WO2013183692A1 - Flexible printed wiring board and method for producing flexible printed wiring board - Google Patents

Flexible printed wiring board and method for producing flexible printed wiring board Download PDF

Info

Publication number
WO2013183692A1
WO2013183692A1 PCT/JP2013/065644 JP2013065644W WO2013183692A1 WO 2013183692 A1 WO2013183692 A1 WO 2013183692A1 JP 2013065644 W JP2013065644 W JP 2013065644W WO 2013183692 A1 WO2013183692 A1 WO 2013183692A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
wiring board
printed wiring
flexible printed
conductive
Prior art date
Application number
PCT/JP2013/065644
Other languages
French (fr)
Japanese (ja)
Inventor
岡 良雄
春日 隆
直太 上西
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CN201380023779.2A priority Critical patent/CN104272882B/en
Publication of WO2013183692A1 publication Critical patent/WO2013183692A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/115Via connections; Lands around holes or via connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4038Through-connections; Vertical interconnect access [VIA] connections
    • H05K3/4053Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques
    • H05K3/4069Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques for via connections in organic insulating substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/118Printed elements for providing electric connections to or between printed circuits specially for flexible printed circuits, e.g. using folded portions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0388Other aspects of conductors
    • H05K2201/0394Conductor crossing over a hole in the substrate or a gap between two separate substrate parts

Definitions

  • the present invention relates to a flexible printed wiring board provided with a blind via formed of a conductive paste, and a method for manufacturing the flexible printed wiring board.
  • Patent Document 1 discloses an example of a printed wiring board in which blind vias are formed using a conductive paste.
  • the blind via 100 includes a first land portion 111 formed on the first surface of the substrate 110, a second land portion 112 formed on the second surface of the substrate 110, and a first land. And a conductor 114 that connects the portion 111 and the second land portion 112.
  • the conductor 114 is formed by filling the via hole 113 with a conductive paste and curing the conductive paste.
  • the surface 115 of the conductor 114 is processed flat.
  • the flexible printed wiring board is disclosed also in patent document 2, the shape of the conductor 210 is different from the flexible printed wiring board of FIG. As shown in FIG. 9, a depression 212 is provided on the surface 211 of the conductor 210 of the blind via 200.
  • ⁇ Flexible printed circuit boards are placed in a bent state or bent repeatedly.
  • a force is applied to the blind via. Therefore, when the stress applied to the conductive layer and the conductor becomes larger than the adhesive force between the conductive layer and the conductor, the conductor peels from the conductive layer. Peeling between the conductive layer and the conductor increases the contact resistance of the blind via and reduces the reliability of the electric circuit using the flexible printed wiring board. For this reason, it is required that the contact resistance between the conductor and the conductive layer does not increase due to bending of the flexible printed wiring board.
  • the present invention has been made to solve such problems, and an object of the present invention is to provide a flexible printed wiring board capable of suppressing an increase in the contact resistance of a blind via against bending, and the flexible printed wiring board. It is in providing the manufacturing method of.
  • the base material the first conductive layer formed on the first surface of the base material, and the second conductive layer formed on the second surface of the base material.
  • a flexible printed wiring board provided with the conductor which connects a said 1st conductive layer and a said 2nd conductive layer is provided.
  • the flexible printed wiring board includes a first land portion provided on the first conductive layer and a second land portion provided on the opposite side of the first land portion with the base material sandwiched between the second conductive layers. And a via hole penetrating the first land portion and the base material and reaching the second land portion.
  • the conductor is formed of a conductive paste, and the conductor fills the via hole so as to cover the entire bottom surface of the via hole, and at least a part of the surface of the first land portion. And the thickness of the conductor on the central axis of the via hole is smaller than the sum of the thickness of the base material and the thickness of the first land portion.
  • the outer surface of the substrate extends and the inner surface contracts. At this time, force is applied in a direction in which the first land portion and the conductor are separated from each other. As a result, a gap is generated between the conductor and the first land portion, and the contact resistance of the blind via is increased.
  • the degree of increase in the contact resistance of the blind via depends on the structure of the conductor constituting the blind via.
  • the thickness of the conductor on the central axis of the via hole is made smaller than the sum of the thickness of the base material and the thickness of the first land portion.
  • a recess is provided on the central axis of the via hole so that the conductor is easily deformed, and the conductor is easily deformed following the deformation of the base material.
  • the thickness of the conductor on the central axis of the via hole is preferably 5 ⁇ m or more.
  • the conductor is deformed when the flexible printed wiring board is bent.
  • the conductor is thin, there is a high possibility that the conductor will crack. Therefore, if the thickness of the conductor is 5 ⁇ m or more, it is possible to suppress the occurrence of cracks in the conductor as compared with the case where the thickness of the conductor on the central axis of the via hole is less than 5 ⁇ m.
  • the thickness of the thickest portion of the conductor covering the first land portion is 2 ⁇ m or more.
  • the contact resistance between the conductor and the first land portion increases. Considering this point, if the thickness of the thickest portion covering the first land portion is 2 ⁇ m or more, the occurrence of cracks in the portion covering the first land portion can be suppressed.
  • an inner circle and an outer circle of the cross section In a cross section of the conductor when the conductor is cut by a plane perpendicular to the central axis of the via hole and including the surface of the first land portion, an inner circle and an outer circle of the cross section The distance between is preferably 5 ⁇ m or more.
  • the portion of the conductor corresponding to the opening of the via hole is likely to crack. Considering this point, if the distance between the inner circle and the outer circle of the cross section of the conductor is set to 5 ⁇ m or more, a crack occurs in a portion corresponding to the opening on the first land side of the via hole. This can be suppressed.
  • the conductor preferably includes flat spherical conductive particles and a combination thereof.
  • the gaps between the conductive particles increase.
  • the conductive particles are flat spherical, the gap between the conductive particles is small.
  • the base material the first conductive layer formed on the first surface of the base material, and the second conductive layer formed on the second surface of the base material.
  • a method of manufacturing a flexible printed wiring board comprising a conductor connecting the first conductive layer and the second conductive layer.
  • the method includes forming the conductor using a conductive paste having a thixotropy index of 0.25 or less represented by the following formula (1).
  • Thixotropic index log ( ⁇ 1 / ⁇ 2) / log (D2 / D1) (1)
  • ⁇ 1 indicates the viscosity of the conductive paste when the shear rate D1 is 2 s ⁇ 1
  • ⁇ 2 indicates the viscosity of the conductive paste when the shear rate D2 is 20 s ⁇ 1 .
  • the upper part of the conductor is raised by the surface tension.
  • the electrically conductive paste of this invention the center part of the upper part of a conductor can be depressed. This is due to the following reason.
  • the conductive paste has a property that the viscosity increases as it approaches a state where no shear stress is applied, that is, thixotropic property.
  • the thixotropy index indicates that the smaller the value, the lower the thixotropy. That is, after applying a conductive paste having a thixotropy index of 0.25 or less to a substrate, the conductive paste can be flowed, so that a depression can be formed in the upper central portion of the conductor.
  • the conductor may be formed using a conductive paste containing flat spherical conductive particles and having a mass ratio of the flat spherical conductive particles of 70% by mass or more. desirable.
  • the upper central portion of the conductor can be recessed.
  • the conductive paste further includes spherical conductive particles having an average particle size of 30 nm to 200 nm.
  • the upper central portion of the conductor can be recessed.
  • the conductive paste includes, as the flat spherical conductive particles, first conductive particles having an average particle size of 1.4 ⁇ m or more and 3.3 ⁇ m or less, and first conductive particles having an average particle size of 0.5 ⁇ m or more and 1.8 ⁇ m or less. 2 conductive particles are desirably included. In this case, the upper central portion of the conductor can be recessed.
  • conductive particles having an average particle size of 1.4 ⁇ m or more and 3.3 ⁇ m or less are included in the conductive paste, the following effects can be obtained. That is, conductive particles having a size of 1.4 ⁇ m or more and 3.3 ⁇ m or less increase the thickness of the conductive paste. Thereby, it can suppress that the film thickness of an electrically conductive paste becomes small too much. If conductive particles having an average particle size larger than 3.3 ⁇ m are included in the conductive paste, the film thickness becomes too thick.
  • the present invention it is possible to provide a flexible printed wiring board capable of suppressing an increase in the contact resistance of the blind via against bending and a method for manufacturing the flexible printed wiring board.
  • the flexible printed wiring board 1 includes a base material 30, a first conductive pattern 10 (first conductive layer) formed on the first surface 31 of the base material 30, and a second surface 32 of the base material 30.
  • 2 conductive pattern 20 (2nd conductive layer), and the conductor 40 which connects the 1st conductive pattern 10 and the 2nd conductive pattern 20 are provided.
  • the second surface 32 of the substrate 30 is located on the side opposite to the first surface 31.
  • the base material 30 is formed of a flexible insulating film.
  • the base material 30 is made of polyimide, polyethylene terephthalate, or the like.
  • the thickness of the base material 30 is appropriately selected according to the use of the flexible printed wiring board 1. Specifically, a substrate 30 having a thickness of 5 ⁇ m to 50 ⁇ m is employed.
  • Each conductive pattern 10 and 20 is formed by processing the metal layer of the base material 30.
  • the conductive patterns 10 and 20 are formed by etching a double-sided copper-clad laminate.
  • it may replace with a double-sided copper clad laminated board, and may use the board
  • the thickness of the first conductive pattern 10 is appropriately selected according to the use of the flexible printed wiring board 1.
  • the second conductive pattern 20 is formed in the same manner as the first conductive pattern 10.
  • the blind via 50 that connects the first conductive pattern 10 and the second conductive pattern 20 will be described.
  • the blind via 50 includes a first land portion 11, a second land portion 21, and a conductor 40 that connects the land portions 11 and 21.
  • the first land portion 11 is circular, and a land hole 11b is formed at the center thereof.
  • the diameter of the first land portion 11 is set to 300 ⁇ m to 1000 ⁇ m, for example.
  • the first land portion 11 is a part of the first conductive pattern 10.
  • the second land portion 21 is provided on the opposite side of the first land portion 11 with the base material 30 interposed therebetween.
  • the second land portion 21 is formed in a circular shape.
  • the diameter of the second land portion 21 is set to 100 ⁇ m to 1000 ⁇ m.
  • the second land portion 21 is a part of the second conductive pattern 20.
  • the shape of the 1st land part 11 and the 2nd land part 21 should not be limited to circular, A rectangle may be sufficient.
  • the first land portion 11 and the base material 30 are formed with via holes 33 penetrating the first land portion 11 and the base material 30 up to the second land portion 21.
  • the bottom surface 33 b of the via hole 33 corresponds to the inner surface of the second land portion 21.
  • the bottom surface 33b of the via hole 33 is substantially circular.
  • the via hole 33 is formed by, for example, laser irradiation.
  • the diameter of the via hole 33 is, for example, 20 ⁇ m to 300 ⁇ m.
  • the land hole 11 b constitutes a part of the via hole 33.
  • the conductor 40 fills the via hole 33 so as to cover the entire bottom surface 33 b of the via hole 33.
  • the conductor 40 covers part or all of the surface 11 a of the first land portion 11.
  • the bottom portion 42 of the conductor 40 is in contact with the second land portion 21.
  • the upper portion 41 of the conductor 40 is in contact with the first land portion 11.
  • a depression 44 exists in the central portion of the upper portion 41 of the conductor 40.
  • the bottom portion 42 of the conductor 40 is in contact with the second conductive pattern 20 in the central axis direction Da of the via hole 33.
  • the upper portion 41 of the conductor 40 includes a portion that contacts the first conductive pattern 10 in the central axis direction Da of the via hole 33 and partially covers the first land portion 11.
  • the thickness td of the conductor 40 on the central axis Ca of the via hole 33 is smaller than the sum of the thickness ta of the base material 30 and the thickness tb of the first land portion 11. Further, the thickness td of the conductor 40 on the central axis Ca of the via hole 33 is set to 5 ⁇ m or more.
  • the thickness te of the thickest portion of the conductor 40 that covers the first land portion 11 is 2 ⁇ m or more.
  • an inner circle and an outer portion of the cross section of the conductor 40 are cut.
  • the distance Df between the circle (via hole 33) is 5 ⁇ m or more.
  • the conductor 40 is formed of a conductive paste containing conductive particles 60 and a binder resin. That is, the conductor 40 is a structure including the conductive particles 60 and a combined body that couples the conductive particles 60.
  • the conductive particles 60 are melt bonded or sintered bonded at the contact portion. There is also a portion where the conductive particles 60 are simply in contact with each other.
  • the conductive particles 60 are fixed to each other with a binder resin. Since the binder resin shrinks during heat curing, the conductive particles 60 are present in a state where they are pressed against each other.
  • the binder resin is a thermosetting resin and exists as a cured product in the conductor 40.
  • Part or all of the conductive particles 60 included in the conductive paste are metal particles having a flattened sphere shape (hereinafter referred to as “flattened spherical shape”), and in the conductor 40, they exist as a bonded body. .
  • the metal particles are made of silver, copper, nickel or the like.
  • FIG. 3A shows a perspective view of the conductive particles 60.
  • FIG. 3B is a plan view of the conductive particles 60 viewed from a direction along the rotational symmetry axis Cr (hereinafter, rotational symmetry axis direction Dr).
  • FIG. 3C shows a cross-sectional view of the conductive particles 60.
  • the shape of the conductive particles 60 viewed from the rotationally symmetric axis direction Dr is substantially circular (a shape approximated to a circle).
  • the cross section when the conductive particles 60 are cut along the plane including the rotational symmetry axis Cr is a shape obtained by crushing a circle.
  • the ratio of the short side Lx to the long side Ly (short side Lx / long side Ly) of the cross section is 0.2 or more and less than 1.0.
  • Such flat spherical conductive particles 60 are formed by crushing spherical metal particles with a pressing machine or the like.
  • the blind via 350 having a conventional structure is one having no depression 44 on the central axis Cb of the via hole 333.
  • a shear stress Fx is generated along the boundary surface between the surface 311a of the first land portion 311 and the conductor 340.
  • a vertical stress Fy is generated in a direction perpendicular to the boundary surface between the inner peripheral surface 333a of the via hole 333 and the conductor 340.
  • a tensile stress Fz is generated in the upper part 341 of the conductor 340.
  • the upper part 341 of the conductor 340 is deformed following the base material 330. That is, when the bending of the flexible printed wiring board 300 is small, the shear stress Fx is smaller than the adhesive force between the surface 311 a of the first land portion 311 and the conductor 340, or the vertical stress Fy is the via hole 333. Since it is smaller than the adhesive force between the inner peripheral surface 333a and the conductor 340, the conductor 340 does not peel from the first land portion 311.
  • the upper portion 341 of the conductor 340 is peeled from the first land portion 311. That is, when the bending of the flexible printed wiring board 300 is large, the upper portion 341 of the conductor 340 is greatly bent, the strain ⁇ increases, and the tensile stress Fz applied to the upper portion 341 of the conductor 340 increases. As a result, the shear stress Fx becomes larger than the adhesive force between the surface 311a of the first land portion 311 and the conductor 340, and the vertical stress Fy is between the inner peripheral surface 333a of the via hole 333 and the conductor 340. Since it becomes larger than the adhesive force, the upper portion 341 of the conductor 340 is peeled from the first land portion 311 as shown in FIG.
  • Such peeling occurs when the bending of the flexible printed wiring board 300 is smaller than a predetermined curvature but the bending frequency is high.
  • the bending frequency is high, since the shear stress Fx is repeatedly applied to the bonding portion between the surface 311a of the first land portion 311 and the conductor 340, the bonding force of the bonding portion gradually decreases and peeling occurs.
  • the strain ⁇ of the upper portion 41 of the conductor 40 when the flexible printed wiring board 1 is bent is small. That is, the upper portion 41 of the conductor 40 is recessed unlike the blind via 350 having a conventional structure. Such a depression 44 shortens the length Ls from the second land portion 21 to the surface 43 of the conductor 40 as compared with the blind via 350 having a conventional structure. Since the magnitude of the strain ⁇ of the surface portion of the conductor 40 is smaller as it is closer to the second land portion 21, the strain ⁇ of the upper portion 41 of the conductor 40 is reduced by the presence of such a depression 44.
  • the shear stress Fx becomes larger than the adhesive force between the surface 11a of the first land portion 11 and the conductor 40, or the vertical stress Fy. Is prevented from becoming larger than the adhesive force between the inner peripheral surface 33a of the via hole 33 and the conductor 40. For this reason, as shown in FIG. 5, the upper portion 41 of the conductor 40 does not peel from the first land portion 11, and the upper portion 41 of the conductor 40 is deformed following the base material 30. Next, a method for manufacturing the flexible printed wiring board 1 will be described.
  • the conductive patterns 10 and 20 are formed on both surfaces of the base material 30 by an etching method.
  • the first conductive pattern 10 includes a land portion.
  • the second conductive pattern 20 includes a second land portion 21.
  • the land portion of the first conductive pattern 10 is changed to the first land portion 11 by forming a land hole 11b by a laser in the next step.
  • the via hole 33 is formed by a laser. Specifically, by irradiating the land portion of the first conductive pattern 10 with a laser, a hole (via hole 33) penetrating both the land portion and the substrate 30 is formed.
  • the via paste 33 is filled with the conductive paste by a printing method. After filling, the conductive paste is allowed to flow until the conductive paste is in a stable and static state. That is, the conductive paste is caused to flow until the central portion of the via hole 33 is depressed. Specifically, the base material 30 after filling with the conductive paste is left at room temperature for several minutes to several hours. Thereafter, the substrate 30 is heated to cure the conductive paste. Conductive paste Next, the conductive paste will be described.
  • the conductive paste has a property that after filling the via hole 33, it flows for a period of time and does not spread too much along the via hole 33.
  • the conductive paste contains conductive particles, a binder resin, and a solvent.
  • the conductive particles the flat spherical metal particles (corresponding to the second conductive particles in Table 1) shown in FIG. 3 are used.
  • the mass ratio of the silver particles to the entire conductive paste (hereinafter also simply referred to as mass ratio) is preferably 70% by mass or more.
  • the average particle size indicates a particle size corresponding to a value of 50% in terms of a volume cumulative value in a volume cumulative distribution of the particle size of the conductive particles 60 (diameter of the conductive particles 60 in plan view).
  • the conductive paste preferably contains two or more kinds of conductive particles having different average particle diameters as flat spherical conductive particles.
  • conductive particles having an average particle size of 0.5 ⁇ m to 1.8 ⁇ m hereinafter referred to as second conductive particles
  • conductive particles having an average particle size of 1.4 ⁇ m to 3.3 ⁇ m hereinafter referred to as first particles. (Referred to as conductive particles) in the conductive paste.
  • spherical conductive particles (hereinafter referred to as third conductive particles) be present in addition to the flat spherical conductive particles 60 in the conductive paste.
  • the spherical conductive particles preferably have an average particle size smaller than the average particle size of the flat spherical conductive particles 60.
  • spherical conductive particles having an average particle size of 30 nm to 200 nm are used.
  • the mass ratio of the spherical conductive particles is set smaller than the mass ratio of the flat spherical conductive particles 60.
  • the mass ratio of the spherical conductive particles is set to 1.0% by mass or more and 15% by mass or less.
  • conductive particles having an average particle size of 1.4 ⁇ m or more and 3.3 ⁇ m or less
  • coating particles whose surfaces are coated with metal can be used.
  • silver-coated copper particles in which copper particles are coated with silver can be used.
  • epoxy resin epoxy resin, phenol resin, polyester resin, acrylic resin, melamine resin, polyimide resin, polyamideimide resin, phenoxy resin, or the like is used.
  • a thermosetting resin is employed. Epoxy resins are particularly suitable.
  • the type of epoxy resin is not particularly limited.
  • a bisphenol type epoxy resin made from bisphenol A, bisphenol F, bisphenol S, bisphenol AD or the like is used.
  • a naphthalene type epoxy resin, a novolac type epoxy resin, a biphenyl type epoxy resin, a dicyclopentadiene type epoxy resin, or the like can also be used.
  • Epoxy resins include one-component and two-component epoxy resins, and any of them can be used.
  • a one-component epoxy resin in which a microcapsule type curing agent is dispersed in a main agent (epoxy resin).
  • a microcapsule type curing agent for example, butyl carbitol acetate or ethyl carbitol acetate is used as a solvent.
  • the mass ratio of the various conductive particles, the binder resin, and the solvent is set so as to satisfy the following expression (1).
  • Thixotropic index ⁇ 0.25
  • Thixotropic index log ( ⁇ 1 / ⁇ 2) / log (D2 / D1)
  • ⁇ 1 indicates the viscosity (Pa ⁇ s) of the conductive paste when the shear rate D1 is 2 s ⁇ 1
  • ⁇ 2 indicates the viscosity (Pa ⁇ s) of the conductive paste when the shear rate D2 is 20 s ⁇ 1 .
  • the average particle diameter and mass ratio of the conductive particles 60, the type and number of types of the conductive particles 60 included in the conductive paste, the type and mass ratio of the binder resin, the type and mass ratio of the solvent so that the formula (1) is satisfied. Etc. are set.
  • the type of the conductive particles 60 indicates a classification according to shape, such as spherical conductive particles and flat spherical conductive particles.
  • the number of types indicates the number of types of conductive particles included in the conductive paste.
  • Such a conductive paste has the following properties.
  • the conductive paste flows for a while.
  • a recess 44 is formed on the central axis Ca of the via hole 33.
  • Such properties can be realized by selecting the shape of the conductive particles 60. Hereinafter, this point will be described.
  • the fluidity of the conductive paste can be adjusted by the binder resin.
  • the mass ratio of the binder resin to the entire conductive paste is small, the fluidity adjustment range is small. For this reason, it is difficult to adjust the thixotropy index by selecting the type of binder resin.
  • the fluidity of the conductive paste is small because the scaly conductive particles 60 are present in a state of being caught with each other.
  • the spherical conductive particles 60 are the main component of the conductive paste, since the spherical conductive particles 60 are not caught, the fluidity of the conductive paste increases and may spread beyond the first land portion 11. .
  • flat spherical conductive particles 60 having an average particle size of 0.5 ⁇ m or more and 3.3 ⁇ m or less are used as the main component of the conductive paste.
  • the conductive particles 60 having such a shape the fluidity and shape retention shown above are exhibited. This is because the flat spherical conductive particles 60 are easy to flow because the mutual catching is small, and the flat spherical conductive particles 60 are rearranged into a dense and structurally stable state with this flow. It is thought that it is caused by being done.
  • Table 1 gives examples of conductive paste.
  • the conductive pastes 1 to 4 are suitable for manufacturing the flexible printed wiring board 1 of the present embodiment.
  • the conductive pastes 1 to 3 are particularly preferable for use in manufacturing the flexible printed wiring board 1 of the present embodiment.
  • the conductive paste 5 is an example of a conductive paste to be compared.
  • the first conductive particles are silver-coated copper particles and have a flat spherical shape as shown in FIG.
  • the average particle diameter (diameter in plan view) of the first conductive particles is 1.9 ⁇ m.
  • the second conductive particles are silver particles and have a flat spherical shape as shown in FIG.
  • the average particle size of the second conductive particles is 0.9 ⁇ m.
  • the third conductive particles are spherical silver particles.
  • the average particle diameter of the third conductive particles is 100 nm.
  • the epoxy resin is a bisphenol A type epoxy resin having a molecular weight of 45000 to 55000.
  • the curing agent indicates a microencapsulated imidazole-based latent curing agent (manufactured by Asahi Kasei E-Materials Co., Ltd., NovaCure (registered trademark) HX3941HP).
  • the viscosity of each conductive paste was measured using a viscometer (manufactured by Toki Sangyo Co., Ltd., TVE-22HT) at a temperature of 25 ° C. ⁇ 0.2 ° C. and a cone rotor (manufactured by Toki Sangyo Co., Ltd., 3 ° ⁇ R7.7 ( Measurement was performed using a rotor cord 07)).
  • the conductive pastes 1 to 3 satisfy the above formula (1) (thixotropic index is 0.25 or less). This is because the mass ratio of the flat spherical conductive particles (first conductive particles and second conductive particles) is set to 70% by mass or more, and the mass ratio of the first conductive particles is smaller than the mass ratio of the second conductive particles. This is because the conductive paste was prepared.
  • the conductive pastes 4 and 5 do not satisfy the above formula (1) (thixotropic index is 0.25 or less). This is because the mass ratio of the flat spherical first conductive particles is excessively increased.
  • the first conductive particles are flat spherical conductive particles having an average particle diameter of 1.9 ⁇ m
  • the second conductive particles are flat spherical conductive particles having an average particle diameter of 0.9 ⁇ m.
  • a conductive paste satisfying the equation is realized.
  • the mass ratio of the conductive particles is set to 70% by mass or more and the mass of the first conductive particles is set.
  • the conductive paste 4 is slightly deviated from the range defined in the above formula (1).
  • this conductive paste 4 as shown in Example 4 below, the depression 44 of the present embodiment A blind via 50 can be formed. However, the depth of the recess 44 of the blind via 50 is small.
  • Example An example of the flexible printed wiring board 1 will be described.
  • the flexible printed wiring board 1 of each embodiment has the same structure except for the structure of the blind via 50.
  • FIGS. 6A and 6B show the flexible printed wiring board 1 according to each embodiment.
  • FIG. 6A is a plan view of the flexible printed wiring board 1
  • FIG. 6B is a cross-sectional view of the flexible printed wiring board 1.
  • FIG. The flexible printed wiring board 1 has 36 blind vias 50 connected in a daisy chain shape.
  • Each first land portion 11 is formed on the first surface 31 of the base material 30.
  • Each second land portion 21 is formed on the second surface 32 of the base material 30.
  • the first land portions 11 are connected by connecting patterns 12 in order of two from the end.
  • Two second land portions 21 are connected by connecting patterns 22 in order from the end.
  • the connection pattern 12 of the second surface 32 is formed on the opposite side of the portion of the first surface 31 where there is no connection pattern 12 with the base material 30 in between. That is, in the plan view, the connection pattern 12 on the first surface 31 and the connection pattern 22 on the second surface 32 are alternately arranged.
  • each member is as follows (see FIGS. 2 and 6).
  • Dimension Dc (inner diameter of via hole 33) is 100 ⁇ m.
  • the outer diameter of the first land portion 11 is 500 ⁇ m.
  • the outer diameter of the second land portion 21 is 500 ⁇ m.
  • Dimension TD (dimension ta + dimension tb) is 24 ⁇ m.
  • “Dimension ta” in Table 2 indicates the thickness of the base material 30. “Dimension tb” indicates the thickness of the first land portion 11. “Dimension Dc” indicates the inner diameter of the via hole 33. “Dimension TD” indicates the sum of the dimension ta and the dimension tb. “Dimension td” indicates the thickness of the conductor 40 on the central axis Ca of the via hole 33. “Dimension te” indicates the thickness of the thickest portion of the conductor 40 that covers the first land portion 11 (covering portion).
  • the “dimension Df” is a cross section of the conductor 40 when the conductor 40 is cut along a plane that is perpendicular to the central axis Ca of the via hole 33 and includes the surface 11a of the first land portion 11. The distance of the smallest part in the distance between the inner circle and outer circle (via hole 33) of a cross section is shown. “Dimension Dg” indicates the distance of the portion of the conductor 40 having the smallest interval between the inner peripheral surface 33a of the via hole 33 and the outer periphery of the portion covering the first land portion 11 (covering portion). . These dimensions ta, tb, Dc, td, te, Df, and Dg indicate the average values of the 36 blind vias 50 of the flexible printed wiring board 1.
  • Example 1 the flexible printed wiring board 1 was formed using the conductive paste 1 shown in Table 1.
  • the shape of the blind via 50 is as follows (see Table 2).
  • a depression 44 was formed on the central axis Ca of the via hole 33.
  • the thickness te of the covering portion of the conductor 40 was 2 ⁇ m or more.
  • the distance Df of the conductor 40 was 5 ⁇ m or more.
  • the distance Dg of the covering portion of the conductor 40 was 5 ⁇ m or more.
  • the resistance increase rate of the blind via 50 before and after the bending test was 0.6%. This value is smaller than the determination value (10%).
  • a brass bending jig 70 having a curved surface with a radius r of 1.0 mm at the tip is prepared. Prior to the bending test, the resistance of the conductive pattern is measured. Next, a bending test is performed.
  • the first surface 31 of the flexible printed wiring board 1 according to the test is disposed outside and the flexible printed wiring board 1 is brought into close contact with the bending jig 70.
  • the flexible printed wiring board 1 is moved so as to pass through the curved surface.
  • the second surface 32 of the flexible printed wiring board 1 is set to the outside, and the flexible printed wiring board 1 is brought into close contact with the bending jig 70 so as to be curved from the first surface 71 to the second surface 72 of the bending jig 70. Move to pass.
  • Such a bending operation is counted as one time, and a total of 10 bending operations are performed.
  • the resistance change rate is obtained based on the resistance of the conductive pattern before and after the bending test.
  • the resistance change rate is obtained as an average value of the resistance change rates of the 36 blind vias 50.
  • Example 2 a flexible printed wiring board 1 having the same structure as Example 1 was formed using the conductive paste 2 shown in Table 1.
  • a depression 44 was formed on the central axis Ca of the via hole 33.
  • the thickness te (dimension te) of the covering portion of the conductor 40 was 2 ⁇ m or more.
  • the distance Df (dimension Df) of the conductor 40 was 5 ⁇ m or more.
  • the distance Dg (dimension Dg) of the covering portion of the conductor 40 was 5 ⁇ m or more.
  • the change rate of the resistance of the blind via 50 before and after the bending test was 1.4%. This value is smaller than the determination value (10%). No peeling was observed between the conductor 40 and the first land portion 11 after the bending test. That is, the same result as in Example 1 was obtained.
  • Example 3 a flexible printed wiring board 1 having the same structure as Example 1 was formed using the conductive paste 3 shown in Table 1.
  • a depression 44 was formed on the central axis Ca of the via hole 33.
  • the thickness te (dimension te) of the covering portion of the conductor 40 was 2 ⁇ m or more.
  • the distance Df (dimension Df) of the conductor 40 was 5 ⁇ m or more.
  • the distance Dg (dimension Dg) of the covering portion of the conductor 40 was 5 ⁇ m or more.
  • the change rate of the resistance of the blind via 50 before and after the bending test was 2.1%. This value is smaller than the determination value (10%). No peeling was observed between the conductor 40 and the first land portion 11 after the bending test. That is, the same result as in Example 1 was obtained.
  • Example 4 the flexible printed wiring board 1 having the same structure as that of Example 1 was formed using the conductive paste 4 shown in Table 1.
  • the recess 44 was not formed in the via hole 33 in the conductor 40.
  • the rate of change in the resistance of the blind via 50 before and after the bending test was 18.2%. This value is larger than the determination value (10%). Separation occurred between the conductor 40 and the first land portion 11 after the bending test.
  • the increment of the contact resistance of the blind via 50 with respect to the bending of the flexible printed wiring board 1 is reduced. This is mainly due to a decrease in the flexural modulus of the blind via 50 due to the presence of the recess 44.
  • Example 4 it is shown that it is more preferable to use a conductive paste having a thixotropy index of 0.25 or less in order to form the blind via 350 having such a depression 44.
  • the conductive paste having a thixotropy index of 0.28 is used to form the blind via 350 having the depression 44 and having a resistance increase rate of 10% or less after the test.
  • the depth is small. For this reason, in order to form the hollow 44 reliably, it can be said that it is preferable to make the thixotropy index
  • the mass ratio of the first conductive particles (conductive particles having an average particle size of 1.4 ⁇ m to 3.3 ⁇ m) is set to the second conductive particles (average particle size is The mass ratio of the conductive particles (0.5 ⁇ m to 1.8 ⁇ m) is preferably smaller. That is, in Example 4, the conductive paste 4 in which the mass ratio of the first conductive particles is larger than the mass ratio of the second conductive particles is used. And also with this electrically conductive paste 4, the blind via
  • the thickness (dimension td) of the conductor 40 on the central axis Ca of the via hole 33 is the same as the thickness (dimension ta) of the substrate 30 and the thickness (dimension) of the first land portion 11. It is smaller than the sum (dimension TD) with tb).
  • the degree of increase in the contact resistance of the blind via 50 depends on the structure of the conductor 40 constituting the blind via 50.
  • the conductor 40 is not deformed when the flexible printed wiring board 1 is bent, the inner peripheral surface 33a of the via hole 33 and the conductor 40 are separated from each other, or the conductor 40 is peeled from the first land portion 11. For this reason, the contact resistance of the blind via 50 increases.
  • the thickness (dimension td) of the conductor 40 on the central axis Ca of the via hole 33 is set to the thickness (dimension ta) of the substrate 30. It is smaller than the sum of the thickness (dimension tb) of the first land portion 11. That is, in the conductor 40, a recess 44 is provided on the central axis Ca of the via hole 33 so that the conductor 40 is easily deformed, and the conductor 40 is easily deformed following the deformation of the substrate 30. . Thereby, the increase in the contact resistance of the blind via 50 with respect to the bending of the flexible printed wiring board 1 can be suppressed.
  • the thickness (dimension td) of the conductor 40 on the central axis Ca of the via hole 33 is 5 ⁇ m or more.
  • the conductor 40 When the flexible printed wiring board 1 is bent, the conductor 40 is deformed. When the conductor 40 is thin, there is a high possibility that the conductor 40 will crack. In the conductor 40, if the thickness td on the central axis Ca of the via hole 33 is less than 5 ⁇ m, the possibility that the conductor 40 will crack increases. Therefore, the thickness td of the conductor 40 is set to 5 ⁇ m or more. Thereby, compared with the case where the thickness td of the conductor 40 on the central axis Ca of the via hole 33 is less than 5 ⁇ m, the occurrence of cracks in the conductor 40 can be suppressed.
  • the thickness (dimension te) of the thickest portion of the conductor 40 covering the first land portion 11 is set to 2 ⁇ m or more.
  • the portion of the conductor 40 that covers the first land portion 11 is related to the magnitude of the contact resistance between the conductor 40 and the first land portion 11.
  • the contact resistance between the conductor 40 and the first land portion 11 increases.
  • the thickness te of the thickest portion covering the first land portion 11 is set to 2 ⁇ m or more. Thereby, it can suppress that a crack generate
  • the distance Df (dimension Df) is 5 ⁇ m or more.
  • a portion of the conductor 40 corresponding to the opening 34 of the via hole 33 is likely to crack. Therefore, in the donut-shaped cross section when the conductor 40 is cut by a plane perpendicular to the central axis Ca of the via hole 33 and including the surface 11a of the first land portion 11, an inner circle of the cross section of the conductor 40 is obtained.
  • the distance Df (dimension Df) between the outer circle and the outer circle (a circle corresponding to the inner peripheral surface 33a of the via hole 33) is 5 ⁇ m or more. Thereby, it can suppress that a crack generate
  • the distance Dg (dimension Dg) is 5 ⁇ m or more.
  • the distance between the inner peripheral surface 33a of the via hole 33 and the outer periphery of the covering portion covering the first land portion 11 is the smallest distance.
  • the distance Dg (dimension Dg) is set to 5 ⁇ m or more. Thereby, it can suppress that a crack generate
  • the conductor 40 has a structure including flat spherical conductive particles 60 and a combination thereof.
  • the conductor 40 When there are protrusions on the surface of the conductive particles 60 constituting the conductor 40, the gap between the adjacent conductive particles 60 increases. Therefore, the conductor 40 is composed of flat spherical conductive particles 60, and the density of the conductive particles 60 is increased. Thereby, the allowable current amount of the blind via 50 can be increased.
  • a conductive paste having a thixotropy index of 0.25 or less is used as shown in the above formula (1).
  • the upper portion 41 of the conductor 40 rises due to surface tension.
  • the central portion of the upper portion 41 of the conductor 40 can be recessed. This is due to the following reason.
  • a conductive paste having a large thixotropy index that is, a conductive paste having an increased viscosity when no shear stress is applied, has been used. For this reason, after filling the via hole 33 with the conductive paste, the conductive paste did not spread and was in a raised state.
  • a conductive paste having a thixotropy index of 0.25 or less is used.
  • an electrically conductive paste can be made to flow.
  • the conductive paste flows along the shape of the via hole 33, and the central portion of the conductor 40 is depressed. That is, the depression 44 can be formed in the central portion of the conductor 40 by using a conductive paste having a thixotropy index of 0.25 or less.
  • a conductive paste having a thixotropy index of 0.25 or less, including flat spherical conductive particles, and a mass ratio of these flat spherical conductive particles to the entire conductive paste is 70% by mass or more is used. . Thereby, the central part of the surface 43 of the conductor 40 can be depressed.
  • the conductive paste has an average particle size of 0.5 ⁇ m or more and 1.8 ⁇ m or less and a flat spherical conductive particle (second conductive particle), and an average particle size of 1.4 ⁇ m or more and 3.3 ⁇ m or less of conductive particles (first Conductive particles). Thereby, the center part of the upper part 41 of the conductor 40 can be depressed.
  • conductive particles (first conductive particles) having an average particle size of 1.4 ⁇ m or more and 3.3 ⁇ m or less are included in the conductive paste, the following effects can be obtained. That is, the conductive particles (first conductive particles) having a size of 1.4 ⁇ m or more and 3.3 ⁇ m or less increase the thickness of the conductive paste. Thereby, it can suppress that an electrically conductive paste becomes thin too much.
  • the mass ratio of the first conductive particles is 30% by mass or less.
  • the recess 44 is difficult to be formed.
  • the depression 44 can be more reliably formed by setting the mass ratio of the first conductive particles to 30 mass% or less.
  • the spherical conductive particles (third conductive particles) having an average particle size of 30 nm to 200 nm are included in the conductive paste, and the thixotropic index of the conductive paste is set to 0.25 or less. Thereby, the center part of the upper part 41 of the conductor 40 can be depressed.
  • the means for forming the depression 44 in the conductor 40 the use of a conductive paste having a thixotropy index of 0.25 or more is adopted, but the means for forming the depression 44 is not limited to this.
  • a means of forming the depression 44 on the central axis Ca of the via hole 33 can be adopted.
  • the depth, shape, and the like of the recess 44 can be arbitrarily set by selecting a mold.
  • the structure of the conductor 40 having the depression 44 is applied to the blind via 50, but this structure is not applied only to the blind via 50.
  • the present invention can also be applied to the conductor 40. Also in this case, peeling of the conductor 40 from the hole or groove corresponding to the via hole 33 can be suppressed.
  • the present invention can also be applied to a multilayer flexible printed wiring board having three or more layers.
  • SYMBOLS 1 Flexible printed wiring board, 10 ... 1st conductive pattern, 11 ... 1st land part, 11a ... Surface, 11b ... Land hole, 12 ... Connection pattern, 20 ... 2nd conductive pattern, 21 ... 2nd land part, 22 Connection pattern, 30 ... base material, 31 ... first surface, 32 ... second surface, 33 ... via hole, 33a ... inner peripheral surface, 33b ... bottom surface, 34 ... opening, 40 ... conductor, 41 ... upper part, 42 ... bottom, 43 ... surface, 44 ... depression, 50 ... blind via, 60 ... conductive particles, 70 ... bending jig, 71 ... first surface, 72 ... second surface, 100 ...
  • blind via 110 ... base material, DESCRIPTION OF SYMBOLS 111 ... 1st land part, 112 ... 2nd land part, 113 ... Via hole, 114 ... Conductor, 115 ... Surface, 200 ... Blind via, 210 ... Conductor, 211 ... Surface, 212 ... Depression, 300 ... Flexible print wiring , 311 ... first land portion, 311a ... surface, 321 ... second land portion, 330 ... substrate, 333 ... via hole, 333a ... inner peripheral surface, 340 ... conductor, 341 ... top 350 ... blind vias.

Abstract

This flexible printed wiring board is provided with a base (30), a first conductive pattern, a second conductive pattern, and a conductor (40) that connects the first conductive pattern and the second conductive pattern with each other. The first conductive pattern has a first land portion (11), and the second conductive pattern has a second land portion (21) that is arranged opposite to the first land portion (11) across the base (30) lying therebetween. The conductor (40) is formed of a conductive paste and is arranged so that a via hole (33) that penetrates through the first land portion (11) and the base (30) and reaches the second land portion (21) is filled with the conductor (40) and at least a part of the surface of the first land portion (11) is covered with the conductor (40). The thickness of the conductor (40) above the central axis (Ca) of the via hole (33) is set to be smaller than the sum of the thickness of the base (30) and the thickness of the first land portion (11).

Description

フレキシブルプリント配線板およびフレキシブルプリント配線板の製造方法Flexible printed wiring board and method for manufacturing flexible printed wiring board
 本発明は、導電ペーストにより形成されるブラインドビアを備えるフレキシブルプリント配線板、およびそのフレキシブルプリント配線板の製造方法に関する。 The present invention relates to a flexible printed wiring board provided with a blind via formed of a conductive paste, and a method for manufacturing the flexible printed wiring board.
 基材の両面の導電層をブラインドビアで接続するフレキシブルプリント配線板において、ブラインドビアを導電ペーストで形成する技術が知られている。特許文献1には、導電ペーストによりブラインドビアを形成したプリント配線板の例が開示されている。 In a flexible printed wiring board in which conductive layers on both sides of a base material are connected by blind vias, a technique for forming blind vias with a conductive paste is known. Patent Document 1 discloses an example of a printed wiring board in which blind vias are formed using a conductive paste.
 図8に示すようにブラインドビア100は、基材110の第1面に形成された第1ランド部111と、基材110の第2面に形成された第2ランド部112と、第1ランド部111と第2ランド部112とを接続する導電体114とを有する。導電体114は、導電ペーストをビア孔113に充填してこの導電ペーストを硬化することにより形成される。導電体114の表面115は平坦に加工されている。 As shown in FIG. 8, the blind via 100 includes a first land portion 111 formed on the first surface of the substrate 110, a second land portion 112 formed on the second surface of the substrate 110, and a first land. And a conductor 114 that connects the portion 111 and the second land portion 112. The conductor 114 is formed by filling the via hole 113 with a conductive paste and curing the conductive paste. The surface 115 of the conductor 114 is processed flat.
 また、特許文献2にもフレキシブルプリント配線板が開示されているが、導電体210の形状が図8のフレキシブルプリント配線板とは異なる。図9に示すように、ブラインドビア200の導電体210の表面211には、窪み212が設けられている。 Moreover, although the flexible printed wiring board is disclosed also in patent document 2, the shape of the conductor 210 is different from the flexible printed wiring board of FIG. As shown in FIG. 9, a depression 212 is provided on the surface 211 of the conductor 210 of the blind via 200.
特開2011-23676号公報JP 2011-23676 A 特開2008-103548号公報JP 2008-103548 A
 フレキシブルプリント配線板は、曲げた状態で配置されたり、繰り返し曲げられるたりする。フレキシブルプリント配線板が曲げられるとき、ブラインドビアに力が加わる。そのため、導電層と導電体との間の接着力よりも導電層と導電体とに加わる応力が大きくなると、導電層から導電体が剥離する。導電層と導電体との間の剥離はブラインドビアの接触抵抗を増大させ、フレキシブルプリント配線板を用いた電気回路の信頼性を低下させる。このようなことから、フレキシブルプリント配線板の曲げにより導電体と導電層との間の接触抵抗が増大しないことが要求される。 ¡Flexible printed circuit boards are placed in a bent state or bent repeatedly. When the flexible printed wiring board is bent, a force is applied to the blind via. Therefore, when the stress applied to the conductive layer and the conductor becomes larger than the adhesive force between the conductive layer and the conductor, the conductor peels from the conductive layer. Peeling between the conductive layer and the conductor increases the contact resistance of the blind via and reduces the reliability of the electric circuit using the flexible printed wiring board. For this reason, it is required that the contact resistance between the conductor and the conductive layer does not increase due to bending of the flexible printed wiring board.
 しかし、上記のいずれの文献にも、フレキシブルプリント配線板の曲げに起因して、ブラインドビアの接触抵抗が増大するということについては、記載されていない。また、このような課題に対する技術、すなわち、フレキシブルプリント配線板の曲げに起因するブラインドビアの接触抵抗の増大を抑制する技術についても、開示されていない。 However, none of the above documents describes that the contact resistance of the blind via increases due to the bending of the flexible printed wiring board. Further, there is no disclosure of a technique for such a problem, that is, a technique for suppressing an increase in the contact resistance of the blind via caused by bending of the flexible printed wiring board.
 本発明はこのような課題を解決するためになされたものであり、その目的は、曲げに対してブラインドビアの接触抵抗の増大を抑制することのできるフレキシブルプリント配線板、およびそのフレキシブルプリント配線板の製造方法を提供することにある。 The present invention has been made to solve such problems, and an object of the present invention is to provide a flexible printed wiring board capable of suppressing an increase in the contact resistance of a blind via against bending, and the flexible printed wiring board. It is in providing the manufacturing method of.
 (1)本発明の第1の態様によれば、基材と、前記基材の第1面に形成された第1導電層と、前記基材の第2面に形成された第2導電層と、前記第1導電層と前記第2導電層とを接続する導電体とを備えるフレキシブルプリント配線板が提供される。そのフレキシブルプリント配線板は、前記第1導電層に設けられた第1ランド部と、前記第2導電層において前記基材を挟んで前記第1ランド部の反対側に設けられた第2ランド部と、前記第1ランド部および前記基材を貫通して前記第2ランド部に達するビア孔とを備えている。前記導電体は、導電ペーストにより形成されたものであって、前記導電体は、前記ビア孔の底面の全部を覆うようにこのビア孔を充たし、かつ前記第1ランド部の表面の少なくとも一部を覆うように形成され、前記ビア孔の中心軸上における前記導電体の厚さは、前記基材の厚さと前記第1ランド部の厚さとの和よりも小さい。 (1) According to the first aspect of the present invention, the base material, the first conductive layer formed on the first surface of the base material, and the second conductive layer formed on the second surface of the base material. And a flexible printed wiring board provided with the conductor which connects a said 1st conductive layer and a said 2nd conductive layer is provided. The flexible printed wiring board includes a first land portion provided on the first conductive layer and a second land portion provided on the opposite side of the first land portion with the base material sandwiched between the second conductive layers. And a via hole penetrating the first land portion and the base material and reaching the second land portion. The conductor is formed of a conductive paste, and the conductor fills the via hole so as to cover the entire bottom surface of the via hole, and at least a part of the surface of the first land portion. And the thickness of the conductor on the central axis of the via hole is smaller than the sum of the thickness of the base material and the thickness of the first land portion.
 第1ランド部を外側にしてフレキシブルプリント配線板を曲げると、基材の外面が延びるとともに内面が縮む。このとき、第1ランド部と導電体とが離間する方向に力が加わる。この結果、導電体と第1ランド部との間に隙間が生じ、ブラインドビアの接触抵抗が増大する。ブラインドビアの接触抵抗の増大の程度は、ブラインドビアを構成する導電体の構造に依存する。 When the flexible printed wiring board is bent with the first land portion outside, the outer surface of the substrate extends and the inner surface contracts. At this time, force is applied in a direction in which the first land portion and the conductor are separated from each other. As a result, a gap is generated between the conductor and the first land portion, and the contact resistance of the blind via is increased. The degree of increase in the contact resistance of the blind via depends on the structure of the conductor constituting the blind via.
 本発明の第1の態様では、このような点を考慮し、導電体が変形しやすい構造を採用している。すなわち、ビア孔の中心軸上の導電体の厚さを、基材の厚さと第1ランド部の厚さとの和よりも小さくする。具体的には、導電体において、ビア孔の中心軸上に窪みを設け、導電体を変形しやすくし、基材の変形に追従して導電体が変形しやすい構造を構成している。これにより、フレキシブルプリント配線板の曲げに対するブラインドビアの接触抵抗の増大を抑制することができる。なお、上記「ビア孔の中心軸」とは、ビア孔の底面の中心点を通過しかつ底面に垂直に延びる軸である。 In the first aspect of the present invention, in consideration of such points, a structure in which the conductor is easily deformed is adopted. That is, the thickness of the conductor on the central axis of the via hole is made smaller than the sum of the thickness of the base material and the thickness of the first land portion. Specifically, in the conductor, a recess is provided on the central axis of the via hole so that the conductor is easily deformed, and the conductor is easily deformed following the deformation of the base material. Thereby, increase of the contact resistance of the blind via | veer with respect to the bending of a flexible printed wiring board can be suppressed. The “central axis of the via hole” is an axis that passes through the center point of the bottom surface of the via hole and extends perpendicularly to the bottom surface.
 (2)前記ビア孔の中心軸上における前記導電体の厚さは5μm以上であることが望ましい。 (2) The thickness of the conductor on the central axis of the via hole is preferably 5 μm or more.
 フレキシブルプリント配線板を曲げると導電体が変形する。導電体が薄いとき、導電体に亀裂が生じる可能性が高くなる。そこで、導電体の厚さを5μm以上とすれば、ビア孔の中心軸上の導電体の厚さを5μm未満とする場合に比べ、導電体に亀裂が発生することを抑制することができる。 ¡The conductor is deformed when the flexible printed wiring board is bent. When the conductor is thin, there is a high possibility that the conductor will crack. Therefore, if the thickness of the conductor is 5 μm or more, it is possible to suppress the occurrence of cracks in the conductor as compared with the case where the thickness of the conductor on the central axis of the via hole is less than 5 μm.
 (3)前記導電体のうち前記第1ランド部を覆う部分の最も厚い箇所の厚さが2μm以上であることが望ましい。第1ランド部を覆う部分に亀裂が生じるとき、導電体と第1ランド部との間の接触抵抗が増大する。この点を考慮し、第1ランド部を覆う部分の最も厚い箇所の厚さが2μm以上であれば、第1ランド部を覆う部分に亀裂が発生することを抑制することができる。 (3) It is desirable that the thickness of the thickest portion of the conductor covering the first land portion is 2 μm or more. When a crack occurs in the portion covering the first land portion, the contact resistance between the conductor and the first land portion increases. Considering this point, if the thickness of the thickest portion covering the first land portion is 2 μm or more, the occurrence of cracks in the portion covering the first land portion can be suppressed.
 (4)前記ビア孔の中心軸に対し垂直でありかつ前記第1ランド部の表面を含む面で前記導電体を切断したときの前記導電体の断面において、この断面の内円と外円との間の距離は5μm以上であることが望ましい。 (4) In a cross section of the conductor when the conductor is cut by a plane perpendicular to the central axis of the via hole and including the surface of the first land portion, an inner circle and an outer circle of the cross section The distance between is preferably 5 μm or more.
 導電体においてビア孔の開口部に対応する部分は、亀裂が生じやすい。この点を考慮し、前記導電体の断面の内円と外円との間の距離を5μm以上とすれば、ビア孔の第1ランド部側の開口部に対応する部分において、亀裂が発生することを抑制することができる。 The portion of the conductor corresponding to the opening of the via hole is likely to crack. Considering this point, if the distance between the inner circle and the outer circle of the cross section of the conductor is set to 5 μm or more, a crack occurs in a portion corresponding to the opening on the first land side of the via hole. This can be suppressed.
 (5)前記導電体は、扁平球状の導電粒子およびこれらの結合体を含むことが望ましい。導電体を構成する導電粒子の表面に突起があるとき、導電粒子間の隙間が多くなる。一方、導電粒子が扁平球状であるとき、導電粒子同士の空隙は小さくなる。この点を考慮し、導電体を扁平球状の導電粒子により構成し、導電粒子の密度を大きくすれば、ブラインドビアの許容電流量を高くすることができる。 (5) The conductor preferably includes flat spherical conductive particles and a combination thereof. When there are protrusions on the surface of the conductive particles constituting the conductor, the gaps between the conductive particles increase. On the other hand, when the conductive particles are flat spherical, the gap between the conductive particles is small. Considering this point, if the conductor is composed of flat spherical conductive particles and the density of the conductive particles is increased, the allowable current amount of the blind via can be increased.
 (6)本発明の第2の態様によれば、基材と、前記基材の第1面に形成された第1導電層と、前記基材の第2面に形成された第2導電層と、前記第1導電層と前記第2導電層とを接続する導電体とを備えるフレキシブルプリント配線板の製造方法が提供される。その方法では、下記の(1)式で示されるチクソトロピー指数が0.25以下の導電ペーストを用いて前記導電体を形成することを含んでいる。 (6) According to the second aspect of the present invention, the base material, the first conductive layer formed on the first surface of the base material, and the second conductive layer formed on the second surface of the base material. And a method of manufacturing a flexible printed wiring board comprising a conductor connecting the first conductive layer and the second conductive layer. The method includes forming the conductor using a conductive paste having a thixotropy index of 0.25 or less represented by the following formula (1).
 チクソトロピー指数
=log(η1/η2)/log(D2/D1)・・・(1)
 ここで、η1はせん断速度D1が2s-1のときの前記導電ペーストの粘度を示し、η2はせん断速度D2が20s-1のときの前記導電ペーストの粘度を示す。
Thixotropic index = log (η1 / η2) / log (D2 / D1) (1)
Here, η1 indicates the viscosity of the conductive paste when the shear rate D1 is 2 s −1 , and η2 indicates the viscosity of the conductive paste when the shear rate D2 is 20 s −1 .
 従来の導電ペーストによれば、導電体の上部が表面張力により盛り上がる。一方、本発明の導電ペーストによれば、導電体の上部の中央部分を窪ませることができる。これは次の理由による。 According to the conventional conductive paste, the upper part of the conductor is raised by the surface tension. On the other hand, according to the electrically conductive paste of this invention, the center part of the upper part of a conductor can be depressed. This is due to the following reason.
 導電ペーストは、せん断応力を加えない状態に近づくにしたがって、粘度が増大するという性質、すなわち、チキソトロピー性を備えている。チクソトロピー指数は、その値が小さいほど、チクソトロピー性が低いことを示す。すなわち、チクソトロピー指数が0.25以下の導電ペーストを基材に塗布した後には、その導電ペーストを流動させることができるため、導電体の上部の中央部分に窪みを形成することができる。 The conductive paste has a property that the viscosity increases as it approaches a state where no shear stress is applied, that is, thixotropic property. The thixotropy index indicates that the smaller the value, the lower the thixotropy. That is, after applying a conductive paste having a thixotropy index of 0.25 or less to a substrate, the conductive paste can be flowed, so that a depression can be formed in the upper central portion of the conductor.
 (7)フレキシブルプリント配線板の製造方法において、扁平球状の導電粒子を含みかつこの扁平球状の導電粒子の質量比が70質量%以上である導電ペーストを用いて、前記導電体を形成することが望ましい。この場合、導電体の上部の中央部分を窪ませることができる。 (7) In the method for producing a flexible printed wiring board, the conductor may be formed using a conductive paste containing flat spherical conductive particles and having a mass ratio of the flat spherical conductive particles of 70% by mass or more. desirable. In this case, the upper central portion of the conductor can be recessed.
 (8)フレキシブルプリント配線板の製造方法において、前記導電ペーストは、平均粒径が30nm以上200nm以下の球状の導電粒子を更に含むことが望ましい。この場合、導電体の上部の中央部分を窪ませることができる。 (8) In the method for manufacturing a flexible printed wiring board, it is preferable that the conductive paste further includes spherical conductive particles having an average particle size of 30 nm to 200 nm. In this case, the upper central portion of the conductor can be recessed.
 平均粒径が30nm以上200nm以下の球状の導電粒子を導電ペーストに含む場合、これら導電粒子は、扁平球状または球状の導電粒子の間の隙間に入るため、導電体の導電粒子密度を高くすることができる。これにより、ブラインドビアの最大許容電流量を高くすることができる。 When spherical conductive particles having an average particle size of 30 nm to 200 nm are included in the conductive paste, these conductive particles enter the gaps between the flat spherical or spherical conductive particles, so that the conductive particle density of the conductor is increased. Can do. Thereby, the maximum allowable current amount of the blind via can be increased.
 (9)前記導電ペーストには、前記扁平球状の導電粒子として、平均粒径が1.4μm以上3.3μm以下の第1導電粒子と、平均粒径が0.5μm以上1.8μm以下の第2導電粒子とが含まれることが望ましい。この場合、導電体の上部の中央部分を窪ませることができる。 (9) The conductive paste includes, as the flat spherical conductive particles, first conductive particles having an average particle size of 1.4 μm or more and 3.3 μm or less, and first conductive particles having an average particle size of 0.5 μm or more and 1.8 μm or less. 2 conductive particles are desirably included. In this case, the upper central portion of the conductor can be recessed.
 また、平均粒径が1.4μm以上3.3μm以下の導電粒子を導電ペーストに含めることから、次の効果が得られる。すなわち、1.4μm以上3.3μm以下の導電粒子は、導電ペーストの膜厚を大きくする。これにより、導電ペーストの膜厚が小さくなりすぎることを抑制することができる。なお、平均粒径が3.3μmよりも大きい導電粒子を導電ペーストに含めると、膜厚が厚くなりすぎる。 In addition, since conductive particles having an average particle size of 1.4 μm or more and 3.3 μm or less are included in the conductive paste, the following effects can be obtained. That is, conductive particles having a size of 1.4 μm or more and 3.3 μm or less increase the thickness of the conductive paste. Thereby, it can suppress that the film thickness of an electrically conductive paste becomes small too much. If conductive particles having an average particle size larger than 3.3 μm are included in the conductive paste, the film thickness becomes too thick.
 本発明によれば、曲げに対してブラインドビアの接触抵抗の増大を抑制することのできるフレキシブルプリント配線板、およびそのフレキシブルプリント配線板の製造方法を提供することができる。 According to the present invention, it is possible to provide a flexible printed wiring board capable of suppressing an increase in the contact resistance of the blind via against bending and a method for manufacturing the flexible printed wiring board.
実施形態のフレキシブルプリント配線板の断面図である。It is sectional drawing of the flexible printed wiring board of embodiment. ブラインドビアの断面図である。It is sectional drawing of a blind via. (a)は導電粒子の斜視図、(b)は導電粒子の平面図、(c)は図3(b)の3C-3C線に沿う断面図である。(A) is a perspective view of conductive particles, (b) is a plan view of conductive particles, and (c) is a cross-sectional view taken along line 3C-3C in FIG. 3 (b). 従来構造のブラインドビアの断面構造を示す断面図である。It is sectional drawing which shows the cross-section of the blind via of the conventional structure. 実施形態のブラインドビアの断面構造を示す断面図である。It is sectional drawing which shows the cross-section of the blind via of embodiment. (a)フレキシブルプリント配線板の平面図、(b)フレキシブルプリント配線板の断面図である。(A) The top view of a flexible printed wiring board, (b) It is sectional drawing of a flexible printed wiring board. 曲げ試験を説明する模式図である。It is a schematic diagram explaining a bending test. 従来のフレキシブルプリント配線板の断面図である。It is sectional drawing of the conventional flexible printed wiring board. 従来のフレキシブルプリント配線板の断面図である。It is sectional drawing of the conventional flexible printed wiring board.
フレキシブルプリント配線板
 図1を参照して、フレキシブルプリント配線板1について説明する。
Flexible Printed Wiring Board The flexible printed wiring board 1 will be described with reference to FIG.
 フレキシブルプリント配線板1は、基材30と、基材30の第1面31に形成された第1導電パターン10(第1導電層)と、基材30の第2面32に形成された第2導電パターン20(第2導電層)と、第1導電パターン10と第2導電パターン20とを接続する導電体40とを備える。基材30の第2面32は第1面31とは反対側に位置する。 The flexible printed wiring board 1 includes a base material 30, a first conductive pattern 10 (first conductive layer) formed on the first surface 31 of the base material 30, and a second surface 32 of the base material 30. 2 conductive pattern 20 (2nd conductive layer), and the conductor 40 which connects the 1st conductive pattern 10 and the 2nd conductive pattern 20 are provided. The second surface 32 of the substrate 30 is located on the side opposite to the first surface 31.
 基材30は、可撓性を有する絶縁フィルムにより形成されている。 The base material 30 is formed of a flexible insulating film.
 例えば、基材30は、ポリイミド、ポリエチレンテレフタレート等により形成されている。基材30の厚さはフレキシブルプリント配線板1の用途に応じて適宜選択される。具体的には、5μm~50μm厚の基材30が採用される。 For example, the base material 30 is made of polyimide, polyethylene terephthalate, or the like. The thickness of the base material 30 is appropriately selected according to the use of the flexible printed wiring board 1. Specifically, a substrate 30 having a thickness of 5 μm to 50 μm is employed.
 各導電パターン10,20は、基材30の金属層を加工することにより形成される。例えば、両面銅張積層板をエッチングすることにより各導電パターン10,20が形成される。なお、両面銅張積層板に代えて、両面がめっき層の基板を用いてもよい。 Each conductive pattern 10 and 20 is formed by processing the metal layer of the base material 30. For example, the conductive patterns 10 and 20 are formed by etching a double-sided copper-clad laminate. In addition, it may replace with a double-sided copper clad laminated board, and may use the board | substrate with a plating layer on both surfaces.
 第1導電パターン10の厚さはフレキシブルプリント配線板1の用途に応じて適宜選択される。第2導電パターン20は、第1導電パターン10と同様に形成される。 The thickness of the first conductive pattern 10 is appropriately selected according to the use of the flexible printed wiring board 1. The second conductive pattern 20 is formed in the same manner as the first conductive pattern 10.
 図2を参照して、第1導電パターン10と第2導電パターン20とを接続するブラインドビア50について説明する。ブラインドビア50は、第1ランド部11と、第2ランド部21と、これらランド部11,21を接続する導電体40とを含む。 Referring to FIG. 2, the blind via 50 that connects the first conductive pattern 10 and the second conductive pattern 20 will be described. The blind via 50 includes a first land portion 11, a second land portion 21, and a conductor 40 that connects the land portions 11 and 21.
 第1ランド部11は、円形であり、その中心部にランド孔11bが形成されている。第1ランド部11の直径は、例えば、300μm~1000μmに設定される。第1ランド部11は第1導電パターン10の一部である。 The first land portion 11 is circular, and a land hole 11b is formed at the center thereof. The diameter of the first land portion 11 is set to 300 μm to 1000 μm, for example. The first land portion 11 is a part of the first conductive pattern 10.
 第2ランド部21は、基材30を挟んで第1ランド部11の反対側に設けられている。第2ランド部21は円形に形成される。第2ランド部21の直径は、100μm~1000μmに設定される。第2ランド部21は、第2導電パターン20の一部である。第1ランド部11および第2ランド部21の形状は円形に限定されるべきものではなく、矩形でもよい。 The second land portion 21 is provided on the opposite side of the first land portion 11 with the base material 30 interposed therebetween. The second land portion 21 is formed in a circular shape. The diameter of the second land portion 21 is set to 100 μm to 1000 μm. The second land portion 21 is a part of the second conductive pattern 20. The shape of the 1st land part 11 and the 2nd land part 21 should not be limited to circular, A rectangle may be sufficient.
 第1ランド部11および基材30には、第2ランド部21に至るまで第1ランド部11および基材30を貫通するビア孔33が形成されている。ビア孔33の底面33bは第2ランド部21の内面に対応する。ビア孔33の底面33bは略円形である。ビア孔33は、例えばレーザ照射により形成される。ビア孔33の直径は例えば20μm~300μmとされる。ランド孔11bは、ビア孔33の一部を構成する。 The first land portion 11 and the base material 30 are formed with via holes 33 penetrating the first land portion 11 and the base material 30 up to the second land portion 21. The bottom surface 33 b of the via hole 33 corresponds to the inner surface of the second land portion 21. The bottom surface 33b of the via hole 33 is substantially circular. The via hole 33 is formed by, for example, laser irradiation. The diameter of the via hole 33 is, for example, 20 μm to 300 μm. The land hole 11 b constitutes a part of the via hole 33.
 導電体40は、ビア孔33の底面33bの全部を覆うように、このビア孔33を充たしている。導電体40は第1ランド部11の表面11aの一部または全部を覆っている。導電体40の底部42は第2ランド部21に接触している。導電体40の上部41は第1ランド部11に接触している。導電体40の上部41の中央部分には窪み44が存在している。 The conductor 40 fills the via hole 33 so as to cover the entire bottom surface 33 b of the via hole 33. The conductor 40 covers part or all of the surface 11 a of the first land portion 11. The bottom portion 42 of the conductor 40 is in contact with the second land portion 21. The upper portion 41 of the conductor 40 is in contact with the first land portion 11. A depression 44 exists in the central portion of the upper portion 41 of the conductor 40.
 導電体40の底部42は、ビア孔33の中心軸方向Daにおいて第2導電パターン20に接触している。導電体40の上部41は、ビア孔33の中心軸方向Daにおいて第1導電パターン10に接触し、第1ランド部11を部分的に覆う部分を含む。 The bottom portion 42 of the conductor 40 is in contact with the second conductive pattern 20 in the central axis direction Da of the via hole 33. The upper portion 41 of the conductor 40 includes a portion that contacts the first conductive pattern 10 in the central axis direction Da of the via hole 33 and partially covers the first land portion 11.
 ビア孔33の中心軸Ca上における導電体40の厚さtdは、基材30の厚さtaと第1ランド部11の厚さtbとの和よりも小さい。また、ビア孔33の中心軸Ca上における導電体40の厚さtdは5μm以上とされる。導電体40のうち第1ランド部11を覆う部分の最も厚い箇所の厚さteは、2μm以上である。ビア孔33の中心軸Caに対し垂直でありかつ第1ランド部11の表面11aを含む面に沿って、導電体40を切断したときの導電体40の断面において、この断面の内円と外円(ビア孔33)との間の距離Dfは5μm以上である。 The thickness td of the conductor 40 on the central axis Ca of the via hole 33 is smaller than the sum of the thickness ta of the base material 30 and the thickness tb of the first land portion 11. Further, the thickness td of the conductor 40 on the central axis Ca of the via hole 33 is set to 5 μm or more. The thickness te of the thickest portion of the conductor 40 that covers the first land portion 11 is 2 μm or more. In the cross section of the conductor 40 when the conductor 40 is cut along a plane that is perpendicular to the central axis Ca of the via hole 33 and includes the surface 11a of the first land portion 11, an inner circle and an outer portion of the cross section of the conductor 40 are cut. The distance Df between the circle (via hole 33) is 5 μm or more.
 次に、導電体40の構成材料について説明する。 Next, the constituent material of the conductor 40 will be described.
 導電体40は、導電粒子60およびバインダ樹脂を含む導電ペーストにより形成されている。すなわち、導電体40は、導電粒子60およびこれらの導電粒子60を結合する結合体を含む構造体である。導電粒子60同士は接触部分で溶融結合または焼結結合する。導電粒子60同士が単に接触している部分もある。導電粒子60は、バインダ樹脂により互いに固定されている。バインダ樹脂は加熱硬化時に収縮するため、導電粒子60同士は互いに押圧された状態で存在している。 The conductor 40 is formed of a conductive paste containing conductive particles 60 and a binder resin. That is, the conductor 40 is a structure including the conductive particles 60 and a combined body that couples the conductive particles 60. The conductive particles 60 are melt bonded or sintered bonded at the contact portion. There is also a portion where the conductive particles 60 are simply in contact with each other. The conductive particles 60 are fixed to each other with a binder resin. Since the binder resin shrinks during heat curing, the conductive particles 60 are present in a state where they are pressed against each other.
 バインダ樹脂は熱硬化性樹脂であり、導電体40においては硬化物として存在する。導電ペーストに含まれる導電粒子60の一部もしくは全部は、球を扁平化した形状(以下、「扁平球状」という。)の金属粒子であり、導電体40においては互いに結合した結合体として存在する。金属粒子は銀、銅またはニッケル等により形成されている。 The binder resin is a thermosetting resin and exists as a cured product in the conductor 40. Part or all of the conductive particles 60 included in the conductive paste are metal particles having a flattened sphere shape (hereinafter referred to as “flattened spherical shape”), and in the conductor 40, they exist as a bonded body. . The metal particles are made of silver, copper, nickel or the like.
 図3(a)~(c)を参照して、典型的な扁平球状の導電粒子60について説明する。図3(a)は導電粒子60の斜視図を示す。図3(b)は導電粒子60を回転対称軸Crに沿う方向(以下、回転対称軸方向Dr)から見た平面図を示す。図3(c)は導電粒子60の断面図を示す。 A typical flat spherical conductive particle 60 will be described with reference to FIGS. FIG. 3A shows a perspective view of the conductive particles 60. FIG. 3B is a plan view of the conductive particles 60 viewed from a direction along the rotational symmetry axis Cr (hereinafter, rotational symmetry axis direction Dr). FIG. 3C shows a cross-sectional view of the conductive particles 60.
 導電粒子60を回転対称軸方向Drから見た形状は略円形(円形に近似される形状)である。回転対称軸Crを含む面で導電粒子60を切断したときの断面は、円を押しつぶした形状である。この断面の短辺Lxと長辺Lyとの比率(短辺Lx/長辺Ly)は、0.2以上1.0未満である。このような扁平球状の導電粒子60は、球状の金属粒子を押圧機等で押し潰すことにより形成される。 The shape of the conductive particles 60 viewed from the rotationally symmetric axis direction Dr is substantially circular (a shape approximated to a circle). The cross section when the conductive particles 60 are cut along the plane including the rotational symmetry axis Cr is a shape obtained by crushing a circle. The ratio of the short side Lx to the long side Ly (short side Lx / long side Ly) of the cross section is 0.2 or more and less than 1.0. Such flat spherical conductive particles 60 are formed by crushing spherical metal particles with a pressing machine or the like.
 図4および図5を参照して、フレキシブルプリント配線板1の曲げに対するブラインドビア50の作用について、従来構造のブラインドビア350(図4参照)を有するフレキシブルプリント配線板300と比較して説明する。従来構造のブラインドビア350とはビア孔333の中心軸Cb上に窪み44のないものを示す。 4 and 5, the action of the blind via 50 on the bending of the flexible printed wiring board 1 will be described in comparison with the flexible printed wiring board 300 having the blind via 350 having a conventional structure (see FIG. 4). The blind via 350 having a conventional structure is one having no depression 44 on the central axis Cb of the via hole 333.
 従来構造のフレキシブルプリント配線板300を曲げたとき、ブラインドビア350には次のように力が作用する。図4に示すように、導電体340の上部341を外側にした状態でフレキシブルプリント配線板300を曲げると、基材330、第1ランド部311、第2ランド部321、および導電体340のそれぞれに応力が発生する。 When the flexible printed wiring board 300 having the conventional structure is bent, a force acts on the blind via 350 as follows. As shown in FIG. 4, when the flexible printed wiring board 300 is bent with the upper portion 341 of the conductor 340 facing outside, each of the base material 330, the first land portion 311, the second land portion 321, and the conductor 340 is formed. Stress is generated.
 第1に、第1ランド部311の表面311aと導電体340との境界面に沿って、せん断応力Fxが発生する。第2に、ビア孔333の内側周面333aと導電体340との境界面に垂直な方向に垂直応力Fyが発生する。第3に、導電体340の上部341に引張応力Fzが発生する。 First, a shear stress Fx is generated along the boundary surface between the surface 311a of the first land portion 311 and the conductor 340. Second, a vertical stress Fy is generated in a direction perpendicular to the boundary surface between the inner peripheral surface 333a of the via hole 333 and the conductor 340. Third, a tensile stress Fz is generated in the upper part 341 of the conductor 340.
 フレキシブルプリント配線板300の曲げが小さいときは、導電体340の上部341は基材330に追従して変形する。すなわち、フレキシブルプリント配線板300の曲げが小さいときは、せん断応力Fxが第1ランド部311の表面311aと導電体340との間の接着力よりも小さく、または、垂直応力Fyがビア孔333の内側周面333aと導電体340との間の接着力よりも小さいため、導電体340が第1ランド部311から剥離しない。 When the bending of the flexible printed wiring board 300 is small, the upper part 341 of the conductor 340 is deformed following the base material 330. That is, when the bending of the flexible printed wiring board 300 is small, the shear stress Fx is smaller than the adhesive force between the surface 311 a of the first land portion 311 and the conductor 340, or the vertical stress Fy is the via hole 333. Since it is smaller than the adhesive force between the inner peripheral surface 333a and the conductor 340, the conductor 340 does not peel from the first land portion 311.
 一方、フレキシブルプリント配線板300の曲げが所定の曲率よりも大きくなるとき、導電体340の上部341が第1ランド部311から剥離する。すなわち、フレキシブルプリント配線板300の曲げが大きいとき、導電体340の上部341が大きく曲げられ、歪δが大きくなり、導電体340の上部341に加わる引張応力Fzが大きくなる。この結果、せん断応力Fxが第1ランド部311の表面311aと導電体340との間の接着力よりも大きくなるとともに垂直応力Fyがビア孔333の内側周面333aと導電体340との間の接着力よりも大きくなるため、図4に示すように、第1ランド部311から導電体340の上部341が剥離する。 On the other hand, when the bending of the flexible printed wiring board 300 becomes larger than a predetermined curvature, the upper portion 341 of the conductor 340 is peeled from the first land portion 311. That is, when the bending of the flexible printed wiring board 300 is large, the upper portion 341 of the conductor 340 is greatly bent, the strain δ increases, and the tensile stress Fz applied to the upper portion 341 of the conductor 340 increases. As a result, the shear stress Fx becomes larger than the adhesive force between the surface 311a of the first land portion 311 and the conductor 340, and the vertical stress Fy is between the inner peripheral surface 333a of the via hole 333 and the conductor 340. Since it becomes larger than the adhesive force, the upper portion 341 of the conductor 340 is peeled from the first land portion 311 as shown in FIG.
 このような剥離は、フレキシブルプリント配線板300の曲げが所定の曲率よりも小さくても、曲げの頻度が多いときには、生じる。曲げの頻度が多いとき、第1ランド部311の表面311aと導電体340との接着部分に繰り返しせん断応力Fxが加わるため、当該接着部分の接着力が徐々に低下して剥離が発生する。 Such peeling occurs when the bending of the flexible printed wiring board 300 is smaller than a predetermined curvature but the bending frequency is high. When the bending frequency is high, since the shear stress Fx is repeatedly applied to the bonding portion between the surface 311a of the first land portion 311 and the conductor 340, the bonding force of the bonding portion gradually decreases and peeling occurs.
 それに対し、本実施形態のフレキシブルプリント配線板1を曲げたときは、ブラインドビア50に次のように力が作用する。フレキシブルプリント配線板1の曲げが小さいとき、導電体40の上部41は基材30に追従して変形する。すなわち、フレキシブルプリント配線板1の曲げが小さいときにブラインドビア50に加わる力は、従来構造のブラインドビア350に対する作用と殆ど変わらない。 On the other hand, when the flexible printed wiring board 1 of the present embodiment is bent, a force acts on the blind via 50 as follows. When the bending of the flexible printed wiring board 1 is small, the upper portion 41 of the conductor 40 is deformed following the base material 30. That is, the force applied to the blind via 50 when the bending of the flexible printed wiring board 1 is small is almost the same as the effect on the blind via 350 having the conventional structure.
 一方、フレキシブルプリント配線板1を、従来構造のフレキシブルプリント配線板300において剥離が生じる曲率(以下、「従来限界曲率Rx」)まで曲げたときは、従来構造のフレキシブルプリント配線板300とは異なり、導電体40の上部41が基材30に追従して変形する。この結果、第1ランド部11からの導電体40の剥離は生じない。 On the other hand, when the flexible printed wiring board 1 is bent to a curvature at which peeling occurs in the flexible printed wiring board 300 having the conventional structure (hereinafter referred to as “conventional limit curvature Rx”), unlike the flexible printed wiring board 300 having the conventional structure, The upper portion 41 of the conductor 40 is deformed following the base material 30. As a result, no peeling of the conductor 40 from the first land portion 11 occurs.
 以下、この理由を説明する。 The reason for this will be explained below.
 フレキシブルプリント配線板1の曲げが大きくなるとき、導電体40の上部41が大きく曲げられるため、導電体40の上部41に加わる引張応力Fzが大きくなるが、従来構造のブラインドビア350と比べて引張応力Fzは小さい。 When the flexure of the flexible printed wiring board 1 is increased, the upper portion 41 of the conductor 40 is greatly bent, so that the tensile stress Fz applied to the upper portion 41 of the conductor 40 is increased. The stress Fz is small.
 これは、フレキシブルプリント配線板1の曲げにおける導電体40の上部41の歪δが小さいことによる。すなわち、導電体40の上部41は、従来構造のブラインドビア350と異なり、窪んでいる。このような窪み44は、第2ランド部21からの導電体40の表面43までの長さLsを従来構造のブラインドビア350に比べて短くする。導電体40の表面部分の歪δの大きさは第2ランド部21に近い程、小さくなるため、このような窪み44の存在により、導電体40の上部41の歪δが小さくなる。 This is because the strain δ of the upper portion 41 of the conductor 40 when the flexible printed wiring board 1 is bent is small. That is, the upper portion 41 of the conductor 40 is recessed unlike the blind via 350 having a conventional structure. Such a depression 44 shortens the length Ls from the second land portion 21 to the surface 43 of the conductor 40 as compared with the blind via 350 having a conventional structure. Since the magnitude of the strain δ of the surface portion of the conductor 40 is smaller as it is closer to the second land portion 21, the strain δ of the upper portion 41 of the conductor 40 is reduced by the presence of such a depression 44.
 この結果、フレキシブルプリント配線板1が従来限界曲率Rxまで曲げられるときでも、せん断応力Fxが第1ランド部11の表面11aと導電体40との間の接着力よりも大きくなったり、垂直応力Fyがビア孔33の内側周面33aと導電体40との間の接着力よりも大きくなったりすることが抑制される。このため、図5に示すように、導電体40の上部41が第1ランド部11から剥離せず、導電体40の上部41が基材30に追従して変形する。
フレキシブルプリント配線板の製造方法
 次に、フレキシブルプリント配線板1の製造方法について説明する。
As a result, even when the flexible printed wiring board 1 is bent to the conventional limit curvature Rx, the shear stress Fx becomes larger than the adhesive force between the surface 11a of the first land portion 11 and the conductor 40, or the vertical stress Fy. Is prevented from becoming larger than the adhesive force between the inner peripheral surface 33a of the via hole 33 and the conductor 40. For this reason, as shown in FIG. 5, the upper portion 41 of the conductor 40 does not peel from the first land portion 11, and the upper portion 41 of the conductor 40 is deformed following the base material 30.
Next, a method for manufacturing the flexible printed wiring board 1 will be described.
 第1工程では、エッチング法により基材30の両面に導電パターン10,20を形成する。第1導電パターン10にはランド部が含まれる。第2導電パターン20には第2ランド部21が含まれている。第1導電パターン10のランド部は、次工程でレーザによりランド孔11bが形成されることにより、第1ランド部11に変更される。 In the first step, the conductive patterns 10 and 20 are formed on both surfaces of the base material 30 by an etching method. The first conductive pattern 10 includes a land portion. The second conductive pattern 20 includes a second land portion 21. The land portion of the first conductive pattern 10 is changed to the first land portion 11 by forming a land hole 11b by a laser in the next step.
 第2工程では、レーザによりビア孔33が形成される。具体的には、第1導電パターン10のランド部にレーザを照射することにより、ランド部および基材30をともに貫通する孔(ビア孔33)が形成される。 In the second step, the via hole 33 is formed by a laser. Specifically, by irradiating the land portion of the first conductive pattern 10 with a laser, a hole (via hole 33) penetrating both the land portion and the substrate 30 is formed.
 第3工程では、印刷法により導電ペーストがビア孔33に充填される。充填後、導電ペーストが静止する安定な状態になるまで、導電ペーストが流動させられる。すなわち、ビア孔33の中心部分が窪む状態になるまで、導電ペーストが流動させられる。具体的には、導電ペーストを充填した後の基材30が室温で数分~数時間に亘って放置される。この後、基材30が加熱され、導電ペーストを硬化させる。
導電ペースト
 次に、導電ペーストについて説明する。
In the third step, the via paste 33 is filled with the conductive paste by a printing method. After filling, the conductive paste is allowed to flow until the conductive paste is in a stable and static state. That is, the conductive paste is caused to flow until the central portion of the via hole 33 is depressed. Specifically, the base material 30 after filling with the conductive paste is left at room temperature for several minutes to several hours. Thereafter, the substrate 30 is heated to cure the conductive paste.
Conductive paste Next, the conductive paste will be described.
 導電ペーストは、ビア孔33に充填された後、暫くの期間にわたって流動し、かつビア孔33に沿って広がり過ぎない性質を有する。 The conductive paste has a property that after filling the via hole 33, it flows for a period of time and does not spread too much along the via hole 33.
 導電ペーストは、導電粒子と、バインダ樹脂と、溶剤とを含む。導電粒子としては、図3で示した扁平球状の金属粒子(表1の第2導電粒子に対応する。)が用いられる。例えば、導電粒子60を、平面視したとき、すなわち、回転対称軸方向Drに沿った方向から見たときの平均粒径(直径)が0.5μm以上3.3μm以下である銀粒子が用いられる。この銀粒子の導電ペースト全体に対する質量比(以下、単に質量比というときも同じ意味である。)は、70質量%以上とすることが好ましい。平均粒径とは、導電粒子60の粒径(平面視の導電粒子60の直径)の体積累積分布において、体積累積値で50%の値に相当する粒径を示す。 The conductive paste contains conductive particles, a binder resin, and a solvent. As the conductive particles, the flat spherical metal particles (corresponding to the second conductive particles in Table 1) shown in FIG. 3 are used. For example, silver particles having an average particle diameter (diameter) of 0.5 μm or more and 3.3 μm or less when the conductive particles 60 are viewed in plan, that is, when viewed from a direction along the rotational symmetry axis direction Dr, are used. . The mass ratio of the silver particles to the entire conductive paste (hereinafter also simply referred to as mass ratio) is preferably 70% by mass or more. The average particle size indicates a particle size corresponding to a value of 50% in terms of a volume cumulative value in a volume cumulative distribution of the particle size of the conductive particles 60 (diameter of the conductive particles 60 in plan view).
 導電ペーストには、扁平球状の導電粒子として、平均粒径が異なる2種以上の導電粒子を含ませることが好ましい。例えば、平均粒径が0.5μm以上1.8μm以下である導電粒子(以下、第2導電粒子という。)と、平均粒径が1.4μm以上3.3μm以下の導電粒子(以下、第1導電粒子という。)とを導電ペーストに含める。 The conductive paste preferably contains two or more kinds of conductive particles having different average particle diameters as flat spherical conductive particles. For example, conductive particles having an average particle size of 0.5 μm to 1.8 μm (hereinafter referred to as second conductive particles) and conductive particles having an average particle size of 1.4 μm to 3.3 μm (hereinafter referred to as first particles). (Referred to as conductive particles) in the conductive paste.
 また、導電ペーストには、扁平球状の導電粒子60の他、球状の導電粒子(以下、第3導電粒子という。)を存在させることが好ましい。球状の導電粒子としては、平均粒径が扁平球状の導電粒子60の平均粒径よりも小さいことが好ましい。例えば、平均粒径30nm以上200nm以下の球状の導電粒子が用いられる。また、球状の導電粒子の質量比は、扁平球状の導電粒子60の質量比よりも小さく設定される。例えば、球状の導電粒子の質量比は1.0質量%以上15質量%以下に設定される。 Further, it is preferable that spherical conductive particles (hereinafter referred to as third conductive particles) be present in addition to the flat spherical conductive particles 60 in the conductive paste. The spherical conductive particles preferably have an average particle size smaller than the average particle size of the flat spherical conductive particles 60. For example, spherical conductive particles having an average particle size of 30 nm to 200 nm are used. The mass ratio of the spherical conductive particles is set smaller than the mass ratio of the flat spherical conductive particles 60. For example, the mass ratio of the spherical conductive particles is set to 1.0% by mass or more and 15% by mass or less.
 平均粒径が1.4μm以上3.3μm以下の導電粒子(第1導電粒子)としては、表面を金属で被覆したコーティング粒子を用いることもできる。例えば、銅粒子を銀で被覆した銀コート銅粒子を用いることができる。 As the conductive particles (first conductive particles) having an average particle size of 1.4 μm or more and 3.3 μm or less, coating particles whose surfaces are coated with metal can be used. For example, silver-coated copper particles in which copper particles are coated with silver can be used.
 バインダ樹脂としては、エポキシ樹脂、フェノール樹脂、ポリエステル樹脂、アクリル樹脂、メラミン樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、フェノシキ樹脂等が用いられる。耐熱性を考慮する場合は、熱硬化性樹脂が採用される。特にエポキシ樹脂が好適である。 As the binder resin, epoxy resin, phenol resin, polyester resin, acrylic resin, melamine resin, polyimide resin, polyamideimide resin, phenoxy resin, or the like is used. When considering heat resistance, a thermosetting resin is employed. Epoxy resins are particularly suitable.
 エポキシ樹脂の種類は特に限定されない。 The type of epoxy resin is not particularly limited.
 例えば、ビスフェノールA、ビスフェノールF、ビスフェノールS、ビスフェノールAD等を原料とするビスフェノール型エポキシ樹脂が用いられる。また、ナフタレン型エポキシ樹脂、ノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂等を用いることもできる。また、エポキシ樹脂には一液性のもの、二液性のものがあるが、いずれも用いることができる。 For example, a bisphenol type epoxy resin made from bisphenol A, bisphenol F, bisphenol S, bisphenol AD or the like is used. A naphthalene type epoxy resin, a novolac type epoxy resin, a biphenyl type epoxy resin, a dicyclopentadiene type epoxy resin, or the like can also be used. Epoxy resins include one-component and two-component epoxy resins, and any of them can be used.
 マイクロカプセル型の硬化剤を主剤(エポキシ樹脂)に分散させた一液性エポキシ樹脂を用いることもできる。マイクロカプセル型の硬化剤を均一に分散させるため、溶剤として、例えば、ブチルカルビトールアセテート、またはエチルカルビトールアセテートが用いられる。 It is also possible to use a one-component epoxy resin in which a microcapsule type curing agent is dispersed in a main agent (epoxy resin). In order to uniformly disperse the microcapsule type curing agent, for example, butyl carbitol acetate or ethyl carbitol acetate is used as a solvent.
 上記各種の導電粒子、バインダ樹脂、および溶剤については、次の(1)式を充たすように、それらの質量比が設定されている。 The mass ratio of the various conductive particles, the binder resin, and the solvent is set so as to satisfy the following expression (1).
 チクソトロピー指数 ≦ 0.25・・・(1)
・チクソトロピー指数=log(η1/η2)/log(D2/D1)
・η1は、せん断速度D1が2s-1のときの導電ペーストの粘度(Pa・s)を示す。
・η2は、せん断速度D2が20s-1のときの導電ペーストの粘度(Pa・s)を示す。
Thixotropic index ≦ 0.25 (1)
Thixotropic index = log (η1 / η2) / log (D2 / D1)
Η1 indicates the viscosity (Pa · s) of the conductive paste when the shear rate D1 is 2 s −1 .
Η2 indicates the viscosity (Pa · s) of the conductive paste when the shear rate D2 is 20 s −1 .
 すなわち、(1)式が成立するように、導電粒子60の平均粒径および質量比、導電ペーストに含める導電粒子60の種類および種別数、バインダ樹脂の種類および質量比、溶剤の種類および質量比等が設定される。なお、導電粒子60の種類とは、球状の導電粒子、扁平球状の導電粒子等、形状別の分類を示す。種別数とは、導電ペーストに含める導電粒子の種類の数を示す。 That is, the average particle diameter and mass ratio of the conductive particles 60, the type and number of types of the conductive particles 60 included in the conductive paste, the type and mass ratio of the binder resin, the type and mass ratio of the solvent so that the formula (1) is satisfied. Etc. are set. The type of the conductive particles 60 indicates a classification according to shape, such as spherical conductive particles and flat spherical conductive particles. The number of types indicates the number of types of conductive particles included in the conductive paste.
 このような導電ペーストは次の性質を有する。 Such a conductive paste has the following properties.
 ビア孔33に充填された後、導電ペーストは暫くの間に亘って流動する。そして、導電ペーストの流動が止まるときには、ビア孔33の中心軸Ca上に窪み44が形成される。 After the via hole 33 is filled, the conductive paste flows for a while. When the flow of the conductive paste stops, a recess 44 is formed on the central axis Ca of the via hole 33.
 このような性質は、導電粒子60の形状の選択により実現することができる。以下、この点について説明する。 Such properties can be realized by selecting the shape of the conductive particles 60. Hereinafter, this point will be described.
 バインダ樹脂により導電ペーストの流動性を調整することができる。しかし、バインダ樹脂の導電ペースト全体に対する質量比は小さいため、流動性の調整幅は小さい。このため、バインダ樹脂の種類を選択することにより、チクソトロピー指数を調整することは難しい。 The fluidity of the conductive paste can be adjusted by the binder resin. However, since the mass ratio of the binder resin to the entire conductive paste is small, the fluidity adjustment range is small. For this reason, it is difficult to adjust the thixotropy index by selecting the type of binder resin.
 鱗片状の導電粒子60を導電ペーストの主成分とする場合、鱗片状の導電粒子60が互いに引っ掛かった状態で存在するため、導電ペーストの流動性が小さい。一方、球状の導電粒子60を導電ペーストの主成分とする場合、球状の導電粒子60同士の引っ掛かりがないため、導電ペーストの流動性が大きくなり、第1ランド部11を超えて広がる虞がある。 When the scaly conductive particles 60 are the main component of the conductive paste, the fluidity of the conductive paste is small because the scaly conductive particles 60 are present in a state of being caught with each other. On the other hand, when the spherical conductive particles 60 are the main component of the conductive paste, since the spherical conductive particles 60 are not caught, the fluidity of the conductive paste increases and may spread beyond the first land portion 11. .
 そこで、導電ペーストの主成分として、平均粒径が0.5μm以上3.3μm以下でありかつ扁平球状の導電粒子60を用いる。このような形状の導電粒子60の採用により、上記に示す流動性および形態保持性が発現する。これは、扁平球状の導電粒子60同士は互いの引っ掛かりが小さいため流動しやすいこと、及び、この流動にともなって扁平球状の導電粒子60同士が密な状態かつ構造的に安定な状態に再配列されることに起因すると考えられる。 Therefore, flat spherical conductive particles 60 having an average particle size of 0.5 μm or more and 3.3 μm or less are used as the main component of the conductive paste. By adopting the conductive particles 60 having such a shape, the fluidity and shape retention shown above are exhibited. This is because the flat spherical conductive particles 60 are easy to flow because the mutual catching is small, and the flat spherical conductive particles 60 are rearranged into a dense and structurally stable state with this flow. It is thought that it is caused by being done.
 表1に、導電ペーストの例を挙げる。 Table 1 gives examples of conductive paste.
 導電ペースト1~4は、本実施形態のフレキシブルプリント配線板1の製造に好適である。特に、導電ペースト1~3は、本実施形態のフレキシブルプリント配線板1の製造に用いるのに特に好ましい。導電ペースト5は、比較対象の導電ペーストの一例である。 The conductive pastes 1 to 4 are suitable for manufacturing the flexible printed wiring board 1 of the present embodiment. In particular, the conductive pastes 1 to 3 are particularly preferable for use in manufacturing the flexible printed wiring board 1 of the present embodiment. The conductive paste 5 is an example of a conductive paste to be compared.
 以下、表1に示す各成分について説明する。 Hereinafter, each component shown in Table 1 will be described.
 第1導電粒子は、銀コート銅粒子であり、図3に示すような扁平球状を呈する。第1導電粒子の平均粒径(平面視における直径)は1.9μmである。 The first conductive particles are silver-coated copper particles and have a flat spherical shape as shown in FIG. The average particle diameter (diameter in plan view) of the first conductive particles is 1.9 μm.
 第2導電粒子は、銀粒子であり、図3に示すような扁平球状を呈する。第2導電粒子の平均粒径は0.9μmである。 The second conductive particles are silver particles and have a flat spherical shape as shown in FIG. The average particle size of the second conductive particles is 0.9 μm.
 第3導電粒子は、球状の銀粒子である。第3導電粒子の平均粒径は100nmである。 The third conductive particles are spherical silver particles. The average particle diameter of the third conductive particles is 100 nm.
 エポキシ樹脂は、分子量45000~55000のビスフェノールA型エポキシ樹脂を示す。 The epoxy resin is a bisphenol A type epoxy resin having a molecular weight of 45000 to 55000.
 硬化剤は、マイクロカプセル化したイミダゾール系潜在性硬化剤(旭化成イーマテリアルズ株式会社製、ノバキュア(登録商標)HX3941HP)を示す。 The curing agent indicates a microencapsulated imidazole-based latent curing agent (manufactured by Asahi Kasei E-Materials Co., Ltd., NovaCure (registered trademark) HX3941HP).
 各導電ペーストの粘度は、粘度計(東機産業株式会社製、TVE-22HT)により、温度25℃±0.2℃で、コーンロータ(東機産業株式会社製、3°×R7.7(ロータコード07))を用いて測定した。 The viscosity of each conductive paste was measured using a viscometer (manufactured by Toki Sangyo Co., Ltd., TVE-22HT) at a temperature of 25 ° C. ± 0.2 ° C. and a cone rotor (manufactured by Toki Sangyo Co., Ltd., 3 ° × R7.7 ( Measurement was performed using a rotor cord 07)).
 なお、表1に示す「η1」は、コーンロータの回転速度を1rpm(せん断速度D1=2s-1)に設定し、回転開始から5分経過後の粘度を示す。 “Η1” shown in Table 1 indicates the viscosity after 5 minutes from the start of rotation with the rotation speed of the cone rotor set to 1 rpm (shear speed D1 = 2s −1 ).
 表1に示す「η2」は、コーンロータの回転速度を10rpm(せん断速度D2=20s-1)に設定し、回転開始から34秒経過後の粘度を示す。 “Η2” shown in Table 1 indicates the viscosity after 34 seconds from the start of rotation with the cone rotor rotation speed set to 10 rpm (shear speed D2 = 20 s −1 ).
Figure JPOXMLDOC01-appb-T000001
 
 表1に示すように導電ペースト1~3は上記(1)式(チクソトロピー指数が0.25以下)を充たす。これは、扁平球状の導電粒子(第1導電粒子および第2導電粒子)の質量比を70質量%以上に設定し、かつ第1導電粒子の質量比を第2導電粒子の質量比よりも小さくなるように導電ペーストを調製したことによる。一方、表1に示すように導電ペースト4,5は上記(1)式(チクソトロピー指数が0.25以下)を充たさない。これは、扁平球状の第1導電粒子の質量比率を大きくし過ぎたことによる。
Figure JPOXMLDOC01-appb-T000001

As shown in Table 1, the conductive pastes 1 to 3 satisfy the above formula (1) (thixotropic index is 0.25 or less). This is because the mass ratio of the flat spherical conductive particles (first conductive particles and second conductive particles) is set to 70% by mass or more, and the mass ratio of the first conductive particles is smaller than the mass ratio of the second conductive particles. This is because the conductive paste was prepared. On the other hand, as shown in Table 1, the conductive pastes 4 and 5 do not satisfy the above formula (1) (thixotropic index is 0.25 or less). This is because the mass ratio of the flat spherical first conductive particles is excessively increased.
 実施例の導電ペーストでは、第1導電粒子として平均粒径1.9μmの扁平球状の導電粒子を用い、かつ第2導電粒子として平均粒径0.9μmの扁平球状の導電粒子を用いて、上記(1)式を充たす導電ペーストを実現する。一方、第2導電粒子として平均粒径0.5μm未満の扁平球状の導電粒子を主成分として用いて上記(1)式の導電ペーストを実現することは難しい。また、平均粒径3.3μmよりも大きい扁平球状の導電粒子を主成分として用いて上記(1)式の導電ペーストを実現することは難しい。 In the conductive paste of the example, the first conductive particles are flat spherical conductive particles having an average particle diameter of 1.9 μm, and the second conductive particles are flat spherical conductive particles having an average particle diameter of 0.9 μm. (1) A conductive paste satisfying the equation is realized. On the other hand, it is difficult to realize the conductive paste of the above formula (1) using, as the main component, flat spherical conductive particles having an average particle size of less than 0.5 μm as the second conductive particles. In addition, it is difficult to realize the conductive paste of the above formula (1) using flat spherical conductive particles larger than the average particle size of 3.3 μm as a main component.
 すなわち、平均粒径が0.5μm以上3.3μm以下の範囲内にある扁平球状の導電粒子であれば、当該導電粒子の質量比を70質量%以上に設定し、かつ第1導電粒子の質量比を第2導電粒子の質量比よりも小さくし、かつ溶剤の質量比等を適宜調整することにより、上記(1)式を充たす導電ペーストを形成することができる。 That is, in the case of flat spherical conductive particles having an average particle size in the range of 0.5 μm or more and 3.3 μm or less, the mass ratio of the conductive particles is set to 70% by mass or more and the mass of the first conductive particles is set. By making the ratio smaller than the mass ratio of the second conductive particles and appropriately adjusting the mass ratio of the solvent and the like, a conductive paste satisfying the above formula (1) can be formed.
 導電ペースト4は、上記(1)式に規定された範囲から僅かに外れるものであるが、この導電ペースト4を用いることにより、以降の実施例4に示すように、本実施形態の窪み44の有するブラインドビア50を形成することができる。しかし、ブラインドビア50の窪み44の深さは小さい。
実施例
 フレキシブルプリント配線板1の実施例について説明する。
The conductive paste 4 is slightly deviated from the range defined in the above formula (1). By using this conductive paste 4, as shown in Example 4 below, the depression 44 of the present embodiment A blind via 50 can be formed. However, the depth of the recess 44 of the blind via 50 is small.
Example An example of the flexible printed wiring board 1 will be described.
 各実施例のフレキシブルプリント配線板1は、ブラインドビア50の構造を除き、同じ構造を有する。 The flexible printed wiring board 1 of each embodiment has the same structure except for the structure of the blind via 50.
 図6(a),(b)に、各実施例に係るフレキシブルプリント配線板1を示す。 FIGS. 6A and 6B show the flexible printed wiring board 1 according to each embodiment.
 図6(a)はフレキシブルプリント配線板1の平面図であり、図6(b)はフレキシブルプリント配線板1の断面図である。フレキシブルプリント配線板1は、デイジーチェーン状に連結した36個のブラインドビア50を有する。各第1ランド部11は、基材30の第1面31に形成されている。各第2ランド部21は、基材30の第2面32に形成されている。 6A is a plan view of the flexible printed wiring board 1, and FIG. 6B is a cross-sectional view of the flexible printed wiring board 1. FIG. The flexible printed wiring board 1 has 36 blind vias 50 connected in a daisy chain shape. Each first land portion 11 is formed on the first surface 31 of the base material 30. Each second land portion 21 is formed on the second surface 32 of the base material 30.
 第1ランド部11は端から順に2個ずつ連結パターン12により接続されている。第2ランド部21は端から順に2個ずつ連結パターン22により接続されている。第2面32の連結パターン12は、基材30を挟んで、第1面31の連結パターン12の無い部分の反対側に形成されている。すなわち、平面視において、第1面31の連結パターン12と第2面32の連結パターン22とは、交互に配置されている。 The first land portions 11 are connected by connecting patterns 12 in order of two from the end. Two second land portions 21 are connected by connecting patterns 22 in order from the end. The connection pattern 12 of the second surface 32 is formed on the opposite side of the portion of the first surface 31 where there is no connection pattern 12 with the base material 30 in between. That is, in the plan view, the connection pattern 12 on the first surface 31 and the connection pattern 22 on the second surface 32 are alternately arranged.
 各部材の寸法は次のとおりである(図2および図6参照)。 The dimensions of each member are as follows (see FIGS. 2 and 6).
 寸法ta(基材30の厚さ)は12μm。 Dimension ta (thickness of substrate 30) is 12 μm.
 寸法tb(第1ランド部11の厚さ)は12μm。 Dimension tb (thickness of the first land portion 11) is 12 μm.
 寸法Dc(ビア孔33の内径)は100μm。 Dimension Dc (inner diameter of via hole 33) is 100 μm.
 第1ランド部11の外径は500μm。 The outer diameter of the first land portion 11 is 500 μm.
 第2ランド部21の外径は500μm。 The outer diameter of the second land portion 21 is 500 μm.
 寸法TD(寸法ta+寸法tb)は24μm。 Dimension TD (dimension ta + dimension tb) is 24 μm.
 表2を参照して、各実施例の相違について説明する。各実施例では、導電ペーストを異ならせている。 Referring to Table 2, the differences between the embodiments will be described. In each embodiment, the conductive paste is different.
 表2の「寸法ta」は基材30の厚さを示す。「寸法tb」は、第1ランド部11の厚さを示す。「寸法Dc」は、ビア孔33の内径を示す。「寸法TD」は、寸法taと寸法tbの和を示す。「寸法td」は、ビア孔33の中心軸Ca上における導電体40の厚さを示す。「寸法te」は、導電体40のうち第1ランド部11を覆う部分(被覆部)の最も厚い箇所の厚さを示す。「寸法Df」は、ビア孔33の中心軸Caに対し垂直でありかつ第1ランド部11の表面11aを含む面に沿って、導電体40を切断したときの導電体40の断面において、この断面の内円と外円(ビア孔33)との間の距離で最も小さい部分の距離を示す。「寸法Dg」は、導電体40において、ビア孔33の内側周面33aと第1ランド部11を覆う部分(被覆部)の外周との間のうち、その間隔が最も小さい部分の距離を示す。これらの寸法ta、tb、Dc、td、te、Df、Dgは、フレキシブルプリント配線板1の36個のブラインドビア50の平均値を示す。 “Dimension ta” in Table 2 indicates the thickness of the base material 30. “Dimension tb” indicates the thickness of the first land portion 11. “Dimension Dc” indicates the inner diameter of the via hole 33. “Dimension TD” indicates the sum of the dimension ta and the dimension tb. “Dimension td” indicates the thickness of the conductor 40 on the central axis Ca of the via hole 33. “Dimension te” indicates the thickness of the thickest portion of the conductor 40 that covers the first land portion 11 (covering portion). The “dimension Df” is a cross section of the conductor 40 when the conductor 40 is cut along a plane that is perpendicular to the central axis Ca of the via hole 33 and includes the surface 11a of the first land portion 11. The distance of the smallest part in the distance between the inner circle and outer circle (via hole 33) of a cross section is shown. “Dimension Dg” indicates the distance of the portion of the conductor 40 having the smallest interval between the inner peripheral surface 33a of the via hole 33 and the outer periphery of the portion covering the first land portion 11 (covering portion). . These dimensions ta, tb, Dc, td, te, Df, and Dg indicate the average values of the 36 blind vias 50 of the flexible printed wiring board 1.
 実施例1では、表1に示す導電ペースト1を用いて、フレキシブルプリント配線板1を形成した。 In Example 1, the flexible printed wiring board 1 was formed using the conductive paste 1 shown in Table 1.
 ブラインドビア50の形状は次のとおりである(表2参照)。 The shape of the blind via 50 is as follows (see Table 2).
 ビア孔33の中心軸Ca上に窪み44が形成された。 A depression 44 was formed on the central axis Ca of the via hole 33.
 導電体40の厚さtdは、5μm以上であり、かつ寸法taと寸法tbとの和(寸法TD=24μm)未満であった。 The thickness td of the conductor 40 was 5 μm or more and less than the sum of the dimension ta and the dimension tb (dimension TD = 24 μm).
 導電体40の被覆部の厚さteは、2μm以上であった。 The thickness te of the covering portion of the conductor 40 was 2 μm or more.
 導電体40の距離Dfは、5μm以上であった。 The distance Df of the conductor 40 was 5 μm or more.
 導電体40の被覆部の距離Dgは、5μm以上であった。 The distance Dg of the covering portion of the conductor 40 was 5 μm or more.
 曲げ試験前後における電気的特性および外形上の変化は次のとおりである。 Changes in electrical characteristics and external shape before and after the bending test are as follows.
 曲げ試験前後のブラインドビア50の抵抗増加率は、0.6%であった。この値は、判定値(10%)よりも小さい。 The resistance increase rate of the blind via 50 before and after the bending test was 0.6%. This value is smaller than the determination value (10%).
 曲げ試験後において導電体40と第1ランド部11との間に剥離は確認されなかった。 No peeling was observed between the conductor 40 and the first land portion 11 after the bending test.
Figure JPOXMLDOC01-appb-T000002
 図7を参照して、曲げ試験方法について説明する。
Figure JPOXMLDOC01-appb-T000002
The bending test method will be described with reference to FIG.
 先端に半径rが1.0mmの曲面を有する真鍮製の曲げ治具70を準備する。曲げ試験の前に、導電パターンの抵抗を測定する。次に曲げ試験を行う。 A brass bending jig 70 having a curved surface with a radius r of 1.0 mm at the tip is prepared. Prior to the bending test, the resistance of the conductive pattern is measured. Next, a bending test is performed.
 試験に係るフレキシブルプリント配線板1の第1面31を外側に配置し、かつフレキシブルプリント配線板1を曲げ治具70に密着させて、曲げ治具70の第1面71から第2面72まで曲面を通過するように、フレキシブルプリント配線板1を移動させる。次に、そのフレキシブルプリント配線板1の第2面32を外側にし、かつフレキシブルプリント配線板1を曲げ治具70に密着させて、曲げ治具70の第1面71から第2面72まで曲面を通過するように移動させる。このような曲げ操作を1回とカウントし、合計で10回の曲げ操作を行う。 From the first surface 71 to the second surface 72 of the bending jig 70, the first surface 31 of the flexible printed wiring board 1 according to the test is disposed outside and the flexible printed wiring board 1 is brought into close contact with the bending jig 70. The flexible printed wiring board 1 is moved so as to pass through the curved surface. Next, the second surface 32 of the flexible printed wiring board 1 is set to the outside, and the flexible printed wiring board 1 is brought into close contact with the bending jig 70 so as to be curved from the first surface 71 to the second surface 72 of the bending jig 70. Move to pass. Such a bending operation is counted as one time, and a total of 10 bending operations are performed.
 導電パターンの抵抗の測定は以下のように行う。 Measure the resistance of the conductive pattern as follows.
 曲げ試験の試験前と試験後とにおける導電パターンの抵抗に基づいて、抵抗変化率を求める。抵抗変化率は、36個のブラインドビア50の抵抗変化率の平均値として求められる。 The resistance change rate is obtained based on the resistance of the conductive pattern before and after the bending test. The resistance change rate is obtained as an average value of the resistance change rates of the 36 blind vias 50.
 実施例2では、表1に示す導電ペースト2を用いて、実施例1と同様の構造を有するフレキシブルプリント配線板1を形成した。 In Example 2, a flexible printed wiring board 1 having the same structure as Example 1 was formed using the conductive paste 2 shown in Table 1.
 実施例1と同様に、ビア孔33の中心軸Ca上に窪み44が形成された。 As in Example 1, a depression 44 was formed on the central axis Ca of the via hole 33.
 また、導電体40の厚さtd(寸法td)は、5μm以上であり、かつ寸法taと寸法tbとの和(寸法TD=24μm)未満であった。導電体40の被覆部の厚さte(寸法te)は、2μm以上であった。導電体40の距離Df(寸法Df)は、5μm以上であった。導電体40の被覆部の距離Dg(寸法Dg)は5μm以上であった。 The thickness td (dimension td) of the conductor 40 was 5 μm or more and less than the sum of the dimension ta and the dimension tb (dimension TD = 24 μm). The thickness te (dimension te) of the covering portion of the conductor 40 was 2 μm or more. The distance Df (dimension Df) of the conductor 40 was 5 μm or more. The distance Dg (dimension Dg) of the covering portion of the conductor 40 was 5 μm or more.
 曲げ試験前後のブラインドビア50の抵抗の変化率は、1.4%であった。この値は、判定値(10%)よりも小さい。曲げ試験後において導電体40と第1ランド部11との間に剥離は確認されなかった。すなわち、実施例1と同様の結果が得られた。 The change rate of the resistance of the blind via 50 before and after the bending test was 1.4%. This value is smaller than the determination value (10%). No peeling was observed between the conductor 40 and the first land portion 11 after the bending test. That is, the same result as in Example 1 was obtained.
 実施例3では、表1に示す導電ペースト3を用いて、実施例1と同様の構造を有するフレキシブルプリント配線板1を形成した。 In Example 3, a flexible printed wiring board 1 having the same structure as Example 1 was formed using the conductive paste 3 shown in Table 1.
 実施例1と同様に、ビア孔33の中心軸Ca上に窪み44が形成された。導電体40の厚さtd(寸法td)は、5μm以上であり、かつ寸法taと寸法tbとの和(寸法TD=24μm)未満であった。導電体40の被覆部の厚さte(寸法te)は、2μm以上であった。導電体40の距離Df(寸法Df)は、5μm以上であった。導電体40の被覆部の距離Dg(寸法Dg)は5μm以上であった。 As in Example 1, a depression 44 was formed on the central axis Ca of the via hole 33. The thickness td (dimension td) of the conductor 40 was 5 μm or more and less than the sum of the dimension ta and the dimension tb (dimension TD = 24 μm). The thickness te (dimension te) of the covering portion of the conductor 40 was 2 μm or more. The distance Df (dimension Df) of the conductor 40 was 5 μm or more. The distance Dg (dimension Dg) of the covering portion of the conductor 40 was 5 μm or more.
 曲げ試験前後のブラインドビア50の抵抗の変化率は、2.1%であった。この値は、判定値(10%)よりも小さい。曲げ試験後において導電体40と第1ランド部11との間に剥離は確認されなかった。すなわち、実施例1と同様の結果が得られた。 The change rate of the resistance of the blind via 50 before and after the bending test was 2.1%. This value is smaller than the determination value (10%). No peeling was observed between the conductor 40 and the first land portion 11 after the bending test. That is, the same result as in Example 1 was obtained.
 実施例4では、表1に示す導電ペースト4を用いて、実施例1と同様の構造を有するフレキシブルプリント配線板1を形成した。 In Example 4, the flexible printed wiring board 1 having the same structure as that of Example 1 was formed using the conductive paste 4 shown in Table 1.
 実施例1と同様に、ビア孔33の中心軸Ca上に窪み44が形成された。また、導電体40の厚さtd(寸法td)は、5μm以上であり、かつ寸法taと寸法tbとの和(寸法TD=24μm)未満であった。導電体40の被覆部の厚さte(寸法te)は、2μm以上であった。導電体40の距離Df(寸法Df)は、5μm以上であった。導電体40の被覆部の距離Dg(寸法Dg)は5μm以上であった。 As in Example 1, a depression 44 was formed on the central axis Ca of the via hole 33. Further, the thickness td (dimension td) of the conductor 40 was 5 μm or more and less than the sum of the dimension ta and the dimension tb (dimension TD = 24 μm). The thickness te (dimension te) of the covering portion of the conductor 40 was 2 μm or more. The distance Df (dimension Df) of the conductor 40 was 5 μm or more. The distance Dg (dimension Dg) of the covering portion of the conductor 40 was 5 μm or more.
 曲げ試験前後のブラインドビア50の抵抗の変化率は、3.5%であった。この値は、判定値(10%)よりも小さい。曲げ試験後において導電体40と第1ランド部11との間に剥離は確認されなかった。すなわち、実施例1と同様の結果が得られた。
比較例
 比較例では、表1に示す導電ペースト5を用いて、実施例1と同様の構造を有するフレキシブルプリント配線板1を形成した。
The rate of change in the resistance of the blind via 50 before and after the bending test was 3.5%. This value is smaller than the determination value (10%). No peeling was observed between the conductor 40 and the first land portion 11 after the bending test. That is, the same result as in Example 1 was obtained.
Comparative Example In the comparative example, a flexible printed wiring board 1 having the same structure as that of Example 1 was formed using the conductive paste 5 shown in Table 1.
 この場合、導電体40にはビア孔33に窪み44が形成されなかった。曲げ試験前後のブラインドビア50の抵抗の変化率は、18.2%であった。この値は、判定値(10%)よりも大きい。曲げ試験後において導電体40と第1ランド部11との間に剥離が発生した。 In this case, the recess 44 was not formed in the via hole 33 in the conductor 40. The rate of change in the resistance of the blind via 50 before and after the bending test was 18.2%. This value is larger than the determination value (10%). Separation occurred between the conductor 40 and the first land portion 11 after the bending test.
 以上の結果から次のことが示される。 The above results indicate the following.
 導電体40においてビア孔33の中心軸Ca上に窪み44が存在し、かつ導電体40の厚さtd(寸法td)が寸法taと寸法tbとの和(寸法TD)未満である場合には、従来構造のブラインドビア350に比べて、フレキシブルプリント配線板1の曲げに対するブラインドビア50の接触抵抗の増分が少なくなる。これは、主に、窪み44の存在によるブラインドビア50の曲げ弾性率の低下に起因する。 In the conductor 40, when the depression 44 exists on the central axis Ca of the via hole 33 and the thickness td (dimension td) of the conductor 40 is less than the sum of the dimension ta and the dimension tb (dimension TD). As compared with the blind via 350 having the conventional structure, the increment of the contact resistance of the blind via 50 with respect to the bending of the flexible printed wiring board 1 is reduced. This is mainly due to a decrease in the flexural modulus of the blind via 50 due to the presence of the recess 44.
 このような窪み44を有するブラインドビア350を形成するためには、チクソトロピー指数が0.25以下の導電ペーストを用いることがより好ましいことが示される。実施例4では、チクソトロピー指数が0.28の導電ペーストを用いることにより、窪み44を有しかつ試験後の抵抗増加率が10%以下のブラインドビア350を形成しているが、その窪み44の深さは小さい。このため、窪み44を確実に形成するためには、導電ペーストのチクソトロピー指数を0.25以下にすることが好ましいといえる。 It is shown that it is more preferable to use a conductive paste having a thixotropy index of 0.25 or less in order to form the blind via 350 having such a depression 44. In Example 4, the conductive paste having a thixotropy index of 0.28 is used to form the blind via 350 having the depression 44 and having a resistance increase rate of 10% or less after the test. The depth is small. For this reason, in order to form the hollow 44 reliably, it can be said that it is preferable to make the thixotropy index | exponent of an electrically conductive paste into 0.25 or less.
 導電ペーストのチクソトロピー指数を0.25以下にするためには、第1導電粒子(平均粒径が1.4μm以上3.3μm以下の導電粒子)の質量比を第2導電粒子(平均粒径が0.5μm以上1.8μm以下の導電粒子)の質量比よりも小さくすることが好ましい。すなわち、実施例4では、第1導電粒子の質量比が第2導電粒子の質量比よりも大きい導電ペースト4を用いている。そして、この導電ペースト4でも、窪み44を有しかつ試験後の抵抗増加率が10%以下のブラインドビア350を形成することができる。しかし、その窪み44の深さは小さい。このため、窪み44を確実に形成するためには、第1導電粒子の質量比が第2導電粒子の質量比よりも小さい導電ペーストを用いることが好ましい。 In order to set the thixotropy index of the conductive paste to 0.25 or less, the mass ratio of the first conductive particles (conductive particles having an average particle size of 1.4 μm to 3.3 μm) is set to the second conductive particles (average particle size is The mass ratio of the conductive particles (0.5 μm to 1.8 μm) is preferably smaller. That is, in Example 4, the conductive paste 4 in which the mass ratio of the first conductive particles is larger than the mass ratio of the second conductive particles is used. And also with this electrically conductive paste 4, the blind via | veer 350 which has the hollow 44 and whose resistance increase rate after a test is 10% or less can be formed. However, the depth of the depression 44 is small. For this reason, in order to reliably form the depression 44, it is preferable to use a conductive paste in which the mass ratio of the first conductive particles is smaller than the mass ratio of the second conductive particles.
 本実施形態の効果を説明する。 The effect of this embodiment will be described.
 (1)本実施形態では、ビア孔33の中心軸Ca上における導電体40の厚さ(寸法td)を、基材30の厚さ(寸法ta)と第1ランド部11の厚さ(寸法tb)との和(寸法TD)よりも小さくしている。 (1) In this embodiment, the thickness (dimension td) of the conductor 40 on the central axis Ca of the via hole 33 is the same as the thickness (dimension ta) of the substrate 30 and the thickness (dimension) of the first land portion 11. It is smaller than the sum (dimension TD) with tb).
 フレキシブルプリント配線板1を曲げるとき、基材30の外面が延びるとともに内面が縮む。このとき、第1ランド部11と導電体40とが離間する方向に力が加わる。この結果、導電体40と第1ランド部11との間に隙間が生じ、ブラインドビア50の接触抵抗が増大する。 When the flexible printed wiring board 1 is bent, the outer surface of the substrate 30 extends and the inner surface shrinks. At this time, force is applied in a direction in which the first land portion 11 and the conductor 40 are separated from each other. As a result, a gap is generated between the conductor 40 and the first land portion 11, and the contact resistance of the blind via 50 is increased.
 ブラインドビア50の接触抵抗の増大の程度は、ブラインドビア50を構成する導電体40の構造に依存する。フレキシブルプリント配線板1の曲げに際し、導電体40が変形しない場合、ビア孔33の内側周面33aと導電体40とが離間し、または、第1ランド部11から導電体40が剥離する。このため、ブラインドビア50の接触抵抗が増大する。 The degree of increase in the contact resistance of the blind via 50 depends on the structure of the conductor 40 constituting the blind via 50. When the conductor 40 is not deformed when the flexible printed wiring board 1 is bent, the inner peripheral surface 33a of the via hole 33 and the conductor 40 are separated from each other, or the conductor 40 is peeled from the first land portion 11. For this reason, the contact resistance of the blind via 50 increases.
 一方、フレキシブルプリント配線板1の曲げに際し、その曲げに応じて導電体40が変形する場合には、ビア孔33の内側周面33aと導電体40とが離間せず、また、第1ランド部11から導電体40は剥離しない。このため、ブラインドビア50の接触抵抗の増大は小さい。 On the other hand, when the conductor 40 is deformed in accordance with the bending of the flexible printed wiring board 1, the inner peripheral surface 33 a of the via hole 33 and the conductor 40 are not separated from each other, and the first land portion The conductor 40 does not peel from 11. For this reason, the increase in the contact resistance of the blind via 50 is small.
 本実施形態では、このような点を考慮し、上記したように、ビア孔33の中心軸Ca上における導電体40の厚さ(寸法td)を、基材30の厚さ(寸法ta)と第1ランド部11の厚さ(寸法tb)との和よりも小さくする。すなわち、導電体40において、ビア孔33の中心軸Ca上に窪み44を設け、導電体40が変形しやすい形状とし、基材30の変形に追従して導電体40が変形しやすい構造とする。これにより、フレキシブルプリント配線板1の曲げに対するブラインドビア50の接触抵抗の増大を抑制することができる。 In the present embodiment, in consideration of such points, as described above, the thickness (dimension td) of the conductor 40 on the central axis Ca of the via hole 33 is set to the thickness (dimension ta) of the substrate 30. It is smaller than the sum of the thickness (dimension tb) of the first land portion 11. That is, in the conductor 40, a recess 44 is provided on the central axis Ca of the via hole 33 so that the conductor 40 is easily deformed, and the conductor 40 is easily deformed following the deformation of the substrate 30. . Thereby, the increase in the contact resistance of the blind via 50 with respect to the bending of the flexible printed wiring board 1 can be suppressed.
 (2)本実施形態では、ビア孔33の中心軸Ca上における導電体40の厚さ(寸法td)を5μm以上としている。 (2) In this embodiment, the thickness (dimension td) of the conductor 40 on the central axis Ca of the via hole 33 is 5 μm or more.
 フレキシブルプリント配線板1を曲げると導電体40が変形する。導電体40が薄いとき、導電体40に亀裂が生じる可能性が高くなる。導電体40において、ビア孔33の中心軸Ca上の厚さtdを5μm未満とすると、導電体40に亀裂が生じる可能性が増大する。そこで、導電体40の厚さtdを5μm以上とする。これにより、ビア孔33の中心軸Ca上の導電体40の厚さtdを5μm未満とする場合に比べ、導電体40に亀裂が発生することを抑制することができる。 When the flexible printed wiring board 1 is bent, the conductor 40 is deformed. When the conductor 40 is thin, there is a high possibility that the conductor 40 will crack. In the conductor 40, if the thickness td on the central axis Ca of the via hole 33 is less than 5 μm, the possibility that the conductor 40 will crack increases. Therefore, the thickness td of the conductor 40 is set to 5 μm or more. Thereby, compared with the case where the thickness td of the conductor 40 on the central axis Ca of the via hole 33 is less than 5 μm, the occurrence of cracks in the conductor 40 can be suppressed.
 (3)本実施形態では、導電体40のうち第1ランド部11を覆う部分の最も厚いところの厚さ(寸法te)を2μm以上としている。 (3) In the present embodiment, the thickness (dimension te) of the thickest portion of the conductor 40 covering the first land portion 11 is set to 2 μm or more.
 導電体40において第1ランド部11を覆う部分は、導電体40と第1ランド部11との間の接触抵抗の大きさに関係する。第1ランド部11を覆う部分に亀裂が生じるとき、導電体40と第1ランド部11との間の接触抵抗が増大する。この点を考慮し、第1ランド部11を覆う部分の最も厚いところの厚さteを2μm以上に設定する。これにより、第1ランド部11を覆う部分に亀裂が発生することを抑制することができる。 The portion of the conductor 40 that covers the first land portion 11 is related to the magnitude of the contact resistance between the conductor 40 and the first land portion 11. When a crack occurs in the portion covering the first land portion 11, the contact resistance between the conductor 40 and the first land portion 11 increases. Considering this point, the thickness te of the thickest portion covering the first land portion 11 is set to 2 μm or more. Thereby, it can suppress that a crack generate | occur | produces in the part which covers the 1st land part 11. FIG.
 (4)本実施形態では距離Df(寸法Df)を5μm以上としている。 (4) In this embodiment, the distance Df (dimension Df) is 5 μm or more.
 導電体40においてビア孔33の開口部34に対応する部分は、亀裂が生じやすい。そこで、ビア孔33の中心軸Caに対して垂直でありかつ第1ランド部11の表面11aを含む面で導電体40を切断したときのドーナツ状の断面において、導電体40の断面の内円と外円(ビア孔33の内側周面33aに対応する円)との間の距離Df(寸法Df)を5μm以上とする。これにより、ビア孔33の第1ランド部11側の開口部34に対応する部分において、亀裂が発生することを抑制することができる。 A portion of the conductor 40 corresponding to the opening 34 of the via hole 33 is likely to crack. Therefore, in the donut-shaped cross section when the conductor 40 is cut by a plane perpendicular to the central axis Ca of the via hole 33 and including the surface 11a of the first land portion 11, an inner circle of the cross section of the conductor 40 is obtained. The distance Df (dimension Df) between the outer circle and the outer circle (a circle corresponding to the inner peripheral surface 33a of the via hole 33) is 5 μm or more. Thereby, it can suppress that a crack generate | occur | produces in the part corresponding to the opening part 34 by the side of the 1st land part 11 of the via hole 33. FIG.
 (5)本実施形態では距離Dg(寸法Dg)を5μm以上としている。 (5) In this embodiment, the distance Dg (dimension Dg) is 5 μm or more.
 導電体40のうち第1ランド部11を覆う被覆部において、ビア孔33の内側周面33aと第1ランド部11を覆う被覆部の外周との間のうち、その間隔が最も小さいところの距離Dgを小さくするとき、剥離が発生しやすくなる。そこで、この距離Dg(寸法Dg)を5μm以上とする。これにより、導電体40の被覆部において亀裂が発生することを抑制することができる。 In the covering portion covering the first land portion 11 of the conductor 40, the distance between the inner peripheral surface 33a of the via hole 33 and the outer periphery of the covering portion covering the first land portion 11 is the smallest distance. When Dg is reduced, peeling tends to occur. Therefore, the distance Dg (dimension Dg) is set to 5 μm or more. Thereby, it can suppress that a crack generate | occur | produces in the coating | coated part of the conductor 40. FIG.
 (6)本実施形態では、導電体40を、扁平球状の導電粒子60およびこれらの結合体を含む構造としている。 (6) In the present embodiment, the conductor 40 has a structure including flat spherical conductive particles 60 and a combination thereof.
 導電体40を構成する導電粒子60の表面に突起があるとき、隣接する導電粒子60の間の隙間が多くなる。そこで、導電体40を扁平球状の導電粒子60により構成し、導電粒子60の密度を大きくする。これにより、ブラインドビア50の許容電流量を高くすることができる。 When there are protrusions on the surface of the conductive particles 60 constituting the conductor 40, the gap between the adjacent conductive particles 60 increases. Therefore, the conductor 40 is composed of flat spherical conductive particles 60, and the density of the conductive particles 60 is increased. Thereby, the allowable current amount of the blind via 50 can be increased.
 (7)本実施形態に係るフレキシブルプリント配線板1の製造方法では、上記(1)式に示すように、チクソトロピー指数が0.25以下の導電ペーストを用いる。従来の導電ペーストによれば、導電体40の上部41は表面張力により盛り上がる。 (7) In the method for manufacturing the flexible printed wiring board 1 according to the present embodiment, a conductive paste having a thixotropy index of 0.25 or less is used as shown in the above formula (1). According to the conventional conductive paste, the upper portion 41 of the conductor 40 rises due to surface tension.
 一方、本実施形態の導電ペーストによれば、導電体40の上部41の中央部分を窪ませることができる。これは次の理由による。 On the other hand, according to the conductive paste of the present embodiment, the central portion of the upper portion 41 of the conductor 40 can be recessed. This is due to the following reason.
 従来の製造方法では、チクソトロピー指数が大きい導電ペースト、すなわち、せん断応力を加えない状態において粘度が増大する導電ペーストが用いられていた。このため、導電ペーストをビア孔33に充填した後、導電ペーストが広がらず、盛り上がった状態となっていた。 In the conventional manufacturing method, a conductive paste having a large thixotropy index, that is, a conductive paste having an increased viscosity when no shear stress is applied, has been used. For this reason, after filling the via hole 33 with the conductive paste, the conductive paste did not spread and was in a raised state.
 一方、本実施形態の製造方法では、チクソトロピー指数が0.25以下の導電ペーストを用いる。これにより、導電ペーストを基材30に塗布した後に導電ペーストを流動させることができる。この結果、導電ペーストは、ビア孔33の形状に沿うように流動し、導電体40の中央部分が窪む。すなわち、チクソトロピー指数が0.25以下の導電ペーストを用いることにより、導電体40の中央部分に窪み44を形成することができる。 On the other hand, in the manufacturing method of the present embodiment, a conductive paste having a thixotropy index of 0.25 or less is used. Thereby, after apply | coating the electrically conductive paste to the base material 30, an electrically conductive paste can be made to flow. As a result, the conductive paste flows along the shape of the via hole 33, and the central portion of the conductor 40 is depressed. That is, the depression 44 can be formed in the central portion of the conductor 40 by using a conductive paste having a thixotropy index of 0.25 or less.
 (8)本実施形態では、チクソトロピー指数が0.25以下であり、扁平球状の導電粒子を含み、これら扁平球状の導電粒子の導電ペースト全体に対する質量比が70質量%以上である導電ペーストを用いる。これにより、導電体40の表面43の中央部分を窪ませることができる。 (8) In the present embodiment, a conductive paste having a thixotropy index of 0.25 or less, including flat spherical conductive particles, and a mass ratio of these flat spherical conductive particles to the entire conductive paste is 70% by mass or more is used. . Thereby, the central part of the surface 43 of the conductor 40 can be depressed.
 (9)本実施形態では、次の導電ペーストを用いることもできる。 (9) In the present embodiment, the following conductive paste can also be used.
 導電ペーストに、平均粒径が0.5μm以上1.8μm以下でありかつ扁平球状の導電粒子(第2導電粒子)と、平均粒径が1.4μm以上3.3μm以下の導電粒子(第1導電粒子)とを含める。これにより、導電体40の上部41の中央部分を窪ませることができる。 The conductive paste has an average particle size of 0.5 μm or more and 1.8 μm or less and a flat spherical conductive particle (second conductive particle), and an average particle size of 1.4 μm or more and 3.3 μm or less of conductive particles (first Conductive particles). Thereby, the center part of the upper part 41 of the conductor 40 can be depressed.
 また、平均粒径が1.4μm以上3.3μm以下の導電粒子(第1導電粒子)を導電ペーストに含めることから、次の効果が得られる。すなわち、1.4μm以上3.3μm以下の導電粒子(第1導電粒子)は導電ペーストの膜厚を大きくする。これにより、導電ペーストが薄くなりすぎることを抑制することができる。 In addition, since conductive particles (first conductive particles) having an average particle size of 1.4 μm or more and 3.3 μm or less are included in the conductive paste, the following effects can be obtained. That is, the conductive particles (first conductive particles) having a size of 1.4 μm or more and 3.3 μm or less increase the thickness of the conductive paste. Thereby, it can suppress that an electrically conductive paste becomes thin too much.
 さらに、上記(9)の構成において、第1導電粒子の質量比を30質量%以下にする個とが好ましい。第1導電粒子の質量比が大きいとき、窪み44が形成されにくくなる。このため、第1導電粒子の質量比を30質量%以下とすることにより、より確実に窪み44が形成を形成することができる。 Furthermore, in the configuration of (9) above, it is preferable that the mass ratio of the first conductive particles is 30% by mass or less. When the mass ratio of the first conductive particles is large, the recess 44 is difficult to be formed. For this reason, the depression 44 can be more reliably formed by setting the mass ratio of the first conductive particles to 30 mass% or less.
 (10)本実施形態では、次の導電ペーストを用いることもできる。 (10) In the present embodiment, the following conductive paste can also be used.
 導電ペーストに、平均粒径が30nm以上200nm以下の球状の導電粒子(第3導電粒子)を含め、更に、導電ペーストのチクソトロピー指数を0.25以下とする。これにより、導電体40の上部41の中央部分を窪ませることができる。 The spherical conductive particles (third conductive particles) having an average particle size of 30 nm to 200 nm are included in the conductive paste, and the thixotropic index of the conductive paste is set to 0.25 or less. Thereby, the center part of the upper part 41 of the conductor 40 can be depressed.
 平均粒径が30nm以上200nm以下の球状の導電粒子(第3導電粒子)を導電ペーストに含めることから、次の効果が得られる。すなわち、これら導電粒子は、扁平球状の導電粒子(第1導電粒子および第2導電粒子)の間の隙間に入るため、このような導電ペーストにより形成される導電体40では、導電粒子密度を高くできる。このため、ブラインドビア50の最大許容電流量が高くなる。
その他の実施形態
 なお、本発明の実施態様は上記に示した態様に限られるものではなく、これを例えば、以下に示すように変更して実施することもできる。また、以下の各変形例は、上記各実施形態についてのみ適用されるものではなく、異なる変形例同士を互いに組み合わせて実施することもできる。
Since spherical conductive particles (third conductive particles) having an average particle size of 30 nm to 200 nm are included in the conductive paste, the following effects can be obtained. That is, since these conductive particles enter the gap between the flat spherical conductive particles (first conductive particles and second conductive particles), in the conductor 40 formed of such a conductive paste, the conductive particle density is increased. it can. For this reason, the maximum allowable current amount of the blind via 50 is increased.
Other Embodiments Note that the embodiments of the present invention are not limited to the above-described embodiments, and the embodiments can be modified as follows, for example. In addition, the following modifications are not applied only to the above-described embodiments, and different modifications can be performed in combination with each other.
 ・上記実施形態では、導電体40に窪み44を形成する手段として、チクソトロピー指数が0.25以上の導電ペーストを用いることを採用したが、窪み44の形成手段は、これに限定されない。例えば、ビア孔33に導電ペーストを充填した後、一次硬化した状態においてプレスすることにより、ビア孔33の中心軸Ca上に窪み44を形成するという手段を採用することもできる。この場合、金型の選択により、窪み44の深さ、形状等を任意に設定することができる。 In the above embodiment, as the means for forming the depression 44 in the conductor 40, the use of a conductive paste having a thixotropy index of 0.25 or more is adopted, but the means for forming the depression 44 is not limited to this. For example, after filling the via hole 33 with the conductive paste and pressing in the primary cured state, a means of forming the depression 44 on the central axis Ca of the via hole 33 can be adopted. In this case, the depth, shape, and the like of the recess 44 can be arbitrarily set by selecting a mold.
 ・上記実施形態では、窪み44のある導電体40の構造をブラインドビア50に適用しているが、本構造はブラインドビア50にのみ適用されるものではない。例えば、ビア孔33に相当する孔もしくは溝に導電ペーストを充填して導電体40を形成するフレキシブルプリント配線板1において、当該導電体40に対しても本発明を適用することができる。この場合においも、ビア孔33に相当する孔もしくは溝と導電体40との剥離を抑制することができる。 In the above embodiment, the structure of the conductor 40 having the depression 44 is applied to the blind via 50, but this structure is not applied only to the blind via 50. For example, in the flexible printed wiring board 1 in which the conductor 40 is formed by filling a hole or groove corresponding to the via hole 33 with the conductive paste, the present invention can also be applied to the conductor 40. Also in this case, peeling of the conductor 40 from the hole or groove corresponding to the via hole 33 can be suppressed.
 ・上記実施形態では、両面導電層のフレキシブルプリント配線板1について本発明を適用した例を挙げたが、本発明は、3層以上の多層フレキシブルプリント配線板にも適用することができる。 In the above embodiment, the example in which the present invention is applied to the flexible printed wiring board 1 having a double-sided conductive layer has been described, but the present invention can also be applied to a multilayer flexible printed wiring board having three or more layers.
 1…フレキシブルプリント配線板、10…第1導電パターン、11…第1ランド部、11a…表面、11b…ランド孔、12…連結パターン、20…第2導電パターン、21…第2ランド部、22…連結パターン、30…基材、31…第1面、32…第2面、33…ビア孔、33a…内側周面、33b…底面、34…開口部、40…導電体、41…上部、42…底部、43…表面、44…窪み、50…ブラインドビア、60…導電粒子、70…曲げ治具、71…第1面、72…第2面、100…ブラインドビア、110…基材、111…第1ランド部、112…第2ランド部、113…ビア孔、114…導電体、115…表面、200…ブラインドビア、210…導電体、211…表面、212…窪み、300…フレキシブルプリント配線板、311…第1ランド部、311a…表面、321…第2ランド部、330…基材、333…ビア孔、333a…内側周面、340…導電体、341…上部、350…ブラインドビア。 DESCRIPTION OF SYMBOLS 1 ... Flexible printed wiring board, 10 ... 1st conductive pattern, 11 ... 1st land part, 11a ... Surface, 11b ... Land hole, 12 ... Connection pattern, 20 ... 2nd conductive pattern, 21 ... 2nd land part, 22 Connection pattern, 30 ... base material, 31 ... first surface, 32 ... second surface, 33 ... via hole, 33a ... inner peripheral surface, 33b ... bottom surface, 34 ... opening, 40 ... conductor, 41 ... upper part, 42 ... bottom, 43 ... surface, 44 ... depression, 50 ... blind via, 60 ... conductive particles, 70 ... bending jig, 71 ... first surface, 72 ... second surface, 100 ... blind via, 110 ... base material, DESCRIPTION OF SYMBOLS 111 ... 1st land part, 112 ... 2nd land part, 113 ... Via hole, 114 ... Conductor, 115 ... Surface, 200 ... Blind via, 210 ... Conductor, 211 ... Surface, 212 ... Depression, 300 ... Flexible print wiring , 311 ... first land portion, 311a ... surface, 321 ... second land portion, 330 ... substrate, 333 ... via hole, 333a ... inner peripheral surface, 340 ... conductor, 341 ... top 350 ... blind vias.

Claims (9)

  1.  基材と、前記基材の第1面に形成された第1導電層と、前記基材の第2面に形成された第2導電層と、前記第1導電層と前記第2導電層とを接続する導電体とを備えるフレキシブルプリント配線板であって、
     前記第1導電層に設けられた第1ランド部と、
     前記第2導電層において前記基材を挟んで前記第1ランド部の反対側に設けられた第2ランド部と、
     前記第1ランド部および前記基材を貫通して前記第2ランド部に達するビア孔とを備え、
     前記導電体は、導電ペーストにより形成されたものであって、
     前記導電体は、前記ビア孔の底面の全部を覆うようにこのビア孔を充たし、かつ前記第1ランド部の表面の少なくとも一部を覆うように形成され、
     前記ビア孔の中心軸上における前記導電体の厚さは、前記基材の厚さと前記第1ランド部の厚さとの和よりも小さいことを含むフレキシブルプリント配線板。
    A base material, a first conductive layer formed on the first surface of the base material, a second conductive layer formed on the second surface of the base material, the first conductive layer and the second conductive layer, A flexible printed wiring board comprising a conductor for connecting
    A first land portion provided in the first conductive layer;
    A second land portion provided on the opposite side of the first land portion across the base material in the second conductive layer;
    A via hole penetrating the first land portion and the base material to reach the second land portion,
    The conductor is formed of a conductive paste,
    The conductor is formed to fill the via hole so as to cover the entire bottom surface of the via hole, and to cover at least a part of the surface of the first land portion,
    The flexible printed wiring board including a thickness of the conductor on a central axis of the via hole being smaller than a sum of a thickness of the base material and a thickness of the first land portion.
  2.  請求項1に記載のフレキシブルプリント配線板であって、前記ビア孔の中心軸上における前記導電体の厚さは5μm以上であるフレキシブルプリント配線板。 2. The flexible printed wiring board according to claim 1, wherein the thickness of the conductor on the central axis of the via hole is 5 μm or more.
  3.  請求項1または2に記載のフレキシブルプリント配線板であって、前記導電体のうち、前記第1ランド部を覆う部分の最も厚い箇所の厚さが2μm以上であるフレキシブルプリント配線板。 3. The flexible printed wiring board according to claim 1, wherein the thickest portion of the conductor covering the first land portion has a thickness of 2 μm or more.
  4.  請求項1~3のいずれか一項に記載のフレキシブルプリント配線板であって、前記ビア孔の中心軸に対し垂直であり、かつ、前記第1ランド部の表面を含む面に沿って、前記導電体を切断したときの前記導電体の断面において、この断面の内円と外円との間の距離は5μm以上であるフレキシブルプリント配線板。 The flexible printed wiring board according to any one of claims 1 to 3, wherein the flexible printed wiring board is perpendicular to a central axis of the via hole and extends along a surface including a surface of the first land portion. A flexible printed wiring board, wherein a distance between an inner circle and an outer circle of the conductor when the conductor is cut is 5 μm or more.
  5.  請求項1~4のいずれか一項に記載のフレキシブルプリント配線板であって、前記導電体は、扁平球状の導電粒子およびこれらの結合体を含むフレキシブルプリント配線板。 The flexible printed wiring board according to any one of claims 1 to 4, wherein the conductor includes flat spherical conductive particles and a combination thereof.
  6.  基材と、前記基材の第1面に形成された第1導電層と、前記基材の第2面に形成された第2導電層と、前記第1導電層と前記第2導電層とを接続する導電体とを備えるフレキシブルプリント配線板の製造方法であって、
     (1)式で示されるチクソトロピー指数が0.25以下の導電ペーストを用いて前記導電体を形成することを含むフレキシブルプリント配線板の製造方法。
     チクソトロピー指数
    =log(η1/η2)/log(D2/D1)・・・(1)
     ここで、η1はせん断速度D1が2s-1のときの前記導電ペーストの粘度を示し、η2はせん断速度D2が20s-1のときの前記導電ペーストの粘度を示す。
    A base material, a first conductive layer formed on the first surface of the base material, a second conductive layer formed on the second surface of the base material, the first conductive layer and the second conductive layer, A method for producing a flexible printed wiring board comprising a conductor for connecting
    (1) The manufacturing method of a flexible printed wiring board including forming the said conductor using the electrically conductive paste whose thixotropy index shown by Formula is 0.25 or less.
    Thixotropic index = log (η1 / η2) / log (D2 / D1) (1)
    Here, η1 indicates the viscosity of the conductive paste when the shear rate D1 is 2 s −1 , and η2 indicates the viscosity of the conductive paste when the shear rate D2 is 20 s −1 .
  7.  請求項6に記載のフレキシブルプリント配線板の製造方法であって、扁平球状の導電粒子を含み、かつ、この扁平球状の導電粒子の導電ペースト全体に対する質量比が70質量%以上である導電ペーストを用いて、前記導電体を形成することを含むフレキシブルプリント配線板の製造方法。 It is a manufacturing method of the flexible printed wiring board of Claim 6, Comprising: The electrically conductive paste which contains a flat spherical conductive particle and whose mass ratio with respect to the whole conductive paste of this flat spherical conductive particle is 70 mass% or more. A method for producing a flexible printed wiring board, comprising forming the conductor.
  8.  請求項7に記載のフレキシブルプリント配線板の製造方法であって、前記導電ペーストは、平均粒径が30nm以上200nm以下の球状の導電粒子を更に含むフレキシブルプリント配線板の製造方法。 8. The method for manufacturing a flexible printed wiring board according to claim 7, wherein the conductive paste further includes spherical conductive particles having an average particle diameter of 30 nm to 200 nm.
  9.  請求項7または8に記載のフレキシブルプリント配線板の製造方法であって、前記導電ペーストには、前記扁平球状の導電粒子として、平均粒径が1.4μm以上3.3μm以下の第1導電粒子と、平均粒径が0.5μm以上1.8μm以下の第2導電粒子とが含まれるフレキシブルプリント配線板の製造方法。 It is a manufacturing method of the flexible printed wiring board of Claim 7 or 8, Comprising: In the said electrically conductive paste, 1st electroconductive particle with an average particle diameter of 1.4 micrometers or more and 3.3 micrometers or less as said flat spherical electrically conductive particle. And a method for producing a flexible printed wiring board, which includes second conductive particles having an average particle size of 0.5 μm or more and 1.8 μm or less.
PCT/JP2013/065644 2012-06-08 2013-06-06 Flexible printed wiring board and method for producing flexible printed wiring board WO2013183692A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380023779.2A CN104272882B (en) 2012-06-08 2013-06-06 The manufacture method of flexible printed wiring board and flexible printed wiring board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012131159A JP5793113B2 (en) 2012-06-08 2012-06-08 Flexible printed wiring board
JP2012-131159 2012-06-08

Publications (1)

Publication Number Publication Date
WO2013183692A1 true WO2013183692A1 (en) 2013-12-12

Family

ID=49712081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065644 WO2013183692A1 (en) 2012-06-08 2013-06-06 Flexible printed wiring board and method for producing flexible printed wiring board

Country Status (3)

Country Link
JP (1) JP5793113B2 (en)
CN (1) CN104272882B (en)
WO (1) WO2013183692A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016132424A1 (en) * 2015-02-16 2017-11-24 日本メクトロン株式会社 Manufacturing method of flexible printed wiring board

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6484218B2 (en) 2014-03-20 2019-03-13 住友電気工業株式会社 Printed wiring board substrate and printed wiring board
CN106134298B (en) * 2014-03-27 2019-02-22 住友电气工业株式会社 Printed wiring board substrate, printed wiring board and the method for manufacturing printed wiring board substrate
US10076028B2 (en) 2015-01-22 2018-09-11 Sumitomo Electric Industries, Ltd. Substrate for printed circuit board, printed circuit board, and method for producing printed circuit board
JP7048877B2 (en) * 2017-09-22 2022-04-06 日亜化学工業株式会社 Manufacturing method of multilayer board and manufacturing method of component mounting board

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008103548A (en) * 2006-10-19 2008-05-01 Sumitomo Electric Ind Ltd Multilayer printed wiring board, and its manufacturing method
JP2011199103A (en) * 2010-03-23 2011-10-06 Fujikura Ltd Wiring board and method of manufacturing the same
JP2011199250A (en) * 2010-02-25 2011-10-06 Panasonic Corp Multilayer wiring substrate, and method for producing multilayer wiring substrate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2775715B2 (en) * 1995-03-13 1998-07-16 北陸電気工業株式会社 Circuit board and its manufacturing method
WO2004022663A1 (en) * 2002-09-04 2004-03-18 Namics Corporation Conductive adhesive and circuit comprising it
JP2007027476A (en) * 2005-07-19 2007-02-01 Sharp Corp Multilayer printed wiring board and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008103548A (en) * 2006-10-19 2008-05-01 Sumitomo Electric Ind Ltd Multilayer printed wiring board, and its manufacturing method
JP2011199250A (en) * 2010-02-25 2011-10-06 Panasonic Corp Multilayer wiring substrate, and method for producing multilayer wiring substrate
JP2011199103A (en) * 2010-03-23 2011-10-06 Fujikura Ltd Wiring board and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016132424A1 (en) * 2015-02-16 2017-11-24 日本メクトロン株式会社 Manufacturing method of flexible printed wiring board

Also Published As

Publication number Publication date
CN104272882A (en) 2015-01-07
JP2013254910A (en) 2013-12-19
JP5793113B2 (en) 2015-10-14
CN104272882B (en) 2017-12-22

Similar Documents

Publication Publication Date Title
TWI526150B (en) An electromagnetic wave shielding film, a flexible substrate using the same, and a method for manufacturing the flexible substrate
JP5690648B2 (en) Anisotropic conductive film, connection method and connection structure
WO2013183692A1 (en) Flexible printed wiring board and method for producing flexible printed wiring board
JP6959948B2 (en) Manufacturing method of shield film, shield printed wiring board and shield printed wiring board
KR100552034B1 (en) Thermosetting Electroconductive Paste for Electroconductive Bump Use
WO2018147429A1 (en) Ground member, shielded printed circuit board, and method for manufacturing shielded printed circuit board
WO2020090727A1 (en) Electromagnetic wave shielding film, method of manufacturing shielded printed wiring board, and shielded printed wiring board
JP5695881B2 (en) Electronic component connection method and connection structure
JP6449111B2 (en) Shielding material, electronic parts and adhesive sheet
WO2018147423A1 (en) Ground member, shielded printed circuit board, and method for manufacturing shielded printed circuit board
JP6196131B2 (en) Metal foil for press bonding and electronic component package
KR20190115020A (en) Printed wiring board
TWI771595B (en) Electromagnetic wave shielding film, manufacturing method of shielding printed wiring board, and shielding printed wiring board
JP2011228481A (en) Conductive paste, flexible printed-wiring board and electronic equipment
JP7307095B2 (en) Shield printed wiring board and method for manufacturing shield printed wiring board
TW202219215A (en) Electromagnetic wave shielding film and shielded printed wiring board
JP2008124029A (en) Connecting member
JP2019161101A (en) Electromagnetic wave shield film and shield printed wiring board
JP2019057694A (en) Manufacturing method of multilayer substrate, manufacturing method of component mounting substrate, multilayer substrate and component mounting substrate
WO2023090115A1 (en) Wiring board
JP2009253080A (en) Printed wiring board
WO2022059726A1 (en) Shield printed wiring board equipped with ground member, and ground member
JP4385848B2 (en) Wiring board manufacturing method
JP6286473B2 (en) Zygote
JP5924896B2 (en) Manufacturing method of joined body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13800817

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13800817

Country of ref document: EP

Kind code of ref document: A1