WO2018147423A1 - Ground member, shielded printed circuit board, and method for manufacturing shielded printed circuit board - Google Patents

Ground member, shielded printed circuit board, and method for manufacturing shielded printed circuit board Download PDF

Info

Publication number
WO2018147423A1
WO2018147423A1 PCT/JP2018/004654 JP2018004654W WO2018147423A1 WO 2018147423 A1 WO2018147423 A1 WO 2018147423A1 JP 2018004654 W JP2018004654 W JP 2018004654W WO 2018147423 A1 WO2018147423 A1 WO 2018147423A1
Authority
WO
WIPO (PCT)
Prior art keywords
shield
layer
film
ground member
printed wiring
Prior art date
Application number
PCT/JP2018/004654
Other languages
French (fr)
Japanese (ja)
Inventor
裕介 春名
貴彦 香月
長谷川 剛
宏 田島
Original Assignee
タツタ電線株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タツタ電線株式会社 filed Critical タツタ電線株式会社
Priority to JP2018567514A priority Critical patent/JP6872567B2/en
Publication of WO2018147423A1 publication Critical patent/WO2018147423A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields

Definitions

  • the present invention relates to a ground member, a shield printed wiring board, and a method for manufacturing a shield printed wiring board.
  • Flexible printed wiring boards are frequently used to incorporate circuits in complex mechanisms in electronic devices such as mobile phones, video cameras, and notebook computers that are rapidly becoming smaller and more functional. Furthermore, taking advantage of its excellent flexibility, it is also used for connection between a movable part such as a printer head and a control part. In these electronic devices, electromagnetic wave shielding measures are indispensable, and flexible printed wiring boards used in the device are also described as flexible printed wiring boards (hereinafter referred to as “shield printed wiring boards”). Have been used.
  • a general shield printed wiring board is usually a base film in which a printed circuit and an insulating film are sequentially provided on a base film, an adhesive layer, a shield layer laminated on the adhesive layer, and the adhesive layer And a shielding film that covers the base film so that the adhesive layer is in contact with the base film.
  • the printed circuit includes a ground circuit, and the ground circuit is electrically connected to the casing of the electronic device in order to obtain a ground.
  • the insulating film is provided on the printed circuit including the ground circuit.
  • the base film is covered with a shield film having an insulating layer. Therefore, in order to electrically connect the ground circuit and the casing of the electronic device, it is necessary to make holes in advance in part of the insulating film and the shield film. This has been a factor that hinders the degree of freedom in designing a printed circuit.
  • a cover film is coated on one side of a separate film, a shield layer composed of a metal thin film layer and an adhesive layer is provided on the surface of the cover film, and the cover film is provided on one end side.
  • the ground member is pressed against the cover film so that the projection of the ground member penetrates the cover film. Therefore, the ground member can be disposed at an arbitrary position of the shield film.
  • the ground circuit and the housing of the electronic device can be electrically connected at an arbitrary position.
  • the shield printed wiring board is repeatedly heated and cooled in a solder reflow process or the like.
  • the change in volume due to thermal expansion and thermal shrinkage causes the protrusion of the ground member and the shield layer to In some cases, the connection is damaged and the resistance value increases.
  • the present invention is an invention made to solve the above-described problems, and an object of the present invention is a ground member that can be disposed at an arbitrary position, and a shield printed wiring board using the ground member is heated and An object of the present invention is to provide a ground member that is less likely to be displaced between the conductive protrusions of the ground member and the shield layer of the shield film when the components are mounted by repeating cooling.
  • the ground member of the present invention has a first main surface and a second main surface opposite to the first main surface, and is composed of an external connection member having conductivity, and the first main surface. Is a ground member having conductive protrusions, and a low melting point metal layer is formed on the surface of the conductive protrusions.
  • the ground member of the present invention is used for a shield printed wiring board composed of a base film and a shield film.
  • the base film is a film formed by sequentially providing a printed circuit including a ground circuit and an insulating film on a base film.
  • the shield film is a film composed of a shield layer and an insulating layer laminated on the shield layer.
  • the shield film covers the base film so that the shield layer of the shield film is disposed closer to the base film than the insulating layer.
  • the ground member of the present invention is disposed by being pressed against the shield printed wiring board so that the conductive protrusion of the ground member of the present invention penetrates the insulating layer of the shield film. Further, when the ground member of the present invention is arranged on the shield printed wiring board as described above, it is not necessary to provide a hole or the like in the insulating layer of the shield film of the shield printed wiring board in advance, and the ground member of the present invention is placed at an arbitrary position. Can be arranged.
  • a low melting point metal layer is formed on the surface of the conductive protrusion.
  • heating is also performed. By this heating, the low melting point metal layer is softened, and the adhesion between the conductive protrusion of the ground member and the shield layer of the shield film can be improved. Therefore, even if the component is mounted by repeatedly heating and cooling the shield printed wiring board using the ground member of the present invention, a deviation occurs between the conductive protrusion of the ground member and the shield layer of the shield film. Hateful.
  • the low melting point metal layer is preferably formed of a metal having a melting point of 300 ° C. or lower.
  • the low melting point metal layer is formed of a metal having a melting point of 300 ° C. or lower, the low melting point metal layer is easily softened when the ground member is placed on the shield printed wiring board, and the conductive protrusion of the ground member
  • the adhesion of the shield film with the shield layer can be preferably improved.
  • the low melting point metal layer is formed of a metal having a melting point exceeding 300 ° C., the heating temperature when the ground member is arranged on the shield printed wiring board becomes high. Therefore, the ground member and the shield printed wiring board are easily damaged by heat.
  • the thickness of the low melting point metal layer is preferably 0.1 to 50 ⁇ m.
  • the thickness of the low melting point metal layer is less than 0.1 ⁇ m, the amount of metal constituting the low melting point metal layer is small. Therefore, when the ground member is placed on the shield printed wiring board, the conductive protrusion of the ground member And it becomes difficult to improve adhesiveness with the shield layer of a shield film.
  • the thickness of the low melting point metal layer exceeds 50 ⁇ m, the low melting point metal layer is thick, so that the conductive protrusion of the ground member becomes thick. Therefore, when arrange
  • the low melting point metal layer contains a flux.
  • the metal constituting the low melting point metal layer is softened by including the flux in the low melting point metal layer, the metal constituting the low melting point metal layer, the conductive protrusion of the ground member, and the shield layer of the shield film, Becomes easier to adhere. As a result, the adhesion between the conductive protrusion of the ground member and the shield layer of the shield film can be further improved.
  • the external connection member preferably includes at least one selected from the group consisting of copper, aluminum, silver, gold, nickel, chromium, titanium, zinc, and stainless steel. These materials are suitable for electrically connecting the ground member and the external ground.
  • a corrosion-resistant layer is formed on the second main surface.
  • the corrosion-resistant layer is formed on the second main surface of the ground member, the ground member can be prevented from being corroded.
  • the corrosion-resistant layer contains at least one selected from the group consisting of nickel, gold, silver, platinum, palladium, rhodium, iridium, ruthenium, osmium, and alloys thereof. These materials are not susceptible to corrosion. Therefore, these materials are materials suitable for the corrosion-resistant layer of the ground member of the present invention.
  • the conductive protrusions may be columnar.
  • the conductive protrusions are columnar, it is easy to penetrate the insulating layer when the ground member is pressed against the insulating layer of the shield film.
  • the area of the bottom surface of the conductive protrusion is preferably 1.0 to 1.0 ⁇ 10 6 ⁇ m 2 .
  • the area of the bottom surface of the conductive protrusion is less than 1.0 ⁇ m 2 , the strength of the conductive protrusion becomes weak and the conductive protrusion is easily broken.
  • the electrical connection between the conductive protrusion and the external connection member is broken.
  • the conductive protrusion When the area of the bottom surface of the conductive protrusion exceeds 1.0 ⁇ 10 6 ⁇ m 2 , the conductive protrusion is too thick, so that it is difficult to penetrate the insulating layer of the shield film when the ground member is disposed on the shield printed wiring board. .
  • the pitch between the conductive protrusions is preferably 1 to 1000 ⁇ m. It is technically difficult to produce a ground member in which the pitch between the conductive protrusions is less than 1 ⁇ m.
  • the pitch between the conductive protrusions exceeds 1000 ⁇ m, the density of the conductive protrusions decreases, and the total contact area between the conductive protrusions and the shield layer of the shield film decreases. Therefore, the adhesiveness between the conductive protrusion and the shield layer of the shield film tends to be lowered.
  • the external connection member may be bent so that the first main surface side protrudes, and a part of the protruded external connection member may be the conductive protrusion.
  • the ground member having such a shape can be easily manufactured simply by bending the external connection member.
  • the shield printed wiring board of the present invention comprises a base film in which a printed circuit including a ground circuit and an insulating film are sequentially provided on a base film, a shield layer, and an insulating layer laminated on the shield layer.
  • a shield printed wiring board comprising: a shield film that covers the base film so that the shield layer is disposed closer to the base film than the insulating layer; and a ground member that is disposed on the insulating layer of the shield film.
  • the ground member has a first main surface and a second main surface opposite to the first main surface, and has a conductive external connection member and the first main surface side.
  • a low melting point metal layer is formed on the surface of the conductive protrusion, and the conductive protrusion of the ground member is formed of the shield film.
  • the insulating layer penetrates, the low melting point metal layer of the ground member is connected to the shield layer of the shield film, and the external connection member of the ground member can be electrically connected to the external ground. It is characterized by that.
  • the shield printed wiring board of the present invention has a first main surface and a second main surface opposite to the first main surface, and has an external connection member having conductivity, and the first main surface.
  • a ground member having a low melting point metal layer formed on the surface of the conductive protrusion, that is, the ground member of the present invention is used. Therefore, even if heating and cooling are repeated and components are mounted on the shield printed wiring board of the present invention, it is difficult for deviation to occur between the conductive protrusions of the ground member and the shield layer of the shield film.
  • the shield film includes an adhesive layer, the shield layer laminated on the adhesive layer, and the insulating layer laminated on the shield layer. It is desirable that the adhesive layer is in contact with the base film. When the shield film has an adhesive layer, the shield film can be easily adhered to the base film during the production of the shield printed wiring board.
  • the adhesive layer of the shield film is preferably a conductive adhesive layer.
  • the adhesive layer of the shield film is a conductive adhesive layer
  • the conductive protrusion of the ground member penetrates the insulating layer of the shield film, so that the conductive protrusion of the ground member and the conductive adhesive layer contact each other.
  • the external connection member of the ground member and the ground circuit of the base film can be electrically connected.
  • the shield layer of the shield film is preferably made of metal.
  • the metal suitably functions as a shield layer that shields electromagnetic waves.
  • a low melting point metal layer of the shield film is formed between the adhesive layer and the shield layer and / or between the shield layer and the insulating layer.
  • the low melting point metal layer of the shield film is preferably connected to the conductive protrusion of the ground member.
  • the shield layer of the shield film is a conductive adhesive layer, and the conductive adhesive layer may be in contact with the base film.
  • the shield layer is a conductive adhesive layer
  • the shield layer has both a function for adhering the shield film to the base film and a function for shielding electromagnetic waves.
  • a low melting point metal layer of a shield film is formed between the shield layer and the insulating layer, and the low melting point metal layer of the shield film is a conductive material of the ground member. It is desirable to connect with the protrusion. With such a configuration, the adhesion between the conductive protrusion of the ground member and the shield layer of the shield film can be improved.
  • the method for producing a shield printed wiring board according to the present invention includes a base film in which a printed circuit including a ground circuit and an insulating film are sequentially provided on a base film, a shield layer, and an insulating layer laminated on the shield layer.
  • a shield printed wiring board comprising a shield film having the above and a ground member of the present invention disposed on an insulating layer of the shield film, wherein the substrate film side is more than the insulating layer of the shield film.
  • a heating step of heating and softening the low melting point metal layer of the ground member In order to connect the low-melting point metal layer of the ground member to the shield layer of the shield film, a pressurizing step of pressurizing the ground member so that the conductive protrusion of the ground member penetrates the insulating layer of the shield film.
  • the shield printed wiring board of the present invention can be manufactured.
  • the shield film may include an adhesive layer, the shield layer laminated on the adhesive layer, and the insulating layer laminated on the shield layer. desirable.
  • the shield film has an adhesive layer, the shield film can be easily adhered to the base film in the shield film placing step.
  • the adhesive bond layer of the said shield film is a conductive adhesive layer. If the adhesive layer of the shield film is a conductive adhesive layer, the conductive protrusions of the ground member are brought into contact with each other by passing the conductive protrusions of the ground member through the insulating layer of the shield film. The external connection member of the ground member and the ground circuit of the base film can be electrically connected.
  • the shield layer of the said shield film in the manufacturing method of the shield printed wiring board of this invention, it is desirable for the shield layer of the said shield film to consist of metals.
  • the metal suitably functions as a shield layer that shields electromagnetic waves.
  • a low melting point metal layer of the shield film is provided between the adhesive layer and the shield layer and / or between the shield layer and the insulating layer.
  • the low melting point metal layer of the shield film is preferably softened and connected to the conductive protrusion of the ground member.
  • the shield layer of the shield film may be a conductive adhesive layer.
  • the shield layer has both a function for adhering the shield film to the base film and a function for shielding electromagnetic waves.
  • a low melting point metal layer of the shield film is formed between the shield layer and the insulating layer.
  • the shield film It is desirable to soften the low melting point metal layer and connect it to the conductive protrusion of the ground member. By doing in this way, the adhesiveness of the electroconductive protrusion of a ground member and the shield layer of a shield film can be improved.
  • the ground member of the present invention When the ground member of the present invention is disposed on the shield printed wiring board, it is not necessary to previously provide a hole or the like in the insulating layer of the shield film of the shield printed wiring board, and the ground member of the present invention can be disposed at an arbitrary position. . In addition, when a component is mounted by repeatedly heating and cooling the shield printed wiring board using the ground member of the present invention, the gap between the conductive protrusion of the ground member and the shield layer or adhesive layer of the shield film Can be prevented from occurring.
  • FIG. 1 is a cross-sectional view schematically showing an example of the ground member of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing an example of a shield printed wiring board in which the ground member of the present invention is used.
  • FIGS. 3A and 3B are schematic views schematically showing an example in which the ground member of the present invention is used in a shield printed wiring board.
  • 4 (a) to 4 (d) are process diagrams schematically showing an example of the manufacturing method of the ground member of the present invention in the order of processes. It is process drawing which shows typically an example of the shield film mounting process of the manufacturing method of the shield printed wiring board of this invention.
  • FIG. 1 is a cross-sectional view schematically showing an example of the ground member of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing an example of a shield printed wiring board in which the ground member of the present invention is used.
  • FIGS. 3A and 3B are schematic views schematically showing an example in which the ground member of
  • FIG. 6 is a process chart schematically showing an example of a ground member arranging process in the method for manufacturing a shield printed wiring board according to the present invention.
  • FIG. 7 is a process diagram schematically showing an example of a pressurizing process of the method for manufacturing a shield printed wiring board according to the present invention.
  • FIG. 8 is a process diagram schematically showing an example of a heating process of the method for manufacturing a shield printed wiring board of the present invention.
  • FIGS. 9A and 9B are diagrams schematically showing an example of a method for manufacturing a shield printed wiring board in which the ground member of the present invention is used.
  • FIG. 10 is a cross-sectional view schematically showing an example of a shield printed wiring board in which the ground member of the present invention is used.
  • FIG. 11 is a schematic view schematically showing an example of the case where the ground member of the present invention is used for a shield printed wiring board.
  • FIG. 12 is a cross-sectional view schematically showing an example of a shield printed wiring board in which the ground member of the present invention is used.
  • FIG. 13 is a schematic view schematically showing an example of the case where the ground member of the present invention is used for a shield printed wiring board.
  • FIG. 14 is a cross-sectional view schematically showing an example of a shield printed wiring board in which the ground member of the present invention is used.
  • FIG. 15 is a schematic view schematically showing an example in which the ground member of the present invention is used for a shield printed wiring board.
  • FIG. 16 is a cross-sectional view schematically showing an example of the ground member of the present invention.
  • FIG. 17 is a schematic view schematically showing an example of the case where the ground member of the present invention is used for a shield printed wiring board.
  • FIG. 18 is a graph showing the results of a measurement test of changes in electrical resistance value due to heating and cooling.
  • FIG. 1 is a cross-sectional view schematically showing an example of the ground member of the present invention.
  • the ground member 1 includes a first main surface 11 and a second main surface 12 opposite to the first main surface 11 and includes an external connection member 10 having conductivity.
  • conductive protrusions 20 are formed on the first main surface 11.
  • a low melting point metal layer 21 is formed on the surface of the conductive protrusion 20.
  • the ground member 1 is used for a shield printed wiring board composed of a base film and a shield film.
  • FIG. 2 is a cross-sectional view schematically showing an example of a shield printed wiring board in which the ground member of the present invention is used.
  • the shield printed wiring board 50 includes a base film 60 and a shield film 70.
  • the base film 60 is a film in which a printed circuit 62 including a ground circuit 62 a and an insulating film 63 are sequentially provided on a base film 61.
  • the shield film 70 is a film including an adhesive layer 71, a shield layer 72 laminated on the adhesive layer 71, and an insulating layer 73 laminated on the shield layer 72.
  • the shield film 70 covers the base film 60 so that the adhesive layer 71 of the shield film 70 is in contact with the base film 60.
  • the adhesive layer 71 of the shield film 70 is a conductive adhesive layer.
  • FIGS. 3A and 3B are schematic views schematically showing an example in which the ground member of the present invention is used in a shield printed wiring board.
  • the ground member 1 is disposed by being pressed against the shield printed wiring board 50 so that the conductive protrusion 20 of the ground member 1 penetrates the insulating layer 73 of the shield film 70.
  • the ground member 1 is further pressed so that the conductive protrusion 20 of the ground member 1 penetrates the shield layer 72 of the shield film 70, and the conductive protrusion 20 and the shield film of the ground member 1 are pressed.
  • adhesive layers 71 may be brought into contact with each other. Further, as shown in FIG. 3B, the conductive protrusion 20 of the ground member 1 may be brought into contact with only the shield layer 72 of the shield film 70. Since the adhesive layer 71 is a conductive adhesive layer, the ground member is obtained by bringing the conductive protrusion 20 into contact with the adhesive layer 71 and the shield layer 72 or by bringing the conductive protrusion 20 into contact with the shield layer 72. 1 external connection member 10 and the ground circuit 62a of the base film 60 can be electrically connected. In addition, the external connection member 10 of the ground member 1 is connected to the external ground GND.
  • the ground member 1 is arranged on the shield printed wiring board 50 in this way, it is not necessary to previously provide a hole or the like in the insulating layer 73 of the shield film 70 of the shield printed wiring board 50, and the ground member 1 is arranged at an arbitrary position. be able to.
  • a low melting point metal layer 21 is formed on the surface of the conductive protrusion 20. Heating is also performed when the ground member 1 is arranged on the shield printed wiring board 50 or in the component mounting process after the arrangement. By this heating, the low melting point metal layer 21 is softened, and the adhesiveness between the conductive protrusion 20 of the ground member 1 and the shield layer 72 of the shield film 70 or the adhesive layer of the conductive protrusion 20 of the ground member 1 and the shield film 70. Adhesiveness with 71 can be improved.
  • the low melting point metal layer 21 may be softened in a process of mounting components on the shield printed wiring board after the conductive protrusions 20 of the ground member 1 are connected to the shield layer 72. For example, when solder is used to mount a component, a solder reflow process is performed. In this case, the low melting point metal layer 21 can be softened by heat during reflow.
  • the low melting point metal layer 21 is preferably formed of a metal having a melting point of 300 ° C. or lower.
  • the low melting point metal layer 21 is formed of a metal having a melting point of 300 ° C. or lower, the low melting point metal layer 21 is easily softened when the ground member 1 is disposed on the shield printed wiring board 50, and the ground member 1
  • the adhesion between the conductive protrusions 20 and the shield layer 72 and the adhesive layer 71 of the shield film 70 can be suitably improved.
  • the low melting point metal layer is formed of a metal having a melting point exceeding 300 ° C., the heating temperature when the ground member is arranged on the shield printed wiring board becomes high. Therefore, the ground member and the shield printed wiring board are easily damaged by heat.
  • the metal forming the low melting point metal layer 21 is not particularly limited, but desirably includes at least one selected from the group consisting of indium, tin, lead, and bismuth. These metals have a melting point and conductivity suitable for forming the low melting point metal layer 21.
  • the thickness of the low melting point metal layer 21 is preferably 0.1 to 50 ⁇ m.
  • the thickness of the low melting point metal layer is less than 0.1 ⁇ m, the amount of metal that forms the low melting point metal layer is small. Therefore, when the ground member is placed on the shield printed wiring board, the conductive protrusion of the ground member And the adhesiveness with the shield layer and adhesive bond layer of a shield film becomes difficult to improve.
  • the thickness of the low melting point metal layer exceeds 50 ⁇ m, the low melting point metal layer is thick, so that the conductive protrusion of the ground member becomes thick. Therefore, when arrange
  • the low melting point metal layer 21 preferably includes a flux.
  • the metal constituting the low melting point metal layer 21 is softened by including the flux in the low melting point metal layer 21, the metal constituting the low melting point metal layer 21, the conductive protrusion 20 of the ground member 1, and the shield
  • the shield layer 72 and the adhesive layer 71 of the film 70 are easily adhered. As a result, the adhesion between the conductive protrusion 20 of the ground member 1 and the shield layer 72 and the adhesive layer 71 of the shield film 70 can be further improved.
  • the external connection member 10 preferably includes at least one selected from the group consisting of copper, aluminum, silver, gold, nickel, chromium, titanium, zinc, and stainless steel. These materials are materials suitable for electrically connecting the ground member 1 and the external ground GND.
  • the low-melting-point metal layer 21 is made of tin or an alloy thereof
  • nickel is desirably present on the surface of the conductive protrusion 20. That is, it is desirable that the surface of the conductive protrusion 20 is covered with a nickel layer, and the low melting point metal layer 21 is provided thereon.
  • the low melting point metal layer 21 is made of tin or an alloy thereof
  • the low melting point metal layer 21 and the metal on the surface of the conductive protrusion 20 may form an alloy.
  • the presence of nickel on the surface of the conductive protrusion 20 can prevent the tin constituting the low melting point metal layer 21 from forming an alloy with the metal constituting the conductive protrusion 20.
  • tin constituting the low melting point metal layer 21 can efficiently form an alloy with the shield layer. Therefore, the amount of tin used for the low melting point metal layer 21 can be reduced.
  • ground member 1 it is desirable that a corrosion-resistant layer is formed on the second main surface 12.
  • the corrosion-resistant layer is formed on the second main surface 12 of the ground member 1, the ground member 1 can be prevented from corroding.
  • the corrosion-resistant layer contains at least one selected from the group consisting of nickel, gold, silver, platinum, palladium, rhodium, iridium, ruthenium, osmium, and alloys thereof. These materials are not susceptible to corrosion. Therefore, these materials are materials suitable for the corrosion-resistant layer of the ground member 1.
  • the conductive protrusion 20 may be columnar, and may be, for example, a cylinder, an elliptical column, a triangular column, a quadrangular column, a pentagonal column, a hexagonal column, an octagonal column, or the like.
  • the insulating member 73 can be easily penetrated when the ground member 1 is pressed against the insulating layer 73 of the shield film 70.
  • the area of the bottom surface of the conductive protrusion 20 is preferably 1.0 to 1.0 ⁇ 10 6 ⁇ m 2 .
  • the strength of the conductive protrusion becomes weak and the conductive protrusion is easily broken.
  • the electrical connection between the conductive protrusion and the external connection member is broken. Therefore, the electrical resistance between the ground circuit of the base film and the external ground tends to increase. In addition, it is technically difficult to form such thin conductive protrusions.
  • the conductive protrusion When the area of the bottom surface of the conductive protrusion exceeds 1.0 ⁇ 10 6 ⁇ m 2 , the conductive protrusion is too thick, so that it is difficult to penetrate the insulating layer of the shield film when the ground member is disposed on the shield printed wiring board. .
  • the pitch between the conductive protrusions is preferably 1 to 1000 ⁇ m. It is technically difficult to produce a ground member in which the pitch between the conductive protrusions is less than 1 ⁇ m.
  • the pitch between the conductive protrusions exceeds 1000 ⁇ m, the density of the conductive protrusions decreases, and the total contact area between the conductive protrusions and the shield layer or adhesive layer of the shield film decreases. Therefore, the electrical resistance between the ground circuit of the base film and the external ground tends to increase.
  • the method for producing a ground member of the present invention includes (1) a base preparation step, (2) a conductive protrusion forming step, and (3) a low melting point metal layer forming step.
  • 4 (a) to 4 (d) are process diagrams schematically showing an example of the manufacturing method of the ground member of the present invention in the order of processes.
  • a metal foil 2 that serves as a base of a ground member is prepared.
  • the metal foil 2 is desirably the metal described in the description of the material of the external connection member of the ground member.
  • the metal foil 2 is etched. It is desirable that the etching solution used for etching is appropriately selected according to the material of the metal foil. For example, when the metal foil is a copper foil, it is desirable to use an aqueous sodium persulfate solution, a mixed solution of hydrogen peroxide and sulfuric acid, an aqueous iron chloride solution, an aqueous copper chloride solution, or the like as the etching solution.
  • the external connection member 10 and the conductive protrusion 20 of the ground member 1 can be formed.
  • a low melting point metal layer 21 is formed on the surface of the conductive protrusion 20.
  • a method for forming the low melting point metal layer 21 is not particularly limited, but a plating method or the like can be employed.
  • electroless plating or electrolytic plating can be used.
  • the ground member 1 can be manufactured through the above steps.
  • the method for producing a shield printed wiring board according to the present invention includes a base film in which a printed circuit including a ground circuit and an insulating film are sequentially provided on a base film, a shield layer, and an insulating layer laminated on the shield layer. It is a manufacturing method of the shield printed wiring board provided with the shield film which has and the said ground member 1 arrange
  • FIG. 5 is a process chart schematically showing an example of a shield film placing process in the method for producing a shield printed wiring board of the present invention.
  • FIG. 6 is a process chart schematically showing an example of a ground member arranging process in the method for manufacturing a shield printed wiring board according to the present invention.
  • FIG. 7 is a process diagram schematically showing an example of a pressurizing process of the method for manufacturing a shield printed wiring board according to the present invention.
  • FIG. 8 is a process diagram schematically showing an example of a heating process of the method for manufacturing a shield printed wiring board of the present invention.
  • a base film 60 is prepared in which a printed circuit 62 including a ground circuit 62a and an insulating film 63 are sequentially provided on a base film 61.
  • a shield film 70 including an adhesive layer 71 which is a conductive adhesive layer, a shield layer 72 laminated on the adhesive layer 71, and an insulating layer 73 laminated on the shield layer 72 is also prepared.
  • the shield film 70 is mounted so that the adhesive bond layer 71 of the shield film 70 may contact
  • the materials of the base film 61 and the insulating film 63 constituting the base film 60 are not particularly limited, but are preferably made of engineering plastic.
  • engineering plastics include resins such as polyethylene terephthalate, polypropylene, crosslinked polyethylene, polyester, polybenzimidazole, polyimide, polyimide amide, polyether imide, and polyphenylene sulfide.
  • a polyphenylene sulfide film is desirable when flame retardancy is required, and a polyimide film is desirable when heat resistance is required.
  • the thickness of the base film 61 is desirably 10 to 40 ⁇ m
  • the thickness of the insulating film 63 is desirably 10 to 30 ⁇ m.
  • the insulating film 63 has a hole 63a for exposing a part of the printed circuit 62.
  • the method for forming the hole 63a is not particularly limited, and a conventional method such as laser processing can be employed.
  • the adhesive layer 71 of the shield film 70 is a conductive adhesive layer made of a resin and conductive fine particles.
  • the resin constituting the adhesive layer 71 is not particularly limited, but may be an acrylic resin, an epoxy resin, a silicon resin, a thermoplastic elastomer resin, a rubber resin, a polyester resin, a urethane resin, or the like. desirable.
  • the adhesive layer 71 contains tackifiers such as fatty acid hydrocarbon resins, C5 / C9 mixed resins, rosin, rosin derivatives, terpene resins, aromatic hydrocarbon resins, and heat-reactive resins. Also good. When these tackifiers are contained, the tackiness of the adhesive layer 71 can be improved.
  • electroconductive fine particles which comprise the adhesive bond layer 71
  • Copper powder, silver powder, nickel powder, silver coat copper powder (Ag coat Cu powder), gold coat copper powder, silver coat nickel powder (Ag coat Ni) Powder) and gold-coated nickel powder, and these metal powders can be produced by an atomizing method, a carbonyl method or the like.
  • particles obtained by coating a metal powder with a resin and particles obtained by coating a resin with a metal powder can also be used.
  • the conductive fine particles are preferably Ag-coated Cu powder or Ag-coated Ni powder. This is because conductive fine particles having stable conductivity can be obtained with an inexpensive material.
  • the shape of the conductive fine particles is not necessarily limited to a spherical shape, and may be, for example, a dendritic shape, a flake shape, a spike shape, a rod shape, a fiber shape, a needle shape, or the like.
  • a low melting point metal layer can be provided on the surface of the conductive fine particles. As the low melting point metal layer in this case, those described above can be used.
  • the adhesive layer 71 of the shield film 70 is a conductive adhesive layer
  • the conductive protrusion 20 of the ground member 1 penetrates the insulating layer 73 of the shield film 70, so that the conductive protrusion 20 of the ground member 1
  • the shield layer 72 and the adhesive layer 71 of the shield film 70 are in contact with each other, or the conductive protrusion 20 of the ground member 1 and the shield layer 72 of the shield film 70 are in contact with each other, and the external connection member 10 of the ground member 1 and the base film.
  • 60 ground circuits 62a can be electrically connected.
  • the adhesive layer 71 may be an anisotropic conductive adhesive layer or an isotropic conductive adhesive layer, but is more preferably an anisotropic conductive adhesive layer.
  • the conductive fine particles are preferably contained in the range of 3 to 39% by weight with respect to the total amount of the adhesive layer 71.
  • the average particle diameter of the conductive fine particles is desirably in the range of 2 to 20 ⁇ m, but it is desirable to select an optimum size according to the thickness of the anisotropic conductive adhesive layer.
  • the conductive fine particles may be included in the range of more than 39% by weight and 95% by weight or less with respect to the total amount of the adhesive layer 71. desirable.
  • the average particle diameter of the conductive fine particles can be selected in the same manner as in the anisotropic conductive adhesive layer.
  • the shield layer 72 of the shield film 70 may be made of any material as long as it exhibits a shielding effect that shields unwanted radiation from electrical signals and noises such as external electromagnetic waves.
  • the shield layer 72 may be made of isotropic conductive resin or metal.
  • the shield layer 72 may be a metal layer such as a metal foil or a vapor deposition film, or may be an aggregate of conductive particles formed in a layer shape.
  • the material constituting the metal is at least one selected from the group consisting of nickel, copper, silver, gold, palladium, aluminum, chromium, titanium, zinc, and alloys thereof. It is desirable to include seeds.
  • the shield layer 72 is an aggregate of conductive particles, the above-described conductive fine particles can be used. These materials have high conductivity and are suitable as a shield layer.
  • the thickness of the shield layer 72 of the shield film 70 is preferably 0.01 to 10 ⁇ m. If the thickness of the shield layer is less than 0.01 ⁇ m, it is difficult to obtain a sufficient shielding effect. When the thickness of the shield layer exceeds 10 ⁇ m, it becomes difficult to bend.
  • the material of the insulating layer 73 of the shield film 70 is not particularly limited, but is preferably an epoxy resin, a polyester resin, an acrylic resin, a phenol resin, a urethane resin, or the like.
  • the thickness of the insulating layer 73 of the shield film 70 is preferably 1 to 10 ⁇ m.
  • ground member placement step In this step, the ground member 1 is placed on the shield film 70 so that the conductive protrusions 20 of the ground member 1 face the insulating layer 73 side of the shield film 70 as shown in FIG. .
  • the conductive protrusion 20 of the ground member 1 is used in order to electrically connect the external connection member 10 of the ground member 1 to the ground circuit 62a of the base film 60. Pressurizes the ground member 1 so as to penetrate the insulating layer 73 of the shield film 70. Thereby, the conductive protrusion 20 of the ground member 1 comes into contact with the adhesive layer 71 and the shield layer 72 of the shield film 70.
  • the pressure at the time of pressurization is desirably 0.5 MPa to 10 MPa.
  • the conductive protrusion 20 of the ground member 1 may penetrate only the insulating layer 73 of the shield film 70, and the conductive protrusion 20 of the ground member 1 may be in contact with only the shield layer 72 of the shield film 70.
  • the low melting point metal layer 21 of the ground member 1 is heated to connect the low melting point metal layer 21 of the ground member 1 to the shield layer 72 of the shield film 70 as shown in FIG. And soften.
  • the temperature at which the low melting point metal layer 21 of the ground member 1 is softened is not particularly limited, but is preferably 100 to 300 ° C.
  • the heating step is performed at any stage as long as the low melting point metal layer of the conductive protrusion of the ground member can be softened and connected to the shield layer of the shield film. May be. For example, it may be performed simultaneously with the pressurizing step or may be performed as a single step. Manufacturing efficiency can be improved by performing a pressurization process and a heating process simultaneously.
  • a solder reflow process is performed.
  • the low melting point metal layer may be softened by heat during reflow in this reflow step. In this case, the heating process and the component mounting are performed simultaneously.
  • the shield printed wiring board 50 including the ground member 1 can be manufactured.
  • the shield printed wiring board 50 including the ground member 1 manufactured in this way is an example of the shield printed wiring board of the present invention.
  • a low melting point metal layer is provided between the adhesive layer and the shield layer and / or between the shield layer and the insulating layer. You may prepare the formed shield film. Furthermore, in the heating step, it is desirable to soften the low melting point metal layer of the shield film and connect it to the conductive protrusion of the ground member. By doing in this way, the adhesiveness of the electroconductive protrusion of a ground member and the shield layer of a shield film and the adhesiveness of the electroconductive protrusion of a ground member and the adhesive bond layer of a shield film can be improved.
  • the low melting point metal layer of the shield film is preferably formed of a metal having a melting point of 300 ° C. or lower.
  • the low melting point metal layer of the shield film is easily softened when the ground member is placed on the shield printed wiring board. Adhesiveness between the conductive protrusion of the member and the shield layer or adhesive layer of the shield film can be preferably improved.
  • the metal forming the low melting point metal layer of the shield film is not particularly limited, but it is desirable to include at least one selected from the group consisting of indium, tin, lead and bismuth. These metals have a suitable melting point and conductivity in forming a low melting point metal layer.
  • the thickness of the low melting point metal layer of the shield film is preferably 0.1 to 50 ⁇ m, and more preferably 0.1 to 10 ⁇ m.
  • the thickness of the low melting point metal layer is less than 0.1 ⁇ m, the amount of metal that forms the low melting point metal layer is small. Therefore, when the ground member is placed on the shield printed wiring board, the conductive protrusion of the ground member And the adhesiveness with the shield layer and conductive layer of a shield film becomes difficult to improve.
  • the thickness of the low melting point metal layer of the shield film exceeds 50 ⁇ m, the shield layer is easily deformed when the low melting point metal layer of the shield film is softened. As a result, the shield characteristics of the shield film are likely to deteriorate.
  • the low melting point metal layer of the shield film desirably contains a flux.
  • the metal constituting the low melting point metal layer of the shield film is softened by the fact that the low melting point metal layer of the shield film contains a flux, the metal constituting the low melting point metal layer of the shield film and the conductive protrusion of the ground member It becomes easy to adhere. As a result, the adhesion between the low melting point metal layer of the shield film and the conductive protrusion of the ground member can be further improved.
  • FIGS. 9A and 9B are diagrams schematically showing an example of a method for manufacturing a shield printed wiring board in which the ground member of the present invention is used.
  • FIG. 10 is a cross-sectional view schematically showing an example of a shield printed wiring board in which the ground member of the present invention is used.
  • the shield film 170 is placed on the base film 160.
  • the base film 160 is a film in which a printed circuit 162 including a ground circuit 162a and an insulating film 163 are sequentially provided on a base film 161.
  • the shield film 170 is a film including an adhesive layer 171, a shield layer 172 laminated on the adhesive layer 171, and an insulating layer 173 laminated on the shield layer 172.
  • the shield layer 172 includes a convex portion 172 a. And a wavy shape having a recess 172b. Note that the adhesive layer 171 of the shield film 170 may or may not have conductivity.
  • the shield printed wiring board 150 can be manufactured by pressing. During the pressing, the convex portion 172a of the shield layer 172 of the shield film 170 pushes the adhesive layer 171 and is connected to the ground circuit 162a of the base film 160.
  • the shield printed wiring board 150 includes a base film 160 and a shield film 170.
  • the base film 160 is a film in which a printed circuit 162 including a ground circuit 162a and an insulating film 163 are sequentially provided on a base film 161.
  • the shield film 170 is a film including an adhesive layer 171, a shield layer 172 laminated on the adhesive layer 171, and an insulating layer 173 laminated on the shield layer 172.
  • the shield layer 172 includes a convex portion 172 a. And a wavy shape having a recess 172b.
  • the shield film 170 covers the base film 160 so that the adhesive layer 171 of the shield film 170 is in contact with the base film 160. A part of the convex portion 172 a of the shield layer 172 is exposed from the adhesive layer 171 and is in contact with the ground circuit 162 a of the base film 160.
  • FIG. 11 is a schematic view schematically showing an example of the case where the ground member of the present invention is used for a shield printed wiring board.
  • the ground member 1 is arranged to be pressed against the shield printed wiring board 150 so that the conductive protrusion 20 of the ground member 1 penetrates the insulating layer 173 of the shield film 170. Then, the conductive protrusion 20 of the ground member 1 comes into contact with the shield layer 172 of the shield film 170.
  • the external connection member 10 of the ground member 1 and the ground circuit 162a of the base film 160 are electrically connected. Will be.
  • the external connection member 10 of the ground member 1 is connected to the external ground GND.
  • the ground member 1 is arranged on the shield printed wiring board 150 in this way, it is not necessary to previously provide a hole or the like in the insulating layer 173 of the shield film 170 of the shield printed wiring board 150, and the ground member 1 is arranged at an arbitrary position. be able to.
  • a low melting point metal layer 21 is formed on the surface of the conductive protrusion 20. Heating is also performed when the ground member 1 is arranged on the shield printed wiring board 150 or in the component mounting process after the arrangement. By this heating, the low melting point metal layer 21 is softened, and the adhesion between the conductive protrusion 20 of the ground member 1 and the shield layer 172 of the shield film 170 can be improved. Therefore, even if the component is mounted by repeatedly heating and cooling the shield printed wiring board 150 using the ground member 1, the conductive projection 20 of the ground member 1 and the shield layer 172 of the shield film 170 are interposed between them. Deviation is unlikely to occur. As a result, an increase in electrical resistance between the ground circuit 162a of the base film 160 and the external ground GND can be suppressed.
  • a desirable base film 160 is the same as the base film 60 described in the description of the shield printed wiring board 50.
  • shield printed wiring board 150 desirable materials of the shield layer 172 and the insulating layer 173 constituting the shield film 170 are the same as the shield layer 72 and the insulating layer 73 of the shield film 70 described in the description of the shield printed wiring board 50. is there.
  • a desirable material for the adhesive layer 171 of the shield film 170 constituting the shield film 170 is not particularly limited, but acrylic resin, epoxy resin, silicon resin, thermoplastic elastomer resin, rubber It is desirable that the resin is a polyester resin, polyester resin, urethane resin, or the like.
  • the adhesive layer 171 contains tackifiers such as fatty acid hydrocarbon resins, C5 / C9 mixed resins, rosin, rosin derivatives, terpene resins, aromatic hydrocarbon resins, and heat-reactive resins. Also good. When these tackifiers are included, the tackiness of the adhesive layer 171 can be improved.
  • the low melting point metal layer of the shield film 170 is formed between the shield layer 172 and the insulating layer 173, and the low melting point metal layer of the shield film 170 is
  • the conductive protrusion 20 of the ground member 1 may be connected. With such a configuration, the adhesion between the conductive protrusion 20 of the ground member 1 and the shield layer 172 of the shield film 170 can be improved.
  • FIG. 12 is a cross-sectional view schematically showing an example of a shield printed wiring board in which the ground member of the present invention is used.
  • the shield printed wiring board 250 includes a base film 260 and a shield film 270.
  • the base film 260 is a film in which a printed circuit 262 including a ground circuit 262a and an insulating film 263 are sequentially provided on a base film 261.
  • the shield film 270 is a film including an adhesive layer 271, a shield layer 272 stacked on the adhesive layer 271, and an insulating layer 273 stacked on the shield layer 272.
  • the shield film 270 covers the base film 260 so that the adhesive layer 271 of the shield film 270 is in contact with the base film 260. Further, the adhesive layer 271 of the shield film 270 does not have conductivity, and the printed circuit 262 and the shield layer 272 are not electrically connected.
  • FIG. 13 is a schematic view schematically showing an example of the case where the ground member of the present invention is used for a shield printed wiring board.
  • the ground member 1 is pressed against the shield printed wiring board 250 so that the conductive protrusion 20 of the ground member 1 penetrates the insulating layer 273 of the shield film 270 and is connected to the shield layer 272. Will be placed.
  • the conductive protrusion 20 of the ground member 1 and the shield layer 272 of the shield film 270 come into contact with each other. Therefore, the external connection member 10 of the ground member 1 and the shield layer 272 of the shield film 270 can be electrically connected.
  • the external connection member 10 of the ground member 1 is connected to the external ground GND.
  • the shield layer 272 of the shield film 270 is electrically connected to the external ground GND, so that the shield layer 272 is suitable as an electromagnetic wave shield that shields electromagnetic waves. Act on.
  • the ground member 1 is arranged on the shield printed wiring board 250 in this way, it is not necessary to previously provide a hole or the like in the insulating layer 273 of the shield film 270 of the shield printed wiring board 250, and the ground member 1 is arranged at an arbitrary position. be able to.
  • a low melting point metal layer 21 is formed on the surface of the conductive protrusion 20. Heating is also performed when the ground member 1 is arranged on the shield printed wiring board 250 or in the component mounting process after the arrangement. By this heating, the low melting point metal layer 21 is softened, and the adhesion between the conductive protrusion 20 of the ground member 1 and the shield layer 272 of the shield film 270 can be improved. Therefore, even if the component is mounted by repeatedly heating and cooling the shield printed wiring board 250 using the ground member 1, it is between the conductive protrusion 20 of the ground member 1 and the shield layer 272 of the shield film 270. Deviation is unlikely to occur.
  • the adhesive layer 271 does not contain conductive fine particles, the raw material cost of the adhesive layer 271 can be reduced, and the adhesive layer 271 can be thinned.
  • a desirable base film 260 is the same as the base film 60 described in the description of the shield printed wiring board 50.
  • shield printed wiring board 250 desirable materials for the shield layer 272 and the insulating layer 273 constituting the shield film 270 are the same as the shield layer 72 and the insulating layer 73 of the shield film 70 described in the description of the shield printed wiring board 50. is there.
  • a desirable material for the adhesive layer 271 of the shield film 270 constituting the shield film 270 is not particularly limited, but acrylic resin, epoxy resin, silicon resin, thermoplastic elastomer resin, rubber It is desirable that the resin is a polyester resin, a polyester resin, a urethane resin, or the like.
  • the adhesive layer 271 contains tackifiers such as fatty acid hydrocarbon resins, C5 / C9 mixed resins, rosin, rosin derivatives, terpene resins, aromatic hydrocarbon resins, and heat-reactive resins. Also good. When these tackifiers are contained, the tackiness of the adhesive layer 271 can be improved.
  • the low melting point metal layer of the shield film 270 is formed between the shield layer 272 and the insulating layer 273, and the low melting point metal layer of the shield film 270 is The conductive protrusion 20 of the ground member 1 may be connected. With such a configuration, the adhesion between the conductive protrusion 20 of the ground member 1 and the shield layer 272 of the shield film 270 can be improved.
  • FIG. 14 is a cross-sectional view schematically showing an example of a shield printed wiring board in which the ground member of the present invention is used.
  • the shield printed wiring board 350 includes a base film 360 and a shield film 370.
  • the base film 360 is a film in which a printed circuit 362 including a ground circuit 362a and an insulating film 363 are sequentially provided on a base film 361.
  • the shield film 370 is a film including a shield layer 372 and an insulating layer 373 stacked on the shield layer 372.
  • the shield film 370 covers the base film 360 so that the shield layer 372 of the shield film 370 is in contact with the base film 360.
  • the shield layer 372 of the shield film 370 is a conductive adhesive layer.
  • FIG. 15 is a schematic view schematically showing an example in which the ground member of the present invention is used for a shield printed wiring board.
  • the ground member 1 is arranged to be pressed against the shield printed wiring board 350 so that the conductive protrusion 20 of the ground member 1 penetrates the insulating layer 373 of the shield film 370. Then, the conductive protrusion 20 of the ground member 1 comes into contact with the shield layer 372 of the shield film 370.
  • the external connection member 10 of the ground member 1 and the ground circuit 362a of the base film 360 are electrically connected. Will be.
  • the external connection member 10 of the ground member 1 is connected to the external ground GND.
  • the ground member 1 is arranged on the shield printed wiring board 350 in this way, it is not necessary to previously provide a hole or the like in the insulating layer 373 of the shield film 370 of the shield printed wiring board 350, and the ground member 1 is arranged at an arbitrary position. be able to.
  • a low melting point metal layer 21 is formed on the surface of the conductive protrusion 20. Heating is also performed when the ground member 1 is arranged on the shield printed wiring board 350 or in the component mounting process after the arrangement. By this heating, the low melting point metal layer 21 is softened, and the adhesion between the conductive protrusion 20 of the ground member 1 and the shield layer 372 of the shield film 370 can be improved. Therefore, even if a component is mounted on the shield printed wiring board 350 using the ground member 1 by repeatedly heating and cooling, it is between the conductive protrusion 20 of the ground member 1 and the shield layer 372 of the shield film 370. Deviation is unlikely to occur. As a result, an increase in electrical resistance between the ground circuit 362a of the base film 360 and the external ground GND can be suppressed.
  • the shield layer 372 of the shield film 370 is a conductive adhesive layer. Therefore, the shield layer 372 of the shield film 370 has a function for adhering the shield film 370 to the base film 360 and electromagnetic waves. You will have both the ability to shield. Therefore, the shield film 370 can be easily adhered to the base film 360 without using an adhesive or the like to adhere to the base film 360.
  • a desirable base film 360 is the same as the base film 60 described in the description of the shield printed wiring board 50.
  • the desirable material of the insulating layer 373 constituting the shield film 370 is the same as the insulating layer 73 of the shield film 70 described in the description of the shield printed wiring board 50.
  • the shield layer 372 of the shield film 370 is a conductive adhesive layer made of resin and conductive fine particles.
  • the resin constituting the shield layer 372 is not particularly limited, but is preferably an acrylic resin, an epoxy resin, a silicon resin, a thermoplastic elastomer resin, a rubber resin, a polyester resin, a urethane resin, or the like.
  • the shield layer 372 may contain tackifiers such as fatty acid hydrocarbon resins, C5 / C9 mixed resins, rosin, rosin derivatives, terpene resins, aromatic hydrocarbon resins, and heat-reactive resins. Good. When these tackifiers are included, the tackiness of the shield layer 372 can be improved.
  • electroconductive fine particles which comprise the shield layer 372
  • Copper powder, silver powder, nickel powder, silver coat copper powder (Ag coat Cu powder), gold coat copper powder, silver coat nickel powder (Ag coat Ni powder) ), Gold-coated nickel powder, and these metal powders can be produced by an atomizing method, a carbonyl method, or the like.
  • particles obtained by coating a metal powder with a resin and particles obtained by coating a resin with a metal powder can also be used.
  • the conductive fine particles are preferably Ag-coated Cu powder or Ag-coated Ni powder. This is because conductive fine particles having stable conductivity can be obtained with an inexpensive material.
  • the shape of the conductive fine particles is not necessarily limited to a spherical shape, and may be, for example, a dendritic shape, a flake shape, a spike shape, a rod shape, a fiber shape, a needle shape, or the like.
  • the shield layer 372 of the shield film 370 is desirably an isotropic conductive adhesive layer.
  • the conductive fine particles are contained in the range of more than 39% by weight and 95% by weight or less with respect to the total amount of the shield layer.
  • the average particle diameter of the conductive fine particles is desirably 2 to 20 ⁇ m.
  • a low melting point metal layer of the shield film 370 may be formed between the shield layer 372 and the insulating layer 373.
  • the layer may be connected to the conductive protrusion 20 of the ground member 1.
  • the shield printed wiring board 150 using the ground member 1, the shield printed wiring board 250 using the ground member 1, and the shield printed wiring board 350 using the ground member 1 described above are described in the present invention. This is an example of the shield printed wiring board.
  • the shield printed wiring board 150 using the ground member 1, the shield printed wiring board 250 using the ground member 1, or the shield printed wiring board 350 using the ground member 1 is the same as the ground member 1.
  • the shield film 270, or the shield film 370 instead of the shield film 70 in the “(1) shield film placement step” of the method of manufacturing the shield printed wiring board 50 used. Can be manufactured.
  • FIG. 16 is a cross-sectional view schematically showing an example of the ground member of the present invention.
  • the ground member 101 includes a first main surface 111 and a second main surface 112 opposite to the first main surface 111, and includes a conductive external connection member 110.
  • the external connection member 110 is bent a plurality of times so that the first main surface 111 side protrudes, and a part of the protruded external connection member 110 is a conductive protrusion 120.
  • a low melting point metal layer 121 is formed on the surface of the conductive protrusion 120, that is, on the first main surface 111 of the external connection member 110.
  • the ground member 101 having such a shape can be easily manufactured simply by bending the external connection member 110.
  • FIG. 17 is a schematic view schematically showing an example of the case where the ground member of the present invention is used for a shield printed wiring board.
  • the ground member 101 is disposed by being pressed against the shield printed wiring board 50 so that the conductive protrusion 120 of the ground member 101 penetrates the insulating layer 73 and the shield layer 72 of the shield film 70. become. Then, the conductive protrusion 120 of the ground member 101 comes into contact with the adhesive layer 71 and the shield layer 72 of the shield film 70.
  • the adhesive layer 71 of the shield film 70 is in contact with the ground circuit 62a of the base film 60, the external connection member 110 of the ground member 101 and the ground circuit 62a of the base film 60 are electrically connected. Will be connected. Further, the external connection member 110 of the ground member 101 is connected to the external ground GND.
  • Example 1-1 Metal foil preparation process First, a copper foil having a thickness of 35 ⁇ m was prepared.
  • Example 1-2 to (Example 1-36) and (Comparative Example 1-1) to (Comparative Example 1-15) Except that the diameter of the bottom surface of the conductive protrusion, the width of the pitch between the conductive protrusions, and the size of the ground member after cutting were changed as shown in Tables 1 and 2, the same procedure as in Example 1-1 was performed.
  • the ground members of Example 1-2 to Example 1-36 and Comparative Example 1-1 to Comparative Example 1-15 were manufactured.
  • Example 1 except that the Sn plating layer was not provided and the diameter of the bottom surface of the conductive protrusions, the width of the pitch between the conductive protrusions, and the size of the ground member after cutting were changed as shown in Table 2.
  • the ground members of Comparative Example 1-1 to Comparative Example 1-15 were manufactured in the same manner as -1.
  • Example 2-1 Using the ground member of Example 1-1, a shield printed wiring board according to Example 2-1 was manufactured by the method described below.
  • a base film was prepared by sequentially providing a printed circuit including a ground circuit and an insulating film on a base film.
  • the base film was made of polyimide
  • the ground circuit and the printed circuit were made of copper
  • the insulating film was made of polyimide. Note that a hole for exposing a part of the printed circuit was formed in the insulating film.
  • the shield film in which the anisotropic conductive adhesive layer, the shield layer, and the insulating layer were laminated in order was prepared.
  • the anisotropic conductive adhesive layer had a thickness of 9 ⁇ m.
  • the shield layer was made of copper and had a thickness of 2 ⁇ m.
  • the insulating layer was made of an epoxy resin and had a thickness of 6 ⁇ m.
  • the shield film was placed so that the anisotropic conductive adhesive layer was in contact with the base film.
  • the ground member, the shield film, and the wiring board were put into a heating process (reflow process) in which heating was performed at 260 ° C. for 5 seconds.
  • a heating process reflow process
  • the low melting point metal layer formed on the surface of the conductive protrusion of the ground member according to Example 1-1 is softened, and the conductive protrusion of the ground member and the shield film are formed by the low melting point metal layer.
  • the anisotropic conductive adhesive layer and the shield layer were connected.
  • Example 2-2 Example 2-2 was performed in the same manner as Example 2-1 except that the ground member of Example 1-2 to Example 1-36 and Comparative Example 1-1 to Comparative Example 1-15 was used as the ground member.
  • -Shield printed wiring boards according to Example 2-36 and Comparative Examples 2-1 to 2-15 were manufactured.
  • FIG. 18 is a graph showing the results of a measurement test of changes in electrical resistance value due to heating and cooling.
  • Table 3 shows the average value and standard deviation of the measured electrical resistance values.
  • the shield printed wiring boards according to Example 2-1 to Example 2-36 are less likely to change in electric resistance value even after repeated heating and cooling after the initial heating. It was shown that the electrical resistance value was stabilized by repeated heating and cooling.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Structure Of Printed Boards (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)

Abstract

An objective of the present invention is to provide a ground member which can be positioned as desired, and which, when using repeated heating and cooling to mount components onto a shielded printed circuit board using the ground member, is less susceptible to deviations occurring between conductive protrusions of the ground member and a shield layer of a shield film. This ground member comprises an external connection member which has a first main surface and a second main surface opposite to the first main surface, and which is conductive. The first main surface of the ground member has conductive protrusions, and the ground member is characterized in that a layer of a metal with a low melting point is formed on the surface of the conductive protrusions.

Description

グランド部材、シールドプリント配線板及びシールドプリント配線板の製造方法Ground member, shield printed wiring board, and method for manufacturing shield printed wiring board
本発明は、グランド部材、シールドプリント配線板及びシールドプリント配線板の製造方法に関する。 The present invention relates to a ground member, a shield printed wiring board, and a method for manufacturing a shield printed wiring board.
フレキシブルプリント配線板は、小型化、高機能化が急速に進む携帯電話、ビデオカメラ、ノートパソコンなどの電子機器において、複雑な機構の中に回路を組み込むために多用されている。さらに、その優れた可撓性を生かして、プリンタヘッドのような可動部と制御部との接続にも利用されている。これらの電子機器では、電磁波シールド対策が必須となっており、装置内で使用されるフレキシブルプリント配線板においても、電磁波シールド対策を施したフレキシブルプリント配線板(以下、「シールドプリント配線板」とも記載する)が用いられるようになってきた。 BACKGROUND OF THE INVENTION Flexible printed wiring boards are frequently used to incorporate circuits in complex mechanisms in electronic devices such as mobile phones, video cameras, and notebook computers that are rapidly becoming smaller and more functional. Furthermore, taking advantage of its excellent flexibility, it is also used for connection between a movable part such as a printer head and a control part. In these electronic devices, electromagnetic wave shielding measures are indispensable, and flexible printed wiring boards used in the device are also described as flexible printed wiring boards (hereinafter referred to as “shield printed wiring boards”). Have been used.
一般的なシールドプリント配線板は、通常、ベースフィルム上にプリント回路と絶縁フィルムを順次設けてなる基体フィルムと、接着剤層、上記接着剤層に積層されたシールド層、及び、上記接着剤層に積層された絶縁層からなり、上記接着剤層が上記基体フィルムと接するように上記基体フィルムを被覆するシールドフィルムとから構成される。
プリント回路にはグランド回路が含まれており、グランド回路は、アースを取るために電子機器の筐体と電気的に接続されている。
上記の通り、シールドプリント配線板の基体フィルムでは、グランド回路を含むプリント回路の上に絶縁フィルムが設けられている。また、基体フィルムは、絶縁層を有するシールドフィルムにより被覆されている。
そのため、グランド回路と、電子機器の筐体とを電気的に接続するためには、絶縁フィルム及びシールドフィルムの一部にあらかじめ孔をあける必要があった。
このことは、プリント回路を設計する上で、自由度を妨げる要因となっていた。
A general shield printed wiring board is usually a base film in which a printed circuit and an insulating film are sequentially provided on a base film, an adhesive layer, a shield layer laminated on the adhesive layer, and the adhesive layer And a shielding film that covers the base film so that the adhesive layer is in contact with the base film.
The printed circuit includes a ground circuit, and the ground circuit is electrically connected to the casing of the electronic device in order to obtain a ground.
As described above, in the base film of the shield printed wiring board, the insulating film is provided on the printed circuit including the ground circuit. The base film is covered with a shield film having an insulating layer.
Therefore, in order to electrically connect the ground circuit and the casing of the electronic device, it is necessary to make holes in advance in part of the insulating film and the shield film.
This has been a factor that hinders the degree of freedom in designing a printed circuit.
特許文献1には、セパレートフィルムの片面にカバーフィルムをコーティングして形成し、前記カバーフィルムの表面に金属薄膜層と接着剤層とで構成されるシールド層を設け、一端側に、前記カバーフィルムに押し付けられて前記カバーフィルムを突き抜けて前記シールド層に接続される突起を有し、他端側が露出してその近傍のグランド部に接続可能に形成されたグランド部材を有しているシールドフィルムが開示されている。
特許文献1に記載のシールドフィルムを作製する際には、グランド部材の突起がカバーフィルムを突き抜けるように、グランド部材が、カバーフィルムに押し付けられる。そのため、グランド部材は、シールドフィルムの任意の位置に配置することができる。
このようなシールドフィルムを用いて、シールドプリント配線板を製造すると、任意の位置で、グランド回路と、電子機器の筐体を電気的に接続することができる。
In Patent Document 1, a cover film is coated on one side of a separate film, a shield layer composed of a metal thin film layer and an adhesive layer is provided on the surface of the cover film, and the cover film is provided on one end side. A shield film having a ground member formed so as to be connected to the ground portion near the other end side exposed, having a protrusion that is pressed against the cover film and is connected to the shield layer through the cover film It is disclosed.
When producing the shield film described in Patent Document 1, the ground member is pressed against the cover film so that the projection of the ground member penetrates the cover film. Therefore, the ground member can be disposed at an arbitrary position of the shield film.
When a shield printed wiring board is manufactured using such a shield film, the ground circuit and the housing of the electronic device can be electrically connected at an arbitrary position.
特許第4201548号公報Japanese Patent No. 4201548
シールドプリント配線板は、部品を実装するために、はんだリフロー工程等において、繰り返し加熱され、冷却されることになる。
特許文献1に記載されたシールドプリント配線板に部品を実装する際に、このように加熱及び冷却を繰り返すと、熱膨張熱収縮による体積変化が原因で、グランド部材の突起と、シールド層との接続が損なわれ抵抗値が上昇するという現象が生じることがあった。
In order to mount components, the shield printed wiring board is repeatedly heated and cooled in a solder reflow process or the like.
When mounting the component on the shield printed wiring board described in Patent Document 1, if heating and cooling are repeated in this manner, the change in volume due to thermal expansion and thermal shrinkage causes the protrusion of the ground member and the shield layer to In some cases, the connection is damaged and the resistance value increases.
本発明は、上記問題点を解決するためになされた発明であり、本発明の目的は、任意の位置に配置できるグランド部材であって、該グランド部材を用いたシールドプリント配線板に、加熱及び冷却を繰り返して部品を実装する際に、グランド部材の導電性突起とシールドフィルムのシールド層との間にずれが生じにくいグランド部材を提供することである。 The present invention is an invention made to solve the above-described problems, and an object of the present invention is a ground member that can be disposed at an arbitrary position, and a shield printed wiring board using the ground member is heated and An object of the present invention is to provide a ground member that is less likely to be displaced between the conductive protrusions of the ground member and the shield layer of the shield film when the components are mounted by repeating cooling.
すなわち、本発明のグランド部材は、第1主面と、上記第1主面の反対側の第2主面とを有し、かつ、導電性を有する外部接続部材からなり、上記第1主面には導電性突起があるグランド部材であって、上記導電性突起の表面には、低融点金属層が形成されていることを特徴とする。 That is, the ground member of the present invention has a first main surface and a second main surface opposite to the first main surface, and is composed of an external connection member having conductivity, and the first main surface. Is a ground member having conductive protrusions, and a low melting point metal layer is formed on the surface of the conductive protrusions.
本発明のグランド部材は、基体フィルムとシールドフィルムとからなるシールドプリント配線板に使用されることになる。
まず、シールドプリント配線板の構成について説明する。
シールドプリント配線板において、基体フィルムは、ベースフィルム上にグランド回路を含むプリント回路と絶縁フィルムとを順次設けて形成されるフィルムである。
また、シールドフィルムは、シールド層、及び、シールド層に積層された絶縁層からなるフィルムである。
そして、シールドプリント配線板では、シールドフィルムのシールド層が絶縁層より基体フィルム側に配置されるように、シールドフィルムが基体フィルムを被覆している。
本発明のグランド部材は、本発明のグランド部材の導電性突起がシールドフィルムの絶縁層を貫くように、シールドプリント配線板に押し付けられて配置されることになる。
また、このように本発明のグランド部材をシールドプリント配線板に配置する際、シールドプリント配線板のシールドフィルムの絶縁層に孔等をあらかじめ設ける必要がなく、任意の位置に本発明のグランド部材を配置することができる。
The ground member of the present invention is used for a shield printed wiring board composed of a base film and a shield film.
First, the configuration of the shield printed wiring board will be described.
In the shield printed wiring board, the base film is a film formed by sequentially providing a printed circuit including a ground circuit and an insulating film on a base film.
The shield film is a film composed of a shield layer and an insulating layer laminated on the shield layer.
In the shield printed wiring board, the shield film covers the base film so that the shield layer of the shield film is disposed closer to the base film than the insulating layer.
The ground member of the present invention is disposed by being pressed against the shield printed wiring board so that the conductive protrusion of the ground member of the present invention penetrates the insulating layer of the shield film.
Further, when the ground member of the present invention is arranged on the shield printed wiring board as described above, it is not necessary to provide a hole or the like in the insulating layer of the shield film of the shield printed wiring board in advance, and the ground member of the present invention is placed at an arbitrary position. Can be arranged.
また、本発明のグランド部材では、導電性突起の表面には、低融点金属層が形成されている。
本発明のグランド部材をシールドプリント配線板に配置する際や、配置した後にシールドプリント配線板に部品を実装する部品実装工程では加熱も行われる。この加熱により低融点金属層が軟化し、グランド部材の導電性突起とシールドフィルムのシールド層との密着性を向上させることができる。
そのため、本発明のグランド部材が用いられたシールドプリント配線板に、加熱及び冷却を繰り返して部品を実装したとしても、グランド部材の導電性突起と、シールドフィルムのシールド層との間にずれが生じにくい。
In the ground member of the present invention, a low melting point metal layer is formed on the surface of the conductive protrusion.
When the ground member of the present invention is arranged on the shield printed wiring board or in the component mounting process for mounting the component on the shield printed wiring board after the arrangement, heating is also performed. By this heating, the low melting point metal layer is softened, and the adhesion between the conductive protrusion of the ground member and the shield layer of the shield film can be improved.
Therefore, even if the component is mounted by repeatedly heating and cooling the shield printed wiring board using the ground member of the present invention, a deviation occurs between the conductive protrusion of the ground member and the shield layer of the shield film. Hateful.
本発明のグランド部材では、上記低融点金属層は、融点が300℃以下の金属により形成されていることが望ましい。
低融点金属層が、融点が300℃以下の金属により形成されていると、グランド部材をシールドプリント配線板に配置する際に、容易に低融点金属層が軟化し、グランド部材の導電性突起と、シールドフィルムのシールド層との密着性を好適に向上させることができる。
低融点金属層が、融点が300℃を超える金属により形成されていると、グランド部材をシールドプリント配線板に配置する際の加熱温度が高くなる。そのため、グランド部材や、シールドプリント配線板が熱によるダメージを受けやすくなる。
In the ground member of the present invention, the low melting point metal layer is preferably formed of a metal having a melting point of 300 ° C. or lower.
When the low melting point metal layer is formed of a metal having a melting point of 300 ° C. or lower, the low melting point metal layer is easily softened when the ground member is placed on the shield printed wiring board, and the conductive protrusion of the ground member The adhesion of the shield film with the shield layer can be preferably improved.
When the low melting point metal layer is formed of a metal having a melting point exceeding 300 ° C., the heating temperature when the ground member is arranged on the shield printed wiring board becomes high. Therefore, the ground member and the shield printed wiring board are easily damaged by heat.
本発明のグランド部材では、上記低融点金属層の厚さは、0.1~50μmであることが望ましい。
低融点金属層の厚さが、0.1μm未満であると、低融点金属層を構成する金属の量が少ないので、グランド部材をシールドプリント配線板に配置する際に、グランド部材の導電性突起と、シールドフィルムのシールド層との密着性が向上しにくくなる。
低融点金属層の厚さが、50μmを超えると、低融点金属層が厚いため、グランド部材の導電性突起が太くなる。そのため、グランド部材をシールドプリント配線板に配置する際に、シールドフィルムの絶縁層を貫きにくくなる。
In the ground member of the present invention, the thickness of the low melting point metal layer is preferably 0.1 to 50 μm.
When the thickness of the low melting point metal layer is less than 0.1 μm, the amount of metal constituting the low melting point metal layer is small. Therefore, when the ground member is placed on the shield printed wiring board, the conductive protrusion of the ground member And it becomes difficult to improve adhesiveness with the shield layer of a shield film.
When the thickness of the low melting point metal layer exceeds 50 μm, the low melting point metal layer is thick, so that the conductive protrusion of the ground member becomes thick. Therefore, when arrange | positioning a ground member on a shield printed wiring board, it becomes difficult to penetrate the insulating layer of a shield film.
本発明のグランド部材では、上記低融点金属層は、フラックスを含むことが望ましい。
低融点金属層がフラックスを含むことにより、低融点金属層を構成する金属が軟化する際に、低融点金属層を構成する金属と、グランド部材の導電性突起、及び、シールドフィルムのシールド層とが密着しやすくなる。
その結果、グランド部材の導電性突起と、シールドフィルムのシールド層との密着性をより向上させることができる。
In the ground member of the present invention, it is desirable that the low melting point metal layer contains a flux.
When the metal constituting the low melting point metal layer is softened by including the flux in the low melting point metal layer, the metal constituting the low melting point metal layer, the conductive protrusion of the ground member, and the shield layer of the shield film, Becomes easier to adhere.
As a result, the adhesion between the conductive protrusion of the ground member and the shield layer of the shield film can be further improved.
本発明のグランド部材では、上記外部接続部材は、銅、アルミニウム、銀、金、ニッケル、クロム、チタン、亜鉛及びステンレス鋼からなる群から選択される少なくとも1種を含むことが望ましい。
これらの材料は、グランド部材と外部グランドとを電気的に接続するために適した材料である。
In the ground member of the present invention, the external connection member preferably includes at least one selected from the group consisting of copper, aluminum, silver, gold, nickel, chromium, titanium, zinc, and stainless steel.
These materials are suitable for electrically connecting the ground member and the external ground.
本発明のグランド部材では、上記第2主面には、耐腐食層が形成されていることが望ましい。
グランド部材の第2主面に耐腐食層が形成されていると、グランド部材が腐食することを防止することができる。
In the ground member of the present invention, it is desirable that a corrosion-resistant layer is formed on the second main surface.
When the corrosion-resistant layer is formed on the second main surface of the ground member, the ground member can be prevented from being corroded.
本発明のグランド部材では、上記耐腐食層は、ニッケル、金、銀、白金、パラジウム、ロジウム、イリジウム、ルテニウム、オスミウム及びこれらの合金からなる群から選択される少なくとも1種を含むことが望ましい。
これらの材料は腐食しにくい。そのため、これらの材料は、本発明のグランド部材の耐腐食層に適した材料である。
In the ground member of the present invention, it is desirable that the corrosion-resistant layer contains at least one selected from the group consisting of nickel, gold, silver, platinum, palladium, rhodium, iridium, ruthenium, osmium, and alloys thereof.
These materials are not susceptible to corrosion. Therefore, these materials are materials suitable for the corrosion-resistant layer of the ground member of the present invention.
本発明のグランド部材では、上記導電性突起は柱状であってもよい。
導電性突起が柱状であると、グランド部材をシールドフィルムの絶縁層に押し付ける際に、絶縁層を貫きやすくなる。
In the ground member of the present invention, the conductive protrusions may be columnar.
When the conductive protrusions are columnar, it is easy to penetrate the insulating layer when the ground member is pressed against the insulating layer of the shield film.
本発明のグランド部材では、上記導電性突起の底面の面積は、1.0~1.0×10μmであることが望ましい。
導電性突起の底面の面積が1.0μm未満であると、導電性突起の強度が弱くなり、導電性突起が折れやすくなる。導電性突起が折れると、導電性突起と外部接続部材との電気的接続が切れてしまう。また、このように細い導電性突起を形成することは技術的に難しい。
導電性突起の底面の面積が1.0×10μmを超えると、導電性突起が太すぎるので、グランド部材をシールドプリント配線板に配置する際に、シールドフィルムの絶縁層を貫きにくくなる。
In the ground member of the present invention, the area of the bottom surface of the conductive protrusion is preferably 1.0 to 1.0 × 10 6 μm 2 .
When the area of the bottom surface of the conductive protrusion is less than 1.0 μm 2 , the strength of the conductive protrusion becomes weak and the conductive protrusion is easily broken. When the conductive protrusion is broken, the electrical connection between the conductive protrusion and the external connection member is broken. In addition, it is technically difficult to form such thin conductive protrusions.
When the area of the bottom surface of the conductive protrusion exceeds 1.0 × 10 6 μm 2 , the conductive protrusion is too thick, so that it is difficult to penetrate the insulating layer of the shield film when the ground member is disposed on the shield printed wiring board. .
本発明のグランド部材では、上記導電性突起同士のピッチは、1~1000μmであることが望ましい。
導電性突起同士のピッチが1μm未満であるグランド部材は、作製することが技術的に難しい。
導電性突起同士のピッチが1000μmを超えると、導電性突起の密度が低くなり、導電性突起と、シールドフィルムのシールド層との総接触面積が小さくなる。そのため、導電性突起と、シールドフィルムのシールド層との密着性が低下しやすくなる。
In the ground member of the present invention, the pitch between the conductive protrusions is preferably 1 to 1000 μm.
It is technically difficult to produce a ground member in which the pitch between the conductive protrusions is less than 1 μm.
When the pitch between the conductive protrusions exceeds 1000 μm, the density of the conductive protrusions decreases, and the total contact area between the conductive protrusions and the shield layer of the shield film decreases. Therefore, the adhesiveness between the conductive protrusion and the shield layer of the shield film tends to be lowered.
本発明のグランド部材では、上記外部接続部材は上記第1主面側が突出するように屈曲しており、突出した上記外部接続部材の一部が上記導電性突起となっていてもよい。
このような形状のグランド部材は、外部接続部材を折り曲げるだけで容易に作製することができる。
In the ground member of the present invention, the external connection member may be bent so that the first main surface side protrudes, and a part of the protruded external connection member may be the conductive protrusion.
The ground member having such a shape can be easily manufactured simply by bending the external connection member.
本発明のシールドプリント配線板は、ベースフィルム上にグランド回路を含むプリント回路と絶縁フィルムとを順次設けてなる基体フィルムと、シールド層、及び、上記シールド層に積層された絶縁層からなり、上記シールド層が上記絶縁層よりも上記基体フィルム側に配置されるように上記基体フィルムを被覆するシールドフィルムと、上記シールドフィルムの絶縁層の上に配置されたグランド部材とを備えるシールドプリント配線板であって、上記グランド部材は、第1主面と、上記第1主面の反対側の第2主面とを有し、かつ、導電性を有する外部接続部材と、上記第1主面側に配置された導電性突起とからなり、上記導電性突起の表面には、低融点金属層が形成されており、上記グランド部材の導電性突起は、上記シールドフィルムの絶縁層を貫いており、上記グランド部材の低融点金属層は、上記シールドフィルムのシールド層に接続しており、上記グランド部材の外部接続部材は、外部グランドと電気的に接続可能になっていることを特徴とする。 The shield printed wiring board of the present invention comprises a base film in which a printed circuit including a ground circuit and an insulating film are sequentially provided on a base film, a shield layer, and an insulating layer laminated on the shield layer. A shield printed wiring board comprising: a shield film that covers the base film so that the shield layer is disposed closer to the base film than the insulating layer; and a ground member that is disposed on the insulating layer of the shield film. The ground member has a first main surface and a second main surface opposite to the first main surface, and has a conductive external connection member and the first main surface side. A low melting point metal layer is formed on the surface of the conductive protrusion, and the conductive protrusion of the ground member is formed of the shield film. The insulating layer penetrates, the low melting point metal layer of the ground member is connected to the shield layer of the shield film, and the external connection member of the ground member can be electrically connected to the external ground. It is characterized by that.
本発明のシールドプリント配線板には、第1主面と、上記第1主面の反対側の第2主面とを有し、かつ、導電性を有する外部接続部材と、上記第1主面側に配置された導電性突起とからなり、上記導電性突起の表面には、低融点金属層が形成されているグランド部材、すなわち、本発明のグランド部材が用いられている。従って、本発明のシールドプリント配線板に、加熱及び冷却を繰り返して部品を実装したとしても、グランド部材の導電性突起と、シールドフィルムのシールド層との間にずれが生じにくい。 The shield printed wiring board of the present invention has a first main surface and a second main surface opposite to the first main surface, and has an external connection member having conductivity, and the first main surface. A ground member having a low melting point metal layer formed on the surface of the conductive protrusion, that is, the ground member of the present invention is used. Therefore, even if heating and cooling are repeated and components are mounted on the shield printed wiring board of the present invention, it is difficult for deviation to occur between the conductive protrusions of the ground member and the shield layer of the shield film.
本発明のシールドプリント配線板では、上記シールドフィルムは、接着剤層と、上記接着剤層に積層された上記シールド層と、上記シールド層に積層された上記絶縁層とからなり、上記シールドフィルムの接着剤層は、上記基体フィルムと接触していることが望ましい。
シールドフィルムが接着剤層を有すると、シールドプリント配線板の製造時に、容易にシールドフィルムを基体フィルムに接着させることができる。
In the shield printed wiring board of the present invention, the shield film includes an adhesive layer, the shield layer laminated on the adhesive layer, and the insulating layer laminated on the shield layer. It is desirable that the adhesive layer is in contact with the base film.
When the shield film has an adhesive layer, the shield film can be easily adhered to the base film during the production of the shield printed wiring board.
本発明のシールドプリント配線板では、上記シールドフィルムの接着剤層は、導電性接着剤層であることが望ましい。
シールドフィルムの接着剤層が導電性接着剤層であると、グランド部材の導電性突起が、シールドフィルムの絶縁層を貫通することで、グランド部材の導電性突起と導電性接着剤層とが接触し、グランド部材の外部接続部材と基体フィルムのグランド回路とを電気的に接続することができる。
In the shield printed wiring board of the present invention, the adhesive layer of the shield film is preferably a conductive adhesive layer.
When the adhesive layer of the shield film is a conductive adhesive layer, the conductive protrusion of the ground member penetrates the insulating layer of the shield film, so that the conductive protrusion of the ground member and the conductive adhesive layer contact each other. In addition, the external connection member of the ground member and the ground circuit of the base film can be electrically connected.
本発明のシールドプリント配線板では、上記シールドフィルムのシールド層は、金属からなることが望ましい。
金属は、電磁波をシールドするシールド層として好適に機能を発揮する。
In the shield printed wiring board of the present invention, the shield layer of the shield film is preferably made of metal.
The metal suitably functions as a shield layer that shields electromagnetic waves.
本発明のシールドプリント配線板において、上記シールドフィルムでは、上記接着剤層と上記シールド層との間及び/又は上記シールド層と上記絶縁層との間にはシールドフィルムの低融点金属層が形成されており、上記シールドフィルムの低融点金属層は、上記グランド部材の導電性突起と接続していることが望ましい。
このような構成であると、グランド部材の導電性突起とシールドフィルムのシールド層との密着性や、グランド部材の導電性突起とシールドフィルムの接着剤層との密着性を向上させることができる。
In the shield printed wiring board of the present invention, in the shield film, a low melting point metal layer of the shield film is formed between the adhesive layer and the shield layer and / or between the shield layer and the insulating layer. The low melting point metal layer of the shield film is preferably connected to the conductive protrusion of the ground member.
With such a configuration, the adhesion between the conductive protrusion of the ground member and the shield layer of the shield film and the adhesion between the conductive protrusion of the ground member and the adhesive layer of the shield film can be improved.
本発明のシールドプリント配線板では、上記シールドフィルムのシールド層は、導電性接着剤層であり、上記導電性接着剤層は、上記基体フィルムと接触していてもよい。
シールド層が導電性接着剤層である場合、シールド層は、シールドフィルムを基体フィルムに接着するための機能と、電磁波をシールドする機能の両方を備えることになる。
In the shield printed wiring board of the present invention, the shield layer of the shield film is a conductive adhesive layer, and the conductive adhesive layer may be in contact with the base film.
When the shield layer is a conductive adhesive layer, the shield layer has both a function for adhering the shield film to the base film and a function for shielding electromagnetic waves.
本発明のシールドプリント配線板において、上記シールド層と上記絶縁層との間にはシールドフィルムの低融点金属層が形成されており、上記シールドフィルムの低融点金属層は、上記グランド部材の導電性突起と接続していることが望ましい。
このような構成であると、グランド部材の導電性突起とシールドフィルムのシールド層との密着性を向上させることができる。
In the shielded printed wiring board of the present invention, a low melting point metal layer of a shield film is formed between the shield layer and the insulating layer, and the low melting point metal layer of the shield film is a conductive material of the ground member. It is desirable to connect with the protrusion.
With such a configuration, the adhesion between the conductive protrusion of the ground member and the shield layer of the shield film can be improved.
本発明のシールドプリント配線板の製造方法は、ベースフィルム上にグランド回路を含むプリント回路と絶縁フィルムとを順次設けてなる基体フィルムと、シールド層、及び、上記シールド層に積層された絶縁層を有するシールドフィルムと、上記シールドフィルムの絶縁層の上に配置された上記本発明のグランド部材とを備えるシールドプリント配線板の製造方法であって、上記シールドフィルムの絶縁層より上記基体フィルム側に上記シールドフィルムのシールド層が配置されるように、上記シールドフィルムを上記基体フィルムに載置するシールドフィルム載置工程と、上記グランド部材の導電性突起が上記シールドフィルムの絶縁層側を向くように、上記グランド部材を前記シールドフィルムに配置するグランド部材配置工程と、上記グランド部材の導電性突起が上記シールドフィルムの絶縁層を貫通するように上記グランド部材を加圧する加圧工程と、上記グランド部材の低融点金属層を上記シールドフィルムのシールド層に接続させるために、上記グランド部材の低融点金属層を加熱して軟化させる加熱工程と、を有することを特徴とする。 The method for producing a shield printed wiring board according to the present invention includes a base film in which a printed circuit including a ground circuit and an insulating film are sequentially provided on a base film, a shield layer, and an insulating layer laminated on the shield layer. A shield printed wiring board comprising a shield film having the above and a ground member of the present invention disposed on an insulating layer of the shield film, wherein the substrate film side is more than the insulating layer of the shield film. A shield film placing step of placing the shield film on the base film so that the shield layer of the shield film is disposed, and the conductive protrusions of the ground member face the insulating layer side of the shield film, A ground member disposing step of disposing the ground member on the shield film; In order to connect the low-melting point metal layer of the ground member to the shield layer of the shield film, a pressurizing step of pressurizing the ground member so that the conductive protrusion of the ground member penetrates the insulating layer of the shield film, And a heating step of heating and softening the low melting point metal layer of the ground member.
上記本発明のグランド部材を用いることにより、本発明のシールドプリント配線板を製造することができる。 By using the ground member of the present invention, the shield printed wiring board of the present invention can be manufactured.
本発明のシールドプリント配線板の製造方法では、上記加圧工程及び上記加熱工程を同時に行ってもよい。
これら工程を同時に行うことにより、製造効率を向上させることができる。
In the manufacturing method of the shield printed wiring board of this invention, you may perform the said pressurization process and the said heating process simultaneously.
Manufacturing efficiency can be improved by performing these processes simultaneously.
本発明のシールドプリント配線板の製造方法では、上記シールドフィルムは、接着剤層と、上記接着剤層に積層された上記シールド層と、上記シールド層に積層された上記絶縁層とからなることが望ましい。
シールドフィルムが接着剤層を有すると、シールドフィルム載置工程において、容易にシールドフィルムを基体フィルムに接着させることができる。
In the method for manufacturing a shield printed wiring board according to the present invention, the shield film may include an adhesive layer, the shield layer laminated on the adhesive layer, and the insulating layer laminated on the shield layer. desirable.
When the shield film has an adhesive layer, the shield film can be easily adhered to the base film in the shield film placing step.
本発明のシールドプリント配線板の製造方法では、上記シールドフィルムの接着剤層は、導電性接着剤層であることが望ましい。
シールドフィルムの接着剤層が導電性接着剤層であると、シールドフィルムの絶縁層にグランド部材の導電性突起を貫通させることで、グランド部材の導電性突起と導電性接着剤層とを接触させることができ、グランド部材の外部接続部材と基体フィルムのグランド回路とを電気的に接続することができる。
In the manufacturing method of the shield printed wiring board of this invention, it is desirable that the adhesive bond layer of the said shield film is a conductive adhesive layer.
If the adhesive layer of the shield film is a conductive adhesive layer, the conductive protrusions of the ground member are brought into contact with each other by passing the conductive protrusions of the ground member through the insulating layer of the shield film. The external connection member of the ground member and the ground circuit of the base film can be electrically connected.
本発明のシールドプリント配線板の製造方法では、上記シールドフィルムのシールド層は、金属からなることが望ましい。
金属は、電磁波をシールドするシールド層として好適に機能を発揮する。
In the manufacturing method of the shield printed wiring board of this invention, it is desirable for the shield layer of the said shield film to consist of metals.
The metal suitably functions as a shield layer that shields electromagnetic waves.
本発明のシールドプリント配線板の製造方法では、上記シールドフィルムにおいて、上記接着剤層と上記シールド層との間及び/又は上記シールド層と上記絶縁層との間にはシールドフィルムの低融点金属層が形成されており、上記加熱工程では、上記シールドフィルムの低融点金属層を軟化させて、上記グランド部材の導電性突起と接続させることが望ましい。
このようにすることで、グランド部材の導電性突起とシールドフィルムのシールド層との密着性や、グランド部材の導電性突起とシールドフィルムの接着剤層との密着性を向上させることができる。
In the method for producing a shield printed wiring board according to the present invention, in the shield film, a low melting point metal layer of the shield film is provided between the adhesive layer and the shield layer and / or between the shield layer and the insulating layer. In the heating step, the low melting point metal layer of the shield film is preferably softened and connected to the conductive protrusion of the ground member.
By doing in this way, the adhesiveness of the electroconductive protrusion of a ground member and the shield layer of a shield film and the adhesiveness of the electroconductive protrusion of a ground member and the adhesive bond layer of a shield film can be improved.
本発明のシールドプリント配線板の製造方法では、上記シールドフィルムのシールド層は、導電性接着剤層であってもよい。
シールド層が導電性接着剤層であると、シールド層は、シールドフィルムを基体フィルムに接着するための機能と、電磁波をシールドする機能の両方を備えることになる。
In the method for producing a shield printed wiring board of the present invention, the shield layer of the shield film may be a conductive adhesive layer.
When the shield layer is a conductive adhesive layer, the shield layer has both a function for adhering the shield film to the base film and a function for shielding electromagnetic waves.
本発明のシールドプリント配線板の製造方法では、上記シールドフィルムにおいて、上記シールド層と上記絶縁層との間にはシールドフィルムの低融点金属層が形成されており、上記加熱工程では、上記シールドフィルムの低融点金属層を軟化させて、上記グランド部材の導電性突起と接続させることが望ましい。
このようにすることで、グランド部材の導電性突起とシールドフィルムのシールド層との密着性を向上させることができる。
In the shield printed wiring board manufacturing method of the present invention, in the shield film, a low melting point metal layer of the shield film is formed between the shield layer and the insulating layer. In the heating step, the shield film It is desirable to soften the low melting point metal layer and connect it to the conductive protrusion of the ground member.
By doing in this way, the adhesiveness of the electroconductive protrusion of a ground member and the shield layer of a shield film can be improved.
本発明のグランド部材をシールドプリント配線板に配置する際、シールドプリント配線板のシールドフィルムの絶縁層に孔等をあらかじめ設ける必要がなく、任意の位置に本発明のグランド部材を配置することができる。
また、本発明のグランド部材が用いられたシールドプリント配線板に、加熱及び冷却を繰り返して部品を実装する際に、グランド部材の導電性突起と、シールドフィルムのシールド層や接着剤層との間にずれが生じることを防止することができる。
When the ground member of the present invention is disposed on the shield printed wiring board, it is not necessary to previously provide a hole or the like in the insulating layer of the shield film of the shield printed wiring board, and the ground member of the present invention can be disposed at an arbitrary position. .
In addition, when a component is mounted by repeatedly heating and cooling the shield printed wiring board using the ground member of the present invention, the gap between the conductive protrusion of the ground member and the shield layer or adhesive layer of the shield film Can be prevented from occurring.
図1は、本発明のグランド部材の一例を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing an example of the ground member of the present invention. 図2は、本発明のグランド部材が使用されるシールドプリント配線板の一例を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing an example of a shield printed wiring board in which the ground member of the present invention is used. 図3(a)及び(b)は、本発明のグランド部材が、シールドプリント配線板に使用される場合の一例を模式的に示す模式図である。FIGS. 3A and 3B are schematic views schematically showing an example in which the ground member of the present invention is used in a shield printed wiring board. 図4(a)~(d)は、本発明のグランド部材の製造方法の一例を工程順に模式的に示す工程図である。4 (a) to 4 (d) are process diagrams schematically showing an example of the manufacturing method of the ground member of the present invention in the order of processes. 本発明のシールドプリント配線板の製造方法のシールドフィルム載置工程の一例を模式的に示す工程図である。It is process drawing which shows typically an example of the shield film mounting process of the manufacturing method of the shield printed wiring board of this invention. 図6は、本発明のシールドプリント配線板の製造方法のグランド部材配置工程の一例を模式的に示す工程図である。FIG. 6 is a process chart schematically showing an example of a ground member arranging process in the method for manufacturing a shield printed wiring board according to the present invention. 図7は、本発明のシールドプリント配線板の製造方法の加圧工程の一例を模式的に示す工程図である。FIG. 7 is a process diagram schematically showing an example of a pressurizing process of the method for manufacturing a shield printed wiring board according to the present invention. 図8は、本発明のシールドプリント配線板の製造方法の加熱工程の一例を模式的に示す工程図である。FIG. 8 is a process diagram schematically showing an example of a heating process of the method for manufacturing a shield printed wiring board of the present invention. 図9(a)及び(b)は、本発明のグランド部材が使用されるシールドプリント配線板の製造方法の一例を模式的に示す図である。FIGS. 9A and 9B are diagrams schematically showing an example of a method for manufacturing a shield printed wiring board in which the ground member of the present invention is used. 図10は、本発明のグランド部材が使用されるシールドプリント配線板の一例を模式的に示す断面図である。FIG. 10 is a cross-sectional view schematically showing an example of a shield printed wiring board in which the ground member of the present invention is used. 図11は、本発明のグランド部材が、シールドプリント配線板に使用される場合の一例を模式的に示す模式図である。FIG. 11 is a schematic view schematically showing an example of the case where the ground member of the present invention is used for a shield printed wiring board. 図12は、本発明のグランド部材が使用されるシールドプリント配線板の一例を模式的に示す断面図である。FIG. 12 is a cross-sectional view schematically showing an example of a shield printed wiring board in which the ground member of the present invention is used. 図13は、本発明のグランド部材が、シールドプリント配線板に使用される場合の一例を模式的に示す模式図である。FIG. 13 is a schematic view schematically showing an example of the case where the ground member of the present invention is used for a shield printed wiring board. 図14は、本発明のグランド部材が使用されるシールドプリント配線板の一例を模式的に示す断面図である。FIG. 14 is a cross-sectional view schematically showing an example of a shield printed wiring board in which the ground member of the present invention is used. 図15は、本発明のグランド部材が、シールドプリント配線板に使用される場合の一例を模式的に示す模式図である。FIG. 15 is a schematic view schematically showing an example in which the ground member of the present invention is used for a shield printed wiring board. 図16は、本発明のグランド部材の一例を模式的に示す断面図である。FIG. 16 is a cross-sectional view schematically showing an example of the ground member of the present invention. 図17は、本発明のグランド部材が、シールドプリント配線板に使用される場合の一例を模式的に示す模式図である。FIG. 17 is a schematic view schematically showing an example of the case where the ground member of the present invention is used for a shield printed wiring board. 図18は、加熱冷却による電気抵抗値の変化の測定試験の結果を示すグラフである。FIG. 18 is a graph showing the results of a measurement test of changes in electrical resistance value due to heating and cooling.
以下、本発明のグランド部材について具体的に説明する。しかしながら、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。 Hereinafter, the ground member of the present invention will be specifically described. However, the present invention is not limited to the following embodiments, and can be applied with appropriate modifications without departing from the scope of the present invention.
(第一実施形態)
まず、本発明の第一実施形態に係るグランド部材について説明する。
図1は、本発明のグランド部材の一例を模式的に示す断面図である。
図1に示すように、グランド部材1は、第1主面11と、第1主面11の反対側の第2主面12とを有し、かつ、導電性を有する外部接続部材10を備えている。
また、第1主面11には、導電性突起20が形成されている。
さらに、導電性突起20の表面には、低融点金属層21が形成されている。
(First embodiment)
First, the ground member according to the first embodiment of the present invention will be described.
FIG. 1 is a cross-sectional view schematically showing an example of the ground member of the present invention.
As shown in FIG. 1, the ground member 1 includes a first main surface 11 and a second main surface 12 opposite to the first main surface 11 and includes an external connection member 10 having conductivity. ing.
In addition, conductive protrusions 20 are formed on the first main surface 11.
Further, a low melting point metal layer 21 is formed on the surface of the conductive protrusion 20.
グランド部材1は、基体フィルムとシールドフィルムとからなるシールドプリント配線板に使用されることになる。 The ground member 1 is used for a shield printed wiring board composed of a base film and a shield film.
以下、シールドプリント配線板の構成について図面を用いて説明する。
図2は、本発明のグランド部材が使用されるシールドプリント配線板の一例を模式的に示す断面図である。
Hereinafter, the configuration of the shield printed wiring board will be described with reference to the drawings.
FIG. 2 is a cross-sectional view schematically showing an example of a shield printed wiring board in which the ground member of the present invention is used.
図2に示すように、シールドプリント配線板50は、基体フィルム60とシールドフィルム70とからなる。
シールドプリント配線板50において、基体フィルム60は、ベースフィルム61上にグランド回路62aを含むプリント回路62と絶縁フィルム63とを順次設けてなるフィルムである。
また、シールドフィルム70は、接着剤層71、接着剤層71に積層されたシールド層72、及び、シールド層72に積層された絶縁層73からなるフィルムである。
そして、シールドプリント配線板50では、シールドフィルム70の接着剤層71が基体フィルム60と接するように、シールドフィルム70が基体フィルム60を被覆している。
なお、シールドフィルム70の接着剤層71は導電性接着剤層である。
As shown in FIG. 2, the shield printed wiring board 50 includes a base film 60 and a shield film 70.
In the shield printed wiring board 50, the base film 60 is a film in which a printed circuit 62 including a ground circuit 62 a and an insulating film 63 are sequentially provided on a base film 61.
The shield film 70 is a film including an adhesive layer 71, a shield layer 72 laminated on the adhesive layer 71, and an insulating layer 73 laminated on the shield layer 72.
In the shield printed wiring board 50, the shield film 70 covers the base film 60 so that the adhesive layer 71 of the shield film 70 is in contact with the base film 60.
The adhesive layer 71 of the shield film 70 is a conductive adhesive layer.
次に、グランド部材1が、シールドプリント配線板50に使用される場合を、図面を用いて説明する。
図3(a)及び(b)は、本発明のグランド部材が、シールドプリント配線板に使用される場合の一例を模式的に示す模式図である。
図3(a)及び(b)に示すように、グランド部材1は、グランド部材1の導電性突起20がシールドフィルム70の絶縁層73を貫くように、シールドプリント配線板50に押し付けられて配置されることになる。
そして、図3(a)に示すように、グランド部材1の導電性突起20がシールドフィルム70のシールド層72を貫くようにさらにグランド部材1を押し付け、グランド部材1の導電性突起20とシールドフィルム70の接着剤層71とを接触させてもよい。
また、図3(b)に示すように、グランド部材1の導電性突起20を、シールドフィルム70のシールド層72のみと接触させてもよい。
接着剤層71は導電性接着剤層であるので、導電性突起20を接着剤層71及びシールド層72と接触させることにより、又は、導電性突起20をシールド層72と接触させることによりグランド部材1の外部接続部材10と、基体フィルム60のグランド回路62aとを電気的に接続することができる。
また、グランド部材1の外部接続部材10は、外部グランドGNDに接続されることになる。
Next, the case where the ground member 1 is used for the shield printed wiring board 50 will be described with reference to the drawings.
FIGS. 3A and 3B are schematic views schematically showing an example in which the ground member of the present invention is used in a shield printed wiring board.
As shown in FIGS. 3A and 3B, the ground member 1 is disposed by being pressed against the shield printed wiring board 50 so that the conductive protrusion 20 of the ground member 1 penetrates the insulating layer 73 of the shield film 70. Will be.
3A, the ground member 1 is further pressed so that the conductive protrusion 20 of the ground member 1 penetrates the shield layer 72 of the shield film 70, and the conductive protrusion 20 and the shield film of the ground member 1 are pressed. 70 adhesive layers 71 may be brought into contact with each other.
Further, as shown in FIG. 3B, the conductive protrusion 20 of the ground member 1 may be brought into contact with only the shield layer 72 of the shield film 70.
Since the adhesive layer 71 is a conductive adhesive layer, the ground member is obtained by bringing the conductive protrusion 20 into contact with the adhesive layer 71 and the shield layer 72 or by bringing the conductive protrusion 20 into contact with the shield layer 72. 1 external connection member 10 and the ground circuit 62a of the base film 60 can be electrically connected.
In addition, the external connection member 10 of the ground member 1 is connected to the external ground GND.
このようにグランド部材1をシールドプリント配線板50に配置するので、シールドプリント配線板50のシールドフィルム70の絶縁層73に孔等をあらかじめ設ける必要がなく、任意の位置にグランド部材1を配置することができる。 Since the ground member 1 is arranged on the shield printed wiring board 50 in this way, it is not necessary to previously provide a hole or the like in the insulating layer 73 of the shield film 70 of the shield printed wiring board 50, and the ground member 1 is arranged at an arbitrary position. be able to.
また、グランド部材1では、導電性突起20の表面には、低融点金属層21が形成されている。
グランド部材1を、シールドプリント配線板50に配置する際や、配置した後の部品実装工程では加熱も行われる。この加熱により低融点金属層21が軟化し、グランド部材1の導電性突起20とシールドフィルム70のシールド層72との密着性や、グランド部材1の導電性突起20とシールドフィルム70の接着剤層71との密着性を向上させることができる。
そのため、グランド部材1が用いられたシールドプリント配線板50に、加熱及び冷却を繰り返して部品を実装したとしても、グランド部材1の導電性突起20と、シールドフィルム70のシールド層72や接着剤層71との間にずれが生じにくい。その結果、基体フィルム60のグランド回路62a-外部グランドGND間の電気抵抗の増加を抑えることができる。
なお、シールド層72を構成する金属と、導電性突起20の表面の低融点金属層21を構成する金属とが合金を形成できる場合、これらが合金を形成することで、グランド部材1の導電性突起20とシールドフィルム70のシールド層72との密着性がより向上する。
In the ground member 1, a low melting point metal layer 21 is formed on the surface of the conductive protrusion 20.
Heating is also performed when the ground member 1 is arranged on the shield printed wiring board 50 or in the component mounting process after the arrangement. By this heating, the low melting point metal layer 21 is softened, and the adhesiveness between the conductive protrusion 20 of the ground member 1 and the shield layer 72 of the shield film 70 or the adhesive layer of the conductive protrusion 20 of the ground member 1 and the shield film 70. Adhesiveness with 71 can be improved.
Therefore, even if the component is mounted by repeatedly heating and cooling the shield printed wiring board 50 using the ground member 1, the conductive protrusion 20 of the ground member 1, the shield layer 72 of the shield film 70, and the adhesive layer Deviation from 71 is unlikely to occur. As a result, an increase in electrical resistance between the ground circuit 62a of the base film 60 and the external ground GND can be suppressed.
In addition, when the metal which comprises the shield layer 72, and the metal which comprises the low melting-point metal layer 21 of the surface of the electroconductive protrusion 20 can form an alloy, these form an alloy, and the electroconductivity of the ground member 1 is formed. The adhesion between the protrusion 20 and the shield layer 72 of the shield film 70 is further improved.
なお、低融点金属層21は、グランド部材1の導電性突起20をシールド層72と接続させた後、シールドプリント配線板に部品を実装させる工程で軟化させてもよい。
例えば、部品を実装させるためにはんだを用いる場合には、はんだリフロー工程を行うことになる。この場合、リフロー時の熱によって低融点金属層21を軟化させることができる。
The low melting point metal layer 21 may be softened in a process of mounting components on the shield printed wiring board after the conductive protrusions 20 of the ground member 1 are connected to the shield layer 72.
For example, when solder is used to mount a component, a solder reflow process is performed. In this case, the low melting point metal layer 21 can be softened by heat during reflow.
グランド部材1では、低融点金属層21は、融点が300℃以下の金属により形成されていることが望ましい。
低融点金属層21が、融点が300℃以下の金属により形成されていると、グランド部材1をシールドプリント配線板50に配置する際に、容易に低融点金属層21が軟化し、グランド部材1の導電性突起20と、シールドフィルム70のシールド層72や接着剤層71との密着性を好適に向上させることができる。
低融点金属層が、融点が300℃を超える金属により形成されていると、グランド部材をシールドプリント配線板に配置する際の加熱温度が高くなる。そのため、グランド部材や、シールドプリント配線板が熱によるダメージを受けやすくなる。
In the ground member 1, the low melting point metal layer 21 is preferably formed of a metal having a melting point of 300 ° C. or lower.
When the low melting point metal layer 21 is formed of a metal having a melting point of 300 ° C. or lower, the low melting point metal layer 21 is easily softened when the ground member 1 is disposed on the shield printed wiring board 50, and the ground member 1 The adhesion between the conductive protrusions 20 and the shield layer 72 and the adhesive layer 71 of the shield film 70 can be suitably improved.
When the low melting point metal layer is formed of a metal having a melting point exceeding 300 ° C., the heating temperature when the ground member is arranged on the shield printed wiring board becomes high. Therefore, the ground member and the shield printed wiring board are easily damaged by heat.
グランド部材1では、低融点金属層21を形成する金属は、特に限定されないが、インジウム、錫、鉛及びビスマスからなる群から選択される少なくとも1種を含むことが望ましい。
これらの金属は、低融点金属層21を形成する上で、適した融点及び導電性を備える。
In the ground member 1, the metal forming the low melting point metal layer 21 is not particularly limited, but desirably includes at least one selected from the group consisting of indium, tin, lead, and bismuth.
These metals have a melting point and conductivity suitable for forming the low melting point metal layer 21.
グランド部材1では、低融点金属層21の厚さは、0.1~50μmであることが望ましい。
低融点金属層の厚さが、0.1μm未満であると、低融点金属層を形成する金属の量が少ないので、グランド部材をシールドプリント配線板に配置する際に、グランド部材の導電性突起と、シールドフィルムのシールド層や接着剤層との密着性が向上しにくくなる。
低融点金属層の厚さが、50μmを超えると、低融点金属層が厚いため、グランド部材の導電性突起が太くなる。そのため、グランド部材をシールドプリント配線板に配置する際に、シールドフィルムの絶縁層を貫きにくくなる。
In the ground member 1, the thickness of the low melting point metal layer 21 is preferably 0.1 to 50 μm.
When the thickness of the low melting point metal layer is less than 0.1 μm, the amount of metal that forms the low melting point metal layer is small. Therefore, when the ground member is placed on the shield printed wiring board, the conductive protrusion of the ground member And the adhesiveness with the shield layer and adhesive bond layer of a shield film becomes difficult to improve.
When the thickness of the low melting point metal layer exceeds 50 μm, the low melting point metal layer is thick, so that the conductive protrusion of the ground member becomes thick. Therefore, when arrange | positioning a ground member on a shield printed wiring board, it becomes difficult to penetrate the insulating layer of a shield film.
グランド部材1では、低融点金属層21は、フラックスを含むことが望ましい。
低融点金属層21がフラックスを含むことにより、低融点金属層21を構成する金属が軟化する際に、低融点金属層21を構成する金属と、グランド部材1の導電性突起20、及び、シールドフィルム70のシールド層72や接着剤層71とが密着しやすくなる。
その結果、グランド部材1の導電性突起20と、シールドフィルム70のシールド層72や接着剤層71との密着性をより向上させることができる。
In the ground member 1, the low melting point metal layer 21 preferably includes a flux.
When the metal constituting the low melting point metal layer 21 is softened by including the flux in the low melting point metal layer 21, the metal constituting the low melting point metal layer 21, the conductive protrusion 20 of the ground member 1, and the shield The shield layer 72 and the adhesive layer 71 of the film 70 are easily adhered.
As a result, the adhesion between the conductive protrusion 20 of the ground member 1 and the shield layer 72 and the adhesive layer 71 of the shield film 70 can be further improved.
フラックスとしては、特に限定されないが、多価カルボン酸、乳酸、クエン酸、オレイン酸、ステアリン酸、グルタミン酸、安息香酸、グリセリン、ロジン等公知のものを用いることができる。 Although it does not specifically limit as a flux, Well-known things, such as polyhydric carboxylic acid, lactic acid, a citric acid, oleic acid, a stearic acid, glutamic acid, benzoic acid, glycerol, rosin, can be used.
グランド部材1では、外部接続部材10は、銅、アルミニウム、銀、金、ニッケル、クロム、チタン、亜鉛及びステンレス鋼からなる群から選択される少なくとも1種を含むことが望ましい。
これらの材料は、グランド部材1と外部グランドGNDとを電気的に接続するために適した材料である。
In the ground member 1, the external connection member 10 preferably includes at least one selected from the group consisting of copper, aluminum, silver, gold, nickel, chromium, titanium, zinc, and stainless steel.
These materials are materials suitable for electrically connecting the ground member 1 and the external ground GND.
低融点金属層21が錫又はその合金からなる場合、導電性突起20の表面には、ニッケルが存在することが望ましい。すなわち、導電性突起20の表面がニッケル層で覆われ、その上に低融点金属層21があることが望ましい。
低融点金属層21が錫又はその合金からなる場合、低融点金属層21と導電性突起20の表面の金属が合金を形成することがある。
しかし、導電性突起20の表面にニッケルが存在することで、低融点金属層21を構成する錫が導電性突起20を構成する金属と合金を形成することを防ぐことができる。その結果、低融点金属層21を構成する錫が効率良くシールド層と合金を形成することができる。そのため、低融点金属層21に用いる錫の量を少なくすることができる。
When the low-melting-point metal layer 21 is made of tin or an alloy thereof, nickel is desirably present on the surface of the conductive protrusion 20. That is, it is desirable that the surface of the conductive protrusion 20 is covered with a nickel layer, and the low melting point metal layer 21 is provided thereon.
When the low melting point metal layer 21 is made of tin or an alloy thereof, the low melting point metal layer 21 and the metal on the surface of the conductive protrusion 20 may form an alloy.
However, the presence of nickel on the surface of the conductive protrusion 20 can prevent the tin constituting the low melting point metal layer 21 from forming an alloy with the metal constituting the conductive protrusion 20. As a result, tin constituting the low melting point metal layer 21 can efficiently form an alloy with the shield layer. Therefore, the amount of tin used for the low melting point metal layer 21 can be reduced.
グランド部材1では、第2主面12には、耐腐食層が形成されていることが望ましい。
グランド部材1の第2主面12に耐腐食層が形成されていると、グランド部材1が腐食することを防止することができる。
In the ground member 1, it is desirable that a corrosion-resistant layer is formed on the second main surface 12.
When the corrosion-resistant layer is formed on the second main surface 12 of the ground member 1, the ground member 1 can be prevented from corroding.
グランド部材1では、耐腐食層は、ニッケル、金、銀、白金、パラジウム、ロジウム、イリジウム、ルテニウム、オスミウム及びこれらの合金からなる群から選択される少なくとも1種を含むことが望ましい。
これらの材料は腐食しにくい。そのため、これらの材料は、グランド部材1の耐腐食層に適した材料である。
In the ground member 1, it is desirable that the corrosion-resistant layer contains at least one selected from the group consisting of nickel, gold, silver, platinum, palladium, rhodium, iridium, ruthenium, osmium, and alloys thereof.
These materials are not susceptible to corrosion. Therefore, these materials are materials suitable for the corrosion-resistant layer of the ground member 1.
グランド部材1では、導電性突起20は柱状であってもよく、例えば、円柱、楕円柱、三角柱、四角柱、五角柱、六角柱、八角柱等であってもよい。
導電性突起20が柱状であると、グランド部材1をシールドフィルム70の絶縁層73に押し付ける際に、絶縁層73を貫きやすくなる。
In the ground member 1, the conductive protrusion 20 may be columnar, and may be, for example, a cylinder, an elliptical column, a triangular column, a quadrangular column, a pentagonal column, a hexagonal column, an octagonal column, or the like.
When the conductive protrusions 20 are columnar, the insulating member 73 can be easily penetrated when the ground member 1 is pressed against the insulating layer 73 of the shield film 70.
グランド部材1では、導電性突起20の底面の面積は、1.0~1.0×10μmであることが望ましい。
導電性突起の底面の面積が1.0μm未満であると、導電性突起の強度が弱くなり、導電性突起が折れやすくなる。導電性突起が折れると、導電性突起と外部接続部材との電気的接続が切れてしまう。そのため、基体フィルムのグランド回路-外部グランド間の電気抵抗が高くなりやすい。また、このように細い導電性突起を形成することは技術的に難しい。
導電性突起の底面の面積が1.0×10μmを超えると、導電性突起が太すぎるので、グランド部材をシールドプリント配線板に配置する際に、シールドフィルムの絶縁層を貫きにくくなる。
In the ground member 1, the area of the bottom surface of the conductive protrusion 20 is preferably 1.0 to 1.0 × 10 6 μm 2 .
When the area of the bottom surface of the conductive protrusion is less than 1.0 μm 2 , the strength of the conductive protrusion becomes weak and the conductive protrusion is easily broken. When the conductive protrusion is broken, the electrical connection between the conductive protrusion and the external connection member is broken. Therefore, the electrical resistance between the ground circuit of the base film and the external ground tends to increase. In addition, it is technically difficult to form such thin conductive protrusions.
When the area of the bottom surface of the conductive protrusion exceeds 1.0 × 10 6 μm 2 , the conductive protrusion is too thick, so that it is difficult to penetrate the insulating layer of the shield film when the ground member is disposed on the shield printed wiring board. .
グランド部材1では、導電性突起同士のピッチは、1~1000μmであることが望ましい。
導電性突起同士のピッチが1μm未満であるグランド部材は、作製することが技術的に難しい。
導電性突起同士のピッチが1000μmを超えると、導電性突起の密度が低くなり、導電性突起と、シールドフィルムのシールド層や接着剤層との総接触面積が小さくなる。そのため、基体フィルムのグランド回路-外部グランド間の電気抵抗が高くなりやすくなる。
In the ground member 1, the pitch between the conductive protrusions is preferably 1 to 1000 μm.
It is technically difficult to produce a ground member in which the pitch between the conductive protrusions is less than 1 μm.
When the pitch between the conductive protrusions exceeds 1000 μm, the density of the conductive protrusions decreases, and the total contact area between the conductive protrusions and the shield layer or adhesive layer of the shield film decreases. Therefore, the electrical resistance between the ground circuit of the base film and the external ground tends to increase.
次に、本発明のグランド部材の製造方法の一例を説明する。
本発明のグランド部材の製造方法は、(1)基体準備工程、(2)導電性突起形成工程、及び、(3)低融点金属層形成工程を含む。
Next, an example of the manufacturing method of the ground member of this invention is demonstrated.
The method for producing a ground member of the present invention includes (1) a base preparation step, (2) a conductive protrusion forming step, and (3) a low melting point metal layer forming step.
以下、各工程について図面を用いて説明する。
図4(a)~(d)は、本発明のグランド部材の製造方法の一例を工程順に模式的に示す工程図である。
Hereinafter, each process will be described with reference to the drawings.
4 (a) to 4 (d) are process diagrams schematically showing an example of the manufacturing method of the ground member of the present invention in the order of processes.
(1)基体準備工程
まず、図4(a)に示すように、グランド部材の基体となる金属箔2を準備する。
金属箔2は、上記グランド部材の外部接続部材の材料の説明において説明した金属であることが望ましい。
(1) Base Preparation Step First, as shown in FIG. 4A, a metal foil 2 that serves as a base of a ground member is prepared.
The metal foil 2 is desirably the metal described in the description of the material of the external connection member of the ground member.
(2)導電性突起形成工程
次に、図4(b)に示すように、金属箔2の一方の主面を、導電性突起を形成するためのエッチングレジスト91によりマスクする。
(2) Conductive Protrusion Formation Step Next, as shown in FIG. 4B, one main surface of the metal foil 2 is masked with an etching resist 91 for forming conductive protrusions.
次に、図4(c)に示すように、金属箔2をエッチングする。
エッチングに用いるエッチング液としては、金属箔の素材等に合わせ適宜選択することが望ましい。
例えば、金属箔が銅箔である場合、エッチング液としては、過硫酸ナトリウム水溶液、過酸化水素水と硫酸の混合液、塩化鉄水溶液、塩化銅水溶液等を用いることが望ましい。
本工程によりグランド部材1の外部接続部材10及び導電性突起20を形成することができる。
Next, as shown in FIG. 4C, the metal foil 2 is etched.
It is desirable that the etching solution used for etching is appropriately selected according to the material of the metal foil.
For example, when the metal foil is a copper foil, it is desirable to use an aqueous sodium persulfate solution, a mixed solution of hydrogen peroxide and sulfuric acid, an aqueous iron chloride solution, an aqueous copper chloride solution, or the like as the etching solution.
By this step, the external connection member 10 and the conductive protrusion 20 of the ground member 1 can be formed.
(3)低融点金属層形成工程
次に、図4(d)に示すように、導電性突起20の表面に低融点金属層21を形成する。
低融点金属層21を形成する方法は特に限定されないが、めっき法等を採用することができる。
例えば、外部接続部材10及び導電性突起20が銅からなり、錫をめっきする場合、無電解めっきや電解めっきを用いることができる。
(3) Low Melting Point Metal Layer Formation Step Next, as shown in FIG. 4D, a low melting point metal layer 21 is formed on the surface of the conductive protrusion 20.
A method for forming the low melting point metal layer 21 is not particularly limited, but a plating method or the like can be employed.
For example, when the external connection member 10 and the conductive protrusions 20 are made of copper and plated with tin, electroless plating or electrolytic plating can be used.
以上の工程を経て、グランド部材1を製造することができる。 The ground member 1 can be manufactured through the above steps.
次に、グランド部材1を用いたシールドプリント配線板の製造方法を説明する。
なお、このシールドプリント配線板の製造方法は、本発明のシールドプリント配線板の製造方法の一例でもある。
Next, a method for manufacturing a shield printed wiring board using the ground member 1 will be described.
In addition, the manufacturing method of this shield printed wiring board is also an example of the manufacturing method of the shield printed wiring board of this invention.
本発明のシールドプリント配線板の製造方法は、ベースフィルム上にグランド回路を含むプリント回路と絶縁フィルムとを順次設けてなる基体フィルムと、シールド層、及び、上記シールド層に積層された絶縁層を有するシールドフィルムと、上記シールドフィルムの絶縁層の上に配置された上記グランド部材1とを備えるシールドプリント配線板の製造方法であって、(1)シールドフィルム載置工程、(2)グランド部材配置工程、(3)加圧工程、及び、(4)加熱工程を含む。 The method for producing a shield printed wiring board according to the present invention includes a base film in which a printed circuit including a ground circuit and an insulating film are sequentially provided on a base film, a shield layer, and an insulating layer laminated on the shield layer. It is a manufacturing method of the shield printed wiring board provided with the shield film which has and the said ground member 1 arrange | positioned on the insulating layer of the said shield film, Comprising: (1) Shield film mounting process, (2) Ground member arrangement | positioning A step, (3) a pressurizing step, and (4) a heating step.
以下、各工程について図面を用いて説明する。
図5は、本発明のシールドプリント配線板の製造方法のシールドフィルム載置工程の一例を模式的に示す工程図である。
図6は、本発明のシールドプリント配線板の製造方法のグランド部材配置工程の一例を模式的に示す工程図である。
図7は、本発明のシールドプリント配線板の製造方法の加圧工程の一例を模式的に示す工程図である。
図8は、本発明のシールドプリント配線板の製造方法の加熱工程の一例を模式的に示す工程図である。
Hereinafter, each process will be described with reference to the drawings.
FIG. 5 is a process chart schematically showing an example of a shield film placing process in the method for producing a shield printed wiring board of the present invention.
FIG. 6 is a process chart schematically showing an example of a ground member arranging process in the method for manufacturing a shield printed wiring board according to the present invention.
FIG. 7 is a process diagram schematically showing an example of a pressurizing process of the method for manufacturing a shield printed wiring board according to the present invention.
FIG. 8 is a process diagram schematically showing an example of a heating process of the method for manufacturing a shield printed wiring board of the present invention.
(1)シールドフィルム載置工程
本工程では、まず、ベースフィルム61上にグランド回路62aを含むプリント回路62と絶縁フィルム63とを順次設けてなる基体フィルム60を準備する。
また、導電性接着剤層である接着剤層71、接着剤層71に積層されたシールド層72、及び、シールド層72に積層された絶縁層73からなるシールドフィルム70も準備する。
そして、図5に示すように、基体フィルム60上にシールドフィルム70の接着剤層71が接するようにシールドフィルム70を載置し、シールドプリント配線板50(図6参照)を作製する。
(1) Shielding film placing step In this step, first, a base film 60 is prepared in which a printed circuit 62 including a ground circuit 62a and an insulating film 63 are sequentially provided on a base film 61.
In addition, a shield film 70 including an adhesive layer 71 which is a conductive adhesive layer, a shield layer 72 laminated on the adhesive layer 71, and an insulating layer 73 laminated on the shield layer 72 is also prepared.
And as shown in FIG. 5, the shield film 70 is mounted so that the adhesive bond layer 71 of the shield film 70 may contact | connect on the base film 60, and the shield printed wiring board 50 (refer FIG. 6) is produced.
基体フィルム60を構成するベースフィルム61及び絶縁フィルム63の材料は、特に限定されないが、エンジニアリングプラスチックからなることが望ましい。このようなエンジニアリングプラスチックとしては、例えば、ポリエチレンテレフタレート、ポリプロピレン、架橋ポリエチレン、ポリエステル、ポリベンズイミダゾール、ポリイミド、ポリイミドアミド、ポリエーテルイミド、ポリフェニレンサルファイドなどの樹脂が挙げられる。
また、これらのエンジニアリングプラスチックの内、難燃性が要求される場合には、ポリフェニレンサルファイドフィルムが望ましく、耐熱性が要求される場合にはポリイミドフィルムが望ましい。なお、ベースフィルム61の厚みは、10~40μmであることが望ましく、絶縁フィルム63の厚みは、10~30μmであることが望ましい。
The materials of the base film 61 and the insulating film 63 constituting the base film 60 are not particularly limited, but are preferably made of engineering plastic. Examples of such engineering plastics include resins such as polyethylene terephthalate, polypropylene, crosslinked polyethylene, polyester, polybenzimidazole, polyimide, polyimide amide, polyether imide, and polyphenylene sulfide.
Of these engineering plastics, a polyphenylene sulfide film is desirable when flame retardancy is required, and a polyimide film is desirable when heat resistance is required. The thickness of the base film 61 is desirably 10 to 40 μm, and the thickness of the insulating film 63 is desirably 10 to 30 μm.
また、絶縁フィルム63には、プリント回路62の一部を露出させるための穴部63aが形成されている。
穴部63aの形成方法は特に限定されず、レーザー加工等の従来の方法を採用することができる。
The insulating film 63 has a hole 63a for exposing a part of the printed circuit 62.
The method for forming the hole 63a is not particularly limited, and a conventional method such as laser processing can be employed.
シールドフィルム70の接着剤層71は、樹脂と導電性微粒子とからなる導電性接着剤層である。 The adhesive layer 71 of the shield film 70 is a conductive adhesive layer made of a resin and conductive fine particles.
接着剤層71を構成する樹脂としては、特に限定されないが、アクリル系樹脂、エポキシ系樹脂、シリコン系樹脂、熱可塑性エラストマ系樹脂、ゴム系樹脂、ポリエステル系樹脂、ウレタン系樹脂等であることが望ましい。
また、接着剤層71には、脂肪酸炭化水素樹脂、C5/C9混合樹脂、ロジン、ロジン誘導体、テルペン樹脂、芳香族系炭化水素樹脂、熱反応性樹脂等の粘着性付与剤が含まれていてもよい。これら粘着性付与剤が含まれていると、接着剤層71の粘着性を向上させることができる。
The resin constituting the adhesive layer 71 is not particularly limited, but may be an acrylic resin, an epoxy resin, a silicon resin, a thermoplastic elastomer resin, a rubber resin, a polyester resin, a urethane resin, or the like. desirable.
The adhesive layer 71 contains tackifiers such as fatty acid hydrocarbon resins, C5 / C9 mixed resins, rosin, rosin derivatives, terpene resins, aromatic hydrocarbon resins, and heat-reactive resins. Also good. When these tackifiers are contained, the tackiness of the adhesive layer 71 can be improved.
接着剤層71を構成する導電性微粒子としては、特に限定されないが、銅粉、銀粉、ニッケル粉、銀コート銅粉(AgコートCu粉)、金コート銅粉、銀コートニッケル粉(AgコートNi粉)、金コートニッケル粉があり、これら金属粉は、アトマイズ法、カルボニル法などにより作製することができる。また、上記以外にも、金属粉に樹脂を被覆した粒子、樹脂に金属粉を被覆した粒子を用いることもできる。なお、導電性微粒子は、AgコートCu粉、又は、AgコートNi粉であることが好ましい。この理由は、安価な材料により導電性の安定した導電性微粒子を得ることができるからである。
なお、導電性微粒子の形状は、球状に限定される必要はなく、例えば、樹枝状、フレーク状、スパイク状、棒状、繊維状、針状等であってもよい。また、導電性微粒子の表面には、低融点金属層を設けることができる。この場合の低融点金属層には、上記したものを使用することができる。
Although it does not specifically limit as electroconductive fine particles which comprise the adhesive bond layer 71, Copper powder, silver powder, nickel powder, silver coat copper powder (Ag coat Cu powder), gold coat copper powder, silver coat nickel powder (Ag coat Ni) Powder) and gold-coated nickel powder, and these metal powders can be produced by an atomizing method, a carbonyl method or the like. In addition to the above, particles obtained by coating a metal powder with a resin and particles obtained by coating a resin with a metal powder can also be used. The conductive fine particles are preferably Ag-coated Cu powder or Ag-coated Ni powder. This is because conductive fine particles having stable conductivity can be obtained with an inexpensive material.
The shape of the conductive fine particles is not necessarily limited to a spherical shape, and may be, for example, a dendritic shape, a flake shape, a spike shape, a rod shape, a fiber shape, a needle shape, or the like. A low melting point metal layer can be provided on the surface of the conductive fine particles. As the low melting point metal layer in this case, those described above can be used.
シールドフィルム70の接着剤層71は導電性接着剤層であるので、グランド部材1の導電性突起20が、シールドフィルム70の絶縁層73を貫通することで、グランド部材1の導電性突起20とシールドフィルム70のシールド層72及び接着剤層71とが接触し、又は、グランド部材1の導電性突起20とシールドフィルム70のシールド層72とが接触しグランド部材1の外部接続部材10と基体フィルム60のグランド回路62aとを電気的に接続することができる。 Since the adhesive layer 71 of the shield film 70 is a conductive adhesive layer, the conductive protrusion 20 of the ground member 1 penetrates the insulating layer 73 of the shield film 70, so that the conductive protrusion 20 of the ground member 1 The shield layer 72 and the adhesive layer 71 of the shield film 70 are in contact with each other, or the conductive protrusion 20 of the ground member 1 and the shield layer 72 of the shield film 70 are in contact with each other, and the external connection member 10 of the ground member 1 and the base film. 60 ground circuits 62a can be electrically connected.
さらに、接着剤層71は異方導電性接着剤層であってもよく、等方導電性接着剤層であってもよいが、異方導電性接着剤層であることがより望ましい。
接着剤層71が、異方導電性接着剤層である場合、導電性微粒子は、接着剤層71の全体量に対し3~39重量%の範囲で含まれることが望ましい。また、導電性微粒子の平均粒子径は2~20μmの範囲が望ましいが、異方導電性接着剤層の厚さに応じて最適な大きさを選択することが望ましい。
また、接着剤層71が、等方導電性接着剤層である場合、導電性微粒子は、接着剤層71の全体量に対し39重量%を超えて95重量%以下の範囲で含まれることが望ましい。導電性微粒子の平均粒子径は、異方導電性接着剤層と同様にして選択することができる。
Furthermore, the adhesive layer 71 may be an anisotropic conductive adhesive layer or an isotropic conductive adhesive layer, but is more preferably an anisotropic conductive adhesive layer.
In the case where the adhesive layer 71 is an anisotropic conductive adhesive layer, the conductive fine particles are preferably contained in the range of 3 to 39% by weight with respect to the total amount of the adhesive layer 71. The average particle diameter of the conductive fine particles is desirably in the range of 2 to 20 μm, but it is desirable to select an optimum size according to the thickness of the anisotropic conductive adhesive layer.
Further, when the adhesive layer 71 is an isotropic conductive adhesive layer, the conductive fine particles may be included in the range of more than 39% by weight and 95% by weight or less with respect to the total amount of the adhesive layer 71. desirable. The average particle diameter of the conductive fine particles can be selected in the same manner as in the anisotropic conductive adhesive layer.
シールドフィルム70のシールド層72は、電気信号からの不要輻射や外部からの電磁波などのノイズを遮蔽するシールド効果を示せばどのような材料からなっていてもよい。例えば、シールド層72は、等方導電性樹脂や、金属からなっていてもよい。
シールド層72が金属からなる場合、金属箔や蒸着膜等の金属層であってもよく、層状に形成された導電性粒子の集合体であってもよい。シールド層72が金属層である場合には、金属を構成する材料としては、ニッケル、銅、銀、金、パラジウム、アルミニウム、クロム、チタン、亜鉛及びこれらの合金からなる群から選択される少なくとも1種を含むことが望ましい。
シールド層72が導電性粒子の集合体である場合には、上記した導電性微粒子を用いることができる。
これらの材料は導電性が高くシールド層として適した材料である。
The shield layer 72 of the shield film 70 may be made of any material as long as it exhibits a shielding effect that shields unwanted radiation from electrical signals and noises such as external electromagnetic waves. For example, the shield layer 72 may be made of isotropic conductive resin or metal.
When the shield layer 72 is made of metal, the shield layer 72 may be a metal layer such as a metal foil or a vapor deposition film, or may be an aggregate of conductive particles formed in a layer shape. When the shield layer 72 is a metal layer, the material constituting the metal is at least one selected from the group consisting of nickel, copper, silver, gold, palladium, aluminum, chromium, titanium, zinc, and alloys thereof. It is desirable to include seeds.
When the shield layer 72 is an aggregate of conductive particles, the above-described conductive fine particles can be used.
These materials have high conductivity and are suitable as a shield layer.
シールドフィルム70のシールド層72の厚さとしては、0.01~10μmであることが望ましい。
シールド層の厚さが0.01μm未満では、充分なシールド効果が得られにくい。
シールド層の厚さが10μmを超えると屈曲しにくくなる。
The thickness of the shield layer 72 of the shield film 70 is preferably 0.01 to 10 μm.
If the thickness of the shield layer is less than 0.01 μm, it is difficult to obtain a sufficient shielding effect.
When the thickness of the shield layer exceeds 10 μm, it becomes difficult to bend.
シールドフィルム70の絶縁層73の材料としては、特に限定されないが、エポキシ系樹脂、ポリエステル系樹脂、アクリル系樹脂、フェノール系樹脂、ウレタン系樹脂等であることが望ましい。 The material of the insulating layer 73 of the shield film 70 is not particularly limited, but is preferably an epoxy resin, a polyester resin, an acrylic resin, a phenol resin, a urethane resin, or the like.
シールドフィルム70の絶縁層73の厚さとしては、1~10μmであることが望ましい。 The thickness of the insulating layer 73 of the shield film 70 is preferably 1 to 10 μm.
(2)グランド部材配置工程
本工程では、図6に示すように、グランド部材1の導電性突起20がシールドフィルム70の絶縁層73側を向くように、グランド部材1をシールドフィルム70に配置する。
(2) Ground member placement step In this step, the ground member 1 is placed on the shield film 70 so that the conductive protrusions 20 of the ground member 1 face the insulating layer 73 side of the shield film 70 as shown in FIG. .
(3)加圧工程
本工程では、図7に示すように、グランド部材1の外部接続部材10を基体フィルム60のグランド回路62aと電気的に接続させるために、グランド部材1の導電性突起20がシールドフィルム70の絶縁層73を貫通するようにグランド部材1を加圧する。これにより、グランド部材1の導電性突起20は、シールドフィルム70の接着剤層71及びシールド層72と接触することになる。
加圧の際の圧力は、0.5MPa~10MPaであることが望ましい。
なお、本工程では、グランド部材1の導電性突起20がシールドフィルム70の絶縁層73のみを貫き、グランド部材1の導電性突起20をシールドフィルム70のシールド層72のみと接触させてもよい。
(3) Pressurization process In this process, as shown in FIG. 7, in order to electrically connect the external connection member 10 of the ground member 1 to the ground circuit 62a of the base film 60, the conductive protrusion 20 of the ground member 1 is used. Pressurizes the ground member 1 so as to penetrate the insulating layer 73 of the shield film 70. Thereby, the conductive protrusion 20 of the ground member 1 comes into contact with the adhesive layer 71 and the shield layer 72 of the shield film 70.
The pressure at the time of pressurization is desirably 0.5 MPa to 10 MPa.
In this step, the conductive protrusion 20 of the ground member 1 may penetrate only the insulating layer 73 of the shield film 70, and the conductive protrusion 20 of the ground member 1 may be in contact with only the shield layer 72 of the shield film 70.
(4)加熱工程
本工程では、図8に示すように、グランド部材1の低融点金属層21をシールドフィルム70のシールド層72に接続させるために、グランド部材1の低融点金属層21を加熱して軟化させる。
グランド部材1の低融点金属層21を軟化させる際の温度は、特に限定されないが、100~300℃であることが望ましい。
これにより、グランド部材1の導電性突起20とシールドフィルム70のシールド層72との密着性や、グランド部材1の導電性突起20とシールドフィルム70の接着剤層71との密着性を向上させることができる。
(4) Heating Step In this step, the low melting point metal layer 21 of the ground member 1 is heated to connect the low melting point metal layer 21 of the ground member 1 to the shield layer 72 of the shield film 70 as shown in FIG. And soften.
The temperature at which the low melting point metal layer 21 of the ground member 1 is softened is not particularly limited, but is preferably 100 to 300 ° C.
Thereby, the adhesiveness of the conductive protrusion 20 of the ground member 1 and the shield layer 72 of the shield film 70 and the adhesiveness of the conductive protrusion 20 of the ground member 1 and the adhesive layer 71 of the shield film 70 are improved. Can do.
なお、本発明のシールドプリント配線板の製造方法において、加熱工程は、グランド部材の導電性突起の低融点金属層を軟化させて、シールドフィルムのシールド層と接続させることができれば、どの段階で行ってもよい。
例えば、上記加圧工程と同時に行ってもよく、単独の工程として行ってもよい。
加圧工程と加熱工程とを同時に行うことにより、製造効率を向上させることができる。
In the method for manufacturing a shield printed wiring board according to the present invention, the heating step is performed at any stage as long as the low melting point metal layer of the conductive protrusion of the ground member can be softened and connected to the shield layer of the shield film. May be.
For example, it may be performed simultaneously with the pressurizing step or may be performed as a single step.
Manufacturing efficiency can be improved by performing a pressurization process and a heating process simultaneously.
また、加熱工程は、加圧工程後のシールドプリント配線板に、部品を実装する工程で行ってもよい。例えば、部品を実装させるためにはんだを用いる場合には、はんだリフロー工程を行うことになる。このリフロー工程の、リフロー時の熱によって低融点金属層を軟化させてもよい。この場合、加熱工程と、部品の実装とが同時に行われることになる。 Moreover, you may perform a heating process at the process of mounting components in the shield printed wiring board after a pressurization process. For example, when solder is used to mount a component, a solder reflow process is performed. The low melting point metal layer may be softened by heat during reflow in this reflow step. In this case, the heating process and the component mounting are performed simultaneously.
以上の工程を経て、グランド部材1を備えたシールドプリント配線板50を製造することができる。このように製造されたグランド部材1を備えたシールドプリント配線板50は、本発明のシールドプリント配線板の一例である。 Through the above steps, the shield printed wiring board 50 including the ground member 1 can be manufactured. The shield printed wiring board 50 including the ground member 1 manufactured in this way is an example of the shield printed wiring board of the present invention.
また、上記本発明のシールドプリント配線板の製造方法では、上記シールドフィルム載置工程において、接着剤層とシールド層との間及び/又はシールド層と絶縁層との間に、低融点金属層が形成されたシールドフィルムを準備してもよい。
さらに、加熱工程では、シールドフィルムの低融点金属層を軟化させて、グランド部材の導電性突起と接続させることが望ましい。
このようにすることで、グランド部材の導電性突起とシールドフィルムのシールド層との密着性や、グランド部材の導電性突起とシールドフィルムの接着剤層との密着性を向上させることができる。
Further, in the method for producing a shield printed wiring board according to the present invention, in the shield film placing step, a low melting point metal layer is provided between the adhesive layer and the shield layer and / or between the shield layer and the insulating layer. You may prepare the formed shield film.
Furthermore, in the heating step, it is desirable to soften the low melting point metal layer of the shield film and connect it to the conductive protrusion of the ground member.
By doing in this way, the adhesiveness of the electroconductive protrusion of a ground member and the shield layer of a shield film and the adhesiveness of the electroconductive protrusion of a ground member and the adhesive bond layer of a shield film can be improved.
シールドフィルムの低融点金属層は、融点が300℃以下の金属により形成されていることが望ましい。
シールドフィルムの低融点金属層が、融点が300℃以下の金属により形成されていると、グランド部材をシールドプリント配線板に配置する際に、容易にシールドフィルムの低融点金属層が軟化し、グランド部材の導電性突起と、シールドフィルムのシールド層や接着剤層との密着性を好適に向上させることができる。
The low melting point metal layer of the shield film is preferably formed of a metal having a melting point of 300 ° C. or lower.
When the low melting point metal layer of the shield film is formed of a metal having a melting point of 300 ° C. or lower, the low melting point metal layer of the shield film is easily softened when the ground member is placed on the shield printed wiring board. Adhesiveness between the conductive protrusion of the member and the shield layer or adhesive layer of the shield film can be preferably improved.
また、シールドフィルムの低融点金属層を形成する金属は、特に限定されないが、インジウム、錫、鉛及びビスマスからなる群から選択される少なくとも1種を含むことが望ましい。
これらの金属は、低融点金属層を形成する上で、適した融点及び導電性を備える。
Further, the metal forming the low melting point metal layer of the shield film is not particularly limited, but it is desirable to include at least one selected from the group consisting of indium, tin, lead and bismuth.
These metals have a suitable melting point and conductivity in forming a low melting point metal layer.
また、シールドフィルムの低融点金属層の厚さは、0.1~50μmであることが望ましく、0.1~10μmであることがより望ましい。
低融点金属層の厚さが、0.1μm未満であると、低融点金属層を形成する金属の量が少ないので、グランド部材をシールドプリント配線板に配置する際に、グランド部材の導電性突起と、シールドフィルムのシールド層や導電層との密着性が向上しにくくなる。
シールドフィルムの低融点金属層の厚さが、50μmを超えると、シールドフィルムの低融点金属層が軟化する際に、シールド層が変形しやすくなる。その結果、シールドフィルムのシールド特性が低下しやすくなる。
Further, the thickness of the low melting point metal layer of the shield film is preferably 0.1 to 50 μm, and more preferably 0.1 to 10 μm.
When the thickness of the low melting point metal layer is less than 0.1 μm, the amount of metal that forms the low melting point metal layer is small. Therefore, when the ground member is placed on the shield printed wiring board, the conductive protrusion of the ground member And the adhesiveness with the shield layer and conductive layer of a shield film becomes difficult to improve.
When the thickness of the low melting point metal layer of the shield film exceeds 50 μm, the shield layer is easily deformed when the low melting point metal layer of the shield film is softened. As a result, the shield characteristics of the shield film are likely to deteriorate.
シールドフィルムの低融点金属層は、フラックスを含むことが望ましい。
シールドフィルムの低融点金属層がフラックスを含むことにより、シールドフィルムの低融点金属層を構成する金属が軟化する際に、シールドフィルムの低融点金属層を構成する金属と、グランド部材の導電性突起とが密着しやすくなる。
その結果、シールドフィルムの低融点金属層と、グランド部材の導電性突起との密着性をより向上させることができる。
The low melting point metal layer of the shield film desirably contains a flux.
When the metal constituting the low melting point metal layer of the shield film is softened by the fact that the low melting point metal layer of the shield film contains a flux, the metal constituting the low melting point metal layer of the shield film and the conductive protrusion of the ground member It becomes easy to adhere.
As a result, the adhesion between the low melting point metal layer of the shield film and the conductive protrusion of the ground member can be further improved.
次に、グランド部材1が以下のシールドプリント配線板150に使用される場合について説明する。
図9(a)及び(b)は、本発明のグランド部材が使用されるシールドプリント配線板の製造方法の一例を模式的に示す図である。
図10は、本発明のグランド部材が使用されるシールドプリント配線板の一例を模式的に示す断面図である。
Next, the case where the ground member 1 is used for the following shield printed wiring board 150 will be described.
FIGS. 9A and 9B are diagrams schematically showing an example of a method for manufacturing a shield printed wiring board in which the ground member of the present invention is used.
FIG. 10 is a cross-sectional view schematically showing an example of a shield printed wiring board in which the ground member of the present invention is used.
図9(a)に示すように、シールドプリント配線板150を製造する場合、まず、基体フィルム160にシールドフィルム170が載置される。
基体フィルム160は、ベースフィルム161上にグランド回路162aを含むプリント回路162と絶縁フィルム163とを順次設けてなるフィルムである。
また、シールドフィルム170は、接着剤層171、接着剤層171に積層されたシールド層172、及び、シールド層172に積層された絶縁層173からなるフィルムであり、シールド層172は、凸部172a及び凹部172bを有する波状の形状である。
なお、シールドフィルム170の接着剤層171は、導電性を有していてもよく、有していなくてもよい。
As shown in FIG. 9A, when manufacturing the shield printed wiring board 150, first, the shield film 170 is placed on the base film 160.
The base film 160 is a film in which a printed circuit 162 including a ground circuit 162a and an insulating film 163 are sequentially provided on a base film 161.
The shield film 170 is a film including an adhesive layer 171, a shield layer 172 laminated on the adhesive layer 171, and an insulating layer 173 laminated on the shield layer 172. The shield layer 172 includes a convex portion 172 a. And a wavy shape having a recess 172b.
Note that the adhesive layer 171 of the shield film 170 may or may not have conductivity.
次に、図9(b)に示すように、プレスすることによりシールドプリント配線板150を製造することができる。
このプレスの際に、シールドフィルム170のシールド層172の凸部172aは接着剤層171を押しのけ、基体フィルム160のグランド回路162aに接続されることになる。
Next, as shown in FIG. 9B, the shield printed wiring board 150 can be manufactured by pressing.
During the pressing, the convex portion 172a of the shield layer 172 of the shield film 170 pushes the adhesive layer 171 and is connected to the ground circuit 162a of the base film 160.
このようにして図10に示すようなシールドプリント配線板150を製造することができる。
すなわち、図10に示すように、シールドプリント配線板150は、基体フィルム160とシールドフィルム170とからなる。
シールドプリント配線板150において、基体フィルム160は、ベースフィルム161上にグランド回路162aを含むプリント回路162と絶縁フィルム163とを順次設けてなるフィルムである。
また、シールドフィルム170は、接着剤層171、接着剤層171に積層されたシールド層172、及び、シールド層172に積層された絶縁層173からなるフィルムであり、シールド層172は、凸部172a及び凹部172bを有する波状の形状である。
そして、シールドプリント配線板150では、シールドフィルム170の接着剤層171が基体フィルム160と接するように、シールドフィルム170が基体フィルム160を被覆している。
また、シールド層172の凸部172aの一部は、接着剤層171から露出し、基体フィルム160のグランド回路162aと接触している。
In this way, a shield printed wiring board 150 as shown in FIG. 10 can be manufactured.
That is, as shown in FIG. 10, the shield printed wiring board 150 includes a base film 160 and a shield film 170.
In the shield printed wiring board 150, the base film 160 is a film in which a printed circuit 162 including a ground circuit 162a and an insulating film 163 are sequentially provided on a base film 161.
The shield film 170 is a film including an adhesive layer 171, a shield layer 172 laminated on the adhesive layer 171, and an insulating layer 173 laminated on the shield layer 172. The shield layer 172 includes a convex portion 172 a. And a wavy shape having a recess 172b.
In the shield printed wiring board 150, the shield film 170 covers the base film 160 so that the adhesive layer 171 of the shield film 170 is in contact with the base film 160.
A part of the convex portion 172 a of the shield layer 172 is exposed from the adhesive layer 171 and is in contact with the ground circuit 162 a of the base film 160.
次に、グランド部材1が、シールドプリント配線板150に使用される場合を、図面を用いて説明する。
図11は、本発明のグランド部材が、シールドプリント配線板に使用される場合の一例を模式的に示す模式図である。
図11に示すように、グランド部材1は、グランド部材1の導電性突起20がシールドフィルム170の絶縁層173を貫くように、シールドプリント配線板150に押し付けられて配置されることになる。
そして、グランド部材1の導電性突起20がシールドフィルム170のシールド層172と接触することになる。
Next, the case where the ground member 1 is used for the shield printed wiring board 150 will be described with reference to the drawings.
FIG. 11 is a schematic view schematically showing an example of the case where the ground member of the present invention is used for a shield printed wiring board.
As shown in FIG. 11, the ground member 1 is arranged to be pressed against the shield printed wiring board 150 so that the conductive protrusion 20 of the ground member 1 penetrates the insulating layer 173 of the shield film 170.
Then, the conductive protrusion 20 of the ground member 1 comes into contact with the shield layer 172 of the shield film 170.
上記の通り、シールドフィルム170のシールド層172は、基体フィルム160のグランド回路162aと接触しているので、グランド部材1の外部接続部材10と、基体フィルム160のグランド回路162aとは電気的に接続されることになる。
また、グランド部材1の外部接続部材10は、外部グランドGNDに接続されることになる。
As described above, since the shield layer 172 of the shield film 170 is in contact with the ground circuit 162a of the base film 160, the external connection member 10 of the ground member 1 and the ground circuit 162a of the base film 160 are electrically connected. Will be.
In addition, the external connection member 10 of the ground member 1 is connected to the external ground GND.
このようにグランド部材1をシールドプリント配線板150に配置するので、シールドプリント配線板150のシールドフィルム170の絶縁層173に孔等をあらかじめ設ける必要がなく、任意の位置にグランド部材1を配置することができる。 Since the ground member 1 is arranged on the shield printed wiring board 150 in this way, it is not necessary to previously provide a hole or the like in the insulating layer 173 of the shield film 170 of the shield printed wiring board 150, and the ground member 1 is arranged at an arbitrary position. be able to.
また、グランド部材1では、導電性突起20の表面には、低融点金属層21が形成されている。
グランド部材1を、シールドプリント配線板150に配置する際や、配置した後の部品実装工程では加熱も行われる。この加熱により低融点金属層21が軟化し、グランド部材1の導電性突起20とシールドフィルム170のシールド層172との密着性を向上させることができる。
そのため、グランド部材1が用いられたシールドプリント配線板150に、加熱及び冷却を繰り返して部品を実装したとしても、グランド部材1の導電性突起20と、シールドフィルム170のシールド層172との間にずれが生じにくい。その結果、基体フィルム160のグランド回路162a-外部グランドGND間の電気抵抗の増加を抑えることができる。
In the ground member 1, a low melting point metal layer 21 is formed on the surface of the conductive protrusion 20.
Heating is also performed when the ground member 1 is arranged on the shield printed wiring board 150 or in the component mounting process after the arrangement. By this heating, the low melting point metal layer 21 is softened, and the adhesion between the conductive protrusion 20 of the ground member 1 and the shield layer 172 of the shield film 170 can be improved.
Therefore, even if the component is mounted by repeatedly heating and cooling the shield printed wiring board 150 using the ground member 1, the conductive projection 20 of the ground member 1 and the shield layer 172 of the shield film 170 are interposed between them. Deviation is unlikely to occur. As a result, an increase in electrical resistance between the ground circuit 162a of the base film 160 and the external ground GND can be suppressed.
シールドプリント配線板150において、望ましい基体フィルム160は、上記シールドプリント配線板50の説明で記載した基体フィルム60と同じである。 In the shield printed wiring board 150, a desirable base film 160 is the same as the base film 60 described in the description of the shield printed wiring board 50.
シールドプリント配線板150において、シールドフィルム170を構成するシールド層172及び絶縁層173の望ましい材料は、上記シールドプリント配線板50の説明で記載したシールドフィルム70のシールド層72及び絶縁層73と同じである。 In the shield printed wiring board 150, desirable materials of the shield layer 172 and the insulating layer 173 constituting the shield film 170 are the same as the shield layer 72 and the insulating layer 73 of the shield film 70 described in the description of the shield printed wiring board 50. is there.
シールドプリント配線板150において、シールドフィルム170を構成するシールドフィルム170の接着剤層171の望ましい材料は、特に限定されないが、アクリル系樹脂、エポキシ系樹脂、シリコン系樹脂、熱可塑性エラストマ系樹脂、ゴム系樹脂、ポリエステル系樹脂、ウレタン系樹脂等であることが望ましい。
また、接着剤層171には、脂肪酸炭化水素樹脂、C5/C9混合樹脂、ロジン、ロジン誘導体、テルペン樹脂、芳香族系炭化水素樹脂、熱反応性樹脂等の粘着性付与剤が含まれていてもよい。これら粘着性付与剤が含まれていると、接着剤層171の粘着性を向上させることができる。
In the shield printed wiring board 150, a desirable material for the adhesive layer 171 of the shield film 170 constituting the shield film 170 is not particularly limited, but acrylic resin, epoxy resin, silicon resin, thermoplastic elastomer resin, rubber It is desirable that the resin is a polyester resin, polyester resin, urethane resin, or the like.
The adhesive layer 171 contains tackifiers such as fatty acid hydrocarbon resins, C5 / C9 mixed resins, rosin, rosin derivatives, terpene resins, aromatic hydrocarbon resins, and heat-reactive resins. Also good. When these tackifiers are included, the tackiness of the adhesive layer 171 can be improved.
また、シールドプリント配線板150において、シールドフィルム170では、シールド層172と絶縁層173との間には、シールドフィルム170の低融点金属層が形成されており、シールドフィルム170の低融点金属層は、グランド部材1の導電性突起20と接続していてもよい。
このような構成であると、グランド部材1の導電性突起20とシールドフィルム170のシールド層172との密着性を向上させることができる。
Further, in the shield printed wiring board 150, in the shield film 170, the low melting point metal layer of the shield film 170 is formed between the shield layer 172 and the insulating layer 173, and the low melting point metal layer of the shield film 170 is The conductive protrusion 20 of the ground member 1 may be connected.
With such a configuration, the adhesion between the conductive protrusion 20 of the ground member 1 and the shield layer 172 of the shield film 170 can be improved.
次に、グランド部材1が、以下のシールドプリント配線板250に使用される場合について説明する。
図12は、本発明のグランド部材が使用されるシールドプリント配線板の一例を模式的に示す断面図である。
Next, the case where the ground member 1 is used for the following shield printed wiring board 250 will be described.
FIG. 12 is a cross-sectional view schematically showing an example of a shield printed wiring board in which the ground member of the present invention is used.
図12に示すように、シールドプリント配線板250は、基体フィルム260とシールドフィルム270とからなる。
シールドプリント配線板250において、基体フィルム260は、ベースフィルム261上にグランド回路262aを含むプリント回路262と絶縁フィルム263とを順次設けてなるフィルムである。
また、シールドフィルム270は、接着剤層271、接着剤層271に積層されたシールド層272、及び、シールド層272に積層された絶縁層273からなるフィルムである。
そして、シールドプリント配線板250では、シールドフィルム270の接着剤層271が基体フィルム260と接するように、シールドフィルム270が基体フィルム260を被覆している。
また、シールドフィルム270の接着剤層271は導電性を有さず、プリント回路262とシールド層272は、電気的に接続されていない。
As shown in FIG. 12, the shield printed wiring board 250 includes a base film 260 and a shield film 270.
In the shield printed wiring board 250, the base film 260 is a film in which a printed circuit 262 including a ground circuit 262a and an insulating film 263 are sequentially provided on a base film 261.
The shield film 270 is a film including an adhesive layer 271, a shield layer 272 stacked on the adhesive layer 271, and an insulating layer 273 stacked on the shield layer 272.
In the shield printed wiring board 250, the shield film 270 covers the base film 260 so that the adhesive layer 271 of the shield film 270 is in contact with the base film 260.
Further, the adhesive layer 271 of the shield film 270 does not have conductivity, and the printed circuit 262 and the shield layer 272 are not electrically connected.
次に、グランド部材1が、シールドプリント配線板250に使用される場合を、図面を用いて説明する。
図13は、本発明のグランド部材が、シールドプリント配線板に使用される場合の一例を模式的に示す模式図である。
図13に示すように、グランド部材1は、グランド部材1の導電性突起20がシールドフィルム270の絶縁層273を貫くとともに、シールド層272と接続するように、シールドプリント配線板250に押し付けられて配置されることになる。
これにより、グランド部材1の導電性突起20と、シールドフィルム270のシールド層272とが接触することになる。そのため、グランド部材1の外部接続部材10と、シールドフィルム270のシールド層272とを電気的に接続することができる。
また、グランド部材1の外部接続部材10は、外部グランドGNDに接続されることになる。
Next, the case where the ground member 1 is used for the shield printed wiring board 250 will be described with reference to the drawings.
FIG. 13 is a schematic view schematically showing an example of the case where the ground member of the present invention is used for a shield printed wiring board.
As shown in FIG. 13, the ground member 1 is pressed against the shield printed wiring board 250 so that the conductive protrusion 20 of the ground member 1 penetrates the insulating layer 273 of the shield film 270 and is connected to the shield layer 272. Will be placed.
Thereby, the conductive protrusion 20 of the ground member 1 and the shield layer 272 of the shield film 270 come into contact with each other. Therefore, the external connection member 10 of the ground member 1 and the shield layer 272 of the shield film 270 can be electrically connected.
In addition, the external connection member 10 of the ground member 1 is connected to the external ground GND.
このようにグランド部材1が配置されたシールドプリント配線板250では、シールドフィルム270のシールド層272が外部グランドGNDと電気的に接続されるので、シールド層272は、電磁波を遮へいする電磁波シールドとして好適に作用する。 In the shielded printed wiring board 250 in which the ground member 1 is arranged in this way, the shield layer 272 of the shield film 270 is electrically connected to the external ground GND, so that the shield layer 272 is suitable as an electromagnetic wave shield that shields electromagnetic waves. Act on.
このようにグランド部材1をシールドプリント配線板250に配置するので、シールドプリント配線板250のシールドフィルム270の絶縁層273に孔等をあらかじめ設ける必要がなく、任意の位置にグランド部材1を配置することができる。 Since the ground member 1 is arranged on the shield printed wiring board 250 in this way, it is not necessary to previously provide a hole or the like in the insulating layer 273 of the shield film 270 of the shield printed wiring board 250, and the ground member 1 is arranged at an arbitrary position. be able to.
また、グランド部材1では、導電性突起20の表面には、低融点金属層21が形成されている。
グランド部材1を、シールドプリント配線板250に配置する際や、配置した後の部品実装工程では加熱も行われる。この加熱により低融点金属層21が軟化し、グランド部材1の導電性突起20とシールドフィルム270のシールド層272との密着性を向上させることができる。
そのため、グランド部材1が用いられたシールドプリント配線板250に、加熱及び冷却を繰り返して部品を実装したとしても、グランド部材1の導電性突起20と、シールドフィルム270のシールド層272との間にずれが生じにくい。
In the ground member 1, a low melting point metal layer 21 is formed on the surface of the conductive protrusion 20.
Heating is also performed when the ground member 1 is arranged on the shield printed wiring board 250 or in the component mounting process after the arrangement. By this heating, the low melting point metal layer 21 is softened, and the adhesion between the conductive protrusion 20 of the ground member 1 and the shield layer 272 of the shield film 270 can be improved.
Therefore, even if the component is mounted by repeatedly heating and cooling the shield printed wiring board 250 using the ground member 1, it is between the conductive protrusion 20 of the ground member 1 and the shield layer 272 of the shield film 270. Deviation is unlikely to occur.
また、接着剤層271は導電性微粒子を含んでいないので、接着剤層271の原材料費を低減させることができ、接着剤層271の薄型化が可能である。 Further, since the adhesive layer 271 does not contain conductive fine particles, the raw material cost of the adhesive layer 271 can be reduced, and the adhesive layer 271 can be thinned.
シールドプリント配線板250において、望ましい基体フィルム260は、上記シールドプリント配線板50の説明で記載した基体フィルム60と同じである。 In the shield printed wiring board 250, a desirable base film 260 is the same as the base film 60 described in the description of the shield printed wiring board 50.
シールドプリント配線板250において、シールドフィルム270を構成するシールド層272及び絶縁層273の望ましい材料は、上記シールドプリント配線板50の説明で記載したシールドフィルム70のシールド層72及び絶縁層73と同じである。 In the shield printed wiring board 250, desirable materials for the shield layer 272 and the insulating layer 273 constituting the shield film 270 are the same as the shield layer 72 and the insulating layer 73 of the shield film 70 described in the description of the shield printed wiring board 50. is there.
シールドプリント配線板250において、シールドフィルム270を構成するシールドフィルム270の接着剤層271の望ましい材料は、特に限定されないが、アクリル系樹脂、エポキシ系樹脂、シリコン系樹脂、熱可塑性エラストマ系樹脂、ゴム系樹脂、ポリエステル系樹脂、ウレタン系樹脂等であることが望ましい。
また、接着剤層271には、脂肪酸炭化水素樹脂、C5/C9混合樹脂、ロジン、ロジン誘導体、テルペン樹脂、芳香族系炭化水素樹脂、熱反応性樹脂等の粘着性付与剤が含まれていてもよい。これら粘着性付与剤が含まれていると、接着剤層271の粘着性を向上させることができる。
In the shield printed wiring board 250, a desirable material for the adhesive layer 271 of the shield film 270 constituting the shield film 270 is not particularly limited, but acrylic resin, epoxy resin, silicon resin, thermoplastic elastomer resin, rubber It is desirable that the resin is a polyester resin, a polyester resin, a urethane resin, or the like.
The adhesive layer 271 contains tackifiers such as fatty acid hydrocarbon resins, C5 / C9 mixed resins, rosin, rosin derivatives, terpene resins, aromatic hydrocarbon resins, and heat-reactive resins. Also good. When these tackifiers are contained, the tackiness of the adhesive layer 271 can be improved.
また、シールドプリント配線板250において、シールドフィルム270では、シールド層272と絶縁層273との間には、シールドフィルム270の低融点金属層が形成されており、シールドフィルム270の低融点金属層は、グランド部材1の導電性突起20と接続していてもよい。
このような構成であると、グランド部材1の導電性突起20とシールドフィルム270のシールド層272との密着性を向上させることができる。
Further, in the shield printed wiring board 250, in the shield film 270, the low melting point metal layer of the shield film 270 is formed between the shield layer 272 and the insulating layer 273, and the low melting point metal layer of the shield film 270 is The conductive protrusion 20 of the ground member 1 may be connected.
With such a configuration, the adhesion between the conductive protrusion 20 of the ground member 1 and the shield layer 272 of the shield film 270 can be improved.
次に、グランド部材1が以下のシールドプリント配線板350に使用される場合について説明する。
図14は、本発明のグランド部材が使用されるシールドプリント配線板の一例を模式的に示す断面図である。
Next, the case where the ground member 1 is used for the following shield printed wiring board 350 will be described.
FIG. 14 is a cross-sectional view schematically showing an example of a shield printed wiring board in which the ground member of the present invention is used.
図14に示すように、シールドプリント配線板350は、基体フィルム360とシールドフィルム370とからなる。
シールドプリント配線板350において、基体フィルム360は、ベースフィルム361上にグランド回路362aを含むプリント回路362と絶縁フィルム363とを順次設けてなるフィルムである。
また、シールドフィルム370は、シールド層372、及び、シールド層372に積層された絶縁層373からなるフィルムである。
そして、シールドプリント配線板350では、シールドフィルム370のシールド層372が基体フィルム360と接するように、シールドフィルム370が基体フィルム360を被覆している。
また、シールドフィルム370のシールド層372は、導電性接着剤層である。
As shown in FIG. 14, the shield printed wiring board 350 includes a base film 360 and a shield film 370.
In the shield printed wiring board 350, the base film 360 is a film in which a printed circuit 362 including a ground circuit 362a and an insulating film 363 are sequentially provided on a base film 361.
The shield film 370 is a film including a shield layer 372 and an insulating layer 373 stacked on the shield layer 372.
In the shield printed wiring board 350, the shield film 370 covers the base film 360 so that the shield layer 372 of the shield film 370 is in contact with the base film 360.
The shield layer 372 of the shield film 370 is a conductive adhesive layer.
次に、グランド部材1が、シールドプリント配線板350に使用される場合を、図面を用いて説明する。
図15は、本発明のグランド部材が、シールドプリント配線板に使用される場合の一例を模式的に示す模式図である。
図15に示すように、グランド部材1は、グランド部材1の導電性突起20がシールドフィルム370の絶縁層373を貫くように、シールドプリント配線板350に押し付けられて配置されることになる。
そして、グランド部材1の導電性突起20がシールドフィルム370のシールド層372と接触することになる。
Next, the case where the ground member 1 is used for the shield printed wiring board 350 will be described with reference to the drawings.
FIG. 15 is a schematic view schematically showing an example in which the ground member of the present invention is used for a shield printed wiring board.
As shown in FIG. 15, the ground member 1 is arranged to be pressed against the shield printed wiring board 350 so that the conductive protrusion 20 of the ground member 1 penetrates the insulating layer 373 of the shield film 370.
Then, the conductive protrusion 20 of the ground member 1 comes into contact with the shield layer 372 of the shield film 370.
上記の通り、シールドフィルム370のシールド層372は、基体フィルム360のグランド回路362aと接触しているので、グランド部材1の外部接続部材10と、基体フィルム360のグランド回路362aとは電気的に接続されることになる。
また、グランド部材1の外部接続部材10は、外部グランドGNDに接続されることになる。
As described above, since the shield layer 372 of the shield film 370 is in contact with the ground circuit 362a of the base film 360, the external connection member 10 of the ground member 1 and the ground circuit 362a of the base film 360 are electrically connected. Will be.
In addition, the external connection member 10 of the ground member 1 is connected to the external ground GND.
このようにグランド部材1をシールドプリント配線板350に配置するので、シールドプリント配線板350のシールドフィルム370の絶縁層373に孔等をあらかじめ設ける必要がなく、任意の位置にグランド部材1を配置することができる。 Since the ground member 1 is arranged on the shield printed wiring board 350 in this way, it is not necessary to previously provide a hole or the like in the insulating layer 373 of the shield film 370 of the shield printed wiring board 350, and the ground member 1 is arranged at an arbitrary position. be able to.
また、グランド部材1では、導電性突起20の表面には、低融点金属層21が形成されている。
グランド部材1を、シールドプリント配線板350に配置する際や、配置した後の部品実装工程では加熱も行われる。この加熱により低融点金属層21が軟化し、グランド部材1の導電性突起20とシールドフィルム370のシールド層372との密着性を向上させることができる。
そのため、グランド部材1が用いられたシールドプリント配線板350に、加熱及び冷却を繰り返して部品を実装したとしても、グランド部材1の導電性突起20と、シールドフィルム370のシールド層372との間にずれが生じにくい。その結果、基体フィルム360のグランド回路362a-外部グランドGND間の電気抵抗の増加を抑えることができる。
In the ground member 1, a low melting point metal layer 21 is formed on the surface of the conductive protrusion 20.
Heating is also performed when the ground member 1 is arranged on the shield printed wiring board 350 or in the component mounting process after the arrangement. By this heating, the low melting point metal layer 21 is softened, and the adhesion between the conductive protrusion 20 of the ground member 1 and the shield layer 372 of the shield film 370 can be improved.
Therefore, even if a component is mounted on the shield printed wiring board 350 using the ground member 1 by repeatedly heating and cooling, it is between the conductive protrusion 20 of the ground member 1 and the shield layer 372 of the shield film 370. Deviation is unlikely to occur. As a result, an increase in electrical resistance between the ground circuit 362a of the base film 360 and the external ground GND can be suppressed.
また、シールドプリント配線板350では、シールドフィルム370のシールド層372が導電性接着剤層なので、シールドフィルム370のシールド層372は、シールドフィルム370を基体フィルム360に接着するための機能と、電磁波をシールドする機能の両方を備えることになる。
そのため、基体フィルム360と接着するために接着剤等を用いなくても、シールドフィルム370を容易に基体フィルム360に接着させることができる。
In the shield printed wiring board 350, the shield layer 372 of the shield film 370 is a conductive adhesive layer. Therefore, the shield layer 372 of the shield film 370 has a function for adhering the shield film 370 to the base film 360 and electromagnetic waves. You will have both the ability to shield.
Therefore, the shield film 370 can be easily adhered to the base film 360 without using an adhesive or the like to adhere to the base film 360.
シールドプリント配線板350において、望ましい基体フィルム360は、上記シールドプリント配線板50の説明で記載した基体フィルム60と同じである。 In the shield printed wiring board 350, a desirable base film 360 is the same as the base film 60 described in the description of the shield printed wiring board 50.
シールドプリント配線板350において、シールドフィルム370を構成する絶縁層373の望ましい材料は、上記シールドプリント配線板50の説明で記載したシールドフィルム70の絶縁層73と同じである。 In the shield printed wiring board 350, the desirable material of the insulating layer 373 constituting the shield film 370 is the same as the insulating layer 73 of the shield film 70 described in the description of the shield printed wiring board 50.
シールドプリント配線板350において、シールドフィルム370のシールド層372は、樹脂と導電性微粒子とからなる導電性接着剤層である。 In the shield printed wiring board 350, the shield layer 372 of the shield film 370 is a conductive adhesive layer made of resin and conductive fine particles.
シールド層372を構成する樹脂としては、特に限定されないが、アクリル系樹脂、エポキシ系樹脂、シリコン系樹脂、熱可塑性エラストマ系樹脂、ゴム系樹脂、ポリエステル系樹脂、ウレタン系樹脂等であることが望ましい。
また、シールド層372には、脂肪酸炭化水素樹脂、C5/C9混合樹脂、ロジン、ロジン誘導体、テルペン樹脂、芳香族系炭化水素樹脂、熱反応性樹脂等の粘着性付与剤が含まれていてもよい。これら粘着性付与剤が含まれていると、シールド層372の粘着性を向上させることができる。
The resin constituting the shield layer 372 is not particularly limited, but is preferably an acrylic resin, an epoxy resin, a silicon resin, a thermoplastic elastomer resin, a rubber resin, a polyester resin, a urethane resin, or the like. .
Further, the shield layer 372 may contain tackifiers such as fatty acid hydrocarbon resins, C5 / C9 mixed resins, rosin, rosin derivatives, terpene resins, aromatic hydrocarbon resins, and heat-reactive resins. Good. When these tackifiers are included, the tackiness of the shield layer 372 can be improved.
シールド層372を構成する導電性微粒子としては、特に限定されないが、銅粉、銀粉、ニッケル粉、銀コート銅粉(AgコートCu粉)、金コート銅粉、銀コートニッケル粉(AgコートNi粉)、金コートニッケル粉があり、これら金属粉は、アトマイズ法、カルボニル法などにより作製することができる。また、上記以外にも、金属粉に樹脂を被覆した粒子、樹脂に金属粉を被覆した粒子を用いることもできる。なお、導電性微粒子は、AgコートCu粉、又は、AgコートNi粉であることが好ましい。この理由は、安価な材料により導電性の安定した導電性微粒子を得ることができるからである。
なお、導電性微粒子の形状は、球状に限定される必要はなく、例えば、樹枝状、フレーク状、スパイク状、棒状、繊維状、針状等であってもよい。
Although it does not specifically limit as electroconductive fine particles which comprise the shield layer 372, Copper powder, silver powder, nickel powder, silver coat copper powder (Ag coat Cu powder), gold coat copper powder, silver coat nickel powder (Ag coat Ni powder) ), Gold-coated nickel powder, and these metal powders can be produced by an atomizing method, a carbonyl method, or the like. In addition to the above, particles obtained by coating a metal powder with a resin and particles obtained by coating a resin with a metal powder can also be used. The conductive fine particles are preferably Ag-coated Cu powder or Ag-coated Ni powder. This is because conductive fine particles having stable conductivity can be obtained with an inexpensive material.
The shape of the conductive fine particles is not necessarily limited to a spherical shape, and may be, for example, a dendritic shape, a flake shape, a spike shape, a rod shape, a fiber shape, a needle shape, or the like.
さらに、シールドフィルム370のシールド層372は、等方導電性接着剤層であることが望ましい。
この場合、導電性微粒子は、シールド層の全体量に対し39重量%を超えて95重量%以下の範囲で含まれることが望ましい。導電性微粒子の平均粒子径は、2~20μmであることが望ましい。
Furthermore, the shield layer 372 of the shield film 370 is desirably an isotropic conductive adhesive layer.
In this case, it is desirable that the conductive fine particles are contained in the range of more than 39% by weight and 95% by weight or less with respect to the total amount of the shield layer. The average particle diameter of the conductive fine particles is desirably 2 to 20 μm.
また、シールドプリント配線板350において、シールドフィルム370では、シールド層372と絶縁層373との間には、シールドフィルム370の低融点金属層が形成されていてもよく、シールドフィルム370の低融点金属層は、グランド部材1の導電性突起20と接続していてもよい。
このような構成であると、グランド部材1の導電性突起20とシールドフィルム370のシールド層372との密着性を向上させることができる。
Further, in the shield printed wiring board 350, in the shield film 370, a low melting point metal layer of the shield film 370 may be formed between the shield layer 372 and the insulating layer 373. The layer may be connected to the conductive protrusion 20 of the ground member 1.
With such a configuration, the adhesion between the conductive protrusion 20 of the ground member 1 and the shield layer 372 of the shield film 370 can be improved.
これまで説明した、上記グランド部材1が用いられたシールドプリント配線板150、グランド部材1が用いられたシールドプリント配線板250、及び、グランド部材1が用いられたシールドプリント配線板350は、本発明のシールドプリント配線板の一例である。 The shield printed wiring board 150 using the ground member 1, the shield printed wiring board 250 using the ground member 1, and the shield printed wiring board 350 using the ground member 1 described above are described in the present invention. This is an example of the shield printed wiring board.
また、上記グランド部材1が用いられたシールドプリント配線板150、グランド部材1が用いられたシールドプリント配線板250、又は、グランド部材1が用いられたシールドプリント配線板350は、上記グランド部材1が用いられたシールドプリント配線板50を製造する方法の「(1)シールドフィルム載置工程」において、シールドフィルム70の代わりに、シールドフィルム170、シールドフィルム270、又は、シールドフィルム370を準備することにより、製造することができる。 Further, the shield printed wiring board 150 using the ground member 1, the shield printed wiring board 250 using the ground member 1, or the shield printed wiring board 350 using the ground member 1 is the same as the ground member 1. By preparing the shield film 170, the shield film 270, or the shield film 370 instead of the shield film 70 in the “(1) shield film placement step” of the method of manufacturing the shield printed wiring board 50 used. Can be manufactured.
(第二実施形態)
次に、本発明のグランド部材の別の態様である第二実施形態に係るグランド部材を説明する。
(Second embodiment)
Next, the ground member which concerns on 2nd embodiment which is another aspect of the ground member of this invention is demonstrated.
図16は、本発明のグランド部材の一例を模式的に示す断面図である。
図16に示すように、グランド部材101は、第1主面111と、第1主面111の反対側の第2主面112とを有し、かつ、導電性を有する外部接続部材110からなる。
外部接続部材110は、第1主面111側が突出するように複数回屈曲しており、突出した外部接続部材110の一部が導電性突起120となっている。
さらに、導電性突起120の表面、すなわち、外部接続部材110の第1主面111には、低融点金属層121が形成されている。
FIG. 16 is a cross-sectional view schematically showing an example of the ground member of the present invention.
As shown in FIG. 16, the ground member 101 includes a first main surface 111 and a second main surface 112 opposite to the first main surface 111, and includes a conductive external connection member 110. .
The external connection member 110 is bent a plurality of times so that the first main surface 111 side protrudes, and a part of the protruded external connection member 110 is a conductive protrusion 120.
Furthermore, a low melting point metal layer 121 is formed on the surface of the conductive protrusion 120, that is, on the first main surface 111 of the external connection member 110.
このような形状のグランド部材101は、外部接続部材110を折り曲げるだけで容易に作製することができる。 The ground member 101 having such a shape can be easily manufactured simply by bending the external connection member 110.
グランド部材101における外部接続部材110の望ましい材料、低融点金属層121を形成する望ましい金属等は、上記グランド部材1における外部接続部材10の望ましい材料、低融点金属層21を形成する望ましい金属等と同じである。 Desirable materials for the external connection member 110 in the ground member 101, desirable metals for forming the low melting point metal layer 121, and the like, desirable materials for the external connection member 10 in the ground member 1, desirable metals for forming the low melting point metal layer 21, and the like. The same.
次に、グランド部材101が、上記シールドプリント配線板50に使用される場合を、図面を用いて説明する。
図17は、本発明のグランド部材が、シールドプリント配線板に使用される場合の一例を模式的に示す模式図である。
図17に示すように、グランド部材101は、グランド部材101の導電性突起120がシールドフィルム70の絶縁層73及びシールド層72を貫くように、シールドプリント配線板50に押し付けられて配置されることになる。
そして、グランド部材101の導電性突起120がシールドフィルム70の接着剤層71及びシールド層72と接触することになる。
Next, the case where the ground member 101 is used for the shield printed wiring board 50 will be described with reference to the drawings.
FIG. 17 is a schematic view schematically showing an example of the case where the ground member of the present invention is used for a shield printed wiring board.
As shown in FIG. 17, the ground member 101 is disposed by being pressed against the shield printed wiring board 50 so that the conductive protrusion 120 of the ground member 101 penetrates the insulating layer 73 and the shield layer 72 of the shield film 70. become.
Then, the conductive protrusion 120 of the ground member 101 comes into contact with the adhesive layer 71 and the shield layer 72 of the shield film 70.
上記の通り、シールドフィルム70の接着剤層71は、基体フィルム60のグランド回路62aと接触しているので、グランド部材101の外部接続部材110と、基体フィルム60のグランド回路62aとは電気的に接続されることになる。
また、グランド部材101の外部接続部材110は、外部グランドGNDに接続されることになる。
As described above, since the adhesive layer 71 of the shield film 70 is in contact with the ground circuit 62a of the base film 60, the external connection member 110 of the ground member 101 and the ground circuit 62a of the base film 60 are electrically connected. Will be connected.
Further, the external connection member 110 of the ground member 101 is connected to the external ground GND.
以下に本発明をより具体的に説明する実施例を示すが、本発明はこれらの実施例に限定されるものではない。 Examples for more specifically explaining the present invention are shown below, but the present invention is not limited to these examples.
(実施例1-1)
(1)金属箔準備工程
まず、厚さが35μmの銅箔を準備した。
Example 1-1
(1) Metal foil preparation process First, a copper foil having a thickness of 35 μm was prepared.
(2)導電性突起形成工程
次に、銅箔の一方の主面をエッチングレジストでマスクした。
そして、エッチング液として硫酸/過酸化水素系エッチング液を用いて銅箔をエッチングし、円柱形の導電性突起を形成した。
形成された導電性突起は、高さ25μm、底面の直径30μmであり、導電性突起同士のピッチは90μmであった。
(2) Conductive protrusion forming step Next, one main surface of the copper foil was masked with an etching resist.
Then, the copper foil was etched using a sulfuric acid / hydrogen peroxide-based etchant as an etchant to form cylindrical conductive protrusions.
The formed conductive protrusions had a height of 25 μm and a bottom surface diameter of 30 μm, and the pitch between the conductive protrusions was 90 μm.
(3)低融点金属層形成工程
次に、電解錫めっきにより、導電性突起に錫をめっきし低融点金属層を形成した。
低融点金属層の厚さは2μmであった。
(3) Low melting point metal layer formation step Next, tin was plated on the conductive protrusions by electrolytic tin plating to form a low melting point metal layer.
The thickness of the low melting point metal layer was 2 μm.
めっき後の銅箔を縦×横=10mm×10mmにカットし、実施例1-1に係るグランド部材を製造した。 The copper foil after plating was cut into length × width = 10 mm × 10 mm to produce a ground member according to Example 1-1.
(実施例1-2)~(実施例1-36)及び(比較例1-1)~(比較例1-15)
導電性突起の底面の直径、導電性突起同士のピッチの幅、カット後のグランド部材の大きさを、表1及び2に示すように変更した以外は、実施例1-1と同様に、実施例1-2~実施例1-36及び比較例1-1~比較例1-15のグランド部材を製造した。
また、Snめっき層を設けず、導電性突起の底面の直径、導電性突起同士のピッチの幅、カット後のグランド部材の大きさを、表2に示すように変更した以外は、実施例1-1と同様に、比較例1-1~比較例1-15のグランド部材を製造した。
(Example 1-2) to (Example 1-36) and (Comparative Example 1-1) to (Comparative Example 1-15)
Except that the diameter of the bottom surface of the conductive protrusion, the width of the pitch between the conductive protrusions, and the size of the ground member after cutting were changed as shown in Tables 1 and 2, the same procedure as in Example 1-1 was performed. The ground members of Example 1-2 to Example 1-36 and Comparative Example 1-1 to Comparative Example 1-15 were manufactured.
Example 1 except that the Sn plating layer was not provided and the diameter of the bottom surface of the conductive protrusions, the width of the pitch between the conductive protrusions, and the size of the ground member after cutting were changed as shown in Table 2. The ground members of Comparative Example 1-1 to Comparative Example 1-15 were manufactured in the same manner as -1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(実施例2-1)
実施例1-1のグランド部材を用い、以下に記載する方法で実施例2-1に係るシールドプリント配線板を製造した。
Example 2-1
Using the ground member of Example 1-1, a shield printed wiring board according to Example 2-1 was manufactured by the method described below.
(1)シールドフィルム載置工程
まず、ベースフィルム上に、グランド回路を含むプリント回路と、絶縁フィルムとを順次設けてなる基体フィルムを準備した。
基体フィルムにおいて、ベースフィルムはポリイミドからなり、グランド回路及びプリント回路は銅からなり、絶縁フィルムはポリイミドからなっていた。
なお、絶縁フィルムには、プリント回路の一部を露出させるための穴部が形成された。
(1) Shield film placing step First, a base film was prepared by sequentially providing a printed circuit including a ground circuit and an insulating film on a base film.
In the base film, the base film was made of polyimide, the ground circuit and the printed circuit were made of copper, and the insulating film was made of polyimide.
Note that a hole for exposing a part of the printed circuit was formed in the insulating film.
また、異方導電性接着剤層、シールド層及び絶縁層が順に積層されたシールドフィルムを準備した。
異方導電性接着剤層は、ビスフェノールA型エポキシ樹脂及び平均粒子径10μmの銅微粒子から構成され、これらの重量比は、ビスフェノールA型エポキシ樹脂:銅微粒子=100:47(重量部換算)であった。また、異方導電性接着剤層の厚さは9μmであった。
また、シールド層は、銅からなり、その厚さは2μmであった。
また、絶縁層は、エポキシ樹脂からなり、その厚さは6μmであった。
Moreover, the shield film in which the anisotropic conductive adhesive layer, the shield layer, and the insulating layer were laminated in order was prepared.
The anisotropic conductive adhesive layer is composed of bisphenol A type epoxy resin and copper fine particles having an average particle size of 10 μm, and the weight ratio thereof is bisphenol A type epoxy resin: copper fine particles = 100: 47 (parts by weight). there were. The anisotropic conductive adhesive layer had a thickness of 9 μm.
The shield layer was made of copper and had a thickness of 2 μm.
The insulating layer was made of an epoxy resin and had a thickness of 6 μm.
次に、基体フィルム上に異方導電性接着剤層が接するようにシールドフィルムを載置した。 Next, the shield film was placed so that the anisotropic conductive adhesive layer was in contact with the base film.
(2)グランド部材配置工程
次に、実施例1-1のグランド部材の導電性突起がシールドフィルムの絶縁層側を向くように、実施例1-1のグランド部材をシールドフィルムに配置した。
(2) Step of placing ground member Next, the ground member of Example 1-1 was placed on the shield film so that the conductive protrusions of the ground member of Example 1-1 faced the insulating layer side of the shield film.
(3)加圧工程
次に、実施例1-1のグランド部材の外部接続部材を基体フィルムのグランド回路と電気的に接続させるために、グランド部材の導電性突起がシールドフィルムの絶縁層を貫通するようにグランド部材を加圧した。
加圧の際の温度は180℃であり、圧力は2MPaであった。
(3) Pressurization step Next, in order to electrically connect the external connection member of the ground member of Example 1-1 to the ground circuit of the base film, the conductive protrusion of the ground member penetrates the insulating layer of the shield film. The ground member was pressurized to
The temperature at the time of pressurization was 180 ° C., and the pressure was 2 MPa.
(4)加熱工程
次いで、グランド部材、シールドフィルム及び配線板を、260℃×5秒の条件で加熱する加熱工程(リフロー工程)に投入した。
なお、この加熱工程において、実施例1-1に係るグランド部材の導電性突起の表面に形成された低融点金属層を軟化させて、低融点金属層によりグランド部材の導電性突起と、シールドフィルムの異方導電性接着剤層及びシールド層とを接続させた。
(4) Heating process Next, the ground member, the shield film, and the wiring board were put into a heating process (reflow process) in which heating was performed at 260 ° C. for 5 seconds.
In this heating step, the low melting point metal layer formed on the surface of the conductive protrusion of the ground member according to Example 1-1 is softened, and the conductive protrusion of the ground member and the shield film are formed by the low melting point metal layer. The anisotropic conductive adhesive layer and the shield layer were connected.
以上の工程を経て、実施例2-1に係るシールドプリント配線板を製造した。 Through the above steps, a shield printed wiring board according to Example 2-1 was manufactured.
(実施例2-2)~(実施例2-36)及び(比較例2-1)~(比較例2-15)
グランド部材として、実施例1-2~実施例1-36及び比較例1-1~比較例1-15のグランド部材を用いた以外は、実施例2-1と同様にして実施例2-2~実施例2-36及び比較例2-1~比較例2-15に係るシールドプリント配線板を製造した。
(Example 2-2) to (Example 2-36) and (Comparative Example 2-1) to (Comparative Example 2-15)
Example 2-2 was performed in the same manner as Example 2-1 except that the ground member of Example 1-2 to Example 1-36 and Comparative Example 1-1 to Comparative Example 1-15 was used as the ground member. -Shield printed wiring boards according to Example 2-36 and Comparative Examples 2-1 to 2-15 were manufactured.
(加熱冷却後の電気抵抗値の測定試験)
各実施例及び各比較例に係るシールドプリント配線板を、135℃で1時間加熱した。次に、260℃で5秒間加熱する加熱処理と、135℃になるまで静置する冷却処理とを合計5回繰り返した。
その後、各実施例及び各比較例に係るシールドプリント配線板において、基体フィルムのグランド回路-外部グランド間の電気抵抗値を測定した。結果を表1及び2に示す。
(Measurement test of electrical resistance after heating and cooling)
The shield printed wiring board according to each example and each comparative example was heated at 135 ° C. for 1 hour. Next, a heat treatment of heating at 260 ° C. for 5 seconds and a cooling treatment of standing until 135 ° C. were repeated a total of 5 times.
Thereafter, the electrical resistance value between the ground circuit and the external ground of the base film was measured in the shield printed wiring boards according to the respective examples and the comparative examples. The results are shown in Tables 1 and 2.
(加熱冷却による電気抵抗値の変化の測定試験)
実施例2-1~実施例2-36に係るシールドプリント配線板、及び、比較例2-1~比較例2-15に係るシールドプリント配線板を、それぞれ4個準備し、基体フィルムのグランド回路-外部グランド間の電気抵抗値を測定した(初期値)。
次に、各シールドプリント配線板を、135℃で1時間加熱し、基体フィルムのグランド回路-外部グランド間の電気抵抗値を測定した(初期加熱時)。
その後、260℃で5秒間加熱する加熱処理と、135℃になるまで静置する冷却処理とを合計5回繰り返し、各冷却処理が終了した際に、基体フィルムのグランド回路-外部グランド間の電気抵抗値を測定した(サイクル1~5)。
結果を図18に示す。
図18は、加熱冷却による電気抵抗値の変化の測定試験の結果を示すグラフである。
また、測定した電気抵抗値の平均値及び標準偏差を表3に示す。
(Measurement test of changes in electrical resistance due to heating and cooling)
Four shield printed wiring boards according to Examples 2-1 to 2-36 and four shield printed wiring boards according to Comparative Examples 2-1 to 2-15 were prepared, respectively, and a ground circuit for the base film was prepared. -The electric resistance value between the external grounds was measured (initial value).
Next, each shield printed wiring board was heated at 135 ° C. for 1 hour, and the electric resistance value between the ground circuit and the external ground of the base film was measured (at the time of initial heating).
Thereafter, a heating process of heating at 260 ° C. for 5 seconds and a cooling process of standing until reaching 135 ° C. were repeated a total of 5 times. When each cooling process was completed, the electrical circuit between the ground circuit of the base film and the external ground The resistance value was measured (cycles 1 to 5).
The results are shown in FIG.
FIG. 18 is a graph showing the results of a measurement test of changes in electrical resistance value due to heating and cooling.
Table 3 shows the average value and standard deviation of the measured electrical resistance values.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
表1及び2に示すように、実施例2-1~実施例2-36に係るシールドプリント配線板では、加熱冷却を繰り返しても、基体フィルムのグランド回路-外部グランド間の電気抵抗値が高くなりにくいことが示された。 As shown in Tables 1 and 2, in the shielded printed wiring boards according to Examples 2-1 to 2-36, even when heating and cooling are repeated, the electrical resistance value between the ground circuit of the base film and the external ground is high. It was shown that it is difficult to become.
また、図18及び表3に示すように、実施例2-1~実施例2-36に係るシールドプリント配線板は、初期加熱時以降、加熱冷却を繰り返しても電気抵抗値が変化しにくく、加熱冷却の繰り返しにより電気抵抗値が安定していくことが示された。 Further, as shown in FIG. 18 and Table 3, the shield printed wiring boards according to Example 2-1 to Example 2-36 are less likely to change in electric resistance value even after repeated heating and cooling after the initial heating. It was shown that the electrical resistance value was stabilized by repeated heating and cooling.
1、101 グランド部材
10、110 外部接続部材
11、111 第1主面
12、112 第2主面
20、120 導電性突起
21、121 低融点金属層
50、150、250、350 シールドプリント配線板
60、160、260、360 基体フィルム
61、161、261、361 ベースフィルム
62、162、262、362 プリント回路
62a、162a、262a、362a グランド回路
63、163、263、363 絶縁フィルム
63a 穴部
70、170、270、370 シールドフィルム
71、171、271 接着剤層
72、172、272、372 シールド層
73、173、273、373 絶縁層
172a 凸部
172b 凹部
GND 外部グランド
DESCRIPTION OF SYMBOLS 1,101 Ground member 10,110 External connection member 11,111 1st main surface 12,112 2nd main surface 20,120 Conductive protrusion 21, 121 Low melting- point metal layer 50, 150, 250, 350 Shield printed wiring board 60 , 160, 260, 360 Base film 61, 161, 261, 361 Base film 62, 162, 262, 362 Print circuit 62a, 162a, 262a, 362a Ground circuit 63, 163, 263, 363 Insulating film 63a Hole 70, 170 270, 370 Shield film 71, 171, 271 Adhesive layer 72, 172, 272, 372 Shield layer 73, 173, 273, 373 Insulating layer 172a Convex part 172b Concave part GND External ground

Claims (26)

  1. 第1主面と、前記第1主面の反対側の第2主面とを有し、かつ、導電性を有する外部接続部材からなり、
    前記第1主面には導電性突起があるグランド部材であって、
    前記導電性突起の表面には、低融点金属層が形成されていることを特徴とするグランド部材。
    It has a first main surface and a second main surface opposite to the first main surface, and is composed of an external connection member having conductivity,
    A ground member having conductive protrusions on the first main surface;
    A ground member, wherein a low melting point metal layer is formed on a surface of the conductive protrusion.
  2. 前記低融点金属層は、融点が300℃以下の金属により形成されている請求項1に記載のグランド部材。 The ground member according to claim 1, wherein the low melting point metal layer is made of a metal having a melting point of 300 ° C. or less.
  3. 前記低融点金属層の厚さは、0.1~50μmである請求項1又は2に記載のグランド部材。 3. The ground member according to claim 1, wherein the low melting point metal layer has a thickness of 0.1 to 50 μm.
  4. 前記低融点金属層は、フラックスを含む請求項1~3のいずれかに記載のグランド部材。 The ground member according to any one of claims 1 to 3, wherein the low melting point metal layer includes a flux.
  5. 前記外部接続部材は、銅、アルミニウム、銀、金、ニッケル、クロム、チタン、亜鉛及びステンレス鋼からなる群から選択される少なくとも1種を含む請求項1~4のいずれかに記載のグランド部材。 The ground member according to any one of claims 1 to 4, wherein the external connection member includes at least one selected from the group consisting of copper, aluminum, silver, gold, nickel, chromium, titanium, zinc, and stainless steel.
  6. 前記第2主面には、耐腐食層が形成されている請求項1~5のいずれかに記載のグランド部材。 The ground member according to any one of claims 1 to 5, wherein a corrosion-resistant layer is formed on the second main surface.
  7. 前記耐腐食層は、ニッケル、金、銀、白金、パラジウム、ロジウム、イリジウム、ルテニウム、オスミウム及びこれらの合金からなる群から選択される少なくとも1種を含む請求項6に記載のグランド部材。 The ground member according to claim 6, wherein the corrosion-resistant layer includes at least one selected from the group consisting of nickel, gold, silver, platinum, palladium, rhodium, iridium, ruthenium, osmium, and alloys thereof.
  8. 前記導電性突起は柱状である請求項1~7のいずれかに記載のグランド部材。 The ground member according to any one of claims 1 to 7, wherein the conductive protrusion has a columnar shape.
  9. 前記導電性突起の底面の面積は、1.0~1.0×10μmである請求項8に記載のグランド部材。 9. The ground member according to claim 8, wherein an area of a bottom surface of the conductive protrusion is 1.0 to 1.0 × 10 6 μm 2 .
  10. 前記導電性突起同士のピッチは、1~1000μmである請求項8又は9に記載のグランド部材。 10. The ground member according to claim 8, wherein a pitch between the conductive protrusions is 1 to 1000 μm.
  11. 前記外部接続部材は前記第1主面側が突出するように屈曲しており、突出した前記外部接続部材の一部が前記導電性突起となっている請求項1~7のいずれかに記載のグランド部材。 The ground according to any one of claims 1 to 7, wherein the external connection member is bent so that the first main surface side protrudes, and a part of the protruded external connection member is the conductive protrusion. Element.
  12. ベースフィルム上にグランド回路を含むプリント回路と絶縁フィルムとを順次設けてなる基体フィルムと、
    シールド層、及び、前記シールド層に積層された絶縁層からなり、前記シールド層が前記絶縁層よりも前記基体フィルム側に配置されるように前記基体フィルムを被覆するシールドフィルムと、
    前記シールドフィルムの絶縁層の上に配置されたグランド部材とを備えるシールドプリント配線板であって、
    前記グランド部材は、第1主面と、前記第1主面の反対側の第2主面とを有し、かつ、導電性を有する外部接続部材と、
    前記第1主面側に配置された導電性突起とからなり、
    前記導電性突起の表面には、低融点金属層が形成されており、
    前記グランド部材の導電性突起は、前記シールドフィルムの絶縁層を貫いており、
    前記グランド部材の低融点金属層は、前記シールドフィルムのシールド層に接続しており、
    前記グランド部材の外部接続部材は、外部グランドと電気的に接続可能になっていることを特徴とするシールドプリント配線板。
    A base film in which a printed circuit including a ground circuit and an insulating film are sequentially provided on a base film;
    A shield film, and an insulating layer laminated on the shield layer, the shield film covering the base film so that the shield layer is disposed on the base film side of the insulating layer; and
    A shield printed wiring board comprising a ground member disposed on the insulating layer of the shield film,
    The ground member has a first main surface and a second main surface opposite to the first main surface, and an external connection member having conductivity,
    A conductive protrusion disposed on the first main surface side;
    A low melting point metal layer is formed on the surface of the conductive protrusion,
    The conductive protrusion of the ground member penetrates the insulating layer of the shield film,
    The low melting point metal layer of the ground member is connected to the shield layer of the shield film,
    The shield printed wiring board according to claim 1, wherein the external connection member of the ground member is electrically connectable to an external ground.
  13. 前記シールドフィルムは、接着剤層と、前記接着剤層に積層された前記シールド層と、前記シールド層に積層された前記絶縁層とからなり、
    前記シールドフィルムの接着剤層は、前記基体フィルムと接触している請求項12に記載のシールドプリント配線板。
    The shield film comprises an adhesive layer, the shield layer laminated on the adhesive layer, and the insulating layer laminated on the shield layer,
    The shield printed wiring board according to claim 12, wherein the adhesive layer of the shield film is in contact with the base film.
  14. 前記シールドフィルムの接着剤層は、導電性接着剤層である請求項13に記載のシールドプリント配線板。 The shield printed wiring board according to claim 13, wherein the adhesive layer of the shield film is a conductive adhesive layer.
  15. 前記シールドフィルムのシールド層は、金属からなる請求項13又は14に記載のシールドプリント配線板。 The shield printed wiring board according to claim 13 or 14, wherein the shield layer of the shield film is made of metal.
  16. 前記シールドフィルムでは、前記接着剤層と前記シールド層との間及び/又は前記シールド層と前記絶縁層との間にはシールドフィルムの低融点金属層が形成されており、前記シールドフィルムの低融点金属層は、前記グランド部材の導電性突起と接続している請求項13~15のいずれかに記載のシールドプリント配線板。 In the shield film, a low melting point metal layer of the shield film is formed between the adhesive layer and the shield layer and / or between the shield layer and the insulating layer, and the low melting point of the shield film. The shield printed wiring board according to any one of claims 13 to 15, wherein the metal layer is connected to a conductive protrusion of the ground member.
  17. 前記シールドフィルムのシールド層は、導電性接着剤層であり、前記導電性接着剤層は、前記基体フィルムと接触している請求項12に記載のシールドプリント配線板。 The shield printed wiring board according to claim 12, wherein the shield layer of the shield film is a conductive adhesive layer, and the conductive adhesive layer is in contact with the base film.
  18. 前記シールドフィルムでは、前記シールド層と前記絶縁層との間にはシールドフィルムの低融点金属層が形成されており、前記シールドフィルムの低融点金属層は、前記グランド部材の導電性突起と接続している請求項17に記載のシールドプリント配線板。 In the shield film, a low melting point metal layer of the shield film is formed between the shield layer and the insulating layer, and the low melting point metal layer of the shield film is connected to the conductive protrusion of the ground member. The shield printed wiring board according to claim 17.
  19. ベースフィルム上にグランド回路を含むプリント回路と絶縁フィルムとを順次設けてなる基体フィルムと、
    シールド層、及び、前記シールド層に積層された絶縁層を有するシールドフィルムと、
    前記シールドフィルムの絶縁層の上に配置された請求項1~11のいずれかに記載のグランド部材とを備えるシールドプリント配線板の製造方法であって、
    前記シールドフィルムの絶縁層より前記基体フィルム側に前記シールドフィルムのシールド層が配置されるように、前記シールドフィルムを前記基体フィルムに載置するシールドフィルム載置工程と、
    前記グランド部材の導電性突起が前記シールドフィルムの絶縁層側を向くように、前記グランド部材を前記シールドフィルムに配置するグランド部材配置工程と、
    前記グランド部材の導電性突起が前記シールドフィルムの絶縁層を貫通するように前記グランド部材を加圧する加圧工程と、
    前記グランド部材の低融点金属層を前記シールドフィルムのシールド層に接続させるために、前記グランド部材の低融点金属層を加熱して軟化させる加熱工程と、
    を有することを特徴とするシールドプリント配線板の製造方法。
    A base film in which a printed circuit including a ground circuit and an insulating film are sequentially provided on a base film;
    A shield film, and a shield film having an insulating layer laminated on the shield layer;
    A method for producing a shield printed wiring board comprising the ground member according to any one of claims 1 to 11 disposed on an insulating layer of the shield film,
    A shield film placing step of placing the shield film on the base film so that the shield layer of the shield film is disposed on the base film side from the insulating layer of the shield film;
    A ground member disposing step of disposing the ground member on the shield film such that the conductive protrusion of the ground member faces the insulating layer side of the shield film;
    A pressurizing step of pressurizing the ground member so that the conductive protrusion of the ground member penetrates the insulating layer of the shield film;
    In order to connect the low melting point metal layer of the ground member to the shield layer of the shield film, a heating step of heating and softening the low melting point metal layer of the ground member;
    A method for producing a shielded printed wiring board, comprising:
  20. 前記加圧工程及び前記加熱工程を同時に行う請求項19に記載のシールドプリント配線板の製造方法。 The manufacturing method of the shield printed wiring board of Claim 19 which performs the said pressurization process and the said heating process simultaneously.
  21. 前記シールドフィルムは、接着剤層と、前記接着剤層に積層された前記シールド層と、前記シールド層に積層された前記絶縁層とからなる請求項19又は20に記載のシールドプリント配線板の製造方法。 The shield printed wiring board according to claim 19 or 20, wherein the shield film includes an adhesive layer, the shield layer laminated on the adhesive layer, and the insulating layer laminated on the shield layer. Method.
  22. 前記シールドフィルムの接着剤層は、導電性接着剤層である請求項21に記載のシールドプリント配線板の製造方法。 The method for manufacturing a shield printed wiring board according to claim 21, wherein the adhesive layer of the shield film is a conductive adhesive layer.
  23. 前記シールドフィルムのシールド層は、金属からなる請求項21又は22に記載のシールドプリント配線板の製造方法。 The shield printed wiring board manufacturing method according to claim 21 or 22, wherein the shield layer of the shield film is made of metal.
  24. 前記シールドフィルムにおいて、前記接着剤層と前記シールド層との間及び/又は前記シールド層と前記絶縁層との間にはシールドフィルムの低融点金属層が形成されており、
    前記加熱工程では、前記シールドフィルムの低融点金属層を軟化させて、前記グランド部材の導電性突起と接続させる請求項21~23のいずれかに記載のシールドプリント配線板の製造方法。
    In the shield film, a low melting point metal layer of the shield film is formed between the adhesive layer and the shield layer and / or between the shield layer and the insulating layer,
    The method for manufacturing a shield printed wiring board according to any one of claims 21 to 23, wherein, in the heating step, the low melting point metal layer of the shield film is softened and connected to the conductive protrusion of the ground member.
  25. 前記シールドフィルムのシールド層は、導電性接着剤層である請求項19又は20に記載のシールドプリント配線板の製造方法。 The method for producing a shield printed wiring board according to claim 19 or 20, wherein the shield layer of the shield film is a conductive adhesive layer.
  26. 前記シールドフィルムにおいて、前記シールド層と前記絶縁層との間にはシールドフィルムの低融点金属層が形成されており、
    前記加熱工程では、前記シールドフィルムの低融点金属層を軟化させて、前記グランド部材の導電性突起と接続させる請求項25に記載のシールドプリント配線板の製造方法。
    In the shield film, a low melting point metal layer of the shield film is formed between the shield layer and the insulating layer,
    26. The method of manufacturing a shield printed wiring board according to claim 25, wherein in the heating step, the low melting point metal layer of the shield film is softened and connected to the conductive protrusions of the ground member.
PCT/JP2018/004654 2017-02-13 2018-02-09 Ground member, shielded printed circuit board, and method for manufacturing shielded printed circuit board WO2018147423A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018567514A JP6872567B2 (en) 2017-02-13 2018-02-09 Manufacturing method of shield printed wiring board and shield printed wiring board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017024498 2017-02-13
JP2017-024498 2017-02-13

Publications (1)

Publication Number Publication Date
WO2018147423A1 true WO2018147423A1 (en) 2018-08-16

Family

ID=63108276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004654 WO2018147423A1 (en) 2017-02-13 2018-02-09 Ground member, shielded printed circuit board, and method for manufacturing shielded printed circuit board

Country Status (3)

Country Link
JP (2) JP6872567B2 (en)
TW (2) TW201840404A (en)
WO (1) WO2018147423A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020189686A1 (en) * 2019-03-19 2020-09-24 タツタ電線株式会社 Shield printed wiring board, method for manufacturing shield printed wiring board, and connecting member
JP7001187B1 (en) 2021-03-19 2022-01-19 東洋インキScホールディングス株式会社 Electromagnetic wave shield sheet and its manufacturing method, shielded wiring board, and electronic equipment
JP2022145436A (en) * 2021-03-19 2022-10-04 東洋インキScホールディングス株式会社 Electromagnetic wave shield sheet, manufacturing method thereof, shielding wiring board, and electronic device
US12028964B2 (en) 2019-03-19 2024-07-02 Tatsuta Electric Wire & Cable Co., Lid. Shielded printed wiring board, method for manufacturing shielded printed wiring board, and connecting member

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110461086B (en) * 2019-08-30 2021-01-08 维沃移动通信有限公司 Circuit board, circuit board manufacturing method and terminal

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03257769A (en) * 1990-03-08 1991-11-18 Yazaki Corp Penetration terminal and its connecting method
JP2002111154A (en) * 2000-10-02 2002-04-12 Fujikura Ltd Membrane circuit
JP4201548B2 (en) * 2002-07-08 2008-12-24 タツタ電線株式会社 SHIELD FILM, SHIELD FLEXIBLE PRINTED WIRING BOARD AND METHOD FOR PRODUCING THEM
JP2016029748A (en) * 2015-12-02 2016-03-03 タツタ電線株式会社 Method for manufacturing shield printed wiring board

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313517A (en) * 2001-04-13 2002-10-25 Auto Network Gijutsu Kenkyusho:Kk Flat cable connecting method and flat cable connecting pin
JP4974803B2 (en) * 2007-08-03 2012-07-11 タツタ電線株式会社 Shield film for printed wiring board and printed wiring board
JP6640567B2 (en) * 2015-01-16 2020-02-05 Jx金属株式会社 Copper foil with carrier, laminate, printed wiring board, method for manufacturing electronic equipment, and method for manufacturing printed wiring board

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03257769A (en) * 1990-03-08 1991-11-18 Yazaki Corp Penetration terminal and its connecting method
JP2002111154A (en) * 2000-10-02 2002-04-12 Fujikura Ltd Membrane circuit
JP4201548B2 (en) * 2002-07-08 2008-12-24 タツタ電線株式会社 SHIELD FILM, SHIELD FLEXIBLE PRINTED WIRING BOARD AND METHOD FOR PRODUCING THEM
JP2016029748A (en) * 2015-12-02 2016-03-03 タツタ電線株式会社 Method for manufacturing shield printed wiring board

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020189686A1 (en) * 2019-03-19 2020-09-24 タツタ電線株式会社 Shield printed wiring board, method for manufacturing shield printed wiring board, and connecting member
JPWO2020189686A1 (en) * 2019-03-19 2020-09-24
KR20210143190A (en) * 2019-03-19 2021-11-26 타츠타 전선 주식회사 Shielded printed wiring board, manufacturing method of shielded printed wiring board, and connection member
US20220046788A1 (en) * 2019-03-19 2022-02-10 Tatsuta Electric Wire & Cable Co., Ltd. Shielded Printed Wiring Board, Method For Manufacturing Shielded Printed Wiring Board, And Connecting Member
JP7254904B2 (en) 2019-03-19 2023-04-10 タツタ電線株式会社 Shield printed wiring board, method for manufacturing shield printed wiring board, and connection member
KR102585011B1 (en) * 2019-03-19 2023-10-04 타츠타 전선 주식회사 Shielded printed wiring board, manufacturing method of shielded printed wiring board, and connection member
US12028964B2 (en) 2019-03-19 2024-07-02 Tatsuta Electric Wire & Cable Co., Lid. Shielded printed wiring board, method for manufacturing shielded printed wiring board, and connecting member
JP7001187B1 (en) 2021-03-19 2022-01-19 東洋インキScホールディングス株式会社 Electromagnetic wave shield sheet and its manufacturing method, shielded wiring board, and electronic equipment
WO2022196402A1 (en) * 2021-03-19 2022-09-22 東洋インキScホールディングス株式会社 Electromagnetic wave shield sheet, manufacturing method for same, shielding wiring board, and electronic device
JP2022145270A (en) * 2021-03-19 2022-10-03 東洋インキScホールディングス株式会社 Electromagnetic wave shield sheet, manufacturing method thereof, shielding wiring board, and electronic device
JP2022145436A (en) * 2021-03-19 2022-10-04 東洋インキScホールディングス株式会社 Electromagnetic wave shield sheet, manufacturing method thereof, shielding wiring board, and electronic device
JP7232995B2 (en) 2021-03-19 2023-03-06 東洋インキScホールディングス株式会社 Electromagnetic wave shielding sheet, manufacturing method thereof, shielding wiring board, and electronic device

Also Published As

Publication number Publication date
JPWO2018147423A1 (en) 2019-11-21
JP2020096189A (en) 2020-06-18
JP6872567B2 (en) 2021-05-19
TW201840404A (en) 2018-11-16
TW202025896A (en) 2020-07-01

Similar Documents

Publication Publication Date Title
JP6891218B2 (en) Manufacturing method of ground member, shield printed wiring board and shield printed wiring board
JP6959948B2 (en) Manufacturing method of shield film, shield printed wiring board and shield printed wiring board
JP6258290B2 (en) Reinforcing member for flexible printed wiring board, flexible printed wiring board, and shield printed wiring board
WO2018147423A1 (en) Ground member, shielded printed circuit board, and method for manufacturing shielded printed circuit board
JP2019208031A (en) Reinforcement member for flexible printed wiring board and flexible printed wiring board with the same
KR20120087753A (en) Shield printed circuit board
US20210084751A1 (en) Printed Wiring Board
JP7244534B2 (en) EMI SHIELDING FILM, METHOD FOR MANUFACTURING SHIELD PRINTED WIRING BOARD, AND SHIELD PRINTED WIRING BOARD
CN113170604A (en) Shielded printed wiring board and method for manufacturing shielded printed wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18751982

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018567514

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18751982

Country of ref document: EP

Kind code of ref document: A1