驱动轮及与所述指定驱动轮同轴的车轮的扭 矩;
所述指定驱动轮的减速度上升至预设的减速度门限值或者滑移率下降 至预设的滑移率下门限值时, 根据指定驱动轮当前的滑移率通过预置的升 速函数计算得到所述指定驱动轮扭矩上升的速率, 并根据所述指定驱动轮 扭矩上升的速率提升所述指定驱动轮及与所述指定驱动轮同轴的车轮的扭 矩; 其中, 所述降速函数是以插值方法预置的、 以所述指定驱动轮滑移率 为自变量、 以所述指定驱动轮扭矩降低速率为函数值的降速函数, 并于所 述降速函数中预留一可调参数;
所述升速函数是以插值方法预置的、 以所述指定驱动轮滑移率为自变 量、 以所述指定驱动轮扭矩上升速率为函数值的升速函数, 并于所述升速 函数中预留一可调参数。
8. 如权利要求 1所述电驱动矿车路面自适应防滑防抱死的控制方法, 其特征在于, 所述预置的低速防滑移策略具体包括如下步骤:
所述指定驱动轮的加速度上升至预设的加速度门限值或者滑移率上升 至预设的滑移率上门限值时, 根据指定驱动轮当前的滑移率通过预置的降 速函数计算得到所述指定驱动轮扭矩下降的速率, 并根据所述指定驱动轮 扭矩下降的速率降低所述指定驱动轮扭矩, 并同步增加与所述指定驱动轮 同轴的车轮的扭矩;
所述指定驱动轮的减速度上升至预设的减速度门限值或者滑移率下降 至预设的滑移率下门限值时, 根据指定驱动轮当前的滑移率通过预置的升 速函数计算得到所述指定驱动轮扭矩上升的速率, 并根据所述指定驱动轮 扭矩上升的速率提升所述指定驱动轮及与所述指定驱动轮同轴的车轮的扭 矩, 并同步降低与所述指定驱动轮同轴的车轮的扭矩;
其中, 所述降速函数是以插值方法预置的、 以所述指定驱动轮滑移率 为自变量、 以所述指定驱动轮扭矩降低速率为函数值的降速函数, 并于所 述降速函数中预留一可调参数;
所述升速函数是以插值方法预置的、 以所述指定驱动轮滑移率为自变 量、 以所述指定驱动轮扭矩上升速率为函数值的升速函数, 并于所述升速 函数中预留一可调参数。
9. 如权利要求 7或 8所述电驱动矿车路面自适应防滑防抱死的控制方 法, 其特征在于, 连续提升所述指定驱动轮的扭矩时, 通过调整所述升速 函数的可调参数, 以降低所述指定驱动轮扭矩提升的速度;
和 /或, 连续降低所述指定驱动轮的扭矩时, 通过调整所述降速函数的 可调参数, 以降低所述指定驱动轮扭矩提升的速度。
10. 如权利要求 1所述电驱动矿车路面自适应防滑防抱死的控制方法, 其特征在于, 所述预置的防抱死策略具体包括如下步骤:
所述指定车轮的加速度上升至预设的加速度门限值或者滑移率上升至 预设的滑移率上门限值时, 根据指定车轮当前的滑移率通过预置的降速函 数计算得到所述指定车轮扭矩下降的速率, 并根据所述指定车轮扭矩下降 的速率, 通过控制制动装置降低所述指定车轮扭矩;
其中, 所述降速函数是以插值方法预置的、 以所述指定车轮滑移率为 自变量、 以所述指定车轮扭矩降低速率为函数值的降速函数, 并于所述降 速函数中预留一可调参数。
PCT/CN2012/085908 2012-06-11 2012-12-05 一种电驱动矿车路面自适应防滑防抱死的控制方法 WO2013185448A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/348,741 US9216663B2 (en) 2012-06-11 2012-12-05 Road surface self-adapting anti-slip anti-lock control method for electrically driven mine vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210190118.6 2012-06-11
CN201210190118.6A CN102717786B (zh) 2012-06-11 2012-06-11 一种电驱动矿车路面自适应防滑防抱死的控制方法

Publications (1)

Publication Number Publication Date
WO2013185448A1 true WO2013185448A1 (zh) 2013-12-19

Family

ID=46943707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/085908 WO2013185448A1 (zh) 2012-06-11 2012-12-05 一种电驱动矿车路面自适应防滑防抱死的控制方法

Country Status (3)

Country Link
US (1) US9216663B2 (zh)
CN (1) CN102717786B (zh)
WO (1) WO2013185448A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107846019B (zh) * 2017-11-16 2020-09-29 河海大学常州校区 基于分数阶高阶滑模模糊控制的有源电力滤波器控制方法
DE102019135088A1 (de) * 2019-12-19 2021-06-24 Wabco Europe Bvba Antiblockier-Regelverfahren und Antiblockier-Regelsystem für ein Bremssystem eines Fahrzeugs
CN112298137B (zh) * 2020-02-26 2021-10-15 中国地质大学(北京) 商用车气压制动系统的控制方法及整车制动方法
CN112477620B (zh) * 2020-11-03 2022-12-20 宁波央腾汽车电子有限公司 一种汽车防滑保护方法
CN112373314B (zh) * 2020-11-17 2022-08-09 江苏埃驱奥新能源科技有限公司 一种电动牵引车驻车控制方法及装置
CN112937312B (zh) * 2021-02-02 2022-09-23 潍柴动力股份有限公司 一种车辆的控制方法及装置
CN113060119B (zh) * 2021-04-08 2022-04-12 中国第一汽车股份有限公司 一种分动器防滑控制方法
CN114312346B (zh) * 2021-11-24 2024-05-07 中国煤炭科工集团太原研究院有限公司 多点独立轮边驱动铰接车辆转矩分配方法及设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5474368A (en) * 1992-08-26 1995-12-12 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Anti-skid braking method and system
US5551769A (en) * 1995-02-06 1996-09-03 Kelsey-Hayes Company Method and system for split mu control for anti-lock brake systems
JPH09328063A (ja) * 1996-06-12 1997-12-22 Nec Home Electron Ltd 車両のアンチロックブレーキ制御装置
CN101088818A (zh) * 2006-06-14 2007-12-19 比亚迪股份有限公司 电动汽车防滑控制系统及方法
CN101200183A (zh) * 2006-12-12 2008-06-18 比亚迪股份有限公司 一种自适应abs控制方法
EP2460703A1 (en) * 2010-12-02 2012-06-06 Land Rover Control method and apparatus for a vehicle

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5432413A (en) * 1992-03-31 1995-07-11 General Electric Company Control system for an electrically propelled traction vehicle
US8380416B2 (en) * 2004-03-18 2013-02-19 Ford Global Technologies Method and apparatus for controlling brake-steer in an automotive vehicle in reverse
US7988593B2 (en) * 2008-02-11 2011-08-02 Caterpillar Inc. Creep control for motor system
US8527125B2 (en) * 2010-11-04 2013-09-03 Caterpillar Inc. System and method for controlling traction
US8639402B2 (en) * 2010-11-04 2014-01-28 Caterpillar Inc. System and method for controlling wheel motor torque in an electric drive system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5474368A (en) * 1992-08-26 1995-12-12 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Anti-skid braking method and system
US5551769A (en) * 1995-02-06 1996-09-03 Kelsey-Hayes Company Method and system for split mu control for anti-lock brake systems
JPH09328063A (ja) * 1996-06-12 1997-12-22 Nec Home Electron Ltd 車両のアンチロックブレーキ制御装置
CN101088818A (zh) * 2006-06-14 2007-12-19 比亚迪股份有限公司 电动汽车防滑控制系统及方法
CN101200183A (zh) * 2006-12-12 2008-06-18 比亚迪股份有限公司 一种自适应abs控制方法
EP2460703A1 (en) * 2010-12-02 2012-06-06 Land Rover Control method and apparatus for a vehicle

Also Published As

Publication number Publication date
US9216663B2 (en) 2015-12-22
CN102717786A (zh) 2012-10-10
CN102717786B (zh) 2015-01-14
US20140257616A1 (en) 2014-09-11

Similar Documents

Publication Publication Date Title
WO2013185448A1 (zh) 一种电驱动矿车路面自适应防滑防抱死的控制方法
CN109131330B (zh) 一种电动汽车自适应蠕行控制方法
CN110341496B (zh) 一种分布式驱动越野车辆的坡道低速工况行驶控制方法
CN109927704B (zh) 一种汽车车轮驱动防滑转控制方法
CN103359104B (zh) 汽车蠕动控制方法及系统
CN104755303B (zh) 用于运行机动车的动力传动系的方法和系统
CN107380148B (zh) 一种电动汽车制动力矩综合调控方法及系统
US20120209489A1 (en) Vehicle Movement Controller
US10328803B2 (en) Control method and control device for electric vehicle
CN113276684B (zh) 一种电动汽车滑行能量回收控制方法
JP2009061945A5 (zh)
CN106218444A (zh) 一种牵引力协调控制方法、系统及纯电动汽车
RU2007136038A (ru) Устройство управления силой торможения/движения транспортного средства
CN110884363B (zh) 一种应用于汽车电驱动桥的驱动防滑控制方法
US10239505B2 (en) Method and device for electronically controlling a vehicle deceleration in an ABS braking system
CN107089226B (zh) 一种用于车辆防抱死系统的lqg滑移率控制器及其设计方法
CN201792857U (zh) 一种电动汽车路面自适应转矩控制系统
CN101920704B (zh) 一种电动汽车路面自适应转矩控制系统
CN111746300B (zh) 集中式驱动电动汽车驱动防滑控制方法及存储介质
WO2015151193A1 (ja) 車両のトラクション制御装置
CN112793430A (zh) 一种双轴全轮分布式驱动电动汽车扭矩分配控制方法
CN101841288A (zh) 基于电流控制的车用电机的运动控制方法
CN104010897A (zh) 制动力控制系统及制动力控制方法
JP6993044B2 (ja) 電動車両の制御装置、電動車両の制御システム及び電動車両の制御方法
CN104385937A (zh) 一种纯电动汽车牵引力控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12878831

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14348741

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12878831

Country of ref document: EP

Kind code of ref document: A1