WO2013183482A1 - 電気自動車の変速制御方法および変速制御装置 - Google Patents

電気自動車の変速制御方法および変速制御装置 Download PDF

Info

Publication number
WO2013183482A1
WO2013183482A1 PCT/JP2013/064687 JP2013064687W WO2013183482A1 WO 2013183482 A1 WO2013183482 A1 WO 2013183482A1 JP 2013064687 W JP2013064687 W JP 2013064687W WO 2013183482 A1 WO2013183482 A1 WO 2013183482A1
Authority
WO
WIPO (PCT)
Prior art keywords
shift
speed
engagement
gear
electric motor
Prior art date
Application number
PCT/JP2013/064687
Other languages
English (en)
French (fr)
Inventor
李国棟
磯部史浩
板倉慶宜
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2013183482A1 publication Critical patent/WO2013183482A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/383One-way clutches or freewheel devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/19Improvement of gear change, e.g. by synchronisation or smoothing gear shift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D23/00Details of mechanically-actuated clutches not specific for one distinct type
    • F16D23/02Arrangements for synchronisation, also for power-operated clutches
    • F16D23/04Arrangements for synchronisation, also for power-operated clutches with an additional friction clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D41/00Freewheels or freewheel clutches
    • F16D41/06Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D41/00Freewheels or freewheel clutches
    • F16D41/06Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface
    • F16D41/08Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface with provision for altering the freewheeling action
    • F16D41/086Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface with provision for altering the freewheeling action the intermediate members being of circular cross-section and wedging by rolling
    • F16D41/088Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface with provision for altering the freewheeling action the intermediate members being of circular cross-section and wedging by rolling the intermediate members being of only one size and wedging by a movement not having an axial component, between inner and outer races, one of which is cylindrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D41/00Freewheels or freewheel clutches
    • F16D41/06Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface
    • F16D41/08Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface with provision for altering the freewheeling action
    • F16D41/10Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface with provision for altering the freewheeling action with self-actuated reversing
    • F16D41/105Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface with provision for altering the freewheeling action with self-actuated reversing the intermediate members being of circular cross-section, of only one size and wedging by rolling movement not having an axial component between inner and outer races, one of which is cylindrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/0403Synchronisation before shifting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/50Signals to an engine or motor
    • F16H63/502Signals to an engine or motor for smoothing gear shifts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/001Arrangement or mounting of electrical propulsion units one motor mounted on a propulsion axle for rotating right and left wheels of this axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/50Drive Train control parameters related to clutches
    • B60L2240/507Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/16Driver interactions by display
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/28Four wheel or all wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D23/00Details of mechanically-actuated clutches not specific for one distinct type
    • F16D23/02Arrangements for synchronisation, also for power-operated clutches
    • F16D23/04Arrangements for synchronisation, also for power-operated clutches with an additional friction clutch
    • F16D23/06Arrangements for synchronisation, also for power-operated clutches with an additional friction clutch and a blocking mechanism preventing the engagement of the main clutch prior to synchronisation
    • F16D2023/0643Synchro friction clutches with flat plates, discs or lamellae
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D23/00Details of mechanically-actuated clutches not specific for one distinct type
    • F16D23/02Arrangements for synchronisation, also for power-operated clutches
    • F16D23/04Arrangements for synchronisation, also for power-operated clutches with an additional friction clutch
    • F16D23/06Arrangements for synchronisation, also for power-operated clutches with an additional friction clutch and a blocking mechanism preventing the engagement of the main clutch prior to synchronisation
    • F16D2023/0687Clutches with electrical actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D23/00Details of mechanically-actuated clutches not specific for one distinct type
    • F16D23/12Mechanical clutch-actuating mechanisms arranged outside the clutch as such
    • F16D2023/123Clutch actuation by cams, ramps or ball-screw mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D28/00Electrically-actuated clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/0021Transmissions for multiple ratios specially adapted for electric vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0034Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising two forward speeds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a shift control method and a shift control apparatus for an electric vehicle that shifts the rotation of an electric motor and transmits it to a wheel, and relates to a technique for determining whether or not to release a roller clutch engaged at a current shift stage.
  • a vehicle motor drive device that transmits power to drive wheels via an electric motor, a transmission, and a differential (differential).
  • a differential differential
  • a two-way roller clutch is used for switching the gear position of the transmission.
  • this vehicle motor drive device When this vehicle motor drive device is used, it is possible to use the electric motor in a highly efficient rotational speed and torque region during driving and regeneration by switching the transmission gear ratio according to the running conditions. . In addition, by setting an appropriate gear ratio, the rotational speed of the rotating member of the transmission during high-speed traveling can be reduced, and the power loss of the transmission can be reduced to improve the energy efficiency of the vehicle.
  • a vehicle motor drive device for example, those described in Patent Literature 1 and Patent Literature 2 are known.
  • the target rotational speed of the electric motor is calculated based on the vehicle speed at the time of shift switching and the speed ratio of the selected target shift stage, and the output of the electric motor is output according to the target rotational speed of the electric motor.
  • This proposed example is a control method for switching between two feedback controls of torque control and rotation speed control.
  • the rotational speed of the electric motor may fluctuate when the engagement (engagement) of the roller clutch at the current gear stage is released during gear shifting. Due to the fluctuation of the rotation speed of the electric motor, there is a possibility that a determination error that the engagement of the roller clutch at the current shift stage is not released but the release is not made may occur. Performing the synchro operation again due to this determination error leads to problems such as an increase in shifting time and energy consumption.
  • An object of the present invention is to provide a shift control method and a shift control apparatus for an electric vehicle that can prevent a determination error of disengagement of a roller clutch at a current shift stage and can reduce a shift time.
  • the following transmission is a control target. That is, the transmission includes a plurality of gear stages LA and LB having different gear ratios, an input shaft 7 connected to a motor shaft 4 that is an output shaft of the electric motor 3 for traveling, and the gear stages. 2 way roller clutches 16A and 16B of each gear stage which are respectively interposed between the gear trains LA and LB and can be switched intermittently, and gear ratio switching for switching the intermittent state of these roller clutches 16A and 16B.
  • Mechanism 40
  • Each of the roller clutches 16A and 16B has a roller 20 interposed in each wedge-shaped space S provided between the cam surface 19 of the inner rings 18A and 18B and the outer rings 23A and 23B, and each roller 20 is engaged with a narrowed portion of the wedge-shaped space S.
  • the gear ratio switching mechanism 40 is a mechanism that switches between contact and separation of the rotating friction plates 35A and 35B connected to the retainers 21A and 21B with the outer rings 23A and 23B by the shift member 45 being advanced and retracted. is there.
  • the speed change control method of the present invention using the above transmission is as follows.
  • the shift switching actuator 47 operates the shift member 45 to unload the torque of the electric motor 3 and engage the roller clutches 16A and 16B at the current shift stage.
  • the clutch release process to release A synchronization process of synchronizing the rotation speeds of the outer wheels 23A, 23B and the inner rings 18A, 18B of the roller clutches 16A, 16B of the target gear stage by synchronizing the rotation speed of the electric motor 3; A clutch engagement process for engaging the target gear stage roller clutches 16A and 16B by bringing the target gear stage friction plates 35A and 35B into contact with the outer rings 23A and 23B and controlling the rotation speed of the electric motor 3; Have After the clutch release process, the sync process includes: A first release determination process for determining whether or not the engagement of the roller clutches 16A and 16B at the current gear stage has been released after a lapse of a certain time since the start of a synchronization operation for increasing or decreasing the rotation speed of the electric motor 3.
  • the shift member 45 is operated by the shift switching actuator 47 in response to a shift command to the target shift stage.
  • the torque of the electric motor 3 is unloaded and the engagement of the roller clutches 16A and 16B at the current gear stage is released.
  • the electric motor 3 is synchronized so that the rotational speeds of the outer wheels 23A and 23B of the roller clutches 16A and 16B and the inner rings 18A and 18B of the target gear stage are synchronized by controlling the rotational speed.
  • the engagement of the roller clutches 16A and 16B at the current gear stage is released after a certain time has elapsed since the start of the synchronization operation of the electric motor 3 by the rotational speed control.
  • a first determination is made as to whether or not the operation has been performed. If it is determined in this first release determination process that at least the engagement of the current shift speed is not released, after a certain period of time has elapsed, in the second release determination process, the roller clutch 16A, A second determination is made as to whether the engagement of 16B has been released.
  • the determination of disengagement in the second release determination process may not be performed. good. In this case, the determination in the second release determination process can be omitted, and the shift time can be reliably shortened.
  • a determination of disengagement in the second release determination process is performed. Also good.
  • a synchronization operation completion determination process for determining whether or not the synchronization operation of the electric motor 3 has been completed.
  • a determination is made that the synchronization operation has not been completed.
  • the determination of disengagement in the process may be performed, and the determination of disengagement in the second disengagement determination process may not be performed based on the determination that the synchronization operation has been completed.
  • the synchronization operation completion determination process is determined.
  • the synchronization process can be preferentially terminated, and the next clutch engagement process can be shifted without delay.
  • the synchronization operation of the electric motor 3 may be continued regardless of the determination result of the first release determination process.
  • the electric motor 3 can be smoothly synchronized, and the change rate of the rotation speed in the electric motor 3 can be reduced. As a result, it is possible to make it difficult for abnormal noise caused by backlash between the gears.
  • the determination as to whether or not the engagement of the roller clutches 16A and 16B at the current gear stage has been released may be performed only when the shift lever is selected in the drive range.
  • the shift control apparatus for an electric vehicle includes a gear train of a plurality of shift stages having different gear ratios, an input shaft connected to a motor shaft that is an output shaft of a traveling electric motor, and a gear of each of the shift stages.
  • a transmission having a two-way roller clutch of each gear stage that is interposed between each row and can be switched intermittently, and a gear ratio switching mechanism that switches between the intermittent states of each of the roller clutches,
  • Each roller clutch is in a connected state when a roller is interposed in each wedge-shaped space provided between the cam surface of the inner ring and the outer ring, and each roller engages with a narrowed portion of the wedge-shaped space.
  • the transmission ratio switching mechanism is a mechanism that switches contact and separation of a rotating friction plate connected to a retainer with an outer ring by advancing and retreating a shift member by a transmission switching actuator.
  • a shift control device for an electric vehicle In response to a shift command to a target shift stage, the shift member is operated by the shift switching actuator to unload the torque of the electric motor and release the engagement of the roller clutch of the current shift stage.
  • Synchronization control means for synchronizing the rotation speed of the outer ring and the inner ring of the roller clutch at the target gear stage by synchronizing the rotation speed of the electric motor;
  • Target gear stage clutch engagement means for engaging the roller clutch of the target gear stage by bringing the friction plate of the target gear stage into contact with the outer ring and controlling the rotational speed of the electric motor;
  • Have The synchronization control means includes A first release determination means for determining whether or not the engagement of the roller clutch at the current gear stage has been released after a lapse of a certain time since the start of the synchronization operation for increasing or decreasing the rotation speed of the electric motor; When it is determined by the first release determination means that at least the engagement of the roller clutch at the current shift stage has not been released, the engagement of the roller clutch at the current shift stage is released after a predetermined time has passed. Second release determination means for determining whether or not Have
  • the first release determination means determines whether the engagement of the current shift stage is once released. If it is determined by the first release determination means that the engagement of the current shift stage is once released, then, for example, even if the rotational speed of the electric motor fluctuates, the current shift stage is changed. It is possible to reliably prevent erroneous determination that the engagement is not released. As a result, it is possible to prevent the synchronization operation from being performed again, shorten the speed change time, and prevent energy consumption.
  • FIG. 1 is a schematic diagram of an electric vehicle to which a shift control method and a shift control apparatus according to an embodiment of the present invention are applied. It is the schematic of the hybrid vehicle to which the same shift control method and shift control device are applied. It is sectional drawing of the motor drive device for vehicles of the vehicle shown in FIG. 1, FIG. It is sectional drawing of the gear ratio switching mechanism of the motor drive apparatus for vehicles.
  • FIG. 7 is a flowchart for determining release of a current gear clutch at the time of downshifting in the same shift control method. 7 is a flowchart for determining release of a current shift stage clutch at the time of upshifting in the same shift control method.
  • FIG. 5 is a partial enlarged cross-sectional view of FIG. 4.
  • FIG. 5 is a sectional view taken along line XVIII-XVIII in FIG. 4. It is sectional drawing along the XIX-XIX line
  • FIG. 5 is an exploded perspective view of a roller clutch and the like in the gear ratio switching mechanism of FIG. 4.
  • FIG. 1 shows an electric vehicle EV in which a pair of left and right front wheels 1 are drive wheels driven by a vehicle motor drive device A, and a pair of left and right rear wheels 2 are driven wheels.
  • FIG. 2 shows a hybrid vehicle HV in which a pair of left and right front wheels 1 are main drive wheels driven by an engine E, and a pair of left and right rear wheels 2 are auxiliary drive wheels driven by a vehicle motor drive device A.
  • the hybrid vehicle HV is provided with a transmission T for shifting the rotation of the engine E and a differential D for distributing the rotation output from the transmission T to the left and right front wheels 1.
  • the speed change control method and speed change control device of this embodiment are applied to the vehicle motor drive device A shown in FIGS.
  • the vehicle motor drive device A includes a traveling electric motor 3, a transmission 5 that shifts and outputs the rotation of the output shaft 4 of the electric motor 3, and an output from the transmission 5.
  • the differential 6 is distributed to the pair of left and right front wheels 1 of the electric vehicle EV shown in FIG. 1 or to the pair of left and right rear wheels 2 of the hybrid vehicle shown in FIG.
  • the transmission 5 has two gear stages, and as shown in FIG. 3, a plurality of gear trains LA and LB (two trains in this example) having different gear ratios, and the output of the electric motor 3.
  • Two-way type roller clutches 16A and 16B for each gear stage which are respectively connected to the gear shaft LA and LB of each gear stage and can be switched intermittently.
  • a gear ratio switching mechanism 40 for switching the on / off state of the roller clutches 16A and 16B.
  • the transmission 5 and the gear ratio switching mechanism 40 will be briefly described here within a range necessary for understanding the shift control method / device, and will be described in detail after the description of the shift control method / device.
  • the transmission 5 includes an input shaft 7 to which the rotation of the motor shaft 4 is input, an output shaft 8 disposed in parallel to the input shaft 7 at a distance from each other, and a parallel having the gear trains LA and LB. It is a shaft always meshing transmission.
  • the input gear 9A of the first gear train LA and the input gear 9B of the second gear train LB are integrally provided on the input shaft, and the output gear 10A of the first gear train LA and the output gear 10B of the second gear train LB are output shafts.
  • 8 is rotatably installed on the outer periphery.
  • the roller clutches 16A and 16B are interposed between the output gears 10A and 10B and the output shaft 8.
  • the roller clutches 16A and 16B are respectively formed of a flat cam surface 19 and an outer ring 23B on the outer periphery of the inner ring 18B whose outer peripheral surface is a polygonal shape, as described in the example of the two-speed roller clutch 16B shown in FIG.
  • a roller 20 is interposed in each wedge-shaped space S provided between the inner circumferential cylindrical surfaces.
  • both sides in the circumferential direction are narrowed, and the center in the circumferential direction is an expanded portion.
  • the roller clutches 16A and 16B are connected when the rollers 20 are engaged with the narrowed portions of the wedge-shaped space S, and are disconnected when the rollers 20 are positioned at the expanded portions of the wedge-shaped space S by the cage 21B. It is the composition which becomes.
  • the transmission ratio switching mechanism 40 is configured to contact and separate the annular friction plates 35 ⁇ / b> A and 35 ⁇ / b> B connected to the retainers 21 ⁇ / b> A and 21 ⁇ / b> B of the roller clutches 16 ⁇ / b> A and 16 ⁇ / b> B from the outer rings 23 ⁇ / b> A and 23 ⁇ / b> B.
  • This is a mechanism for switching by the shift fork 45, which is a shift member, by the shift switching actuator 47.
  • the shift mechanism 41 is a mechanism part that operates the friction plates 35 ⁇ / b> A and 35 ⁇ / b> B in the speed ratio switching mechanism 40, and includes a speed change switching actuator 47 and a shift fork 45.
  • the shift switching actuator 47 is an electric motor for shifting.
  • the rotation of the output shaft 47a is converted into a linear motion of the shift rod 46 by the feed screw mechanism 48, and the shift fork 45 attached to the shift rod 46 is axially moved. Move to.
  • the shift sleeve 43 and the shift ring 34 move.
  • the shift ring 34 presses the friction plates 35A and 35B against the side surfaces of the clutch outer rings 23A and 23B (output gears 10A and 10B).
  • a frictional force acts between the friction plates 35A, 35B and the outer rings 23A, 23B, and the cage 21A. , 21B, the roller 20 can be pushed into the narrow portion of the wedge-shaped space S.
  • the cages 21A and 21B are rotatable with respect to the inner rings 18A and 18B.
  • the switch springs 22A and 22B (FIG. 17) allow the center of the cam surface 19 (FIG. 17) of the inner rings 18A and 18B, that is, a wedge-shaped space.
  • the neutral position where S is spread and the center of the pocket 21a in the circumferential direction are biased.
  • the friction plates 35A and 35B are connected to the switch springs 22A and 22B so as to be rotatable together with the cages 21A and 21B.
  • FIG. 5 is a block diagram showing a control system for controlling the vehicle motor drive device A.
  • This control system has an integrated ECU 60, a transmission ECU 61, and an inverter device 62. Signal transfer among the three units of the integrated ECU 60, the shift ECU 61, and the inverter device 62 is performed by CAN communication (controller area network).
  • CAN communication controller area network
  • the integrated ECU 60 is an electronic control device that performs cooperative control among all on-vehicle electronic control devices, and includes an accelerator opening sensor 63a of the accelerator pedal 63, a brake opening sensor 91a of the brake pedal 91, and a steering angle sensor 92a of the steering wheel 92.
  • the shift lever 93 is connected to a lever position sensor 93a for manually switching the gear position.
  • the integrated ECU 60 shifts the accelerator position sensor 63a, the brake position sensor 91a, the steering angle sensor 92a, the accelerator position signal detected by the lever position sensor 93a, the brake position signal, the steering angle signal, and the lever position signal.
  • a function to transmit to the ECU 61 and a function to perform the cooperative control by these four types of signals and signals from various other sensors and the like are provided.
  • the shift ECU 61 is an electronic control device that controls automatic shift based on various signals transmitted from the integrated ECU 60 and various signals directly input to the shift ECU 61.
  • the shift ECU 61 performs shift determination based on various input signals, Commands are sent to the gear change actuator 47 and the inverter device 62 of the machine 5.
  • the transmission ECU 61 has the following functions (1) to (8).
  • the vehicle speed sensor 94 and the acceleration sensor 95 receive vehicle speed and vehicle acceleration / deceleration detection signals, the accelerator opening signal is received from the integrated ECU 60, and automatic shift determination is performed.
  • the brake is sudden
  • automatic shift is not performed.
  • the steering wheel is a sudden handle
  • automatic shifting is not performed.
  • the position signal of the shift lever 93 is received from the integrated ECU 60 and the creep control of the electric motor 3 is performed.
  • First operation switch 96 an automatic / manual shift switching toggle switch.
  • Second operation switch 97 This is a tact switch, and is effective only when the first operation switch 96 is set by manual shifting.
  • Third operation switch 98 a tact switch, which is valid only when the first operation switch 96 is set by manual shifting.
  • a downshift is performed.
  • the vehicle speed, electric motor rotation speed, torque command value, etc. are displayed on the display unit 99.
  • the display unit 99 is a device that displays an image, such as a liquid crystal display device, or a device that displays a pointer.
  • a function of detecting the shift position of the shift switching actuator 47 from a shift position sensor 68 attached to the transmission 5 and a function of acquiring the rotational speed of the electric motor 3 from the inverter are provided.
  • a function of transmitting a torque command or a rotational speed command and a shift command to the inverter device 62 and a function of driving a shift switching actuator 47 attached to the transmission 5 are provided.
  • the shift ECU 61 is programmed with shift modes of an automatic shift mode and a manual shift mode, and the automatic shift mode and the manual shift mode are switched by the operation of the first operation switch 96 by the driver.
  • the speed change control method and speed change control device of this embodiment relate to control in the automatic speed change mode by the speed change ECU 61.
  • the speed change ECU 61 has various function achievement means (81 to 86) shown in FIG. 9, which will be described later.
  • the inverter device 62 is supplied with DC power from the battery 69 to supply AC motor driving power to the electric motor 3 and controls the supplied power based on a signal from the transmission ECU 61.
  • a signal indicating the number of rotations of the electric motor 3 is input to the inverter device 62 from a rotation angle sensor 66 that is a rotation detection device provided in the electric motor 3.
  • the inverter device 62 has a function of driving the electric motor 3 and a function of obtaining a rotation angle signal of the electric motor 3 from the rotation angle sensor 66.
  • the inverter device 62 includes an inverter 71 and an inverter control circuit 72 that controls the inverter 71.
  • Each phase of the electric motor 3 (at the connection point of the inverter 71, U, V, W phase upper arm switching elements Up, Vp, Wp and U, V, W phase lower arm switching elements Un, Vn, Wn) U, V, W phase) terminals are connected.
  • an open / close command is given to each switching element Up, Vp, Wp, Un, Vn, Wn from the inverter control circuit 72 so as to output three-phase AC power.
  • the electric motor 3 performs commutation by energizing three phases. In response to the demand for high torque, a large current is required for driving the electric motor 3.
  • FIG. 7 shows the configuration of the shift lever operation panel 75.
  • the shift lever operation panel 75 is a display device indicating which range is currently switched in this way. Range selection information on the shift lever operation panel 75 is input to the integrated ECU 60.
  • the first speed range is the first speed state.
  • the shift lever operation panel 75 may serve as a touch panel type input means and may be an operation means operated by a driver instead of the shift lever 93.
  • FIG. 8 shows a block diagram of the electric motor 3, inverter torque control, and inverter rotation speed control.
  • the inverter control circuit 72 can be controlled by switching between torque control and rotation speed control. Both torque control and rotation speed control are feedback control and vector control. Torque control and rotation speed control are performed at the time of shifting, and torque control is performed at times other than shifting. Detailed description is omitted here.
  • the power converter 62a performs PWM control of the inverter 71 according to the PWM duties Vu, Vv, and Vw, and drives the electric motor 3.
  • the speed command unit 106 is a means for giving a speed command to the inverter control circuit 72 and is provided in the speed change ECU 61.
  • the speed command unit 106 calculates a target rotational speed of the electric motor 3 based on the vehicle speed at the time of shifting and the speed ratio of the selected target shift stage. The calculated target rotational speed is instructed to the inverter control circuit 72 of the inverter device 62 as a speed command.
  • the rotor angle of the electric motor 3 is acquired from the rotation angle sensor 66, and the actual rotation speed of the electric motor 3 is calculated by the speed calculation unit 108.
  • the comparison unit 109 obtains the difference between the speed command of the speed command unit 106 and the actual electric motor rotation number calculated by the speed calculation unit 108, and the control unit 107 performs PID control (proportional integral derivative control) for the difference.
  • PID control proportional integral derivative control
  • PI control proportional integral control
  • the control amount is input to the current command unit 101 as a torque command.
  • a torque command based on the speed command from the speed calculation unit 108 is input to the current command unit 101 instead of the torque command from the torque command unit 110.
  • the target rotational speed of the electric motor 3 is calculated at a constant time interval, and even if the vehicle speed changes suddenly during the shift, the target rotational speed of the shift has a feature that can follow the change in the vehicle speed. Thereby, the shift shock can be reduced.
  • the inverter control circuit 72 is described separately for a speed control unit 73 and a torque control unit 74.
  • the torque control unit 74 is a part of the inverter control circuit 72 that performs the function of controlling the electric motor 3 by torque control.
  • the speed control unit 73 is a part of the inverter control circuit 72 that performs the function of controlling the electric motor 3 by speed control.
  • the speed control unit 73 includes a comparison unit 109 and a control unit 107. A torque command is given to the unit 101, and the subsequent control is performed by the torque control unit 74.
  • the electric vehicle to be controlled is the electric vehicle described above with reference to FIGS. 1 to 7 to which the shift control method of the above embodiment is applied.
  • This shift control device for an electric vehicle is a device that implements the shift control method of the above-described embodiment.
  • the shift ECU 61 includes a shift command generation unit 81, a current shift stage clutch release unit 82, a sync control unit 83, A target gear stage clutch engaging means 85 and a rotation speed / torque control switching means 86 are provided.
  • the shift ECU 61 outputs a torque command to the inverter control device 72 as torque control for controlling the electric motor 3 other than during automatic shift, and switches between torque control and rotation speed control during shift.
  • the shift command generation means 81 generates a shift command to the target shift stage according to a predetermined rule from the accelerator opening signal, the detected vehicle speed value, and the vehicle acceleration / deceleration. This shift command is issued by the shift ECU 61 or the like.
  • the current shift stage clutch release means 82 operates the shift fork 45 by the shift switching actuator 47 to make contact between the friction plates 35A and 35B of the current shift stage and the outer wheels 23A and 23B.
  • the torque of the electric motor 3 is unloaded by torque control, and the engagement of the roller clutches 16A and 16B at the current gear stage is released.
  • the sync control means 83 controls the electric motor 3 so as to synchronize so that the rotation speeds of the outer wheels 23A and 23B and the inner rings 18A and 18B of the roller clutches 16A and 16B at the target gear stage are synchronized.
  • the target gear stage clutch engaging means 85 engages the target gear stage roller clutches 16A and 16B by bringing the target gear stage friction plates 35A and 35B into contact with the outer wheels 23A and 23B and controlling the rotational speed of the electric motor 3. Combine.
  • the rotational speed / torque control switching means 86 switches the control of the electric motor 3 from rotational speed control to torque control and inputs the torque of the electric motor 3.
  • the shift command generating means 81 the current shift speed clutch releasing means 82, the sync control means 83, the target shift speed clutch engaging means 85, and the rotational speed / torque control switching means 86 are more specifically shown in FIG. It has a function of performing the processes of steps S1, S2, S3, S4 and S5, S6.
  • FIG. 10 is an automatic shift diagram in this shift control method.
  • a solid line is a shift-up line, and a broken line is a shift-down line.
  • the horizontal axis represents the vehicle speed and the vertical axis represents the accelerator opening.
  • kick down Forcing down the shift down by depressing the accelerator pedal to the fully open position in this way is called kick down. This is the kick-down area in FIG.
  • FIG. 11 is a configuration diagram of an upshift automatic shift line map in this shift control method.
  • Data of the shift line map of FIG. 11 is stored in a memory such as a ROM of the shift ECU 61 (FIG. 5).
  • the throttle opening is calculated from the current vehicle speed by referring to the shift map of the current shift stage up-shifting, and compared with the current throttle opening and the acceleration / deceleration of the vehicle A shift-up shift is executed.
  • FIG. 12 is a configuration diagram of a downshift automatic shift line map in this shift control method.
  • Data of the shift line map of FIG. 12 is stored in a memory such as a ROM of the shift ECU 61 (FIG. 5).
  • the throttle opening is calculated from the current vehicle speed, and compared with the current throttle opening and based on the acceleration / deceleration of the vehicle A downshift is performed.
  • FIG. 13 shows an automatic shift determination flowchart. Automatic shift determination is performed during the D range travel of FIG. Judgment of whether or not automatic shift can be executed is performed in the following three patterns. Pattern 1: When the vehicle is accelerating, the upshift is performed when the upshift line is crossed from left to right (Q1, Q4, Q5). Pattern 2: When the vehicle is decelerated, the downshift is performed when crossing the downshift line from right to left (Q1, Q2, Q6, Q7). Pattern 3: When shifting down from the bottom of the downshift line (during kickdown), a downshift is performed (referred to as kickdown) (Q1, Q2, Q3, Q7).
  • kickdown Q1, Q2, Q3, Q7
  • shifting can be performed manually.
  • the algorithm that determines whether or not automatic shift can be performed does not use the vehicle acceleration / deceleration as a condition for determining whether or not automatic shift can be performed. Hunting phenomenon of shifting may occur. According to the above automatic shift determination, such a shift hunting phenomenon can be avoided.
  • FIG. 14 is a flowchart showing an outline of this shift control method.
  • This processing is started by turning on an ignition switch or the like of the vehicle.
  • step S1 the accelerator pedal position, the vehicle speed, and the acceleration / deceleration of the vehicle are detected, and the shift ECU 61 issues a shift command.
  • step S2 clutch release process
  • the shift switching actuator 47 operates the shift member 45 to release the contact between the friction plates 35A and 35B and the outer wheels 23A and 23B at the current shift stage, and at the same time, torque control.
  • the torque of the electric motor 3 is unloaded and the engagement of the roller clutches 16A and 16B at the current gear stage is released.
  • step S3 the shift ECU 61 synchronizes the rotation speeds of the outer wheels 23A and 23B and the inner rings 18A and 18B of the roller clutches 16A and 16B at the target shift stage (synchronization operation), and rotates the rotation speed of the electric motor 3. Is accelerated or decelerated by speed control.
  • the release determination of the roller clutches 16A and 16B at the current gear stage is performed twice as described later (FIGS. 15 and 16). When it is determined in the first release determination that the roller clutches 16A and 16B at the current gear stage are released, the second release determination is not performed.
  • step S4 the shift fork 45 is operated by the shift switching actuator 47 to bring the friction plates 35A, 35B of the target shift stage into contact with the outer ring.
  • step S5 the speed change ECU 61 performs the rotational speed control divided into two stages, and engages the roller clutches 16A and 16B while controlling the rotational speed of the electric motor 3.
  • the electric motor 3 is driven by the rotational speed control divided into two stages. Specifically, in the first stage, a large rotational speed difference and a limiting current are set, and in the second stage, a small rotational speed difference and a limiting current are set. As a result, it is possible to engage the clutches 16A and 16B without generating shock torque and noise while shortening the engagement time of the roller clutches 16A and 16B.
  • steps S4 and S5 correspond to the clutch engagement process.
  • step S6 the speed change ECU 61 switches the control of the electric motor 3 from the rotational speed control to the torque control, and gives the torque value of the electric motor 3 by interpolation control n times.
  • torque interpolation control is performed by torque control. Since the interpolation control is performed n times, the interpolation value can always track the signal of the accelerator opening. In the tracking process in which the error between the interpolation value and the accelerator opening signal is reduced, if the error falls within a certain threshold value, the tracking operation is completed and the interpolation control is completed n times. Abnormal noise resulting from the backlash of the gears of the reduction gear 5 and torsional shocks such as the shaft hardly occur.
  • FIG. 15 is a flowchart for determining release of the current gear clutch at the time of downshifting in the shift control method.
  • the method for determining the release of the current gear clutch engagement is the method performed in step S3 of FIG.
  • Ngi input rotation speed: rotation speed of electric motor
  • Ngo Output speed: Converted from vehicle speed and gear ratio
  • r1 1st speed reduction ratio
  • r2 2nd speed reduction ratio
  • SP Shift position of shift rod (shift fork) by driving actuator
  • SP2f 2nd gear engagement position
  • SP1f Fastening position of 1st gear
  • the synchronization operation of the electric motor is started by the rotation speed control (step a1).
  • the target rotational speed for synchronizing the electric motor is Ngo ⁇ r1 + ⁇ N2.
  • the roller clutch is to be engaged by the difference in rotational speed (converted from ⁇ N2) between the outer ring and the inner ring of the target gear stage.
  • ⁇ N2> 0 The roller clutch of the target gear stage is engaged in the positive direction.
  • ⁇ N2 0: The roller clutch of the target gear stage is not engaged and is in the neutral position.
  • ⁇ N2 ⁇ 0: The roller clutch of the target gear stage is engaged in the negative direction.
  • the “positive direction” is a direction in which the roller clutch is fastened when the electric motor is driven.
  • the “negative direction” is a direction in which the roller clutch is engaged when the electric motor is regenerated.
  • Second step It is determined whether or not a fixed time ( ⁇ t1) has elapsed after the start of the synchronization operation (step a2). After a predetermined time ( ⁇ t1) has elapsed (step a2: Yes), a first determination is made as to whether or not the engagement of the second-speed clutch has been released (step a3: first release determination process). Judgment formula: Ngi> Ngo xr2 + ⁇ N1? That is, in the first release determination process, the rotational speed Ngi of the electric motor is larger than the rotational speed obtained by adding the constant rotational speed ⁇ N1 to the rotational speed obtained by multiplying the output rotational speed Ngo by the current gear speed reduction ratio r2. Determine whether or not.
  • the ⁇ N1 is a rotation speed threshold value.
  • step a3: Yes it is determined that the engagement of the second gear clutch at the current shift stage is released (step a4a), and the release flag is set to “1” and stored in a storage unit (not shown). If “No”, that is, it is determined that the engagement of the second gear clutch at the current gear stage is not released (step a3: No), the release flag is set to “0” and stored in the storage means (step a4b).
  • the second release determination is not performed.
  • step a5 synchro operation completion determination process.
  • step a5: Yes it is determined that the synchronization operation is completed, and this process is terminated. If “No”, that is, it is determined that the synchronization operation is being performed (step a5: No), the process proceeds to the fourth step.
  • FIG. 16 is a flowchart for determining release of the current gear clutch at the time of upshifting in the shift control method.
  • the method for determining the release of the current gear clutch engagement is the method performed in step S3 of FIG.
  • the roller clutch is to be engaged by the difference in rotational speed (converted from ⁇ N2) between the outer ring and the inner ring of the target gear stage. In order to engage the roller clutch of the target gear stage, the rotational speed difference ⁇ N2> 0.
  • Second step When a certain time ( ⁇ t1) has elapsed after the start of the synchronization operation (step a2: Yes), a first determination is made as to whether or not the first-speed clutch is disengaged (step a3: second). 1 cancellation judgment process). Judgment formula: Ngi ⁇ Ngo xr1- ⁇ N1? That is, in the first release determination process, the rotational speed Ngi of the electric motor is smaller than the rotational speed obtained by multiplying the output rotational speed Ngo by the reduction ratio r1 of the current gear stage and the constant rotational speed ⁇ N1. Judge whether or not.
  • step a3 it is determined that the engagement of the first speed clutch at the current shift stage is released (step a4a), and the release flag is set to “1” and stored in the storage means.
  • step a4a it is determined that the engagement of the first speed clutch at the current shift stage is released (step a4a), and the release flag is set to “1” and stored in the storage means.
  • step a5 synchro operation completion determination process.
  • step a5: Yes it is determined that the synchronization operation is completed, and this process is terminated. If “No”, that is, it is determined that the synchronization operation is being performed (step a5: No), the process proceeds to the fourth step.
  • the rotational speed Ngi of the electric motor is smaller than the rotational speed obtained by subtracting the constant rotational speed ⁇ N1 from the rotational speed obtained by multiplying the output rotational speed Ngo by the reduction ratio r1 of the current gear. Is determined, the process returns to the third step. If it is determined that the engagement of the first gear clutch at the current gear stage has not been released (step a8: No), the process proceeds to the fifth step.
  • the motor shaft 4 is coaxially arranged in series with the input shaft 7, and is rotationally driven by a stator 12 of the electric motor 3 fixed to the housing 11.
  • the input shaft 7 is rotatably supported by a pair of opposed bearings 13 incorporated in the housing 11, and the shaft end of the input shaft 7 is connected to the motor shaft 4 by spline fitting.
  • the output shaft 8 is rotatably supported by a pair of opposed bearings 14 incorporated in the housing 11.
  • the first-speed input gear 9A and the second-speed input gear 9B are arranged at an interval in the axial direction, and are fixed to the input shaft 7 so as to rotate integrally with the input shaft 7 around the input shaft 7.
  • the first-speed output gear 10A and the second-speed output gear 10B are also arranged at intervals in the axial direction.
  • the first-speed output gear 10 ⁇ / b> A is formed in an annular shape that penetrates the output shaft 8, and is supported by the output shaft 8 via a bearing 15, and the output shaft 8 is centered on the output shaft 8. And can be rotated.
  • the second speed output gear 10 ⁇ / b> B is also rotatably supported by the output shaft 8 via the bearing 15.
  • the first speed input gear 9A and the first speed output gear 10A mesh with each other, and rotation is transmitted between the first speed input gear 9A and the first speed output gear 10A.
  • the 2nd speed input gear 9B and the 2nd speed output gear 10B are also meshed, and rotation is transmitted between the 2nd speed input gear 9B and the 2nd speed output gear 10B by the meshing.
  • the reduction ratio between the second speed input gear 9B and the second speed output gear 10B is smaller than the reduction ratio between the first speed input gear 9A and the first speed output gear 10A.
  • first-speed output gear 10A and the output shaft 8 there is incorporated a first-speed two-way roller clutch 16A that performs torque transmission and switching between the first-speed output gear 10A and the output shaft 8. Further, a 2-speed 2-way roller clutch 16B is incorporated between the 2-speed output gear 10B and the output shaft 8 to switch torque transmission and interruption between the 2-speed output gear 10B and the output shaft 8. .
  • the second-speed two-way roller clutch 16B Since the first-speed two-way roller clutch 16A and the second-speed two-way roller clutch 16B have the same symmetrical configuration, the second-speed two-way roller clutch 16B will be described below.
  • the parts corresponding to the 2-speed 2-way roller clutch 16B are denoted by the same reference numerals or the reference numerals in which the alphabet B at the end is replaced with A, and the description thereof is omitted.
  • the two-speed two-way roller clutch 16B includes a cylindrical surface 17 provided on the inner periphery of the second-speed output gear 10B and an annular second gear that is prevented from rotating on the outer periphery of the output shaft 8. It comprises a cam surface 19 formed on the cam member 18B, a roller 20 incorporated between the cam surface 19 and the cylindrical surface 17, a second speed holder 21B for holding the roller 20, and a second speed switch spring 22B.
  • the cam surface 19 is a surface that forms a wedge-shaped space S that gradually narrows from the center in the circumferential direction toward both ends in the circumferential direction with the cylindrical surface 17.
  • the cam surface 19 faces the cylindrical surface 17 as shown in FIG. It is a flat surface.
  • the 2-speed retainer 21 ⁇ / b> B includes a cylindrical portion 24 in which a plurality of pockets 21 a that store the rollers 20 are formed at intervals in the circumferential direction, and a radial direction from one end of the cylindrical portion 24. And an inward flange portion 25 extending inward.
  • the radially inner end of the inward flange portion 25 is supported so as to be slidable in the circumferential direction on the outer periphery of the second-speed cam member 18B, and the second-speed cage 21B causes the cam surface 19 and the cylindrical surface 17 to slide.
  • rotation relative to the output shaft 8 is possible.
  • the inward flange portion 25 of the second-speed cage 21B is restricted from moving in the axial direction, thereby making the second-speed cage 21B immovable in the axial direction.
  • each cam surface 19 is formed symmetrically with respect to a virtual plane including the center of rotation, so that the rollers 20 arranged between each cam surface 19 and the cylindrical surface 17 can rotate forward.
  • the engagement is possible in both the direction and the reverse direction. That is, when the vehicle is advanced by the torque generated by the electric motor 3, the roller 20 held by the second-speed cage 21B is rotated by rotating the second-speed cage 21B in the normal rotation direction with respect to the output shaft 8. Is engaged with a space narrowing portion on the forward rotation direction side between the cam surface 19 and the cylindrical surface 17, and torque in the forward rotation direction is transmitted between the second speed output gear 10 ⁇ / b> B and the output shaft 8 via the roller 20.
  • the second speed retainer 21B is rotated relative to the output shaft 8 in the reverse rotation direction to maintain the second speed.
  • the roller 20 held by the vessel 21B is engaged with the space narrowing portion on the reverse direction side between the cam surface 19 and the cylindrical surface 17, and between the second speed output gear 10B and the output shaft 8 via the roller 20. Reverse direction torque It is possible to transfer.
  • the two-speed switch spring 22 ⁇ / b> B includes a C-shaped annular portion 26 in which a steel wire is wound in a C shape, and a pair extending radially outward from both ends of the C-shaped annular portion 26. Extending portions 27, 27.
  • the C-shaped annular portion 26 is fitted into a circular switch spring accommodating recess 28 formed on the axial end surface of the second-speed cam member 18B, and the pair of extending portions 27 and 27 are axial end surfaces of the second-speed cam member 18B. It is inserted in the radial groove 29 formed in.
  • the radial groove 29 is formed so as to extend radially outward from the inner peripheral edge of the switch spring accommodating recess 28 and reach the outer periphery of the second speed cam member 18B.
  • the extension portion 27 of the second speed switch spring 22B protrudes from the radially outer end of the radial groove 29, and the protruding portion of the extension portion 27 from the radial groove 29 is the cylindrical portion of the second speed cage 21B.
  • 24 is inserted into a notch 30 formed at the end in the axial direction.
  • the radial groove 29 and the notch 30 are formed to have the same width.
  • the extending portions 27, 27 are in contact with the inner surface facing the circumferential direction of the radial groove 29 and the inner surface facing the circumferential direction of the notch 30, respectively, and 2 by the circumferential force acting on the contact surface.
  • the speed holder 21B is elastically held in the neutral position.
  • the first-speed cam member 18A and the second-speed cam member 18B are prevented from rotating with respect to the output shaft 8 by spline fitting.
  • the cam surface 19 of the first speed cam member 18A and the cam surface 19 of the second speed cam member 18B have the same number and the same phase.
  • the first speed cam member 18 ⁇ / b> A and the second speed cam member 18 ⁇ / b> B are non-movable in the axial direction by a pair of retaining rings 31 fitted to the outer periphery of the output shaft 8.
  • a spacer 32 is incorporated between the first speed cam member 18A and the second speed cam member 18B.
  • the first-speed two-way roller clutch 16A and the second-speed two-way roller clutch 16B can be selectively engaged by the transmission mechanism 33 for transmission.
  • the transmission mechanism 33 for transmission is provided between the first-speed output gear 10 ⁇ / b> A (parts not shown in cross section, the same applies to FIG. 18) and the second-speed output gear 10 ⁇ / b> B so as to be movable in the axial direction.
  • first-speed friction plate 35A and the second-speed friction plate 35B have the same configuration with left-right symmetry, the second-speed friction plate 35B will be described below, and the first-speed friction plate 35A corresponds to the second-speed friction plate 35B.
  • Parts are denoted by the same reference numerals or reference numerals in which the alphabet B at the end is replaced with A, and description thereof is omitted.
  • the second-speed friction plate 35B is provided with a projecting piece 36 that engages with the notch 30 of the second-speed retainer 21B.
  • the engagement between the projecting piece 36 and the notch 30 causes the second-speed friction plate 35B to hold the second speed.
  • the rotation is stopped by the vessel 21B.
  • the notch 30 of the second-speed retainer 21B accommodates the projecting piece 36 of the second-speed friction plate 35B so as to be slidable in the axial direction. By this sliding, the second-speed friction plate 35B rotates around the second-speed retainer 21B. It can move in the axial direction with respect to the second-speed retainer 21B between a position contacting the side surface of the second-speed output gear 10B and a position separating from the side surface of the second-speed output gear 10B.
  • a recess 37 is formed at the tip of the projecting piece 36 of the second speed friction plate 35B, and a protrusion 38 that engages with the recess 37 is formed on the outer periphery of the spacer 32.
  • the concave portion 37 and the convex portion 38 are engaged with the concave portion 37 and the convex portion 38 in a state where the second speed friction plate 35B is in a position separated from the side surface of the second speed output gear 10B. Is prevented from rotating around the output shaft 8 via the spacer 32. At this time, the second-speed retainer 21B, which is prevented from rotating by the second-speed friction plate 35B, is held in the neutral position.
  • a second speed separation spring 39B is incorporated in an axially compressed state, and the second speed friction plate is obtained by the elastic restoring force of the second speed separation spring 39B.
  • 35B is biased in a direction away from the side surface of the second-speed output gear 10B.
  • the second speed separating spring 39B is a coil spring wound along the outer periphery of the spacer 32, and one end of the second speed separating spring 39B engages with the protruding piece 36 of the second speed friction plate 35B via the second speed washer 90B. Is supported by the axial end surface of the second speed cam member 18B.
  • the 2-speed washer 90B is formed in an annular shape so as to cover the radial groove 29 on the axial end surface of the 2-speed cam member 18B.
  • the shift ring 34 presses the first-speed friction plate 35A to contact the side surface of the first-speed output gear 10A and the first-speed shift position SP1f to press the second-speed friction plate 35B to contact the side surface of the second-speed output gear 10B.
  • the second-speed shift position SP2f is supported so as to be movable in the axial direction. Further, a shift mechanism 41 that moves the shift ring 34 in the axial direction between the first-speed shift position SP1f and the second-speed shift position SP2f is provided.
  • the shift mechanism 41 constitutes a part of the gear ratio switching mechanism 40 as described above.
  • the shift mechanism 41 is related to a shift sleeve 43 that rotatably supports the shift ring 34 via a rolling bearing 42, and an annular groove 44 provided on the outer periphery of the shift sleeve 43.
  • It consists of a mechanism 48 (feed screw mechanism or the like).
  • the shift rod 46 is arranged parallel to the output shaft 8 at a distance, and is supported by a pair of sliding bearings 49 incorporated in the housing 11 so as to be slidable in the axial direction.
  • the rolling bearing 42 incorporated between the shift ring 34 and the shift sleeve 43 is assembled so as to be immovable in the axial direction with respect to both the shift ring 34 and the shift sleeve 43.
  • the rotation of the shift switching actuator 47 is converted into a linear motion by the motion conversion mechanism 48 and transmitted to the shift fork 45, and the linear motion of the shift fork 45 is transmitted to the shift ring 34 via the rolling bearing 42. By doing so, the shift ring 34 is moved in the axial direction.
  • a preload spring 50 that is compressible in the axial direction is incorporated in the axial clearance on both sides between the shift fork 45 and the annular groove 44.
  • the preload spring 50 is adjusted by adjusting the relative position in the axial direction of the shift fork 45 with respect to the shift sleeve 43.
  • a differential drive gear 51 that transmits the rotation of the output shaft 8 to the differential 6 is fixed to the output shaft 8.
  • the differential 6 includes a differential case 53 rotatably supported by a pair of bearings 52, a ring gear 54 that is fixed to the differential case 53 coaxially with the rotational center of the differential case 53, and meshes with the differential drive gear 51, and the rotational center of the differential case 53.
  • the pinion shaft 55 is fixed to the differential case 53 in a perpendicular direction
  • the pair of pinions 56 is rotatably supported by the pinion shaft 55
  • the pair of left and right side gears 57 that mesh with the pair of pinions 56.
  • the left side gear 57 is connected to the shaft end portion of the axle 58 connected to the left wheel
  • the right side gear 57 is connected to the shaft end portion of the axle 58 connected to the right wheel.
  • the operation example of the motor drive apparatus A for vehicles is demonstrated.
  • the first speed friction plate 35A is separated from the side surface of the first speed output gear 10A, and the second speed friction plate 35B is also separated from the side surface of the second speed output gear 10B.
  • 21A is held in the neutral position by the elastic force of the first speed switch spring 22A, and the second speed holder 21B is also held in the neutral position by the elastic force of the second speed switch spring 22B.
  • the engagement of the roller 20 is released, and the 2-speed 2-way roller clutch 16B is also released from the engagement of the roller 20.
  • the first-speed friction plate 35A comes into contact with the side surface of the first-speed output gear 10A.
  • the first-speed friction plate 35A rotates relative to the output shaft 8 by the frictional force between the surfaces, and the first-speed retainer 21A that is prevented from rotating by the first-speed friction plate 35A resists the elastic force of the first-speed switch spring 22A.
  • the roller 20 held by the first-speed holder 21A is pushed into the narrowed portion of the wedge-shaped space S between the cylindrical surface 17 and the cam surface 19 and engaged. Become.
  • the first-speed two-way roller clutch 16A When the first-speed two-way roller clutch 16A is disengaged, if torque is transmitted via the first-speed two-way roller clutch 16A, the torque causes the roller 20 to move between the cylindrical surface 17 and the cam surface 19. Acting to push into the narrowed portion of the wedge-shaped space S between the two, the disengagement of the first-speed two-way roller clutch 16A is prevented. Therefore, when the shift ring 34 starts to move in the axial direction from the first speed shift position SP1f to the second speed shift position SP2f by the operation of the shift mechanism 41, the first speed friction plate 35A is moved to the side surface of the first speed output gear 10A. There is a possibility that the first-speed two-way roller clutch 16A is not disengaged even though it is already separated from the first position.
  • the electric motor 3 and the gear change actuator 47 are controlled by the gear change control device shown in FIG. 9, and the engagement of the first-speed two-way roller clutch 16A or the second-speed two-way roller clutch 16B is controlled by this control.
  • the reliability of the operation when releasing the connection is secured.
  • the shift control method described above if it is determined that the engagement of the current shift stage is once released in the first release determination process, then, for example, when the rotation speed of the electric motor 3 fluctuates. In addition, it is possible to reliably prevent erroneous determination that the engagement of the current shift speed is not released. As a result, it is possible to prevent the synchronization operation from being performed again, shorten the speed change time, and prevent energy consumption.
  • the first release determination process when it is determined that the engagement of the roller clutches 16A and 16B at the current gear stage has been released, the determination of the engagement release in the second release determination process is not performed. The determination in the second release determination process can be omitted, and the shift time can be shortened reliably.
  • the sync operation completion determination process it is determined that the sync operation has not been completed, and in the second release determination process, the disengagement determination is performed, and in the determination that the sync operation is completed, the second release determination is performed. The determination of disengagement in the process is not performed.
  • the synchronization operation completion determination process is determined after the first release determination process, before the second release determination process.
  • the synchronization process can be preferentially terminated, and the next clutch engagement process can be shifted without delay.
  • the synchronization operation of the electric motor 3 is continued regardless of the determination result of the first release determination process.
  • the electric motor 3 can be smoothly synchronized, and the change rate of the rotation speed in the electric motor 3 can be reduced. As a result, it is possible to make it difficult for abnormal noise caused by backlash between the gears.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Transmission Device (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

 この電気自動車の変速制御方法は、クラッチ解除過程(S2)と、シンクロ過程(S3)と、クラッチ係合過程(S4,S5)とを有し、クラッチ解除過程(S2)の後、シンクロ過程(S3)は、電動モータのシンクロ動作を開始して一定時間経過後、現変速段のローラクラッチの係合が解除されたか否かを判断する第1の解除判断過程と、この第1の解除判断過程にて、少なくとも現変速段のローラクラッチの係合が解除されていないと判断された場合は、さらに一定時間経過後、現変速段のローラクラッチの係合が解除されたか否かを判断する第2の解除判断過程とを有する。

Description

電気自動車の変速制御方法および変速制御装置 関連出願
 この出願は、2012年6月6日出願の特願2012-128826の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。
 この発明は、電動モータの回転を変速して車輪へ伝達する電気自動車の変速制御方法および変速制御装置に関し、現変速段のローラクラッチ締結の解除を判断する技術に関する。
 電気自動車の駆動装置として、電動モータ、変速機、および差動装置(ディファレンシャル)を介し駆動輪に動力を伝達する車両用モータ駆動装置がある。変速機の変速段の切換には、例えば2ウェイ型のローラクラッチが用いられる。
 この車両用モータ駆動装置を使用すると、走行条件に応じて変速機の変速比を切り換えることにより、駆動および回生時において、効率の高い回転数およびトルク領域で電動モータを使用することが可能となる。また、適切な変速比とすることで、高速走行時の変速機の回転部材の回転速度が下がり、変速機の動力損失が低減して車両のエネルギ効率を向上させることができる。このような車両用モータ駆動装置として、例えば特許文献1や特許文献2に記載のものが知られている。
特開2011-57030号公報 特開平8-168110号公報
 特許文献1等に記載の車両用モータ駆動装置においては、変速切換を行う際に、変速機の目標変速段のローラクラッチ係合時、大きな変速ショックトルクと異音が生じる課題がある。特に、目標変速段の摩擦板と外輪間の接触完了時に、変速機の第2シャフトの回転数と外輪の回転数に大きな回転数差があると、大きな変速ショックトルクと異音が生じる。そこで、変速ショックトルクを低減するための変速制御方法が提案されている。
 このような変速制御方法として、変速切換時の車速と選択された目標変速段の変速比に基き、電動モータの目標回転数を算出して、電動モータの目標回転数に応じて電動モータの出力を制御する技術が提案されている(例えば、特願2011-123433号)。この提案例は、トルク制御と回転数制御の二つのフィードバック制御を切り換える制御法である。この提案例では、変速中に、現変速段のローラクラッチの締結(係合)が解除されたときに、電動モータの回転数が変動する場合がある。この電動モータの回転数の変動によって、現変速段のローラクラッチの締結が解除されているにもかかわらず、解除されていないとする判断ミスが生じるおそれがある。この判断ミスにより、シンクロ動作を再度行うことは、変速時間の増加やエネルギーの消耗等の問題に繋がる。
 この発明の目的は、現変速段のローラクラッチの係合解除の判断ミスを防ぎ、変速時間の低減等を図ることができる電気自動車の変速制御方法および変速制御装置を提供することである。
 この発明の電気自動車の変速制御方法は、つぎの変速機を制御対象としている。すなわち、この変速機は、互いに変速比が異なる複数の変速段のギヤ列LA,LBと、走行用の電動モータ3の出力軸であるモータ軸4に連結された入力軸7と前記各変速段のギヤ列LA,LBとの間にそれぞれ介在し断続の切換が可能な各変速段の2ウェイ型のローラクラッチ16A,16Bと、これら各ローラクラッチ16A,16Bの断続の切換を行う変速比切換機構40とを有する。前記各ローラクラッチ16A,16Bは、内輪18A,18Bのカム面19と外輪23A,23B間に設けられた各楔状空間Sにローラ20が介在し、各ローラ20が楔状空間Sの狭まり部分に係合することで接続状態となり、保持器21A,21Bにより各ローラ20を楔状空間Sの広がり部分に位置させることで切断状態となる構成である。前記変速比切換機構40は、保持器21A,21Bに連結されて回転する摩擦板35A,35Bの外輪23A,23Bへの接触と離間とを変速切換アクチュエータ47によるシフト部材45の進退によって切り換える機構である。
 上記変速機を用いたこの発明の変速制御方法は、
 目標変速段への変速指令に応答して、前記変速切換アクチュエータ47により前記シフト部材45を動作させ、前記電動モータ3のトルクを除荷して現変速段のローラクラッチ16A,16Bの係合を解除するクラッチ解除過程と、
 前記電動モータ3を回転数制御することにより前記目標変速段の前記ローラクラッチ16A,16Bの外輪23A,23Bと内輪18A,18Bの回転数が同期するようにシンクロさせるシンクロ過程と、
 前記目標変速段の摩擦板35A,35Bと外輪23A,23Bを接触させ、前記電動モータ3を回転数制御することにより、目標変速段のローラクラッチ16A,16Bを係合させるクラッチ係合過程と、
を有し、
 前記クラッチ解除過程の後、前記シンクロ過程は、
  前記電動モータ3の回転数を増加または減少させるシンクロ動作を開始して一定時間経過後、現変速段のローラクラッチ16A,16Bの係合が解除されたか否かを判断する第1の解除判断過程と、
  この第1の解除判断過程にて、少なくとも現変速段のローラクラッチ16A,16Bの係合が解除されていないと判断された場合は、さらに一定時間経過後、現変速段のローラクラッチ16A,16Bの係合が解除されたか否かを判断する第2の解除判断過程と、を有する。
 この方法によると、クラッチ解除過程では、目標変速段への変速指令に応答して、変速切換アクチュエータ47によりシフト部材45を動作させる。これにより、電動モータ3のトルクを除荷して現変速段のローラクラッチ16A,16Bの係合を解除する。シンクロ過程では、電動モータ3を回転数制御することにより目標変速段のローラクラッチ16A,16Bの外輪23A,23Bと内輪18A,18Bの回転数が同期するようにシンクロさせる。その後、クラッチ係合過程において、目標変速段の摩擦板35A,35Bと外輪23A,23Bを接触させ、電動モータ3を回転数制御することにより、目標変速段のローラクラッチ16A,16Bを係合させる。
 クラッチ解除過程の後、シンクロ過程における第1の解除判断過程では、回転数制御により電動モータ3のシンクロ動作を開始後、一定時間経過したところで現変速段のローラクラッチ16A,16Bの係合が解除されたか否かの1回目の判断を行う。この第1の解除判断過程にて、少なくとも現変速段の係合が解除されていないと判断された場合、さらに一定時間経過後、第2の解除判断過程において、現変速段のローラクラッチ16A,16Bの係合が解除されたか否かの2回目の判断を行う。したがって、第1の解除判断過程にて現変速段の係合が一旦解除されたと判断されると、その後、例えば、電動モータ3の回転数が変動した場合であっても、現変速段の係合が解除されていないと誤判断することを確実に防止することができる。これにより、再度のシンクロ動作を行うことを未然に防止し、変速時間の短縮を図りエネルギーの消耗等の防止を図ることが可能となる。
 前記第1の解除判断過程にて、現変速段のローラクラッチ16A,16Bの係合が解除されたと判断したとき、第2の解除判断過程での係合解除の判断を行わないようにしても良い。この場合、第2の解除判断過程での判断を省略でき、変速時間を確実に短縮することができる。
 前記第1の解除判断過程にて、現変速段のローラクラッチ16A,16Bの係合が解除されていないと判断したとき、第2の解除判断過程での係合解除の判断を行うようにしても良い。
 前記第1の解除判断過程にて、現変速段のローラクラッチ16A,16Bの係合が解除されていないと判断したとき、第2の解除判断過程での係合解除の判断を行う前に、前記電動モータ3のシンクロ動作が完了したか否かを判断するシンクロ動作完了判断過程を有し、このシンクロ動作完了判断過程における、シンクロ動作が完了していないとの判断で、第2の解除判断過程での係合解除の判断を行い、シンクロ動作が完了したとの判断で、第2の解除判断過程での係合解除の判断を行わないようにしても良い。
 このように第1の解除判断過程の後、第2の解除判断過程の前にシンクロ動作完了判断過程の判断を行う。シンクロ動作が完了したときには優先的にこのシンクロ過程を終了させて、次のクラッチ係合過程に遅滞なく移行させることができる。
 前記シンクロ過程では、前記第1の解除判断過程の判断結果にかかわらず、電動モータ3のシンクロ動作を継続しても良い。この場合、電動モータ3を円滑にシンクロさせることができ、電動モータ3における回転数の変化率の低減を図れる。これにより、歯車間のバックラッシュに起因する異音を生じにくくすることができる。
 シフトダウン時、前記電動モータ3の回転数が、出力回転数に現変速段の減速比を乗じた回転数に一定の回転数を加えた回転数よりも、大きくなった場合のみ、前記現変速段のローラクラッチ16A,16Bの係合が解除されたと判断しても良い。
 シフトアップ時、前記電動モータ3の回転数が、出力回転数に現変速段の減速比を乗じた回転数から一定の回転数を減じた回転数よりも、小さくなった場合のみ、前記現変速段のローラクラッチ16A,16Bの係合が解除されたと判断しても良い。
 現変速段のローラクラッチ16A,16Bの係合が解除されたか否かの判断は、シフトレバーの選択がドライブレンジの場合のみ実施するようにしても良い。
 この発明の電気自動車の変速制御装置は、互いに変速比が異なる複数の変速段のギヤ列と、走行用の電動モータの出力軸であるモータ軸に連結された入力軸と前記各変速段のギヤ列との間にそれぞれ介在し断続の切換が可能な各変速段の2ウェイ型のローラクラッチと、これら各ローラクラッチの断続の切換を行う変速比切換機構とを有する変速機を備え、
 前記各ローラクラッチは、内輪のカム面と外輪間に設けられた各楔状空間にローラが介在し、各ローラが楔状空間の狭まり部分に係合することで接続状態となり、保持器により各ローラを楔状空間の広がり部分に位置させることで切断状態となる構成であり、
 前記変速比切換機構は、保持器に連結されて回転する摩擦板の外輪への接触と離間とを変速切換アクチュエータによるシフト部材の進退によって切り換える機構である、
 電気自動車における変速制御装置であって、
 目標変速段への変速指令に応答して、前記変速切換アクチュエータにより前記シフト部材を動作させ、前記電動モータのトルクを除荷して現変速段のローラクラッチの係合を解除する現変速段クラッチ解除手段と、
 前記電動モータを回転数制御することにより前記目標変速段の前記ローラクラッチの外輪と内輪の回転数が同期するようにシンクロさせるシンクロ制御手段と、
 前記目標変速段の摩擦板と外輪を接触させ、前記電動モータを回転数制御することにより、目標変速段のローラクラッチを係合させる目標変速段クラッチ係合手段と、
を有し、
 前記シンクロ制御手段は、
 前記電動モータの回転数を増加または減少させるシンクロ動作を開始して一定時間経過後、現変速段のローラクラッチの係合が解除されたか否かを判断する第1の解除判断手段と、
 この第1の解除判断手段にて、少なくとも現変速段のローラクラッチの係合が解除されていないと判断された場合は、さらに一定時間経過後、現変速段のローラクラッチの係合が解除されたか否かを判断する第2の解除判断手段と、
を有する。
 この構成によると、第1の解除判断手段にて現変速段の係合が一旦解除されたと判断されると、その後、例えば、電動モータの回転数が変動した場合であっても、現変速段の係合が解除されていないと誤判断することを確実に防止することができる。これにより、再度のシンクロ動作を行うことを未然に防止し、変速時間の短縮を図りエネルギーの消耗等の防止を図ることが可能となる。
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明からより明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の部品番号は、同一または相当部分を示す。
この発明の一実施形態に係る変速制御方法,変速制御装置を適用する電気自動車の概略図である。 同変速制御方法,変速制御装置を適用するハイブリッド車の概略図である。 図1,図2に示す車両の車両用モータ駆動装置の断面図である。 同車両用モータ駆動装置の変速比切換機構の断面図である。 同車両用モータ駆動装置を制御する変速制御システムの概略ブロック図である。 同車両用モータ駆動装置のインバータ装置の構成図である。 同車両のレバー操作パネルの説明図である。 同車両用モータ駆動装置のインバータ制御装置のブロック図である。 同車両用モータ駆動装置の変速制御装置の概念構成を示すブロック図である。 同変速制御方法における自動変速線図である。 同変速制御方法におけるシフトアップ自動変速線マップの構成図である。 同変速制御方法におけるシフトダウン自動変速線マップの構成図である。 同変速制御方法における自動変速判断のフローチャートである。 同変速制御方法の概要を示すフローチャートである。 同変速制御方法におけるシフトダウン時の現変速段クラッチの解除を判断するフローチャートである。 同変速制御方法におけるシフトアップ時の現変速段クラッチの解除を判断するフローチャートである。 図4の一部の拡大断面図である。 図4のXVIII -XVIII線に沿った断面図である。 図4のXIX-XIX 線に沿った断面図である。 図4のXX-XX 線に沿った断面図である。 同車両用モータ駆動装置のシフト機構を示す断面図である。 図4の変速比切換機構におけるローラクラッチ等の分解斜視図である。
 以下、この発明の実施形態にかかる電気自動車の変速制御方法を説明する。なお以下の説明は、変速制御装置の説明をも含む。図1は、左右一対の前輪1を車両用モータ駆動装置Aで駆動される駆動輪とし、左右一対の後輪2を従動輪とした電気自動車EVを示す。
 図2は、左右一対の前輪1をエンジンEによって駆動される主駆動輪とし、左右一対の後輪2を車両用モータ駆動装置Aで駆動される補助駆動輪としたハイブリッド自動車HVを示す。ハイブリッド自動車HVには、エンジンEの回転を変速するトランスミッションTと、トランスミッションTから出力された回転を左右の前輪1に分配するディファレンシャルDとが設けられている。この実施形態の変速制御方法および変速制御装置は、図1,図2の車両用モータ駆動装置Aに適用される。
 図3に示すように、車両用モータ駆動装置Aは、走行用の電動モータ3と、電動モータ3の出力軸4の回転を変速して出力する変速機5と、その変速機5から出力された回転を図1に示す電気自動車EVの左右一対の前輪1に分配し、または、図2に示すハイブリッド車の左右一対の後輪2に分配するディファレンシャル6とを有する。
 変速機5は、変速段数が2段であって、図3に示すように、互いに変速比が異なる複数(この例では2列)の変速段のギヤ列LA,LBと、電動モータ3の出力軸であるモータ軸4に連結された入力軸7と前記各変速段のギヤ列LA,LBにそれぞれ介在し断続の切換が可能な各変速段の2ウェイ型のローラクラッチ16A,16Bと、これら各ローラクラッチ16A,16Bの断続の切換を行う変速比切換機構40とを有する。
 変速機5および変速比切換機構40については、ここでは変速制御方法・装置の理解に必要な範囲で簡単に説明し、変速制御方法・装置の説明の後に、詳細に説明する。
 変速機5は、モータ軸4の回転が入力される入力軸7と、入力軸7に対して間隔をおいて平行に配置された出力軸8と、上記各ギヤ列LA,LBとを有する平行軸常時噛合型変速機である。1速ギヤ列LAの入力ギヤ9Aおよび2速ギヤ列LBの入力ギヤ9Bが入力軸に一体に設けられ、1速ギヤ列LAの出力ギヤ10Aおよび2速ギヤ列LBの出力ギヤ10Bが出力軸8の外周に回転自在に設置されている。これら各出力ギヤ10A,10Bと出力軸8の間に、前記ローラクラッチ16A,16Bが介在させてある。
 各ローラクラッチ16A,16Bは、図17に示す2速のローラクラッチ16Bの例で説明するように、外周面が多角形状とされた内輪18Bの外周の平面状の各カム面19と外輪23Bの内周の円筒面間に設けられた各楔状空間Sにローラ20が介在する。楔状空間Sは、円周方向の両側が狭まり、円周方向の中央が広がり部分となる。各ローラクラッチ16A,16Bは、各ローラ20が楔状空間Sの狭まり部分に係合することで接続状態となり、保持器21Bにより各ローラ20を楔状空間Sの広がり部分に位置させることで切断状態となる構成である。
 変速比切換機構40は、図4に示すように、ローラクラッチ16A,16Bの保持器21A,21Bに連結されて回転する環状の摩擦板35A,35Bの外輪23A,23Bへの接触と離間とを変速切換アクチュエータ47による、シフト部材であるシフトフォーク45の進退によって切り換える機構である。シフト機構41は、変速比切換機構40のうちの、摩擦板35A,35Bを動作される機構部分であり、変速切換アクチュエータ47とシフトフォーク45により構成される。
 変速切換アクチュエータ47は、シフト用の電動モータであり、その出力軸47aの回転を、送りねじ機構48によりシフトロッド46の直動運動に変換し、シフトロッド46に取り付けたシフトフォーク45を軸方向に移動させる。シフトフォーク45の移動により、シフトスリーブ43およびシフトリング34が移動する。シフトリング34が摩擦板35A,35Bを、クラッチ外輪23A,23B(出力ギヤ10A,10B)の側面に押し付ける。これにより、カム面付きの内輪18A,18Bと外輪23A,23Bとが相対回転する場合に、摩擦板35A,35Bと外輪23A,23Bとの間に摩擦力(トルク)が作用し、保持器21A,21Bを介してローラ20を楔状空間Sの狭まり部分に押し込むことができる。
 なお、保持器21A,21Bは内輪18A,18Bに対して回転自在であるが、スイッチばね22A,22B(図17)により、内輪18A,18Bのカム面19(図17)の中央、つまり楔状空間Sの広がり部分である中立位置とポケット21aの円周方向中央とが一致するように付勢される。摩擦板35A,35Bは、上記スイッチばね22A,22Bにより、保持器21A,21Bと共に回転可能なように連結されている。
 図5は、車両用モータ駆動装置Aを制御する制御システムを示すブロック図である。この制御システムは、統合ECU60、変速ECU61、およびインバータ装置62を有する。統合ECU60、変速ECU61、およびインバータ装置62の3者間の信号転送はCAN通信(コントローラー・エリア・ネットワーク)で行われる。
 統合ECU60は、車載全ての電子制御装置間の協調制御を行う電子制御装置であり、アクセルペダル63のアクセル開度センサ63a、ブレーキペダル91のブレーキ開度センサ91a、ステアリングホイール92の操舵角センサ92a、変速段を手動で切り換えるシフトレバー93のレバー位置センサ93aに接続されている。統合ECU60は、これらアクセル開度センサ63a、ブレーキ開度センサ91a、操舵角センサ92a、レバー位置センサ93aの検出したアクセル開度信号、ブレーキ開度信号、操舵角信号、およびレバー位置信号を、変速ECU61に送信する機能、並びにこれらの4種の信号および他の各種のセンサ等の信号によって前記協調制御を行う機能を備える。
 変速ECU61は、統合ECU60から送信された各種信号や、直接に変速ECU61に入力された各種信号により、自動変速の制御を行う電子制御装置であり、各種入力信号に基づいて変速判断を行ない、変速機5の変速切換アクチュエータ47とインバータ装置62に指令を出す。
 変速ECU61は、次の各機能(1)~(8)を備える。
 (1)車速度センサ94および加速度センサ95から、車速と車両の加減速度の検出信号を受け、統合ECU60からアクセル開度信号を受け取り、自動変速の判断を行う。
 (2)急ブレーキと判断した場合は、自動変速を行わない。
 (3)急ハンドルと判断した場合は、自動変速を行わない。
 (4)統合ECU60からシフトレバー93の位置信号を受け取り、電動モータ3のクリープ制御を実施する。
 (5)運転者により操作される第1~第3の操作スイッチ96~98の操作に応じた制御を行う。
 第1の操作スイッチ96:自動/手動変速の切換用トグルスイッチである。
 第2の操作スイッチ97:タクトスイッチであり、上記の第1の操作スイッチ96が手動変速で設定された場合のみ、有効とする。第2の操作スイッチ97を押すと、シフトアップ変速が実施される。
 第3の操作スイッチ98:タクトスイッチであり、上記の第1の操作スイッチ96が手動変速で設定された場合のみ、有効とする。第3の操作スイッチ98を押すと、シフトダウン変速が実施される。
 (6)表示部99へ、車速、電動モータ回転数、トルク指令値等を表示させる。表示部99は、液晶表示装置等の画像を表示する装置、または指針で表示する装置である。
 (7)変速切換アクチュエータ47のシフト位置を、変速機5に付けられたシフト位置センサ68から検出する機能とインバータから電動モータ3の回転数を取得する機能を備える。
 (8)インバータ装置62にトルク指令または回転数指令と変速指令を送信する機能、および変速機5に付けられた変速切換アクチュエータ47を駆動する機能を備える。
 変速ECU61には、自動変速モードと手動変速モードの変速モードがプログラムされており、自動変速モードと手動変速モードは、運転者による前記第1の操作スイッチ96の操作によって切り換えられる。
 この実施形態の変速制御方法および変速制御装置は、変速ECU61による自動変速モードにおける制御に係る。変速ECU61は、図9に示す各種の機能達成手段(81~86)を有しているが、これらの手段については後に説明する。
 図5において、インバータ装置62は、バッテリ69から直流電力が供給されて、電動モータ3に交流のモータ駆動電力を供給するとともに、その供給電力を変速ECU61からの信号に基づいて制御する。インバータ装置62には、電動モータ3に設けられた回転検出装置である回転角度センサ66から、電動モータ3の回転数を示す信号が入力される。
 インバータ装置62は、電動モータ3を駆動する機能、および回転角度センサ66から電動モータ3の回転角信号を得る機能を備える。インバータ装置62は、図6に示すように、インバータ71と、このインバータ71を制御するインバータ制御回路72とで構成される。インバータ71と、U,V,W相の上側アームスイッチング素子Up,Vp,Wpと、U,V,W相の下側アームスイッチング素子Un,Vn,Wnの接続点に電動モータ3の各相(U,V,W相)の端子を接続したものである。インバータ71には、3相の交流電力を出力するように、インバータ制御回路72から各スイッチング素子Up,Vp,Wp,Un,Vn,Wnに開閉指令が与えられる。
 電動モータ3は、3相の通電により、転流を行っている。高トルクの要求に対して、電動モータ3の駆動のためには大電流が必要である。
 図7は、シフトレバー操作パネル75の構成を示す。運転手がシフトレバー93(図5)を手動操作することによって、周知の例と同様に、P(パーキング)、R(リバース)、N(ニュートラル)、D(ドライブ)、2速(セカンド)、1速(ロウ)の各レンジを切り換えることができる。シフトレバー操作パネル75は、このように切り換えられるどのレンジに現在あるかを示す表示装置である。シフトレバー操作パネル75におけるレンジ選択情報は統合ECU60に入力される。1速レンジは1速段状態である。なお、シフトレバー操作パネル75は、タッチパネル形式の入力手段を兼ねて、シフトレバー93に代えて運転者により操作される操作手段としても良い。
 図8は、電動モータ3と、インバータトルク制御、インバータ回転数制御のブロック図を示す。このインバータ制御回路72は、トルク制御と回転数制御とに切り換えて制御可能としてあり、トルク制御と回転数制御とも、フィードバック制御で、かつベクトル制御である。変速時はトルク制御と回転数制御とを行い、変速時以外のときはトルク制御を行う。詳細な記述はここで省略する。
 電力変換部62aは、PWMデューティVu,Vv,Vwに従ってインバータ71をPWM制御し、電動モータ3を駆動する。
 同図のインバータ制御回路72による回転数制御を説明する。
 速度指令部106は、インバータ制御回路72に対して速度指令を与える手段であり、変速ECU61に設けられている。速度指令部106は、変速時の車速と選択された目標変速段の変速比に基づき、電動モータ3の目標回転数を算出する。算出した目標回転数は、速度指令としてインバータ装置62のインバータ制御回路72に指示される。
 また、電動モータ3の回転子角度を回転角度センサ66から取得し、実際の電動モータ3の回転数を速度計算部108で算出する。速度指令部106の速度指令と、速度計算部108で算出した実際の電動モータ回転数の差分を比較部109で求め、その差分に対して、制御部107でPID制御(比例積分微分制御)、あるいはPI制御(比例積分制御)を行い、制御量をトルク指令として、電流指令部101に入力する。回転数制御時、この速度計算部108の速度指令に基づくトルク指令が、トルク指令部110からのトルク指令に代えて電流指令部101に入力される。
 回転数制御では、電動モータ3の目標回転数は一定の時間間隔で計算され、変速中に車速が急に変化しても、変速の目標回転数は車速の変化を追及できる特徴をもつ。それによって、変速ショックを低減することができる。
 なお、図8において、インバータ制御回路72は、速度制御部73と、トルク制御部74とに分けて説明している。
 トルク制御部74は、インバータ制御回路72のうち、トルク制御により電動モータ3の制御の機能を果たす部分であり、図8の電流指令部101、電流PI制御部102、2相・3相変換部103、3相・2相変換部104、速度計算部108、および予測部111を含む。
 速度制御部73は、インバータ制御回路72のうち、速度制御により電動モータ3の制御の機能を果たす部分であって、比較部109と、制御部107とを有し、トルク制御部74の電流制御部101へトルク指令を与え、その後の制御をトルク制御部74で行わせる。
 次に、電気自動車における車両用モータ駆動装置の変速制御装置につき、図9のブロック図を参照して説明する。制御対象となる電気自動車は、上記実施形態の変速制御方法を適用する図1~図7と共に前述した電気自動車である。
 この電気自動車の変速制御装置は、上記実施形態の変速制御方法を実施する装置であって、上記変速ECU61に、次の変速指令生成手段81、現変速段クラッチ解除手段82、シンクロ制御手段83、目標変速段クラッチ係合手段85、および回転数・トルク制御切換手段86を備えることを特徴とする。変速ECU61は、自動変速時以外の電動モータ3の制御はトルク制御として、トルク指令をインバータ制御装置72へ出力し、変速時にトルク制御と回転数制御を切換る。
 変速指令生成手段81は、アクセル開度信号、車速の検出値、および車両の加減速度から、定められた規則に従って目標変速段への変速指令を生成する。この変速指令は変速ECU61等が出す。
 現変速段クラッチ解除手段82は、目標変速段への変速指令に応答して、変速切換アクチュエータ47によりシフトフォーク45を動作させ、現変速段の摩擦板35A,35Bと外輪23A,23Bの接触を解除し、トルク制御により電動モータ3のトルクを除荷して現変速段のローラクラッチ16A,16Bの係合を解除する。
 シンクロ制御手段83は、電動モータ3を回転数制御することにより目標変速段のローラクラッチ16A,16Bの外輪23A,23Bと内輪18A,18Bの回転数が同期するようにシンクロさせる。
 目標変速段クラッチ係合手段85は、目標変速段の摩擦板35A,35Bと外輪23A,23Bを接触させ、電動モータ3を回転数制御することにより、目標変速段のローラクラッチ16A,16Bを係合させる。
 回転数・トルク制御切換手段86は、電動モータ3の制御を回転数制御からトルク制御に切換えて電動モータ3のトルクを入力する。
 これら変速指令生成手段81、現変速段クラッチ解除手段82、シンクロ制御手段83、目標変速段クラッチ係合手段85、および回転数・トルク制御切換手段86は、より具体的には、図14の各ステップS1,S2,S3,S4およびS5,S6の処理をそれぞれ行う機能を有する。
 図10は、この変速制御方法における自動変速線図である。実線はシフトアップ線、破線はシフトダウン線である。横軸を車速、縦軸をアクセル開度として表される。
 アクセルペダルを一杯に踏み込むと、シフトダウン変速され所要の加速力が得られる。このようにアクセルペダルを全開付近まで踏込むことにより、強制的にシフトダウン変速することをキックダウンという。図10のキックダウン域がそれに当たる。
 図11は、この変速制御方法におけるシフトアップ自動変速線マップの構成図である。変速ECU61(図5)のROM等のメモリに、図11の変速線マップのデータが格納されている。図11の変速線図より、現在の変速段のシフトアップの変速線マップを参照することで、現在の車速よりスロットル開度を算出し、現在のスロットル開度との比較および車両の加減速度によりシフトアップ変速が実行される。
 図12は、この変速制御方法におけるシフトダウン自動変速線マップの構成図である。変速ECU61(図5)のROM等のメモリに、図12の変速線マップのデータが格納されている。図12の変速線図より、現在の変速段のシフトダウンの変速線マップを参照することで、現在の車速よりスロットル開度を算出し、現在のスロットル開度との比較および車両の加減速度によりシフトダウン変速が実行される。
 図13は、自動変速判断フローチャートを示す。図7のDレンジ走行時に、自動変速判断を行う。自動変速の実行可否の判断を、次の3パターンで行う。
 パターン1:車両加速でシフトアップ線を左から右へ跨ぐ時に、シフトアップ変速をする(Q1,Q4,Q5)。
 パターン2:車両減速でシフトダウン線を右から左へ跨ぐ時に、シフトダウン変速をする(Q1,Q2,Q6,Q7)。
 パターン3:シフトダウン線を下から上へ跨ぐ時(キックダウン時) に、シフトダウン変速をする( キックダウンという) (Q1,Q2,Q3,Q7)。
 自動変速を行わない領域に関しては、手動の操作によって、変速可能である。
 上記のように自動変速判断を工夫するに至った課題を説明する。従来のアクセル信号と車速信号だけに基づき、自動変速の実行可否の判断を行うアルゴリズムでは、車両の加減速度を自動変速の実行可否の判断条件として使用していないため、アクセルを頻繁に操作すると、変速のハンチング現象を生じることがある。上記の自動変速判断によると、このような変速のハンチング現象が回避できる。
 図14は、この変速制御方法の概要を示すフローチャートである。実行手順を説明する。
 例えば、車両のイグニッションスイッチ等をオンすることで本処理が開始する。本処理開始後、ステップS1において、アクセルペダル開度、車速、車両の加減速度を検出して、変速ECU61が変速指令を出す。次に、ステップS2(クラッチ解除過程)に移行し、変速切換アクチュエータ47により、シフト部材45を動作させ、現変速段の摩擦板35A,35Bと外輪23A,23Bの接触を解除すると同時に、トルク制御により、電動モータ3のトルクを除荷して現変速段のローラクラッチ16A,16Bの係合を解除する。
 次にステップS3(シンクロ過程)では、変速ECU61は、目標変速段のローラクラッチ16A,16Bの外輪23A,23Bと内輪18A,18Bの回転数を同期させ(シンクロ動作)、電動モータ3の回転数を回転数制御により加速もしくは減速させる。このシンクロ過程にて、現変速段のローラクラッチ16A,16Bの解除判断を、後述(図15,図16)するように2回行うことにしている。1回目の解除判断で現変速段のローラクラッチ16A,16Bを解除と判断する場合、2回目の解除判断を行わない。
 次にステップS4に移行して、変速切換アクチュエータ47によりシフトフォーク45を動作させ、目標変速段の摩擦板35A,35Bと外輪を接触させる。
 ステップS5では、変速ECU61は、2段階に分けた回転数制御を行い、電動モータ3を回転数制御しながらローラクラッチ16A,16Bを係合させる。
 2段階に分けた回転数制御により、電動モータ3を駆動する。具体的に第1段階は、大きな回転数差と制限電流を設定し、第2段階は小さな回転数差と制限電流を設定する。それによって、ローラクラッチ16A,16Bの係合時間を短縮しながらショックトルクと異音を生じないクラッチ16A,16Bの係合が可能となる。これらステップS4およびステップS5がクラッチ係合過程に相当する。
 その後ステップS6に移行して変速ECU61は、電動モータ3の制御を回転数制御からトルク制御に切り換えて、電動モータ3のトルク値をn回補間制御により与える。この実施形態では、目標変速段のローラクラッチ16A,16Bを係合させた後、トルク制御にて、トルク補間制御を行う。補間制御はn回補間であるため、補間値がアクセル開度の信号を常に追跡することできる。補間値はアクセル開度の信号との誤差を縮めていく追跡過程の中、誤差がある閾値以内に成ったら、追跡動作を完了させ、n回補間制御も完了させる。減速機5の歯車のバックラッシュに起因する異音とシャフト等の捩れショックが生じ難い。
 図15は、変速制御方法におけるシフトダウン時の現変速段クラッチの解除を判断するフローチャートである。本現変速段クラッチ締結の解除を判断する方法は、図14のステップS3において行われる方法である。
 ただし、
 Ngi :入力回転数:電動モータの回転数、
 Ngo:出力回転数:車速と歯車比から換算、
 r1:1速減速比、
 r2:2速減速比、
 SP:アクチュエータを駆動させることによるシフトロッド(シフトフォーク)のシフト位置、
 SP2f:2速段の締結位置、
 SP1f:1速段の締結位置、
である(図16についても同じ)。
 第1ステップ:回転数制御により電動モータのシンクロ動作を開始する(ステップa1)。このとき電動モータをシンクロさせる目標回転数をNgo×r1+ΔN2 とする。目標変速段のクラッチ外輪と内輪間の回転数差(ΔN2から換算)によって、ローラクラッチを締結させることになっている。
 ただし、
 ΔN2>0:目標変速段のローラクラッチを正方向に締結する。
 ΔN2=0:目標変速段のローラクラッチを締結しない、ニュートラルの位置にある。
 ΔN2<0:目標変速段のローラクラッチを負方向に締結する。
 前記「正方向」は、電動モータを駆動するとき、ローラクラッチが締結している方向とする。前記「負方向」は、電動モータを回生するとき、ローラクラッチが締結している方向とする。
 ここでは、目標変速段のローラクラッチを締結させるため、回転数差ΔN2>0とする。
 第2ステップ:シンクロ動作が開始後、一定時間(Δt1)経過したか否かを判断する(ステップa2)。一定時間(Δt1)経過後(ステップa2:Yes)、2速クラッチの係合が解除されたか否かの第1回目の判断を行う(ステップa3:第1の解除判断過程)。
 判断式:Ngi > Ngo ×r2 + ΔN1?
 すなわち第1の解除判断過程では、電動モータの回転数Ngiが、出力回転数Ngoに現変速段の減速比r2を乗じた回転数に、一定の回転数ΔN1を加えた回転数よりも、大か否かを判断する。前記ΔN1は回転数の閾値である。「大」の場合(ステップa3:Yes)、現変速段の2速クラッチの係合が解除したと判断して(ステップa4a)、解除フラグ=「1」として図示外の記憶手段に記憶する。「否」つまり現変速段の2速クラッチの係合が解除されていないとの判断で(ステップa3:No)、解除フラグ=「0」として前記記憶手段に記憶する(ステップa4b)。この第1回目の解除判断で現変速段のローラクラッチを解除と判断する場合、第2回目の解除判断を行わない。
 第3ステップ:シンクロ動作完了かどうかの判断を行う(ステップa5:シンクロ動作完了判断過程)。
 判断式: Ngi ≧ Ngo × r1 + ΔN2 ?
 すなわちシンクロ動作完了判断過程では、電動モータの回転数Ngiが、出力回転数Ngoに目標変速段の減速比r1を乗じた回転数に、一定の回転数ΔN2を加えた回転数以上か否かを判断する。前記回転数以上のとき(ステップa5:Yes)、シンクロ動作が完了したと判断して本処理を終了する。「否」つまりシンクロ動作中との判断で(ステップa5:No)、第4ステップへ移行する。
 第4ステップ:一定時間(Δt2)経過したか否かを判断し(ステップa6)、経過していないとき(ステップa6:No)、第3ステップに戻る。一定時間(Δt2)経過後(ステップa6:Yes)、解除フラグが「1」か否かを判断し(ステップa7)、解除フラグ=「1」のとき(ステップa7:Yes)、第3ステップに戻る。解除フラグが「1」ではないとの判断で(ステップa7:No)、2速クラッチの係合が解除されたか否かの第2回目の判断を行う(ステップa8:第2の解除判断過程)。
 判断式:Ngi > Ngo ×r2 + ΔN1?
 この第2の解除判断過程において、電動モータの回転数Ngiが、出力回転数Ngoに現変速段の減速比r2を乗じた回転数に、一定の回転数ΔN1を加えた回転数よりも、「大」と判断されると、第3ステップに戻る。現変速段の2速クラッチの係合が解除されていないとの判断で(ステップa8:No)、第5ステップへ移行する。
 第5ステップ:現変速段のローラクラッチ16Bの係合が解除されていない可能性がある。そこで即時に、変速切換アクチュエータ47を停止させ(ステップa9)、電動モータの制御をトルク制御に切換えて(ステップa10)、ゼロトルク(T=0)とする。変速切換アクチュエータ47を駆動させることにより、シフト部材45をSP2f方向に引戻す(ステップa11)。これによりローラクラッチ16Bに無理な負荷が作用することがなくなる。
 図16は、変速制御方法におけるシフトアップ時の現変速段クラッチの解除を判断するフローチャートである。本現変速段クラッチ締結の解除を判断する方法は、図14のステップS3において行われる方法である。
 第1ステップ:回転数制御により電動モータのシンクロ動作を開始する(ステップa1)。このとき電動モータをシンクロさせる目標回転数をNgo×r2+ΔN2 とする。目標変速段のクラッチ外輪と内輪間の回転数差(ΔN2から換算)によって、ローラクラッチを締結させることになっている。目標変速段のローラクラッチを締結させるため、回転数差ΔN2>0とする。
 第2ステップ:シンクロ動作が開始後、一定時間(Δt1)経過したところで(ステップa2:Yes)、1速クラッチの係合が解除されたか否かの第1回目の判断を行う(ステップa3:第1の解除判断過程)。
 判断式:Ngi < Ngo ×r1 - ΔN1?
 すなわち第1の解除判断過程では、電動モータの回転数Ngiが、出力回転数Ngoに現変速段の減速比r1 を乗じた回転数から一定の回転数ΔN1を減じた回転数よりも、小か否かを判断する。「小」の場合(ステップa3:Yes)、現変速段の1速クラッチの係合が解除したと判断して(ステップa4a)、解除フラグ=「1」として前記記憶手段に記憶する。この第1回目の解除判断で現変速段のローラクラッチを解除と判断する場合、第2回目の解除判断を行わない。
 第3ステップ:シンクロ動作完了かどうかの判断を行う(ステップa5:シンクロ動作完了判断過程)。
 判断式: Ngi ≦ Ngo × r2 + ΔN2 ?
 すなわちシンクロ動作完了判断過程では、電動モータの回転数Ngiが、出力回転数Ngoに目標変速段の減速比r2 を乗じた回転数に、一定の回転数ΔN2を加えた回転数以下か否かを判断する。前記回転数以下のとき(ステップa5:Yes)、シンクロ動作が完了したと判断して本処理を終了する。「否」つまりシンクロ動作中との判断で(ステップa5:No)、第4ステップへ移行する。
 第4ステップ:一定時間(Δt2)経過したか否かを判断し、経過していないとき(ステップa6:No)、第3ステップに戻る。一定時間(Δt2)経過後(ステップa6:Yes)、解除フラグが「1」か否かを判断し、解除フラグ=「1」のとき(ステップa7:Yes)、第3ステップに戻る。解除フラグが「1」ではないとの判断で(ステップa7:No)、1速クラッチの係合が解除されたか否かの第2回目の判断を行う(ステップa8:第2の解除判断過程)。
 判断式:Ngi < Ngo ×r1 - ΔN1?
 この第2の解除判断過程において、電動モータの回転数Ngiが、出力回転数Ngoに現変速段の減速比r1を乗じた回転数から一定の回転数ΔN1を減じた回転数よりも、「小」と判断されると、第3ステップに戻る。現変速段の1速クラッチの係合が解除されていないとの判断で(ステップa8:No)、第5ステップへ移行する。
 第5ステップ:現変速段のローラクラッチ16Aの係合が解除されていない可能性がある。そこで即時に、変速切換アクチュエータ47を停止させ(ステップa9)、電動モータ3の制御をトルク制御に切換えて(ステップa10)、ゼロトルク(T=0)とする。変速切換アクチュエータ47を駆動させることにより、シフト部材45をSP1f方向に引戻す(ステップa11)。これによりローラクラッチ16Aに無理な負荷が作用することがなくなる。
 次に、図3,図4の車両用モータ駆動装置の詳細を、図17~図22と共に説明する。
 図3において、モータ軸4は、入力軸7と同軸上に直列に配置されており、ハウジング11に固定された電動モータ3のステータ12で回転駆動される。入力軸7は、ハウジング11内に組込まれた対向一対の軸受13により回転可能に支持され、入力軸7の軸端はスプライン嵌合によってモータ軸4に接続されている。出力軸8は、ハウジング11内に組込まれた対向一対の軸受14により回転可能に支持されている。
 1速入力ギヤ9Aと2速入力ギヤ9Bは軸方向に間隔をおいて配置され、入力軸7を中心として入力軸7と一体に回転するように入力軸7に固定されている。1速出力ギヤ10Aと2速出力ギヤ10Bも軸方向に間隔をおいて配置されている。
 図4に示すように、1速出力ギヤ10Aは、出力軸8を貫通させる環状に形成され、軸受15を介して出力軸8で支持されており、出力軸8を中心として出力軸8に対して回転可能となっている。同様に、2速出力ギヤ10Bも、軸受15を介して出力軸8で回転可能に支持されている。
 1速入力ギヤ9Aと1速出力ギヤ10Aは互いに噛合しており、その噛合によって1速入力ギヤ9Aと1速出力ギヤ10Aの間で回転が伝達するようになっている。2速入力ギヤ9Bと2速出力ギヤ10Bも噛合しており、その噛合によって2速入力ギヤ9Bと2速出力ギヤ10Bの間で回転が伝達するようになっている。2速入力ギヤ9Bと2速出力ギヤ10Bの減速比は、1速入力ギヤ9Aと1速出力ギヤ10Aの減速比よりも小さい。
 1速出力ギヤ10Aと出力軸8の間には、1速出力ギヤ10Aと出力軸8の間でトルクの伝達と遮断の切換を行なう1速の2ウェイローラクラッチ16Aが組込まれている。また、2速出力ギヤ10Bと出力軸8の間には、2速出力ギヤ10Bと出力軸8の間でトルクの伝達と遮断の切換えを行なう2速の2ウェイローラクラッチ16Bが組込まれている。
 1速の2ウェイローラクラッチ16Aと2速の2ウェイローラクラッチ16Bは、左右対称の同一構成なので、2速の2ウェイローラクラッチ16Bを以下に説明し、1速の2ウェイローラクラッチ16Aについては、2速の2ウェイローラクラッチ16Bに対応する部分に同一の符号または末尾のアルファベットBをAに置き換えた符号を付して説明を省略する。
 図17~図18に示すように、2速の2ウェイローラクラッチ16Bは、2速出力ギヤ10Bの内周に設けられた円筒面17と、出力軸8の外周に回り止めした環状の2速カム部材18Bに形成されたカム面19と、カム面19と円筒面17の間に組み込まれたローラ20と、ローラ20を保持する2速保持器21Bと、2速スイッチばね22Bとからなる。カム面19は、円筒面17との間で周方向中央から周方向両端に向かって次第に狭くなる楔状空間Sを形成するような面であり、例えば、図18に示すように円筒面17と対向する平坦面である。
 図4、図22に示すように、2速保持器21Bは、ローラ20を収容する複数のポケット21aが周方向に間隔をおいて形成された円筒部24と、円筒部24の一端から径方向内方に延び出す内向きフランジ部25とを有する。内向きフランジ部25の径方向内端は、2速カム部材18Bの外周で周方向にスライド可能に支持され、この周方向のスライドによって、2速保持器21Bは、カム面19と円筒面17の間にローラ20を係合させる係合位置とローラ20の係合を解除する中立位置との間で出力軸8に対して相対回転可能となっている。また、2速保持器21Bの内向きフランジ部25は軸方向両側への移動が規制され、これにより2速保持器21Bが軸方向に非可動とされている。
 図18に示すように、各カム面19は、回転中心を含む仮想平面に対して対称に形成され、これにより、各カム面19と円筒面17の間に配置されたローラ20は、正転方向と逆転方向の両方向で係合可能となっている。すなわち、電動モータ3が発生するトルクにより車両を前進させるときは、2速保持器21Bを出力軸8に対して正転方向に相対回転させることにより、2速保持器21Bに保持されたローラ20を、カム面19と円筒面17の間の正転方向側の空間狭まり部分に係合させ、そのローラ20を介して2速出力ギヤ10Bと出力軸8の間で正転方向のトルクを伝達することが可能となっており、一方、電動モータ3が発生するトルクにより車両を後退させるときは、2速保持器21Bを出力軸8に対して逆転方向に相対回転させることにより、2速保持器21Bに保持されたローラ20を、カム面19と円筒面17の間の逆転方向側の空間狭まり部分に係合させ、そのローラ20を介して2速出力ギヤ10Bと出力軸8の間で逆転方向のトルクを伝達することが可能となっている。
 図19、図22に示すように、2速スイッチばね22Bは、鋼線をC形に巻いたC形環状部26と、C形環状部26の両端からそれぞれ径方向外方に延出する一対の延出部27,27とからなる。C形環状部26は、2速カム部材18Bの軸方向端面に形成された円形のスイッチばね収容凹部28に嵌め込まれ、一対の延出部27,27は、2速カム部材18Bの軸方向端面に形成された径方向溝29に挿入されている。
 径方向溝29は、スイッチばね収容凹部28の内周縁から径方向外方に延びて2速カム部材18Bの外周に至るように形成されている。2速スイッチばね22Bの延出部27は、径方向溝29の径方向外端から突出しており、その延出部27の径方向溝29からの突出部分が、2速保持器21Bの円筒部24の軸方向端部に形成された切欠き30に挿入されている。径方向溝29と切欠き30は同じ幅に形成されている。
 延出部27,27は、径方向溝29の周方向で対向する内面と、切欠き30の周方向で対向する内面にそれぞれ接触しており、その接触面に作用する周方向の力によって2速保持器21Bを中立位置に弾性保持している。
 すなわち、2速保持器21Bを出力軸8に対して相対回転させて、図19に示す中立位置から周方向に移動させると、径方向溝29に対する欠き30の位置が周方向にずれるので、一対の延出部27,27の間隔が狭まる方向にC形環状部26が弾性変形し、その弾性復元力によって2速スイッチばね22Bの一対の延出部27,27が径方向溝29の内面と切欠き30の内面を押圧し、その押圧によって2速保持器21Bを中立位置に戻す方向の力が作用するようになっている。
 図4に示すように、1速カム部材18Aと2速カム部材18Bの出力軸8に対する回り止めは、スプライン嵌合によって行なわれている。1速カム部材18Aのカム面19と2速カム部材18Bのカム面19は同数かつ同位相となっている。また、1速カム部材18Aと2速カム部材18Bは、出力軸8の外周に嵌合した一対の止め輪31によって軸方向に非可動となっている。1速カム部材18Aと2速カム部材18Bの間には間座32が組み込まれている。
 1速の2ウェイローラクラッチ16Aと2速の2ウェイローラクラッチ16Bは、変速用伝達機構33により選択的に係合することができるようになっている。
 図17に示すように、変速用伝達機構33は、1速出力ギヤ10A(断面でない部分は図示せず。図18においても同様)と2速出力ギヤ10Bの間に軸方向に移動可能に設けられたシフトリング34と、1速出力ギヤ10Aとシフトリング34の間に組み込まれた1速摩擦板35Aと、2速出力ギヤ10Bとシフトリング34の間に組み込まれた2速摩擦板35Bとを有する。
 ここで、1速摩擦板35Aと2速摩擦板35Bは、左右対称の同一構成なので、2速摩擦板35Bを以下に説明し、1速摩擦板35Aについては、2速摩擦板35Bに対応する部分に同一の符号または末尾のアルファベットBをAに置き換えた符号を付して説明を省略する。
 2速摩擦板35Bには、2速保持器21Bの切欠き30に係合する突片36が設けられ、この突片36と切欠き30の係合によって、2速摩擦板35Bが2速保持器21Bに回り止めされている。2速保持器21Bの切欠き30は、2速摩擦板35Bの突片36を軸方向にスライド可能に収容しており、このスライドによって、2速摩擦板35Bは、2速保持器21Bに回り止めされた状態のまま、2速出力ギヤ10Bの側面に接触する位置と離間する位置との間で、2速保持器21Bに対して軸方向に移動可能となっている。
 2速摩擦板35Bの突片36の先端に凹部37が形成されて、間座32の外周には、凹部37に係合する凸部38が形成されている。そして、凹部37と凸部38は、2速摩擦板35Bが2速出力ギヤ10Bの側面から離間した位置にある状態では、凹部37と凸部38が係合することで、2速摩擦板35Bを間座32を介して出力軸8に回り止めし、このとき、2速摩擦板35Bに回り止めされた2速保持器21Bが中立位置に保持されるようになっている。また、2速摩擦板35Bが2速出力ギヤ10Bの側面に接触する位置にある状態では、凹部37と凸部38の係合が解除することで、2速摩擦板35Bの回り止めが解除されるようになっている。
 2速摩擦板35Bと2速カム部材18Bの間には、軸方向に圧縮された状態で2速離間ばね39Bが組み込まれており、この2速離間ばね39Bの弾性復元力によって2速摩擦板35Bが2速出力ギヤ10Bの側面から離間する方向に付勢されている。
 2速離間ばね39Bは、間座32の外周に沿って巻回されたコイルスプリングであり、その一端が2速ワッシャ90Bを介して2速摩擦板35Bの突片36に係合し、他端が2速カム部材18Bの軸方向端面で支持されている。2速ワッシャ90Bは、2速カム部材18Bの軸方向端面の径方向溝29を覆うように環状に形成されている。
 シフトリング34は、1速摩擦板35Aを押圧して1速出力ギヤ10Aの側面に接触させる1速シフト位置SP1fと、2速摩擦板35Bを押圧して2速出力ギヤ10Bの側面に接触させる2速シフト位置SP2fとの間で軸方向に移動可能に支持されている。また、シフトリング34を1速シフト位置SP1fと2速シフト位置SP2fの間で軸方向に移動させるシフト機構41が設けられている。シフト機構41は、前述のように変速比切換機構40の一部を構成する。
 図20、図21に示すように、シフト機構41は、シフトリング34を転がり軸受42を介して回転可能に支持するシフトスリーブ43と、そのシフトスリーブ43の外周に設けられた環状溝44に係合する二股状のシフトフォーク45と、シフトフォーク45が固定されたシフトロッド46と、シフトモータである変速切換アクチュエータ47と、変速切換アクチュエータ47の回転をシフトロッド46の直線運動に変換する運動変換機構48(送りねじ機構等)とからなる。
 図21に示すように、シフトロッド46は、出力軸8に対して間隔をおいて平行に配置され、ハウジング11内に組み込まれた一対の滑り軸受49で軸方向にスライド可能に支持されている。シフトリング34とシフトスリーブ43の間に組み込まれた転がり軸受42は、シフトリング34とシフトスリーブ43のいずれに対しても軸方向に非可動となるように組み付けられている。
 このシフト機構41は、変速切換アクチュエータ47の回転が運動変換機構48により直線運動に変換されてシフトフォーク45に伝達し、そのシフトフォーク45の直線運動が転がり軸受42を介してシフトリング34に伝達することにより、シフトリング34を軸方向に移動させる。
 図17に示すように、シフトフォーク45と環状溝44の間の両側の軸方向隙間には、軸方向に圧縮可能な予圧ばね50が組み込まれている。これにより、シフトリング34で1速摩擦板35Aを押圧して1速出力ギヤ10Aの側面に接触させるときに、シフトスリーブ43に対するシフトフォーク45の軸方向の相対位置を調節することによって予圧ばね50のばね力を調節し、1速摩擦板35Aと1速出力ギヤ10Aの接触面間の摩擦力を調整することが可能となっている。また、シフトリング34で2速摩擦板35Bを押圧して2速出力ギヤ10Bの側面に接触させるときも、2速摩擦板35Bと2速出力ギヤ10Bの接触面間の摩擦力を調整することが可能となっている。
 図3に示すように、出力軸8には、出力軸8の回転をディファレンシャル6に伝達するディファレンシャル駆動ギヤ51が固定されている。
 ディファレンシャル6は、一対の軸受52で回転可能に支持されたデフケース53と、デフケース53の回転中心と同軸にデフケース53に固定され、ディファレンシャル駆動ギヤ51に噛合するリングギヤ54と、デフケース53の回転中心と直角な方向にデフケース53に固定されたピニオン軸55と、ピニオン軸55に回転可能に支持された一対のピニオン56と、その一対のピニオン56に噛合する左右一対のサイドギヤ57とからなる。左側のサイドギヤ57には、左側の車輪に接続されたアクスル58の軸端部が接続され、右側のサイドギヤ57には、右側の車輪に接続されたアクスル58の軸端部が接続されている。出力軸8が回転するとき、出力軸8の回転はディファレンシャル駆動ギヤ51を介してリングギヤ54に伝達され、そのリングギヤ54の回転がピニオン56とサイドギヤ57を介して左右の車輪に分配される。
 以下に、車両用モータ駆動装置Aの動作例を説明する。
 まず、図17に示すように、1速摩擦板35Aが1速出力ギヤ10Aの側面から離間し、かつ、2速摩擦板35Bも2速出力ギヤ10Bの側面から離間した状態では、1速保持器21Aは1速スイッチばね22Aの弾性力により中立位置に保持され、2速保持器21Bも2速スイッチばね22Bの弾性力により中立位置に保持されるので、1速の2ウェイローラクラッチ16Aはローラ20の係合が解除された状態となり、2速の2ウェイローラクラッチ16Bもローラ20の係合が解除された状態となる。
 この状態では、図3に示す電動モータ3の駆動により入力軸7が回転しても、1速の2ウェイローラクラッチ16Aと2速の2ウェイローラクラッチ16Bによって回転の伝達が遮断されるので、1速出力ギヤ10Aおよび2速出力ギヤ10Bは空転し、入力軸7の回転は出力軸8に伝達されない。
 次に、シフト機構41を作動させて、図17に示すシフトリング34を1速出力ギヤ10Aに向けて移動させると、1速摩擦板35Aが1速出力ギヤ10Aの側面に接触し、その接触面間の摩擦力によって1速摩擦板35Aが出力軸8に対して相対回転し、この1速摩擦板35Aに回り止めされた1速保持器21Aが1速スイッチばね22Aの弾性力に抗して中立位置から係合位置に移動するので、1速保持器21Aに保持されたローラ20が、円筒面17とカム面19の間の楔状空間Sの狭まり部分に押し込まれて係合した状態となる。
 この状態では、1速出力ギヤ10Aの回転は、1速の2ウェイローラクラッチ16Aを介して出力軸8に伝達され、出力軸8の回転が、ディファレンシャル6を介してアクスル58に伝達される。その結果、図1に示す電気自動車EVにおいては、駆動輪としての前輪1が回転駆動され、図2に示すハイブリッド車HVにおいては補助駆動輪としての後輪2が回転駆動される。
 次に、シフト機構41の作動により、シフトリング34を1速シフト位置SP1fから2速シフト位置SP2fに向かって軸方向移動させると、1速摩擦板35Aと1速出力ギヤ10Aの接触面間の摩擦力が小さくなるので、1速スイッチばね22Aの弾性力により1速保持器21Aが係合位置から中立位置に移動し、この1速保持器21Aの移動によって1速の2ウェイローラクラッチ16Aの係合が解除される。
 シフトリング34が2速シフト位置SP2fに到達すると、2速摩擦板35Bがシフトリング34で押圧されて2速出力ギヤ10Bの側面に接触し、その接触面間の摩擦力によって2速摩擦板35Bが出力軸8に対して相対回転し、2速摩擦板35Bに回り止めされた2速保持器21Bが2速スイッチばね22Bの弾性力に抗して中立位置から係合位置に移動するので、2速保持器21Bに保持されたローラ20が、円筒面17とカム面19の間の楔状空間Sの狭まり部分に押し込まれて係合した状態となる。
 この状態では、2速出力ギヤ10Bの回転は、2速の2ウェイローラクラッチ16Bを介して出力軸8に伝達され、出力軸8の回転がディファレンシャル6を介してアクスル58に伝達される。
 同様に、シフトリング34を2速シフト位置SP2fから1速シフト位置SP1fに軸方向移動させることにより、2速の2ウェイローラクラッチ16Bの係合を解除して、1速の2ウェイローラクラッチ16Aを係合させることができる。
 ところで、1速の2ウェイローラクラッチ16Aを係合解除するときに、1速の2ウェイローラクラッチ16Aを介してトルクが伝達していると、そのトルクがローラ20を円筒面17とカム面19の間の楔状空間Sの狭まり部分に押し込むように作用し、1速の2ウェイローラクラッチ16Aの係合解除が妨げられる。そのため、シフト機構41の作動により、シフトリング34が1速シフト位置SP1fから2速シフト位置SP2fに向かって軸方向移動を開始したときに、1速摩擦板35Aが、1速出力ギヤ10Aの側面から既に離間しているにもかかわらず、1速の2ウェイローラクラッチ16Aの係合が解除されない可能性がある。
 このため、1速の2ウェイローラクラッチ16Aを確実に係合解除するためには、シフト機構41の作動により、1速摩擦板35Aを1速出力ギヤ10Aの側面から離間させるだけでなく、電動モータ3の出力を制御して、入力軸7と出力軸8の間で伝達するトルクを変化させる必要がある。2速の2ウェイローラクラッチ16Bを係合解除するときも同様である。
 そこで、上記制御システムでは、図9に示す変速制御装置により、電動モータ3と変速切換アクチュエータ47を制御し、この制御により1速の2ウェイローラクラッチ16Aまたは2速の2ウェイローラクラッチ16Bの係合を解除するときの動作の信頼性を確保している。
 以上説明した変速制御方法によると、第1の解除判断過程にて現変速段の係合が一旦解除されたと判断されると、その後、例えば、電動モータ3の回転数が変動した場合であっても、現変速段の係合が解除されていないと誤判断することを確実に防止することができる。これにより、再度のシンクロ動作を行うことを未然に防止し、変速時間の短縮を図りエネルギーの消耗等の防止を図ることが可能となる。
 第1の解除判断過程にて、現変速段のローラクラッチ16A,16Bの係合が解除されたと判断したとき、第2の解除判断過程での係合解除の判断を行わないようにしているため、第2の解除判断過程での判断を省略でき、変速時間を確実に短縮することができる。
 シンクロ動作完了判断過程における、シンクロ動作が完了していないとの判断で、第2の解除判断過程での係合解除の判断を行い、シンクロ動作が完了したとの判断で、第2の解除判断過程での係合解除の判断を行わないようにしている。このように第1の解除判断過程の後、第2の解除判断過程の前にシンクロ動作完了判断過程の判断を行う。シンクロ動作が完了したときには優先的にこのシンクロ過程を終了させて、次のクラッチ係合過程に遅滞なく移行させることができる。
 シンクロ過程では、第1の解除判断過程の判断結果にかかわらず、電動モータ3のシンクロ動作を継続している。この場合、電動モータ3を円滑にシンクロさせることができ、電動モータ3における回転数の変化率の低減を図れる。これにより、歯車間のバックラッシュに起因する異音を生じにくくすることができる。
 以上のとおり、図面を参照しながら好適な実施形態を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。したがって、そのような変更および修正は、添付の特許請求の範囲から定まるこの発明の範囲内のものと解釈される。
3…電動モータ
4…モータ軸
5…変速機
7…入力軸
16A,16B…ローラクラッチ
18A,18B…内輪
19…カム面
20…ローラ
21A,21B…保持器
23A,23B…外輪
35A,35B…摩擦板
40…変速比切換機構
45…シフトフォーク(シフト部材)
47…変速切換アクチュエータ
82…現変速段クラッチ解除手段
83…シンクロ制御手段
85…目標変速段クラッチ係合手段
86…回転数・トルク制御切換手段
LA,LB…ギヤ列
S…楔状空間
SP1f…1速シフト位置
SP2f…2速シフト位置

Claims (8)

  1.  互いに変速比が異なる複数の変速段のギヤ列と、走行用の電動モータの出力軸であるモータ軸に連結された入力軸と前記各変速段のギヤ列との間にそれぞれ介在し断続の切換が可能な各変速段の2ウェイ型のローラクラッチと、これら各ローラクラッチの断続の切換を行う変速比切換機構とを有する変速機を備え、
     前記各ローラクラッチは、内輪のカム面と外輪間に設けられた各楔状空間にローラが介在し、各ローラが楔状空間の狭まり部分に係合することで接続状態となり、保持器により各ローラを楔状空間の広がり部分に位置させることで切断状態となる構成であり、
     前記変速比切換機構は、保持器に連結されて回転する摩擦板の外輪への接触と離間とを変速切換アクチュエータによるシフト部材の進退によって切り換える機構である、
     電気自動車における変速制御方法において、
     目標変速段への変速指令に応答して、前記変速切換アクチュエータにより前記シフト部材を動作させ、前記電動モータのトルクを除荷して現変速段のローラクラッチの係合を解除するクラッチ解除過程と、
     前記電動モータを回転数制御することにより前記目標変速段の前記ローラクラッチの外輪と内輪の回転数が同期するようにシンクロさせるシンクロ過程と、
     前記目標変速段の摩擦板と外輪を接触させ、前記電動モータを回転数制御することにより、目標変速段のローラクラッチを係合させるクラッチ係合過程と、
    を有し、
     前記クラッチ解除過程の後、前記シンクロ過程は、
      前記電動モータの回転数を増加または減少させるシンクロ動作を開始して一定時間経過後、現変速段のローラクラッチの係合が解除されたか否かを判断する第1の解除判断過程と、
      この第1の解除判断過程にて、少なくとも現変速段のローラクラッチの係合が解除されていないと判断された場合は、さらに一定時間経過後、現変速段のローラクラッチの係合が解除されたか否かを判断する第2の解除判断過程と、
    を有する電気自動車の変速制御方法。
  2.  請求項1において、前記第1の解除判断過程にて、現変速段のローラクラッチの係合が解除されたと判断したとき、第2の解除判断過程での係合解除の判断を行わない電気自動車の変速制御方法。
  3.  請求項1において、前記第1の解除判断過程にて、現変速段のローラクラッチの係合が解除されていないと判断したとき、第2の解除判断過程での係合解除の判断を行う電気自動車の変速制御方法。
  4.  請求項3において、前記第1の解除判断過程にて、現変速段のローラクラッチの係合が解除されていないと判断したとき、第2の解除判断過程での係合解除の判断を行う前に、前記電動モータのシンクロ動作が完了したか否かを判断するシンクロ動作完了判断過程を有し、このシンクロ動作完了判断過程における、シンクロ動作が完了していないとの判断で、第2の解除判断過程での係合解除の判断を行い、シンクロ動作が完了したとの判断で、第2の解除判断過程での係合解除の判断を行わない電気自動車の変速制御方法。
  5.  請求項1おいて、前記シンクロ過程では、前記第1の解除判断過程の判断結果にかかわらず、電動モータのシンクロ動作を継続する電気自動車の変速制御方法。
  6.  請求項1において、シフトダウン時、前記電動モータの回転数が、出力回転数に現変速段の減速比を乗じた回転数に一定の回転数を加えた回転数よりも、大きくなった場合のみ、前記現変速段のローラクラッチの係合が解除されたと判断する電気自動車の変速制御方法。
  7.  請求項1において、シフトアップ時、前記電動モータの回転数が、出力回転数に現変速段の減速比を乗じた回転数から一定の回転数を減じた回転数よりも、小さくなった場合のみ、前記現変速段のローラクラッチの係合が解除されたと判断する電気自動車の変速制御方法。
  8.  互いに変速比が異なる複数の変速段のギヤ列と、走行用の電動モータの出力軸であるモータ軸に連結された入力軸と前記各変速段のギヤ列との間にそれぞれ介在し断続の切換が可能な各変速段の2ウェイ型のローラクラッチと、これら各ローラクラッチの断続の切換を行う変速比切換機構とを有する変速機を備え、
     前記各ローラクラッチは、内輪のカム面と外輪間に設けられた各楔状空間にローラが介在し、各ローラが楔状空間の狭まり部分に係合することで接続状態となり、保持器により各ローラを楔状空間の広がり部分に位置させることで切断状態となる構成であり、
     前記変速比切換機構は、保持器に連結されて回転する摩擦板の外輪への接触と離間とを変速切換アクチュエータによるシフト部材の進退によって切り換える機構である、
     電気自動車における変速制御装置であって、
     目標変速段への変速指令に応答して、前記変速切換アクチュエータにより前記シフト部材を動作させ、前記電動モータのトルクを除荷して現変速段のローラクラッチの係合を解除する現変速段クラッチ解除手段と、
     前記電動モータを回転数制御することにより前記目標変速段の前記ローラクラッチの外輪と内輪の回転数が同期するようにシンクロさせるシンクロ制御手段と、
     前記目標変速段の摩擦板と外輪を接触させ、前記電動モータを回転数制御することにより、目標変速段のローラクラッチを係合させる目標変速段クラッチ係合手段と、
    を有し、
     前記シンクロ制御手段は、
     前記電動モータの回転数を増加または減少させるシンクロ動作を開始して一定時間経過後、現変速段のローラクラッチの係合が解除されたか否かを判断する第1の解除判断手段と、
     この第1の解除判断手段にて、少なくとも現変速段のローラクラッチの係合が解除されていないと判断された場合は、さらに一定時間経過後、現変速段のローラクラッチの係合が解除されたか否かを判断する第2の解除判断手段と、
    を有する電気自動車の変速制御装置。
PCT/JP2013/064687 2012-06-06 2013-05-28 電気自動車の変速制御方法および変速制御装置 WO2013183482A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012128826A JP2013253632A (ja) 2012-06-06 2012-06-06 電気自動車の変速制御方法および変速制御装置
JP2012-128826 2012-06-06

Publications (1)

Publication Number Publication Date
WO2013183482A1 true WO2013183482A1 (ja) 2013-12-12

Family

ID=49711875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/064687 WO2013183482A1 (ja) 2012-06-06 2013-05-28 電気自動車の変速制御方法および変速制御装置

Country Status (2)

Country Link
JP (1) JP2013253632A (ja)
WO (1) WO2013183482A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4194244A4 (en) * 2020-11-27 2023-09-27 Huawei Digital Power Technologies Co., Ltd. ELECTRICAL DRIVE ARRANGEMENT AND ELECTRIC VEHICLE

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005121219A (ja) * 2003-09-26 2005-05-12 Ntn Corp 車両用変速機
JP2011058534A (ja) * 2009-09-08 2011-03-24 Ntn Corp 車両用モータ駆動装置および自動車
JP2011057030A (ja) * 2009-09-08 2011-03-24 Ntn Corp 車両用モータ駆動装置および自動車

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005121219A (ja) * 2003-09-26 2005-05-12 Ntn Corp 車両用変速機
JP2011058534A (ja) * 2009-09-08 2011-03-24 Ntn Corp 車両用モータ駆動装置および自動車
JP2011057030A (ja) * 2009-09-08 2011-03-24 Ntn Corp 車両用モータ駆動装置および自動車

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4194244A4 (en) * 2020-11-27 2023-09-27 Huawei Digital Power Technologies Co., Ltd. ELECTRICAL DRIVE ARRANGEMENT AND ELECTRIC VEHICLE

Also Published As

Publication number Publication date
JP2013253632A (ja) 2013-12-19

Similar Documents

Publication Publication Date Title
JP5822615B2 (ja) 自動クラッチ制御装置およびその変速制御方法
JP5580217B2 (ja) 車両用モータ駆動装置および自動車
WO2011030670A1 (ja) 車両用モータ駆動装置および自動車
JP3208866B2 (ja) 電気自動車用駆動装置
JP5863333B2 (ja) 自動クラッチ制御装置
WO2013058238A1 (ja) 電気自動車の変速制御方法および変速制御装置
WO2012165146A1 (ja) 車両用モータ駆動装置の変速制御方法および自動車の変速制御方法
EP2481948B1 (en) Shift device for vehicle
JP2015007459A (ja) 電気自動車の変速制御装置
JP2013152001A (ja) 電気自動車の変速制御方法および変速制御装置
JP5863379B2 (ja) デュアルクラッチ式自動変速機およびその変速制御方法
JP4792883B2 (ja) 複数クラッチ式変速機の制御装置
JP2014121225A (ja) 電気自動車の変速制御装置および変速制御方法
WO2013176074A1 (ja) 電気自動車の変速制御方法および変速制御装置
JP5387967B2 (ja) 車両用モータ駆動装置および自動車
JP5787703B2 (ja) デュアルクラッチ式自動変速機
JP2008133731A (ja) 車両用動力伝達装置の変速時制御装置
JP5892763B2 (ja) デュアルクラッチ式自動変速機およびその変速制御方法
JP2013255329A (ja) 電気自動車の変速制御方法および変速制御装置
JP2014001746A (ja) 電気自動車の変速制御方法および変速制御装置
JP4616625B2 (ja) 自動変速制御装置
JP2014047817A (ja) 電気自動車の変速制御方法および変速制御装置
JP2014023415A (ja) 電気自動車の変速制御方法および変速制御装置
JP2014045561A (ja) 電気自動車の変速制御方法および変速制御装置
WO2013183482A1 (ja) 電気自動車の変速制御方法および変速制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13800973

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13800973

Country of ref document: EP

Kind code of ref document: A1