WO2013181879A1 - 磁控溅射系统 - Google Patents

磁控溅射系统 Download PDF

Info

Publication number
WO2013181879A1
WO2013181879A1 PCT/CN2012/078995 CN2012078995W WO2013181879A1 WO 2013181879 A1 WO2013181879 A1 WO 2013181879A1 CN 2012078995 W CN2012078995 W CN 2012078995W WO 2013181879 A1 WO2013181879 A1 WO 2013181879A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
substrate
magnetron sputtering
sputtering system
plate
Prior art date
Application number
PCT/CN2012/078995
Other languages
English (en)
French (fr)
Inventor
李金磊
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US13/636,975 priority Critical patent/US20130319855A1/en
Publication of WO2013181879A1 publication Critical patent/WO2013181879A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3266Magnetic control means
    • H01J37/32669Particular magnets or magnet arrangements for controlling the discharge
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/351Sputtering by application of a magnetic field, e.g. magnetron sputtering using a magnetic field in close vicinity to the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • H01J37/3408Planar magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/345Magnet arrangements in particular for cathodic sputtering apparatus

Definitions

  • the present invention relates to the field of liquid crystal display manufacturing, and more particularly to a magnetron sputtering system.
  • the magnetron sputtering system can form a large-area sputtering film on a substrate, the film formed by sputtering is not only uniform, but also has high adhesion to the substrate, so the magnetron sputtering system is widely used. It is used in the manufacturing process of liquid crystal displays, especially in the manufacturing process of thin film deposition.
  • a magnetron sputtering system can perform deposition of a metal thin film or a metal oxide transparent electrode film such as aluminum (Al), aluminum-niobium alloy (AlNd), molybdenum (Mo), and copper. (Cu); the metal oxide transparent electrode film such as indium tin oxide (ITO) or indium zinc oxide (IZO).
  • a magnetron sputtering system can be used for film deposition of the cathode layer and the anode layer on both sides of the light-emitting organic layer.
  • FIG. 1 is a schematic structural view of a prior art magnetron sputtering system 10 during sputter coating.
  • the magnetron sputtering system 10 includes a metal cavity 11 for achieving isolation from the external environment and maintaining a vacuum environment within the metal cavity 11.
  • a target support frame 12 and a substrate holder 13 are disposed in the metal cavity 11, and the substrate support 13 and the target support frame 12 are disposed opposite to each other.
  • the magnet 14 is disposed in the target support frame 12.
  • the target 15 is fixed on the target support frame 12, and the substrate 16 is placed on the substrate holder 13,
  • the target 15 is connected to the cathode of a power source (not shown), and the metal cavity 11 and the substrate 16 are connected to the anode of the power source, and simultaneously to the metal cavity through an inert gas supply line (not shown).
  • 11 is filled with an argon atom.
  • an electric field is generated between the target 15 and the substrate 16, and electrons between the target 15 and the substrate 16 are moved at a high speed by the electric field, and the electrons and the electrons are
  • the argon atoms in the metal cavity 11 collide, and the ionization generates argon positive (Ar+) ions and new electrons; the Ar+ ions accelerate toward the target 15 under the action of the electric field, and bombard the high energy.
  • the magnet 14 Since the magnet 14 is disposed in the target support frame 12, the magnet generates a magnetic field, and the magnetic field is present on the surface of the target 15 in addition to the electric field.
  • the Ar+ ions emit secondary electrons when bombarding the target 15, and the secondary electrons are bound by the magnetic field in a surface region close to the target 15, under the action of the electric field and the magnetic field.
  • the motion trajectory of the secondary electron is a complex curve that accelerates in the direction of the electric field while spirally advancing around the direction of the magnetic field, so that the motion path of the secondary electron becomes long, and the metal cavity 11 continuously with the movement process.
  • the argon atoms within it collide and ionize a large amount of Ar+ ions to continue bombarding the target.
  • the target 15 Since the target 15 is connected to the cathode of the power source, under the high-speed bombardment of the Ar+ ions, the target 15 is sputtered, and the target atoms, molecules or anions are sputtered, and the neutral target atoms are deposited in the ground. A film is formed on the surface of the substrate 16 to effect coating of the substrate 16.
  • the charged molecules or anions generated by the sputtering of the target 15 are sputtered to the substrate 16 by a higher energy (for example, several tens of electron volts) under the action of the electric field after leaving the target 15 , and The substrate 16 and the periphery of the substrate 16 are sputtered almost in a linear motion.
  • the charged molecule or anion impacts the substrate 16 with higher energy, damage to the surface of the substrate 16 is easily caused, and the stress on the substrate 16 on which the film is deposited is large.
  • the target material 15 since the cathode film needs to be deposited on the light-emitting layer composed of the organic plastic molecules in the OLED, when the cathode film is deposited on the light-emitting layer by the magnetron sputtering system 10, the target material 15 The charged molecules or anions generated by sputtering are extremely liable to damage the luminescent layer composed of organic plastic molecules, resulting in a decrease in the yield of the product.
  • the present invention constructs a magnetron sputtering system including a cavity including an oppositely disposed target support frame and a substrate holder for placing a substrate to be sputter coated;
  • the magnetron sputtering system further includes a permanent magnet plate disposed in the substrate holder for generating a magnetic field around the substrate to be sputter coated;
  • a shielding plate is disposed between the permanent magnet plate and the bottom surface of the cavity, and the substrate holder includes a shielding plate for placing a substrate to be sputter coated, the shielding plate is made of a magnetic conductive material.
  • the anti-shield panel is made of a non-magnetically permeable material.
  • the anti-shielding plate is integrally formed with the substrate holder.
  • the magnetic field generating component includes at least two permanent magnet plates; the at least two permanent magnet plates are equally spaced in a horizontal direction, wherein the horizontal direction and the substrate pass through The direction of the cavity is vertical.
  • the at least two permanent magnet plates have a width greater than a width of the substrate to be sputter coated in the horizontal direction; and the cavity is passed through the cavity along the substrate The direction of each of the permanent magnet plates is greater than the length of the substrate to be sputter coated.
  • the at least two permanent magnet plates include a first permanent magnet plate and a second permanent magnet plate disposed opposite each other, and the first permanent magnet plate and the second permanent member adjacent to each other The polarities of the magnetic plates are opposite.
  • a permanent magnet wedge is disposed between the anti-shield plate and the permanent magnet plate, and the permanent magnet wedge is wedge-shaped, and the polarity of the permanent magnet wedge and its corresponding permanent magnet plate The polarity is the same.
  • the magnetron sputtering system further includes a first translation controller for controlling the at least two permanent magnet plates to move back and forth in the horizontal direction.
  • a vertical direction is perpendicular to a horizontal plane of the anti-shield panel
  • the magnetron sputtering system further includes a second translation controller for controlling movement of the at least two permanent magnet plates in the vertical direction.
  • Another object of the present invention is to provide a magnetron sputtering system that avoids damage to the substrate by charged molecules or anions generated by sputtering and reduces stress on the deposited film.
  • the present invention constructs a magnetron sputtering system including a cavity including an oppositely disposed target support frame and a substrate holder for placing a sputter coating Covered substrate
  • the magnetron sputtering system further includes a magnetic field generating component for generating a magnetic field around the substrate to be sputter coated.
  • the magnetic field generating component is a permanent magnet plate, and the permanent magnet plate is disposed in the substrate holder.
  • the substrate holder includes a shielding plate for placing a substrate, the shielding plate is integrally formed with the substrate holder, and the magnetic field generating member is made of a non-magnetic material.
  • a shielding plate is disposed between the permanent magnet plate and the bottom surface of the cavity, and the shielding plate is made of a magnetic conductive material.
  • the magnetic field generating component includes at least two permanent magnet plates; the at least two permanent magnet plates are equally spaced in a horizontal direction, wherein the horizontal direction and the substrate pass through The direction of the cavity is vertical.
  • the at least two permanent magnet plates are formed to have a width larger than a width of the substrate to be sputter coated; and the substrate passes through the cavity along the substrate.
  • the length of each of the permanent magnet plates is greater than the length of the substrate to be sputter coated.
  • the at least two permanent magnet plates comprise a first permanent magnet plate and a second permanent magnet plate disposed opposite each other, and the first permanent magnet plate and the second permanent magnet adjacent to each other The polarity of the plates is reversed.
  • a permanent magnet wedge is disposed between the anti-shield plate and the permanent magnet plate, and the permanent magnet wedge is wedge-shaped, and the polarity of the permanent magnet wedge is corresponding to the permanent magnet plate thereof. The polarity is the same.
  • the magnetron sputtering system further includes a first translation controller for controlling the at least two permanent magnet plates to move back and forth along the horizontal direction.
  • a vertical direction is perpendicular to a horizontal plane of the anti-shield panel
  • the magnetron sputtering system further includes a second translation controller for controlling movement of the permanent magnet plate in the vertical direction.
  • the present invention provides a magnetic field generating component by placing a permanent magnet plate under the substrate to be sputter coated, which can generate a magnetic field on the surface of the substrate to be sputter coated, and the magnetic field can be
  • the charged molecules and anions generated during the sputtering of the target and incident on the substrate to be sputter coated generate a magnetic force, which prevents the charged molecules and anions from bombarding the substrate with higher energy, thereby protecting the substrate from being damaged.
  • the damage can reduce the stress of the deposited film, thereby improving the yield of the product.
  • FIG. 1 is a schematic structural view of a magnetron sputtering system in the prior art
  • FIG. 2 is a schematic structural view of a first preferred embodiment of a magnetron sputtering system according to the present invention
  • FIG. 3 is a schematic structural view of the permanent magnet plate and the anti-shield plate of FIG. 2;
  • FIG. 4 is a schematic structural view of the permanent magnet plate, the anti-shield plate and the shielding plate of FIG. 2;
  • FIG. 5 is a schematic structural view showing a process of sputter coating a substrate by using the first preferred embodiment shown in FIG. 2;
  • FIG. 5 is a schematic structural view showing a process of sputter coating a substrate by using the first preferred embodiment shown in FIG. 2;
  • Figure 6 is a schematic view showing the effect of the magnetic field generated by the permanent magnet plate of Figure 5;
  • FIG. 7 is a schematic structural view of a OLED panel sputter coated with a first preferred embodiment shown in FIG. 2;
  • Figure 8 is a schematic view showing the structure of a second preferred embodiment of the magnetron sputtering system of the present invention.
  • Figure 9 is a schematic view showing the effect of the magnetic field in the second preferred embodiment shown in Figure 8.
  • FIG. 10 is a schematic structural view of the permanent magnet wedge and the permanent magnet plate integrally formed in FIG. 8.
  • FIG. 10 is a schematic structural view of the permanent magnet wedge and the permanent magnet plate integrally formed in FIG. 8.
  • FIG. 2 is a schematic structural view of a first preferred embodiment of the magnetron sputtering system of the present invention.
  • the magnetron sputtering system 20 includes a cavity 21, which is preferably made of a metal material.
  • a target support frame 22, a substrate holder 23, and a magnetic field generating member are disposed in the cavity 21.
  • the magnetic field generating member is a plurality of permanent magnet plates 24.
  • the permanent magnet plate 24 is preferably made of a metal material such as ferrite or neodymium iron boron, and the permanent magnet plate 24 is used as a magnetic field generating member for generating a magnetic field.
  • the substrate holder 23 and the target support frame 22 are oppositely disposed, and at least one target support frame 22 is disposed in the cavity 21, and the target support frame 22 is provided with a magnet 25 therein.
  • the substrate holder 23 includes a bracket body 231 .
  • the bracket body 231 is fixedly connected with a shielding plate 232 .
  • the shielding plate 232 is preferably integrally formed with the bracket body 231 . It is fixed to the bracket body 231 by other means, such as screwing.
  • the anti-shielding plate 232 is preferably made of a non-magnetic metal material such as aluminum (Al), copper (Cu) or the like to ensure that a magnetic field generated by the permanent magnet plate 24 can pass through the anti-shielding plate 232.
  • the permanent magnet plate 24 is disposed in the substrate holder 23, and a shielding plate 233 is disposed between the permanent magnet plate 24 and the bottom surface 211 of the cavity 21. More specifically, the shielding plate 233 and The anti-shielding plate 232 is separated from the two ends of the permanent magnet plate 24, and the shielding plate 233 is located in the substrate holder 23.
  • the shielding plate 233 is preferably made of a magnetic conductive material, such as magnetic metal iron, nickel, etc., and the shielding plate 233 made of a magnetic conductive material can shield the magnetic field generated by the permanent magnetic plate 24 to avoid The magnetic field generated by the permanent magnet plate 24 affects other mechanisms of the magnetron sputtering system 20.
  • FIG. 3 is a schematic structural view of the permanent magnet plate and the anti-shield plate of FIG.
  • One direction B is the direction of movement of the substrate 40 to be sputter coated within the magnetron sputtering system 20, a horizontal direction A being parallel to the horizontal plane of the anti-shielding plate 232 and perpendicular to the direction B.
  • the permanent magnet plate 24 has an elongated shape and its longitudinal direction is the direction B. And along the horizontal direction A, the at least two permanent magnet plates 24 are evenly arranged at the same pitch P.
  • the permanent magnet plate 24 has a length M1
  • the anti-shield plate 232 has a length G1
  • the substrate 40 has a length N1, wherein G1> M1, and M1> N1; in the horizontal direction A, the at least two permanent magnet plates 24 form a width M2, wherein the width M2 refers to the outer side of the first permanent magnet plate arranged in the horizontal direction from FIG.
  • the width M2 is formed by the width of each of the permanent magnet plates 24 and the pitch P between the permanent magnet plates, and in the horizontal direction A, the anti-shielding plate 232 Having a width G2, the substrate 40 has a width N2, where G2>M2, and M2> N2.
  • the length G1 of the anti-shield plate 232 is greater than the length M1 of the permanent magnet plate 24, and the width G2 of the anti-shield plate 232 is greater than the width M2 formed by the at least two permanent magnet plates 24, It is ensured that the permanent magnet plate 24 is not spattered when the substrate 40 is sputter coated.
  • the length G1 of the anti-shielding plate 232 is greater than the length N1 of the substrate 40, and the width G2 of the anti-shield plate 232 is greater than the width N2 of the substrate 40 to ensure that the substrate 40 can be fixedly placed in the On the shielding plate 232.
  • the permanent magnet plate 24 includes a first permanent magnet plate 241 and a second permanent magnet plate 242, and the first permanent magnet plate 241 and the second permanent magnet plate 242 are spaced apart, and The first permanent magnet plate 241 and the second permanent magnet plate 242 adjacent to each other have opposite polarities.
  • one end of the first permanent magnet plate 241 near the anti-shielding plate 232 is a first anode end 2411, and one end of the shielding plate 233 is a first cathode end 2412;
  • One end of the second permanent magnet plate 242 near the anti-shielding plate 232 is a second cathode end 2422, and the second anode end 2421 is adjacent to the shielding plate 233.
  • the magnetron sputtering system 20 provided by the present invention further includes a first translation controller and a second translation controller (not shown).
  • the first translation controller is configured to control the at least two permanent magnet plates 24 to move back and forth along the horizontal direction A.
  • a vertical direction C is a direction perpendicular to a horizontal plane of the shield plate 232 (see FIG. 3), and the second translation controller is configured to control the at least two permanent magnet plates 24 along the vertical direction C Moving to achieve free adjustment of the distance between the permanent magnet plate 24 and the anti-shielding plate 232.
  • the magnetron sputtering system 20 provided by the present invention further includes a power source and an inert gas supply line (not shown). Please refer to FIG. 5 together.
  • FIG. 5 is a schematic structural view of the substrate 40 during sputter coating. Wherein the cathode of the power source is connected to the target 30, and the anode of the power source is connected to the cavity 21 and the substrate 40.
  • the inert gas supply line is for supplying an inert gas such as an argon atom into the cavity 21; and the power source is for supplying a DC voltage, so that the An electric field is generated between the target 30 and the substrate 40.
  • the power supply can also provide an alternating voltage, which will not be described herein.
  • the target 30 is fixed to the target support frame 22, and the substrate 40 is placed on the shield plate 232 of the substrate holder 23.
  • the magnetron sputtering system 20 is powered on, while the chamber 21 is filled with an inert gas such as argon through the inert gas supply line of the magnetron sputtering system 20. Since the cathode of the power source is connected to the target 30, and the anode of the power source is connected to the cavity 21 and the substrate 40, after the power source is energized, between the target 30 and the substrate 40 An electric field E is generated, and under the action of the electric field E, the argon gas of the cavity 21 is ionized to form argon positive (Ar+) ions and electrons.
  • an inert gas such as argon
  • the Ar+ ion accelerates toward the target 30 under the action of the electric field E, and strikes the surface of the target 30 with higher energy, since the target 30 is connected to the cathode of the power source, in the Ar+ ion Under high energy impact, the target 30 sputters target atoms, charged molecules, and anions.
  • Ar+ ions emit secondary electrons during bombardment of the target 30, and a magnet 25 is disposed in the target support frame 22, the magnet 25 generates a magnetic field B1, and the secondary electrons are in the electric field E and Under the action of the magnetic field D1, a circular motion is performed on the surface of the target 30 in an approximately cycloidal form, the movement path of the circular motion is short, and is bound in a region close to the surface of the target 30, and A large amount of Ar+ ions continue to be generated in this region to bombard the target 30 such that the target 30 further sputters target atoms, charged molecules, and anions and moves toward the substrate 40 at a high speed.
  • FIG. 6 is a schematic diagram showing the effect of the magnetic field D2 generated by the permanent magnet plate 24.
  • the target atoms, charged molecules, and anions sputtered by the target 30 reach the substrate 40 or the periphery of the substrate 40 at a high energy (tens of eV)
  • the neutral target atoms are splashed to the surface.
  • the substrate 40 forms a thin film, and the charged molecules and anions are subjected to the double action of the electric field E and the magnetic field D2, and are no longer splashed onto the substrate 40 in a straight line, but in an irregular spiral motion. Splashing onto the substrate 40.
  • the moving path of the above charged molecules and anions before reaching the substrate 40 is increased, the chance of collision with each other is increased, so that the carried energy is consumed in the spiral motion and the collision process, and the energy is reached when the substrate 40 is reached.
  • the damage to the substrate 40 or other film layers on the substrate 40 becomes small, and the stress of the deposited film is correspondingly Reduced.
  • the permanent magnet plates 24 are evenly arranged in the horizontal direction A, it is ensured that the magnetic field generated by them is uniform; and the first permanent magnet plate 241 and the second permanent magnet plate 242 are disposed to cross each other and adjacent to each other.
  • a permanent magnet plate 241 and a second permanent magnet plate 242 are opposite in polarity, further ensuring the uniformity of the magnetic field D2, so that the magnetic field D2 generates a uniform magnetic force to the charged molecules and anions that are incident on the substrate 40, further ensuring The coating effect of the film.
  • the first translation controller of the magnetron sputtering system can control the permanent magnet plate 24 to move back and forth along the horizontal direction A such that the substrate
  • the surface of the 40 is relatively uniform in the sum of the magnetic strengths of the magnetic field D2, which is advantageous for improving the uniformity of the deposited film.
  • the second translation controller of the magnetron sputtering system can control the permanent magnet plate 24 to move along the vertical direction C, thereby realizing the distance between the permanent magnet plate 24 and the anti-shield plate 23. Adjustment. For example, when the distance between the permanent magnet plate 24 and the anti-shielding plate 232 is small, the magnetic strength of the magnetic field D2 received by the surface of the substrate 40 is increased, and the charged molecules and anions sputtered by the target 30 reach the At the time of the substrate 40, the greater the component of the spiral motion, the greater the chance of collision between the charged molecules, the anions, and the target atoms, and the greater the energy loss when reaching the substrate 40.
  • the distance between the permanent magnet plate 24 and the anti-shielding plate 232 is increased, the charged molecules and anions sputtered by the target 30 reach the substrate 40, and the component of the spiral motion becomes weaker.
  • the greater the component of the linear motion the less chance of collision between the charged molecules, the anions, and the target atoms, and the higher the energy when reaching the substrate 40. Therefore, in this embodiment, the distance between the permanent magnet plate 24 and the anti-shield plate 232 can be appropriately adjusted according to the material of the target 30 and the material of the substrate 40, and the damage to the substrate 40 can be reduced.
  • the stress of the deposited film is minimized and the uniformity is optimal.
  • the width M2 formed by the at least two permanent magnet plates 24 is larger than the width N2 of the substrate 40
  • the length M1 of the permanent magnet plate 24 is larger than The length N1 of the substrate 40 ensures that the magnetic field D2 can completely cover the substrate 40, and the magnetic field D2 is prevented from being affected by the edge effect, and the uniformity of the magnetic field D2 received by the surface of the substrate 40 is ensured.
  • the magnetic field D2 Since the attenuation of the magnetic field D2 is faster, for example, after about 5 cm to 10 cm above the surface of the substrate 40, the magnetic field D2 will rapidly decay.
  • the substrate 40 and the target 30 In the magnetron sputtering system 20, the substrate 40 and the target 30 generally have a distance of about 15 cm, so that the magnetic field D2 generated by the permanent magnet plate 24 does not affect the surface of the target 30. Magnetic field D1.
  • FIG. 7 is a schematic structural view of a OLED plate 50 sputter-coated with a magnetron sputtering system provided by the present invention.
  • the OLED panel 50 includes a glass substrate 51, a first electrode layer 52 (anode layer), a hole transport layer 53, a light emitting layer 54, an electron transport layer 55, and a second electrode layer 56 (cathode layer).
  • a first electrode layer 52 anode layer
  • hole transport layer 53 a hole transport layer 53
  • a light emitting layer 54 an electron transport layer 55
  • a second electrode layer 56 cathode layer
  • the sputtering system ensures that when the second electrode layer 56 is sputter coated, the target atoms, charged molecules and anions generated by the sputtering of the target 30 are more energy when reaching the electron transport layer 55.
  • the reduction is large, so that the electron transport layer 55 is not damaged, and the deposited second electrode layer 56 is uniform, thereby ensuring the yield of the product.
  • Figure 8 is a schematic view showing the structure of a second preferred embodiment of the magnetron sputtering system of the present invention.
  • the magnetron sputtering system further includes a permanent magnet wedge 26, the permanent magnetic wedge 26 is a wedge shape made of a magnetically permeable material and disposed between the anti-shielding plate 232 and the permanent magnet plate 24.
  • the permanent magnet wedge 26 has the same polarity as the corresponding permanent magnet plate 24, and the permanent magnet wedge 26 includes a first permanent magnet wedge 261 and a second permanent magnet wedge 262, the first permanent magnet The wedge 261 corresponds to the first permanent magnet plate 241 and has the same polarity as the first permanent magnet plate 241; the second permanent magnet wedge 262 corresponds to the second permanent magnet plate 242, and the first The two permanent magnet plates 242 have the same polarity.
  • a permanent magnet wedge 26 is added to one end of the permanent magnet plate 24, and the polarity of the permanent magnet wedge 26 is
  • the corresponding permanent magnet plates 24 are identical, so the magnetic induction line of the permanent magnet wedge 26 is consistent with the distribution trend of the corresponding permanent magnet plate 24, and the uniformity of the magnetic field D2 can be increased, for example, see FIG. 9, FIG.
  • the magnetic induction line distribution of the magnetic field D3 above the substrate 40 is more uniform with respect to the magnetic field B2 shown in FIG.
  • the permanent magnet wedge 26 can be integrally formed with its corresponding permanent magnet plate 24, which can save the cost of separately manufacturing the permanent magnet wedge 26, as shown in FIG.
  • the present invention provides a magnetic field generating member by providing a permanent magnet plate under the substrate to be sputter coated, which can generate a magnetic field on the surface of the substrate to be sputter coated, which can be generated when the target is sputtered.
  • the charged molecules and anions that are directed to the substrate to be sputter coated generate a magnetic force, which prevents the charged molecules and anions from bombarding the substrate with high energy, thereby protecting the substrate from damage and The stress of the deposited film on the substrate is lowered, thereby improving the yield of the product.

Abstract

本发明提供一种磁控溅射系统,腔体内设置有靶材支撑架、基板支架以及磁场产生部件,磁场产生部件用于在待溅射涂覆的基板周边产生一磁场。本发明可以避免靶材产生的带电分子和阴离子以较高的能量轰击待溅射涂覆的基板,既可以保护该待溅射涂覆的基板不被损伤,又能降低基板上沉积薄膜的应力,进而提高了产品的良率。

Description

磁控溅射系统 技术领域
本发明涉及液晶显示制造领域,特别是涉及一种磁控溅射系统。
背景技术
随着液晶显示技术的不断发展,对液晶生产效率提出了很高的要求。
以磁控溅射系统为例,由于磁控溅射系统能够在基板上大面积溅射成膜,溅射形成的膜不仅均匀,而且与基板的附着力高,因此磁控溅射系统被广泛的应用于液晶显示器的制造工艺中,尤其是薄膜沉积的制造工艺中。
在制造液晶显示器的过程中,磁控溅射系统可进行金属薄膜或者金属氧化物透明电极薄膜的沉积,所述金属薄膜譬如铝(Al)、铝钕合金(AlNd),钼(Mo)以及铜(Cu);所述金属氧化物透明电极薄膜譬如氧化铟锡(ITO)、铟锌氧化物(IZO)。譬如在制造有机电致发光显示器(Organic Light-Emitting Diode ,OLED)的工艺中,磁控溅射系统可用来进行位于发光有机层两侧的阴极层和阳极层的薄膜沉积。
请参阅图1,图1为现有技术的磁控溅射系统10在溅射镀膜时的结构示意图。所述磁控溅射系统10包括金属腔体11,所述金属腔体11用于实现对外界环境的隔绝,保持所述金属腔体11内的真空环境。所述金属腔体11内设置有靶材支撑架12以及基板支架13,所述基板支架13和所述靶材支撑架12相对设置。其中所述靶材支撑架12内设置有磁石14。
在通过所述磁控溅射系统10对基板16进行溅射镀膜时,将靶材15固定于所述靶材支撑架12上,将所述基板16放置于所述基板支架13上,将所述靶材15连接电源(图未示出)的阴极,将所述金属腔体11以及所述基板16连接电源的阳极,同时通过惰性气体供应管路(图未标示)向所述金属腔体11内充入氩原子。之后接通电源,则所述靶材15与所述基板16之间产生一电场,所述靶材15和所述基板16之间的电子在上述电场的作用下高速运动,上述电子与所述金属腔体11内的氩原子发生碰撞,电离产生出氩正(Ar+)离子和新的电子;Ar+离子在上述电场作用下加速向所述靶材15运动,并以较高的能量轰击所述靶材15的表面。
由于所述靶材支撑架12内设置有所述磁石14,所述磁石产生一磁场,在所述靶材15的表面,除了存在上述电场外,还存在上述磁场。Ar+离子在轰击所述靶材15时放出二次电子,所述二次电子在上述磁场的作用下,被束缚在靠近所述靶材15的表面区域内,在上述电场和磁场的共同作用下,所述二次电子的运动轨迹为沿电场方向加速,同时绕磁场方向螺旋前进的复杂曲线,从而使得所述二次电子的运动路径变长,在运动过程中不断与所述金属腔体11内的氩原子发生碰撞并电离出大量的Ar+离子继续轰击靶材。
由于所述靶材15连接电源的阴极,在所述Ar+离子的高速轰击下,所述靶材15发生溅射,溅射出靶材原子、分子或阴离子,呈中性的靶材原子沉积在所述基板16的表面形成一层薄膜,从而实现对所述基板16的镀膜。而所述靶材15溅射产生的带电分子或阴离子在离开所述靶材15后,在上述电场的作用下以较高的能量(譬如几十电子伏)溅射至所述基板16,而且几乎是以直线运动方式溅射至所述基板16以及所述基板16的周边。当所述带电分子或阴离子以较高的能量冲击所述基板16时,极易造成所述基板16表面的损伤,并使得所述基板16上沉积薄膜的应力较大。尤其是是在OLED的生产过程中,由于需要在OLED中有机塑料分子构成的发光层上沉积阴极薄膜,因此利用所述磁控溅射系统10在发光层上沉积阴极薄膜时,所述靶材15溅射产生的带电分子或阴离子极易对有机塑料分子构成的发光层造成损伤,导致产品的良率降低。
综上,如何避免溅射产生的带电分子或阴离子对基板的损伤,降低沉积薄膜的应力,是液晶生产技术需要解决的技术问题之一。
技术问题
本发明的一个目的在于提供一种磁控溅射系统,以避免溅射产生的带电分子或阴离子对基板的损伤,以及降低沉积薄膜的应力。
技术解决方案
本发明构造了一种磁控溅射系统,包括腔体,所述腔体内包括有相对设置的靶材支撑架和基板支架,所述基板支架用于放置待溅射涂覆的基板;所述磁控溅射系统还包括一永磁板,所述永磁板设置于所述基板支架内,用于在所述待溅射涂覆的基板周边产生一磁场;
所述永磁板和所述腔体的底面之间设置一屏蔽板,所述基板支架包括用于放置待溅射涂覆的基板的防屏蔽板,所述屏蔽板由导磁材料制成,所述防屏蔽板由非导磁材料制成。
在本发明一实施例中,其中所述防屏蔽板与所述基板支架一体成型。
在本发明一实施例中,其中所述磁场产生部件包括至少两个的永磁板;所述至少两个的永磁板沿水平方向等间距排列,其中所述水平方向与所述基板穿过所述腔体的方向垂直。
在本发明一实施例中,其中沿所述水平方向,所述至少两个的永磁板构成的宽度大于所述待溅射涂覆的基板的宽度;沿所述基板穿过所述腔体的方向,每个所述永磁板的长度大于所述待溅射涂覆的基板的长度。
在本发明一实施例中,其中所述至少两个的永磁板包括有彼此交叉设置的第一永磁板和第二永磁板,且彼此相邻的第一永磁板和第二永磁板的极性方向相反。
在本发明一实施例中,其中所述防屏蔽板和所述永磁板之间设置有永磁楔,所述永磁楔为楔形,所述永磁楔的极性与其对应的永磁板的极性相同。
在本发明一实施例中,其中所述磁控溅射系统还包括第一平移控制器,用于控制所述至少两个的永磁板沿所述水平方向来回运动。
在本发明一实施例中,其中一竖直方向垂直于所述防屏蔽板的水平面;
所述磁控溅射系统还包括第二平移控制器,用于控制所述至少两个的永磁板沿所述竖直方向运动。
本发明的另一个目的在于提供一种磁控溅射系统,以避免溅射产生的带电分子或阴离子对基板的损伤,以及降低沉积薄膜的应力。
为达到上述有益效果,本发明构造了一种磁控溅射系统,包括腔体,所述腔体内包括有相对设置的靶材支撑架和基板支架,所述基板支架用于放置待溅射涂覆的基板;
所述磁控溅射系统还包括一磁场产生部件,所述磁场产生部件用于在所述待溅射涂覆的基板周边产生一磁场。
在本发明一实施例中,所述磁场产生部件为永磁板,所述永磁板设置于所述基板支架内。
在本发明一实施例中,所述基板支架包括用于放置基板的防屏蔽板,所述防屏蔽板与所述基板支架一体成型,所述磁场产生部件由非导磁材料制成。
在本发明一实施例中,所述永磁板和所述腔体的底面之间设置一屏蔽板,所述屏蔽板由导磁材料制成。
在本发明一实施例中,所述磁场产生部件包括至少两个的永磁板;所述至少两个的永磁板沿水平方向等间距排列,其中所述水平方向与所述基板穿过所述腔体的方向垂直。
在本发明一实施例中,沿所述水平方向,所述至少两个的永磁板构成的宽度大于所述待溅射涂覆的基板的宽度;沿所述基板穿过所述腔体的方向,每个所述永磁板的长度大于所述待溅射涂覆的基板的长度。
在本发明一实施例中,所述至少两个的永磁板包括有彼此交叉设置的第一永磁板和第二永磁板,且彼此相邻的第一永磁板和第二永磁板的极性方向相反。
在本发明一实施例中,所述防屏蔽板和所述永磁板之间设置有永磁楔,所述永磁楔为楔形,所述永磁楔的极性与其对应的永磁板的极性相同。
在本发明一实施例中,所述磁控溅射系统还包括第一平移控制器,用于控制所述至少两个的永磁板沿所述水平方向来回运动。
在本发明一实施例中,一竖直方向垂直于所述防屏蔽板的水平面;
所述磁控溅射系统还包括第二平移控制器,所述第二平移控制器用于控制所述永磁板沿所述竖直方向运动。
有益效果
相对于现有技术,本发明通过在待溅射涂覆的基板的下方设置永磁板作为磁场产生部件,该永磁板可在待溅射涂覆的基板表面产生一磁场,该磁场可以对靶材溅射时产生并射向待溅射涂覆的基板的带电分子和阴离子产生一磁力的作用,避免了上述带电分子和阴离子以较高的能量轰击所述基板,既可以保护基板不被损伤,又能降低沉积薄膜的应力,进而提高了产品的良率。
附图说明
图1为现有技术中磁控溅射系统的结构示意图;
图2为本发明中磁控溅射系统的第一较佳实施例的结构示意图;
图3为图2中永磁板和防屏蔽板的结构示意图;
图4为图2中永磁板、防屏蔽板和屏蔽板的结构示意图;
图5为应用图2所示的第一较佳实施例对基板进行溅射涂膜时的结构示意图;
图6为图5中永磁板产生的磁场的效果示意图;
图7为应用图2所示的第一较佳实施例溅射涂覆成膜的OLED板结构示意图;
图8为本发明中磁控溅射系统的第二较佳实施例的结构示意图;
图9为图8所示的第二较佳实施例中磁场效果示意图;
图10为图8中永磁楔和永磁板一体成型的结构示意图。
本发明的最佳实施方式
以下各实施例的说明是参考附加的图式,用以例示本发明可用以实施的特定实施例。本发明所提到的方向用语,例如「上」、「下」、「前」、「后」、「左」、「右」、「内」、「外」、「侧面」等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。在图中,结构相似的单元是以相同标号表示。
请参阅图2,图2为本发明中磁控溅射系统的第一较佳实施例的结构示意图。
所述磁控溅射系统20包括腔体21,所述腔体21优选由金属材质制成。所述腔体21内设置有靶材支撑架22、基板支架23以及磁场产生部件,在该第一较佳实施例中,所述磁场产生部件为多个永磁板24。所述永磁板24优选为金属材质,譬如铁氧体或钕铁硼等,所述永磁板24作为磁场产生部件用来产生磁场。
所述基板支架23和所述靶材支撑架22相对设置,所述腔体21内设置有至少一个的靶材支撑架22,所述靶材支撑架22内设置有磁石25。
请继续参阅图2,所述基板支架23包括有支架主体231,所述支架主体231上固定连接有防屏蔽板232,所述防屏蔽板232优选与所述支架主体231一体成型,当然也可以通过其它方式固定于所述支架主体231上,譬如螺接。所述防屏蔽板232优选由不导磁的金属材料制成,譬如铝(Al)、铜(Cu)等,以保证所述永磁板24产生的磁场可以穿过所述防屏蔽板232。
所述永磁板设24置于所述基板支架23内,而所述永磁板24与所述腔体21的底面211之间设置有屏蔽板233,更具体的,所述屏蔽板233与所述防屏蔽板232是分居所述永磁板24的两端,且所述屏蔽板233是位于所述基板支架23内。所述屏蔽板233优选由导磁材料制成,譬如导磁金属铁,镍等,由导磁材料制成的所述屏蔽板233可对所述永磁板24产生的磁场进行屏蔽,以避免所述永磁板24产生的磁场对所述磁控溅射系统20的其它机构造成影响。
请一并参阅图3,图3为图2中永磁板和防屏蔽板的结构示意图。一方向B为待溅射涂覆的基板40在所述磁控溅射系统20内的运动方向,一水平方向A平行于所述防屏蔽板232的水平面,并垂直于所述方向B。本发明中,所述永磁板24为长条形,其长度方向为方向B。而沿所述水平方向A,所述至少两个的永磁板24以相同的间距P均匀排列。在所述方向B,所述永磁板24具有一长度M1,所述防屏蔽板232具有一长度G1,所述基板40具有一长度N1,其中,G1> M1,而M1> N1;在所述水平方向A,所述至少两个的永磁板24形成一宽度M2,其中该宽度M2指的是从图3中沿所述水平方向排列的第一个永磁板的外侧至最后一个永磁板的外侧之间的宽度,该宽度M2由各永磁板24的宽度和各永磁板之间的间距P形成,而沿所述水平方向A,所述防屏蔽板232具有一宽度G2,所述基板40具有一宽度N2,其中G2>M2,而M2> N2。本发明中,所述防屏蔽板232的长度G1大于所述永磁板24的长度M1,且所述防屏蔽板232的宽度G2大于所述至少两个的永磁板24形成的宽度M2,保证了在对所述基板40进行溅射涂覆时,不会溅射损伤所述永磁板24。而所述防屏蔽板232的长度G1大于所述基板40的长度N1,且所述防屏蔽板232的宽度G2大于所述基板40的宽度N2,以保证所述基板40能固定放置于所述防屏蔽板232上。
请一并参阅图4,所述永磁板24包括有第一永磁板241和第二永磁板242,所述第一永磁板241和所述第二永磁板242间隔排列,且彼此相邻的第一永磁板241和第二永磁板242的极性相反。具体说来,在图4中,所述第一永磁板241靠近所述防屏蔽板232的一端为第一阳极端2411,靠近所述屏蔽板233的一端为第一阴极端2412;而所述第二永磁板242靠近所述防屏蔽板232的一端为第二阴极端2422,靠近所述屏蔽板233的为第二阳极端2421。
本发明提供的磁控溅射系统20还包括第一平移控制器和第二平移控制器(图未示出)。其中,所述第一平移控制器用于控制所述至少两个的永磁板24沿所述水平方向A来回运动。一竖直方向C为垂直于所述防屏蔽板232水平面的方向(请参阅图3),所述第二平移控制器用于控制所述至少两个的永磁板24沿所述竖直方向C移动,以实现所述永磁板24与所述防屏蔽板232之间的距离的自由调节。
本发明提供的磁控溅射系统20还包括电源以及惰性气体供应管路(图未示出)。请一并参阅图5,图5为对基板40进行溅射涂布过程中的结构示意图。其中电源的阴极连接所述靶材30,电源的阳极连接所述腔体21和所述基板40。在对所述基板40进行溅射涂覆时,所述惰性气体供应管路用于向所述腔体21内提供惰性气体,譬如氩原子;而所述电源用于提供直流电压,使得所述靶材30和所述基板40之间产生一电场,当然所述电源也可以提供交流的电压,此处不再赘述。
图2至图5所示的磁控溅射系统的第一较佳实施例的工作原理描述如下:
在对所述基板40进行溅射涂覆前,将所述靶材30固定于所述靶材支撑架22,将所述基板40放置于所述基板支架23的防屏蔽板232上。
之后,所述磁控溅射系统20的接通电源,同时通过所述磁控溅射系统20的惰性气体供应管路向所述腔体21内充入惰性气体,如氩气。由于所述电源的阴极连接所述靶材30,而电源的阳极连接所述腔体21和所述基板40,因此在对所述电源通电后,所述靶材30与所述基板40之间产生一电场E,在所述电场E的作用下,所述腔体21的氩气电离形成氩正(Ar+)离子和电子。Ar+离子在所述电场E的作用下加速向所述靶材30运动,并以较高的能量撞击所述靶材30的表面,由于所述靶材30连接所述电源的阴极,在Ar+离子的高能量撞击下,所述靶材30溅射出靶材原子、带电分子和阴离子。
而且,Ar+离子在轰击所述靶材30过程中放出二次电子,所述靶材支撑架22内设置有磁石25,所述磁石25产生磁场B1,所述二次电子在所述电场E和所述磁场D1作用下,以近似摆线形式在所述靶材30的表面做圆周运动,该圆周运动的运动路径较短,而且被束缚在靠近所述靶材30表面的区域内,并且在该区域中继续产生大量的Ar+离子来轰击所述靶材30,使得所述靶材30进一步的溅射出靶材原子、带电分子和阴离子,并朝向所述基板40高速运动。
而所述永磁板24产生一磁场D2,请参阅图6,图6为所述永磁板24产生的所述磁场D2的效果示意图。当所述靶材30溅射出的靶材原子、带电分子和阴离子以较高的能量(几十eV)到达所述基板40或所述基板40周边时,呈中性的靶材原子溅落至所述基板40形成薄膜,而带电分子和阴离子会受到所述电场E和所述磁场D2的双重作用,不再以直线的形式溅落到所述基板40上,而是以不规则的螺旋运动的方式溅落到所述基板40上。而且由于上述带电分子以及阴离子在到达所述基板40前的运动路径加大,相互碰撞的机会增多,使得携带的能量在螺旋运动和相互碰撞过程中得到消耗,在到达所述基板40时,能量已经变小,使得上述靶材原子、带电分子和阴离子沉积到所述基板40时,对所述基板40或所述基板40上的其它膜层的损伤就变小,沉积薄膜的应力也相应的减小。
由于所述永磁板24沿水平方向A均匀排列,因此可保证其产生的磁场均匀;而且所述第一永磁板241和所述第二永磁板242彼此交叉设置且彼此相邻的第一永磁板241和第二永磁板242极性相反,进一步保证了磁场D2的均匀性,使得所述磁场D2对射向所述基板40的带电分子和阴离子产生的磁力均匀,进一步的保证了薄膜的涂覆效果。
而且,在对所述基板40进行溅射涂覆时,所述磁控溅射系统的第一平移控制器可控制所述永磁板24沿所述水平方向A来回运动,以使得所述基板40表面受到所述磁场D2的磁力强度总和相对比较均匀,有利于提高沉积薄膜的均匀性。
而所述磁控溅射系统的第二平移控制器可控制所述永磁板24沿所述竖直方向C运动,实现所述永磁板24与所述防屏蔽板23之间距离的自由调节。譬如当所述永磁板24与所述防屏蔽板232距离调小时,所述基板40表面受到的磁场D2的磁力强度增大,所述靶材30溅射出的带电分子和阴离子在到达所述基板40时,做螺旋运动的分量就越大,带电分子、阴离子以及靶材原子之间的碰撞机会就越大,到达所述基板40时能量损失就越多。反之,当所述永磁板24与所述防屏蔽板232距离调大时,所述靶材30溅射出的带电分子和阴离子在到达所述基板40时,做螺旋运动的分量就越微弱,直线运动的分量就越大,带电分子、阴离子以及靶材原子之间的碰撞机会就减少,到达所述基板40时还拥有较高的能量。因此本实施例可根据所述靶材30的材质以及所述基板40的材质,适当的调整永磁板24与所述防屏蔽板232的距离,在减少对所述基板40的损伤的同时,使得沉积薄膜的应力最小,均匀性最佳。
而且,沿所述水平方向A,所述至少两个的永磁板24形成的宽度M2大于所述基板40的宽度N2,而沿所述垂直方向B,所述永磁板24的长度M1大于所述基板40的长度N1,保证了所述磁场D2能够完全覆盖所述基板40,避免所述磁场D2受到边缘效应的影响,保证所述基板40表面受到的磁场D2的均匀性。
由于所述磁场D2的衰减较快,譬如在离所述基板40表面上方大约5cm~10cm后,所述磁场D2将会快速衰减。而所述磁控溅射系统20中所述基板40与所述靶材30之间一般有15cm左右的距离,因而所述永磁板24产生的磁场D2不会影响所述靶材30表面的磁场D1。
请参阅图7,图7为应用本发明提供的磁控溅射系统溅射涂覆成膜的OLED板50的结构示意图。其中所述OLED板50包括玻璃基板51、第一电极层52(阳极层),空穴运输层53、发光层54、电子运输层55以及第二电极层56(阴极层)。譬如在所述电子运输层55上溅射涂覆形成第二电极层56时,即便是所述发光层54和所述电子运输层55均由有机塑料分子构成,而使用本发明提供的磁控溅射系统,可保证在溅射涂覆形成第二电极层56时,所述靶材30溅射产生的靶材原子,带电分子以及阴离子在到达所述电子运输层55时,能量已得到较大的降低,因而不会对所述电子运输层55造成损伤,而且沉积的第二电极层56均匀,进而保证了产品的良率。
图8为本发明中磁控溅射系统的第二较佳实施例结构示意图。
与图2所示的第一较佳实施例不同之处在于,图8所示的第二较佳实施例中,所述磁控溅射系统还包括有永磁楔26,所述永磁楔26为楔形,由导磁材料制成,设置于所述防屏蔽板232和所述永磁板24之间。其中,所述永磁楔26的极性与其对应的永磁板24的极性相同,所述永磁楔26包括第一永磁楔261和第二永磁楔262,所述第一永磁楔261对应所述第一永磁板241,并与所述第一永磁板241的极性相同;所述第二永磁楔262对应所述第二永磁板242,并与所述第二永磁板242的极性相同。
由于所述永磁板24产生的磁场B2的磁感线从阳极出发,回到阴极,因此在所述永磁板24的一端增加一永磁楔26,所述永磁楔26的极性与其对应的永磁板24相同,因此所述永磁楔26的磁感线与其对应的永磁板24的分布趋势一致,可以增加所述磁场D2的均匀性,譬如请参阅图9,图9为该第二较佳实施例中基板40上方的磁场D3的磁感线分布示意图,相对图6所示的磁场B2,图9中的磁场D3的均匀性更佳。当然,在具体实施过程中,所述永磁楔26可与其对应的永磁板24一体成型,该方式可节省单独制作永磁楔26的成本,譬如请参阅图10。
本发明通过在待溅射涂覆的基板的下方设置永磁板作为磁场产生部件,该永磁板可在待溅射涂覆的基板表面产生一磁场,该磁场可以对靶材溅射时产生的、并射向待溅射涂覆的基板的带电分子和阴离子产生一磁力的作用,避免了上述带电分子和阴离子以较高的能量轰击所述基板,既可以保护基板不被损伤,又能降低所述基板上已沉积的薄膜的应力,进而提高了产品的良率。
综上所述,虽然本发明已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。
本发明的实施方式
工业实用性
序列表自由内容

Claims (18)

  1. 一种磁控溅射系统,包括腔体,所述腔体内包括有相对设置的靶材支撑架和基板支架,所述基板支架用于放置待溅射涂覆的基板;其中
    所述磁控溅射系统还包括一永磁板,所述永磁板设置于所述基板支架内,用于在所述待溅射涂覆的基板周边产生一磁场;
    所述永磁板和所述腔体的底面之间设置一屏蔽板,所述基板支架包括用于放置待溅射涂覆的基板的防屏蔽板,所述屏蔽板由导磁材料制成,所述防屏蔽板由非导磁材料制成。
  2. 根据权利要求1所述的磁控溅射系统,其中所述防屏蔽板与所述基板支架一体成型。
  3. 根据权利要求1所述的磁控溅射系统,其中所述磁场产生部件包括至少两个的永磁板;所述至少两个的永磁板沿水平方向等间距排列,其中所述水平方向与所述待溅射涂覆的基板穿过所述腔体的方向垂直。
  4. 根据权利要求3所述的磁控溅射系统,其中沿所述水平方向,所述至少两个的永磁板构成的宽度大于所述待溅射涂覆的基板的宽度;沿所述待溅射涂覆的基板穿过所述腔体的方向,每个所述永磁板的长度大于所述待溅射涂覆的基板的长度。
  5. 根据权利要求3所述的磁控溅射系统,其中所述至少两个的永磁板包括有彼此交叉设置的第一永磁板和第二永磁板,且彼此相邻的第一永磁板和第二永磁板的极性方向相反。
  6. 根据权利要求1所述的磁控溅射系统,其中所述防屏蔽板和所述永磁板之间设置有永磁楔,所述永磁楔为楔形,所述永磁楔的极性与其对应的永磁板的极性相同。
  7. 根据权利要求3所述的磁控溅射系统,其中所述磁控溅射系统还包括第一平移控制器,用于控制所述至少两个的永磁板沿所述水平方向来回运动。
  8. 根据权利要求3所述的磁控溅射系统,其中一竖直方向垂直于所述防屏蔽板的水平面;
    所述磁控溅射系统还包括第二平移控制器,用于控制所述至少两个的永磁板沿所述竖直方向运动。
  9. 一种磁控溅射系统,包括腔体,所述腔体内包括有相对设置的靶材支撑架和基板支架,所述基板支架用于放置待溅射涂覆的基板;其中
    所述磁控溅射系统还包括一磁场产生部件,所述磁场产生部件用于在所述待溅射涂覆的基板周边产生一磁场。
  10. 根据权利要求9所述的磁控溅射系统,其中所述磁场产生部件为永磁板,所述永磁板设置于所述基板支架内。
  11. 根据权利要求10所述的磁控溅射系统,其中所述基板支架包括用于放置待溅射涂覆的基板的防屏蔽板,所述防屏蔽板与所述基板支架一体成型,所述防屏蔽板由非导磁材料制成。
  12. 根据权利要求10所述的磁控溅射系统,其中所述永磁板和所述腔体的底面之间设置一屏蔽板,所述屏蔽板由导磁材料制成。
  13. 根据权利要求11所述的磁控溅射系统,其中所述磁场产生部件包括至少两个的永磁板;所述至少两个的永磁板沿水平方向等间距排列,其中所述水平方向与所述基板穿过所述腔体的方向垂直。
  14. 根据权利要求13所述的磁控溅射系统,其中沿所述水平方向,所述至少两个的永磁板构成的宽度大于所述待溅射涂覆的基板的宽度;沿所述基板穿过所述腔体的方向,每个所述永磁板的长度大于所述待溅射涂覆的基板的长度。
  15. 根据权利要求13所述的磁控溅射系统,其中所述至少两个的永磁板包括有彼此交叉设置的第一永磁板和第二永磁板,且彼此相邻的第一永磁板和第二永磁板的极性方向相反。
  16. 根据权利要求11所述的磁控溅射系统,其中所述防屏蔽板和所述永磁板之间设置有永磁楔,所述永磁楔为楔形,所述永磁楔的极性与其对应的永磁板的极性相同。
  17. 根据权利要求13所述的磁控溅射系统,其中所述磁控溅射系统还包括第一平移控制器,用于控制所述至少两个的永磁板沿所述水平方向来回运动。
  18. 根据权利要求13所述的磁控溅射系统,其中一竖直方向垂直于所述防屏蔽板的水平面;
    所述磁控溅射系统还包括第二平移控制器,用于控制所述至少两个的永磁板沿所述竖直方向运动。
PCT/CN2012/078995 2012-06-04 2012-07-23 磁控溅射系统 WO2013181879A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/636,975 US20130319855A1 (en) 2012-06-04 2012-07-23 Magnetron sputtering system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210180912.2 2012-06-04
CN201210180912.2A CN102719798B (zh) 2012-06-04 2012-06-04 磁控溅射系统

Publications (1)

Publication Number Publication Date
WO2013181879A1 true WO2013181879A1 (zh) 2013-12-12

Family

ID=46945659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/078995 WO2013181879A1 (zh) 2012-06-04 2012-07-23 磁控溅射系统

Country Status (2)

Country Link
CN (1) CN102719798B (zh)
WO (1) WO2013181879A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111593308A (zh) * 2019-02-20 2020-08-28 咸阳彩虹光电科技有限公司 一种提高金属制膜均匀性的平面磁板的制作方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180358212A1 (en) * 2015-12-09 2018-12-13 Applied Materials, Inc. System configured for sputter deposition on a substrate, shielding device for a sputter deposition chamber, and method for providing an electrical shielding in a sputter deposition chamber
CN108138312B (zh) * 2016-03-29 2020-11-03 株式会社爱发科 磁性膜成膜装置及磁性膜成膜方法
GB201706284D0 (en) * 2017-04-20 2017-06-07 Spts Technologies Ltd A method and apparatus for controlling stress variation in a material layer formed via pulsed DC physical vapour deposition
CN106967955B (zh) * 2017-05-10 2023-05-23 东旭(昆山)显示材料有限公司 磁控溅射装置
CN109161842B (zh) * 2018-08-09 2020-12-18 江西沃格光电股份有限公司 镀膜系统及镀膜玻璃的制造方法
CN109487224A (zh) * 2018-12-28 2019-03-19 湖畔光电科技(江苏)有限公司 一种新型磁控溅射装置
CN111155067A (zh) * 2020-02-19 2020-05-15 三河市衡岳真空设备有限公司 一种磁控溅射设备
CN113122813A (zh) * 2021-03-31 2021-07-16 暨南大学 一种低温无损半透明钙钛矿太阳电池及其制备方法与应用
CN115404449B (zh) * 2021-05-28 2023-12-01 鑫天虹(厦门)科技有限公司 可调整磁场分布的薄膜沉积设备及其磁场调整装置
CN115404437B (zh) * 2022-07-15 2024-02-20 江苏迪盛智能科技有限公司 溅射方法和溅射设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58141387A (ja) * 1982-02-16 1983-08-22 Anelva Corp スパツタ装置
JPS6187868A (ja) * 1984-10-05 1986-05-06 Nippon Telegr & Teleph Corp <Ntt> 薄膜形成方法および装置
JPS61221363A (ja) * 1985-03-27 1986-10-01 Fujitsu Ltd スパツタ装置
JPS63277756A (ja) * 1987-05-09 1988-11-15 Canon Inc 対向タ−ゲット式スパッタ装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2928105B2 (ja) * 1994-11-09 1999-08-03 芝浦メカトロニクス株式会社 スパッタリング装置
CN2501888Y (zh) * 2001-09-25 2002-07-24 深圳市福义乐磁性材料有限公司 永磁式平面磁控溅射靶
JP5146106B2 (ja) * 2008-05-26 2013-02-20 パナソニック株式会社 スパッタ装置
JP2009293089A (ja) * 2008-06-06 2009-12-17 Panasonic Corp スパッタリング装置
EP2317537A1 (en) * 2009-10-29 2011-05-04 Applied Materials, Inc. Sputter deposition system and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58141387A (ja) * 1982-02-16 1983-08-22 Anelva Corp スパツタ装置
JPS6187868A (ja) * 1984-10-05 1986-05-06 Nippon Telegr & Teleph Corp <Ntt> 薄膜形成方法および装置
JPS61221363A (ja) * 1985-03-27 1986-10-01 Fujitsu Ltd スパツタ装置
JPS63277756A (ja) * 1987-05-09 1988-11-15 Canon Inc 対向タ−ゲット式スパッタ装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111593308A (zh) * 2019-02-20 2020-08-28 咸阳彩虹光电科技有限公司 一种提高金属制膜均匀性的平面磁板的制作方法

Also Published As

Publication number Publication date
CN102719798A (zh) 2012-10-10
CN102719798B (zh) 2015-06-17

Similar Documents

Publication Publication Date Title
WO2013181879A1 (zh) 磁控溅射系统
KR101097329B1 (ko) 스퍼터링 장치
EP1905865B1 (en) Sputtering apparatus and method for manufacturing transparent conducting film
US20130319855A1 (en) Magnetron sputtering system
KR101188361B1 (ko) 원료 공급 유닛 및 스퍼터링 장치
JP5414340B2 (ja) スパッタリング方法
KR102123455B1 (ko) 스퍼터링 장치 및 산화물 반도체 물질의 스퍼터링 방법
US10480062B2 (en) Sputtering apparatus and sputtering method using the same
TWI712699B (zh) 成膜方法及成膜裝置
KR100713848B1 (ko) 스퍼터링 증착장치
JP7136648B2 (ja) 成膜装置、成膜方法、および電子デバイスの製造方法
TWI496925B (zh) 一種用於減少ito濺射損傷襯底的濺射設備及其方法
KR20190024115A (ko) 마그네트론 스퍼터링 장치의 마그네트 구조
WO2017088212A1 (zh) 磁控溅射镀膜装置及其靶装置
JP2012251233A (ja) 成膜装置及び発光装置
KR20150072571A (ko) 스퍼터링 장치
KR20140074687A (ko) 스퍼터링 장치
KR102184777B1 (ko) 대향 타겟식 스퍼터링 장치
KR20140059407A (ko) 스퍼터링 장치
TWI655315B (zh) 電漿沉積裝置及薄膜沉積方法
KR20080012620A (ko) 균일도가 높은 대향 타겟식 스퍼터링 장치
JP2015183242A (ja) 薄膜製造方法
WO2012086229A1 (ja) スパッタリング装置
KR101683726B1 (ko) 기판 처리 장치
WO2009075393A1 (en) Plasma damage free sputter gun, sputter, plasma process apparatus and film-forming method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13636975

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12878579

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12878579

Country of ref document: EP

Kind code of ref document: A1