WO2013179363A1 - 光無線伝送装置および光無線伝送方法ならびに光無線伝送システム - Google Patents

光無線伝送装置および光無線伝送方法ならびに光無線伝送システム Download PDF

Info

Publication number
WO2013179363A1
WO2013179363A1 PCT/JP2012/008290 JP2012008290W WO2013179363A1 WO 2013179363 A1 WO2013179363 A1 WO 2013179363A1 JP 2012008290 W JP2012008290 W JP 2012008290W WO 2013179363 A1 WO2013179363 A1 WO 2013179363A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
wireless transmission
output
input
signals
Prior art date
Application number
PCT/JP2012/008290
Other languages
English (en)
French (fr)
Inventor
卓也 伊東
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to EP12878010.3A priority Critical patent/EP2874320A4/en
Priority to CN201280073592.9A priority patent/CN104350684B/zh
Priority to US14/400,783 priority patent/US20150147056A1/en
Publication of WO2013179363A1 publication Critical patent/WO2013179363A1/ja
Priority to IN9694DEN2014 priority patent/IN2014DN09694A/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits

Definitions

  • the present invention relates to an optical wireless transmission device, an optical wireless transmission method, and an optical wireless transmission system, and more particularly to an optical wireless transmission device and an optical device that receive a signal from a control system and determine in which direction and at which frequency an input signal is transmitted.
  • the present invention relates to a wireless transmission method and an optical wireless transmission system.
  • the system is divided for optical transmission and wireless transmission.
  • optical transmission systems there was an optical switching device with a wavelength selection function that enables transmission to an arbitrary path by selecting an arbitrary wavelength, but the function of selecting a wireless transmission path as an option for the path is Did not exist.
  • a communication path switching system capable of changing a transmission path from an optical communication path to a wireless communication path is disclosed (for example, see Patent Document 1).
  • This system is capable of securing a communication path even when a communication failure occurs in a wired communication path that connects a communication device used by a user and a network.
  • the present invention relates to a communication system.
  • communication between the subscriber line switch and each communication device is usually performed using a single-core optical fiber between each communication device from the communication channel switching device.
  • the subscriber line exchange communicates with each communication device wirelessly via a wireless communication unit in the communication path switching device.
  • the optical transmission or the wireless transmission is properly used according to the opposite device that performs communication, and any frequency and any route from a plurality of frequencies are used.
  • Patent Document 1 merely discloses a technique for switching from optical transmission to wireless transmission when a failure occurs, and completely discloses a technique for selectively using optical transmission or wireless transmission according to the opposite device. Absent. Therefore, the invention described in Patent Document 1 cannot solve the problem of the present invention.
  • an object of the present invention is to use optical transmission or wireless transmission properly according to the opposite device that performs communication, select an arbitrary frequency and an arbitrary path from a plurality of frequencies, and further multiplex signals as necessary.
  • an optical wireless transmission device, an optical wireless transmission method, and an optical wireless transmission system capable of communicating with an opposite device are provided.
  • an optical wireless transmission device converts a plurality of input baseband signals into optical or electrical signals as necessary, modulates these signals at different frequencies, and further, a predetermined number of signals.
  • the optical modulation signals are multiplexed with each other and a predetermined number of radio modulation signals are multiplexed, and the optical multiplexed signal is transmitted to the opposite device via a predetermined optical fiber, and the radio multiplexed signal is transmitted to the opposite device via a directional antenna.
  • the optical wireless transmission method converts a plurality of input baseband signals into optical or electrical signals as necessary, modulates these signals at different frequencies, respectively, and further adds a predetermined number of optical modulation signals to each other.
  • a plurality of optical modulation signals are multiplexed with each other, and the optical multiplexed signal includes an optical wireless transmission step in which the optical multiplexed signal is transmitted to a counter device via a predetermined optical fiber and the wireless multiplexed signal is transmitted to a counter device via a directional antenna. .
  • An optical wireless transmission system includes an optical wireless transmission device, a control system that instructs the optical wireless transmission device in which direction and at which frequency an input baseband signal is transmitted, and one optical wireless And an optical branching device that separates the optical multiplexed signal output from the transmission device and outputs the separated optical multiplexed signal to the other plurality of optical wireless transmission devices.
  • the program according to the present invention converts a plurality of input baseband signals into optical or electrical signals as necessary in the control circuit of the optical wireless transmission apparatus, modulates these signals at different frequencies, and further, a predetermined number of signals.
  • optical transmission or wireless transmission is properly used according to the opposite device that performs communication, an arbitrary frequency and an arbitrary path are selected from a plurality of frequencies, and signals are multiplexed as necessary. It is possible to communicate with the opposite device. This makes it possible to select the optimal frequency, route, and medium (optical or wireless) according to the network conditions, so that limited transmission resources (optical transmission path and spatial frequency) can be used to the maximum extent possible. Possible
  • FIG. 1 is a block diagram of an example of an optical wireless transmission system according to the present invention.
  • an example of an optical wireless transmission system includes a plurality of optical wireless transmission apparatuses 1 (1-1 to 1-4 as an example), an optical branching apparatus 2, and a plurality of optical fibers 3 to 5, a control system 6, and a plurality of directional antennas 18 (18-1 to 18-2 as an example).
  • the optical wireless transmission device 1-1 is connected to the optical branching device 2 via the optical fiber 3, and the optical branching device 2 is further connected to the optical wireless transmission device 1-3 via the optical fiber 4 and the optical fiber 5.
  • the optical wireless transmission device 1-1 includes a directional antenna 18-1
  • the optical wireless transmission device 1-2 also includes a directional antenna 18-2, between the optical wireless transmission devices 1-1 and 1-2. Wireless transmission is performed.
  • the optical wireless transmission apparatuses 1-1 and 1-2 are provided with the directional antennas 18-1 and 18-2.
  • the apparatus 1 is provided.
  • an optical fiber is not connected between the optical wireless transmission apparatuses 1-1 and 1-2, but an optical fiber is connected between the optical wireless transmission apparatuses 1-1 and 1-2. It is also possible to do.
  • the control system 6 instructs the optical wireless transmission apparatuses 1-1 to 1-4 in which direction and at what frequency the input baseband signal (whether it is an optical signal or an electrical signal) is transmitted. .
  • wireless transmission is performed between the optical wireless transmission apparatuses 1-1 and 1-2, and an optical fiber is transmitted between the optical wireless transmission apparatus 1-1 and the optical branching apparatus 2.
  • 3 performs optical multiplex transmission of wavelengths ⁇ 1 and ⁇ 2, further separates the optical multiplexed signals of wavelengths ⁇ 1 and ⁇ 2 by optical branching device 2, and optically transmits optical signals of wavelength ⁇ 1 via optical fiber 4.
  • the optical signal having the wavelength ⁇ 2 is optically transmitted to the optical device 1-3 through the optical fiber 5 to the optical wireless transmission device 1-4.
  • the signal transmission path shown in FIG. 1 is an example of a path instructed from the control system 6 to each of the optical wireless transmission apparatuses 1-1 to 1-4, and is not limited to this example.
  • the control system 6 can set a transmission path so that any optical wireless transmission device 1 can communicate with each other, and selects an optimal frequency, route and medium (light or wireless) according to the network conditions. Is possible.
  • a control signal for adjusting the frequency of the optical wireless transmission device 1 facing the own optical wireless transmission device 1 is added in advance to the communication data between the two.
  • the control signal is added to the communication data based on an instruction from the control system 6.
  • the control system 6 sets an optimum transmission path and selects an optimum frequency.
  • FIG. 2 is a block diagram of an example of an optical wireless transmission apparatus according to the present invention.
  • an example of an optical wireless transmission apparatus includes a plurality of baseband signal input / output circuits 11-1 to 11-m (m is a positive integer), a switching circuit 12, and a plurality of wireless Input / output circuits 13-1 to 13-n (n is a positive integer), a plurality of optical input / output circuits 14-1 to 14-p (p is a positive integer), a frequency selection / switching / multiplexing circuit 15, A terminal selection / switching / multiplexing circuit 16, a control circuit 17, a directional antenna 18, optical fibers 19-1 to 19-r (r is a positive integer), and a program storage unit 20.
  • the baseband signal input / output circuits 11-1 to 11-m a positive integer
  • switching circuit 12 includes a plurality of wireless Input / output circuits 13-1 to 13-n (n is a positive integer), a plurality of optical input / output circuits 14-1 to 14-p (p is a positive integer), a frequency selection / switching / multiplexing circuit 15,
  • Baseband signal input / output circuits 11-1 to 11-m convert input baseband signals into optical or electrical signals as necessary and input / output them. That is, the input baseband signal is an optical or electric signal, and the baseband signal input / output circuits 11-1 to 11-m convert the input optical baseband signal to electricity, or the input electric baseband signal to light. Each has an optical / electrical conversion function for conversion.
  • the switching circuit 12 converts the baseband signals output from the baseband signal input / output circuits 11-1 to 11-m into optical or electrical signals as necessary, and outputs a predetermined output destination, that is, a wireless input / output circuit 13- 1 to 13-n and the optical input / output circuits 14-1 to 14-p.
  • the switching circuit 12 converts the baseband signals output from the wireless input / output circuits 13-1 to 13-n and the optical input / output circuits 14-1 to 14-p into optical or electrical signals as necessary.
  • a function of outputting to the baseband signal input / output circuits 11-1 to 11-m is also provided.
  • the radio input / output circuits 13-1 to 13-n modulate the electric baseband signal output from the switching circuit 12 with different frequencies, or demodulate the radio modulation signal output from the frequency selection / switching / multiplexing circuit 15, respectively. To do.
  • the optical input / output circuits 14-1 to 14-p modulate the optical baseband signals output from the switching circuit 12 at different frequencies, or demodulate the optical modulation signals output from the terminal selection / switching / multiplexing circuit 16, respectively. To do.
  • the optical input / output circuits 14-1 to 14-p include a light source and a light receiving element (not shown). Accordingly, the optical input / output circuits 14-1 to 14-p also have an electrical / optical conversion function.
  • the frequency selection / switching / multiplexing circuit 15 multiplexes radio modulation signals output from a predetermined number of the plurality of radio input / output circuits 13-1 to 13-, and transmits the multiplexed signals to the opposite device via the directional antenna 18. To do. Further, the frequency selection / switching / multiplexing circuit 15 has a function of separating a radio multiplexed signal received via the directional antenna 18 and outputting it to a predetermined radio input / output circuit 13.
  • the terminal selection / switching / multiplexing circuit 16 multiplexes optical modulation signals output from a predetermined number of circuits among the plurality of optical input / output circuits 14-1 to 14-p, and passes through a predetermined optical fiber 19 to the opposite device. Transmit to.
  • the terminal selection / switching / multiplexing circuit 16 has a function of separating optical multiplexed signals received via the optical fibers 19-1 to 19-r and outputting them to a predetermined optical input / output circuit 14.
  • the control circuit 17 controls the radio input / output circuits 13-1 to 13-n and the optical input / output circuits 14-1 to 14-p to perform frequency selection, modulation / demodulation, baseband signal input / output circuit 11, switching circuit 12 Then, the frequency selection / switching / multiplexing circuit 15 and the terminal selection / switching / multiplexing circuit 16 are controlled to transmit optical and radio signals to arbitrary paths.
  • FIG. 3 is a flowchart showing an example of an optical wireless transmission method of the optical wireless transmission apparatus according to the present invention.
  • control circuit 17 controls the baseband signal input / output circuit 11, the switching circuit 12, the frequency selection / switching / multiplexing circuit 15, and the terminal selection / switching / multiplexing circuit 16.
  • the plurality of baseband signal input / output circuits 11- to 11-m convert the input baseband signals into optical or electrical signals as necessary and input / output them (step S1).
  • the switching circuit 12 converts the baseband signal output from the baseband signal input / output circuit 11 into an optical or electrical signal as necessary, and outputs it to a predetermined output destination (step S2).
  • the plurality of radio input / output circuits 13 modulate the electric baseband signals output from the switching circuit 12 at different frequencies or demodulate the radio modulation signals (step S3).
  • the plurality of optical input / output circuits 14 modulate the optical baseband signals output from the switching circuit 12 at different frequencies or demodulate the optical modulation signals (step S4).
  • the frequency selection / switching / multiplexing circuit 15 multiplexes radio modulation signals output from a predetermined number of circuits among the plurality of radio input / output circuits 13, and transmits the multiplexed signals to the opposite device via the directional antenna 18 (step S5).
  • the terminal selection / switching / multiplexing circuit 16 multiplexes the optical modulation signals output from a predetermined number of the plurality of optical input / output circuits 14 and transmits the multiplexed signals to the opposite device via the predetermined optical fiber 19 (step S6). ).
  • a plurality of wired and wireless transmission means can be freely selected.
  • limited resources can be effectively utilized by freely selecting the wavelength of light and the frequency of radio.
  • the optical fiber resources in the limited section can be effectively used by multiplexing the light outputs having different wavelengths.
  • resources in the wireless section can be effectively utilized by multiplexing a plurality of wavelengths and transmitting via a common antenna. Furthermore, by having a system for selecting an optimal transmission path and optical wavelength / radio frequency according to the network conditions, it becomes possible to optimize optical / radio transmission resources.
  • the optical wireless transmission apparatus includes a program storage unit 20.
  • the program storage unit 20 stores a program of the optical wireless transmission method shown in the flowchart of FIG.
  • the control circuit 17 of the optical wireless transmission apparatus reads the program from the program storage unit 20, and in accordance with the program, the baseband signal input / output circuit 11, the switching circuit 12, the frequency selection / switching / multiplexing circuit 15, and the terminal selection / switching / The multiplexing circuit 16 is controlled. Since the contents of the control have already been described, description thereof is omitted here.
  • the program stored in the program storage unit 20 includes a design program for grasping traffic conditions and network conditions and selecting an optimal frequency and route and medium (optical or wireless).
  • optical transmission or wireless transmission is properly used according to the opposite device that performs communication, an arbitrary frequency and an arbitrary path are selected from a plurality of frequencies, and further, as necessary.
  • a program of an optical wireless transmission method capable of multiplexing signals and communicating with the opposite apparatus is obtained.
  • the present invention can be applied to a transmission network introduced by a mobile business operator.
  • Non-transitory computer readable media include various types of tangible storage media.
  • Examples of non-transitory computer-readable media include magnetic recording media (eg, flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg, magneto-optical disks), CD-ROM (Read Only Memory) CD-R, CD -R / W, including semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM (Random Access Memory)).
  • the program may be supplied to a computer by various types of temporary computer readable media. Examples of transitory computer readable media include electrical signals, optical signals, and electromagnetic waves.
  • the temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

 通信を行う対向装置に応じて光伝送あるいは無線伝送を使い分け、かつ複数周波数の中から任意の周波数と任意の方路を選択し、さらに必要に応じて信号を多重して対向装置と通信することが可能な光無線伝送装置を提供することを課題とする。光無線伝送装置(1)は、複数の入力ベースバンド信号を必要に応じて光または電気信号に変換し、それらの信号を夫々異なる周波数で変調し、さらに所定数の光変調信号同士および所定数の無線変調信号同士を多重し、光多重信号は所定の光ファイバ(3~5)を介してまた無線多重信号は指向性アンテナ(18)を介して夫々対向装置へ伝送する。

Description

光無線伝送装置および光無線伝送方法ならびに光無線伝送システム
 本発明は、光無線伝送装置および光無線伝送方法ならびに光無線伝送システムに関し、特に制御システムからの信号を受けて入力信号をどの方向にどの周波数で伝送するかを決定する光無線伝送装置および光無線伝送方法ならびに光無線伝送システムに関する。
 本発明に関連する伝送システムでは、光伝送用と無線伝送用でシステムが分かれていた。光伝送システムの中には、任意の波長を選択して任意の方路との伝送を可能とする波長選択機能付き光切替装置は存在したが、方路の選択肢として無線伝送路を選ぶ機能は存在しなかった。また、無線伝送システムについても複数周波数の中から任意の周波数と任意の方路を自由に選んで通信するシステムは存在せず、固定的な伝送路運用が行われていた。
 一方、本発明に関連する伝送システムの一例として、光通信路から無線通信路に伝送路を変更することが可能な通信路切替システムが開示されている(たとえば、特許文献1参照)。
 このシステムは、ユーザが使用する通信機器とネットワークとを接続する有線通信路に通信上の障害が発生した場合にも通信路の確保が可能となるというものである。
 具体的には、加入者線交換機と通信路切替装置との間が束ねられた複数の光ファイバケーブルで接続され、通信路切替装置から各通信装置との間がそれぞれ単芯光ファイバで接続される通信システムに関するものである。
 そして、このシステムは、通常は加入者線交換機と各通信装置との間の通信を、通信路切替装置から各通信装置間ではそれぞれ単芯光ファイバを用いて行うが、この通信路切替装置から各通信装置間で障害が発生した場合は、加入者線交換機から通信路切替装置内の無線通信部を経由して無線により各通信装置と通信するというものである。
特開2003-298605号公報
 しかし、関連発明では、光伝送用と無線伝送用でシステムが分かれていたため、通信を行う対向装置に応じて光伝送あるいは無線伝送を使い分け、かつ複数周波数の中から任意の周波数と任意の方路を選択し、さらに必要に応じて信号を多重して対向装置と通信することができないという課題があった。
 一方、特許文献1に記載の発明には、障害発生時に光伝送から無線伝送に切り換える技術が開示されているに過ぎず、対向装置に応じて光伝送あるいは無線伝送を使い分ける技術は全く開示されていない。したがって、特許文献1に記載の発明によって、本発明の課題を解決することはできない。
 そこで、本発明の目的は、通信を行う対向装置に応じて光伝送あるいは無線伝送を使い分け、かつ複数周波数の中から任意の周波数と任意の方路を選択し、さらに必要に応じて信号を多重して対向装置と通信することが可能な光無線伝送装置および光無線伝送方法ならびに光無線伝送システムを提供することにある。
 前記課題を解決するために、本発明による光無線伝送装置は、複数の入力ベースバンド信号を必要に応じて光または電気信号に変換し、それらの信号を夫々異なる周波数で変調し、さらに所定数の光変調信号同士および所定数の無線変調信号同士を多重し、光多重信号は所定の光ファイバを介してまた無線多重信号は指向性アンテナを介して夫々対向装置へ伝送することを特徴とする。
 また、本発明による光無線伝送方法は、複数の入力ベースバンド信号を必要に応じて光または電気信号に変換し、それらの信号を夫々異なる周波数で変調し、さらに所定数の光変調信号同士および所定数の無線変調信号同士を多重し、光多重信号は所定の光ファイバを介してまた無線多重信号は指向性アンテナを介して夫々対向装置へ伝送する光無線伝送ステップを含むことを特徴とする。
 また、本発明による光無線伝送システムは、光無線伝送装置と、前記光無線伝送装置に対し入力ベースバンド信号をどの方向におよびどの周波数で伝送するかを指示する制御システムと、一方の光無線伝送装置から出力される光多重信号を分離して他方の複数の光無線伝送装置へ出力する光分岐装置とを含むことを特徴とする。
 また、本発明によるプログラムは、光無線伝送装置の制御回路に、複数の入力ベースバンド信号を必要に応じて光または電気信号に変換し、それらの信号を夫々異なる周波数で変調し、さらに所定数の光変調信号同士および所定数の無線変調信号同士を多重し、光多重信号は所定の光ファイバを介してまた無線多重信号は指向性アンテナを介して夫々対向装置へ伝送する光無線伝送ステップを実行させるためのものであることを特徴とする。
 本発明によれば、通信を行う対向装置に応じて光伝送あるいは無線伝送を使い分け、かつ複数周波数の中から任意の周波数と任意の方路を選択し、さらに必要に応じて信号を多重して対向装置と通信することが可能となる。これによりネットワークの状況に応じて最適な周波数、方路および媒体(光または無線)を選択することができるため、限られた伝送資源(光伝送路および空間周波数)を最大限有効活用することが可能となる
本発明に係る光無線伝送システムの一例の構成図である。 本発明に係る光無線伝送装置の一例の構成図である。 本発明に係る光無線伝送装置の光無線伝送方法の一例を示すフローチャートである。
 以下、本発明の実施の形態について添付図面を参照しながら説明する。まず、本発明に係る光無線伝送システムの一例について説明する。図1は本発明に係る光無線伝送システムの一例の構成図である。
 同図を参照すると、本発明に係る光無線伝送システムの一例は、複数の光無線伝送装置1(一例として1-1~1-4)と、光分岐装置2と、複数の光ファイバ3~5と、制御システム6と、複数の指向性アンテナ18(一例として18-1~18-2)とを含んで構成される。
 また、光無線伝送装置1-1は光ファイバ3を介して光分岐装置2と接続され、さらに光分岐装置2は光ファイバ4を介して光無線伝送装置1-3と、光ファイバ5を介して光無線伝送装置1-4とそれぞれ接続される。また、光無線伝送装置1-1は指向性アンテナ18-1を備え、光無線伝送装置1-2もまた指向性アンテナ18-2を備え、光無線伝送装置1-1および1-2間で無線伝送が行われる。
 なお、同図では便宜上、光無線伝送装置1-1および1-2のみに指向性アンテナ18-1、18-2が備えられているが、現実には指向性アンテナ18は全ての光無線伝送装置1に備えられる。また、同図では一例として、光無線伝送装置1-1および1-2間に光ファイバが接続されない場合を示しているが、光無線伝送装置1-1および1-2間に光ファイバを接続することも可能である。
 制御システム6は光無線伝送装置1-1~1-4に対し入力ベースバンド信号(光信号であるか電気信号であるかは問わない)をどの方向におよびどの周波数で伝送するかを指示する。
 すなわち、図1に示す光無線伝送システムでは、一例として、光無線伝送装置1-1および1-2間で無線伝送を行うとともに、光無線伝送装置1-1および光分岐装置2間で光ファイバ3を介して波長λ1およびλ2の光多重伝送を行い、さらに光分岐装置2にて波長λ1およびλ2の光多重信号を分離して、波長λ1の光信号を光ファイバ4を介して光無線伝送装置1-3に、波長λ2の光信号を光ファイバ5を介して光無線伝送装置1-4にそれぞれ光伝送する。
 また、図1に示す信号の伝送経路は、制御システム6から各光無線伝送装置1-1~1-4に対し指示された経路の一例であり、この一例に限定されるものではない。制御システム6は任意の光無線伝送装置1同士で通信を行わせるよう伝送経路を設定することが可能であり、ネットワークの状況に応じて最適な周波数、方路および媒体(光または無線)を選択することが可能である。
 また、自光無線伝送装置1と対向する光無線伝送装置1との周波数を合せるための制御信号が予め両者間の通信データに付加されている。その制御信号は、制御システム6からの指示に基づいて通信データに付加される。また、制御システム6は最適伝送路の設定や最適周波数の選択を行う。
 次に、光無線伝送装置1の構成の一例について説明する。なお、複数の光無線伝送装置1-1~1-4の構成は同様である。図2は本発明に係る光無線伝送装置の一例の構成図である。
 同図を参照すると、本発明に係る光無線伝送装置の一例は、複数のベースバンド信号入出力回路11-1~11-m(mは正の整数)と、切替回路12と、複数の無線入出力回路13-1~13-n(nは正の整数)と、複数の光入出力回路14-1~14-p(pは正の整数)と、周波数選択/切替/多重回路15と、端子選択/切替/多重回路16と、制御回路17と、指向性アンテナ18と、光ファイバ19-1~19-r(rは正の整数)と、プログラム格納部20とを含んで構成される。
 ベースバンド信号入出力回路11-1~11-mは、入力ベースバンド信号を必要に応じて光または電気信号に変換して入出力する。すなわち、入力ベースバンド信号は光または電気信号であり、ベースバンド信号入出力回路11-1~11-mは入力される光ベースバンド信号を電気へ、あるいは入力される電気ベースバンド信号を光へそれぞれ変換する光/電気変換機能を備えている。
 切替回路12は、ベースバンド信号入出力回路11-1~11-mから出力されるベースバンド信号を必要に応じて光または電気信号に変換し所定の出力先、すなわち、無線入出力回路13-1~13-nおよび光入出力回路14-1~14-pのいずれかに出力する。また、切替回路12は、無線入出力回路13-1~13-nおよび光入出力回路14-1~14-pから出力されるベースバンド信号を必要に応じて光または電気信号に変換してベースバンド信号入出力回路11-1~11-mへ出力する機能も備えている。
 無線入出力回路13-1~13-nは、切替回路12から出力される電気ベースバンド信号を夫々異なる周波数で変調し、または周波数選択/切替/多重回路15から出力される無線変調信号を復調する。
 光入出力回路14-1~14-pは、切替回路12から出力される光ベースバンド信号を夫々異なる周波数で変調し、または端子選択/切替/多重回路16から出力される光変調信号を復調する。なお、光入出力回路14-1~14-pは図示しない光源および受光素子を含んで構成される。したがって、光入出力回路14-1~14-pは電気/光変換機能も備えている。
 周波数選択/切替/多重回路15は、複数の無線入出力回路13-1~13-のうち所定数の回路から出力される無線変調信号を多重し、指向性アンテナ18を介して対向装置へ伝送する。また、周波数選択/切替/多重回路15は、指向性アンテナ18を介して受信した無線多重信号を分離して所定の無線入出力回路13へ出力する機能を備えている。
 端子選択/切替/多重回路16は、複数の光入出力回路14-1~14-pのうち所定数の回路から出力される光変調信号を多重し、所定の光ファイバ19を介して対向装置へ伝送する。また、端子選択/切替/多重回路16は、光ファイバ19-1~19-rを介して受信した光多重信号を分離して所定の光入出力回路14へ出力する機能を備えている。
 制御回路17は、無線入出力回路13-1~13-nおよび光入出力回路14-1~14-pを制御して周波数選択および変復調を行い、ベースバンド信号入出力回路11、切替回路12、周波数選択/切替/多重回路15および端子選択/切替/多重回路16を制御して光および無線信号を任意の方路へ伝送させる。
 次に、本発明に係る光無線伝送装置の光無線伝送方法の一例を、フローチャートを参照しながら説明する。図3は本発明に係る光無線伝送装置の光無線伝送方法の一例を示すフローチャートである。
 なお、以下の動作は制御回路17が、ベースバンド信号入出力回路11、切替回路12、周波数選択/切替/多重回路15および端子選択/切替/多重回路16を制御して実行される。
 複数のベースバンド信号入出力回路11-~11-mは、入力ベースバンド信号を必要に応じて光または電気信号に変換して入出力する(ステップS1)。
 切替回路12は、ベースバンド信号入出力回路11から出力されるベースバンド信号を必要に応じて光または電気信号に変換し所定の出力先に出力する(ステップS2)。
 複数の無線入出力回路13は、切替回路12から出力される電気ベースバンド信号を夫々異なる周波数で変調しまたは無線変調信号を復調する(ステップS3)。
 複数の光入出力回路14は、切替回路12から出力される光ベースバンド信号を夫々異なる周波数で変調しまたは光変調信号を復調する(ステップS4)。
 周波数選択/切替/多重回路15は、複数の無線入出力回路13のうち所定数の回路から出力される無線変調信号を多重し、指向性アンテナ18を介して対向装置へ伝送する(ステップS5)。
 端子選択/切替/多重回路16は、複数の光入出力回路14のうち所定数の回路から出力される光変調信号を多重し、所定の光ファイバ19を介して対向装置へ伝送する(ステップS6)。
 以上説明したように、本発明に係る光無線伝送装置および光無線伝送方法ならびに光無線伝送システムによれば、有線と無線の複数の伝送手段を自由に選択することができる。しかも光の波長と無線の周波数を自由に選択することにより、限られた資源を有効活用することができる。また、例えば光ファイバの本数が限られている場合には複数の波長の異なる光出力を多重することにより限定された区間における光ファイバ資源を有効活用することができる。
 また、無線においても複数波長を多重して共通のアンテナ経由で伝送することにより、無線区間の資源を有効活用することができる。さらに、ネットワークの状況に応じて最適な伝送路と光波長/無線周波数を選択するためのシステムを有することで、光/無線の伝送資源の最適化が可能になる。
 次に、本発明に係る光無線伝送装置における光無線伝送方法のプログラムについて説明する。図2に示したように、本発明に係る光無線伝送装置はプログラム格納部20を備えている。このプログラム格納部20には図3にフローチャートで示す光無線伝送方法のプログラムが格納されている。
 光無線伝送装置の制御回路17は、プログラム格納部20からそのプログラムを読み出し、そのプログラムにしたがってベースバンド信号入出力回路11、切替回路12、周波数選択/切替/多重回路15および端子選択/切替/多重回路16を制御する。その制御の内容は既に述べたのでここでの説明は省略する。なお、プログラム格納部20に格納されるプログラムには、トラフィックの状況やネットワークの状況を把握し、最適な周波数および方路ならびに媒体(光または無線)を選択するための設計プログラムが含まれる。
 以上説明したように、本発明によれば、通信を行う対向装置に応じて光伝送あるいは無線伝送を使い分け、かつ複数周波数の中から任意の周波数と任意の方路を選択し、さらに必要に応じて信号を多重して対向装置と通信することが可能な光無線伝送方法のプログラムが得られる。
 本発明をモバイル事業運用者が導入する伝送ネットワークに適用することが可能である。
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 また、上述したプログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、CD-ROM(Read Only Memory)CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(Random Access Memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。
 この出願は、2012年5月30日に出願された日本出願特願2012-122584を基礎とする優先権を主張し、その開示の全てをここに取り込む。
    1 光無線伝送装置
    2 光分岐装置
  3~5 光ファイバ
    6 制御システム
   11 ベースバンド信号入出力回路
   12 切替回路
   13 無線入出力回路
   14 光入出力回路
   15 周波数選択/切替/多重回路
   16 端子選択/切替/多重回路
   17 制御回路
   18 指向性アンテナ
   19 光ファイバ
   20 プログラム格納部

Claims (8)

  1.  複数の入力ベースバンド信号を必要に応じて光または電気信号に変換し、それらの信号を夫々異なる周波数で変調し、さらに所定数の光変調信号同士および所定数の無線変調信号同士を多重し、光多重信号は所定の光ファイバを介してまた無線多重信号は指向性アンテナを介して夫々対向装置へ伝送することを特徴とする光無線伝送装置。
  2.  前記対向装置から送信される光多重信号および無線多重信号を分離して復調し、さらに復調後のベースバンド信号を必要に応じて光または電気信号に変換することを特徴とする請求項1記載の光無線伝送装置。
  3.  入力ベースバンド信号を必要に応じて光または電気信号に変換して入出力する複数のベースバンド信号入出力回路と、
     前記ベースバンド信号入出力回路から出力されるベースバンド信号を必要に応じて光または電気信号に変換し所定の出力先に出力する切替回路と、
     前記切替回路から出力される電気ベースバンド信号を夫々異なる周波数で変調しまたは無線変調信号を復調する複数の無線入出力回路と、
     前記切替回路から出力される光ベースバンド信号を夫々異なる周波数で変調しまたは光変調信号を復調する複数の光入出力回路と、
     前記複数の無線入出力回路のうち所定数の回路から出力される無線変調信号を多重し、指向性アンテナを介して対向装置へ伝送する周波数選択/切替/多重回路と、
     前記複数の光入出力回路のうち所定数の回路から出力される光変調信号を多重し、所定の光ファイバを介して対向装置へ伝送する端子選択/切替/多重回路と、
     前記無線入出力回路および光入出力回路を制御して周波数選択および変復調を行い、前記ベースバンド信号入出力回路、切替回路、周波数選択/切替/多重回路および端子選択/切替/多重回路を制御して光および無線信号を任意の方路へ伝送させる制御回路とを含むことを特徴とする請求項1または2記載の光無線伝送装置。
  4.  複数の入力ベースバンド信号を必要に応じて光または電気信号に変換し、それらの信号を夫々異なる周波数で変調し、さらに所定数の光変調信号同士および所定数の無線変調信号同士を多重し、光多重信号は所定の光ファイバを介してまた無線多重信号は指向性アンテナを介して夫々対向装置へ伝送する光無線伝送ステップを含むことを特徴とする光無線伝送装置の光無線伝送方法。
  5.  前記対向装置から送信される光多重信号および無線多重信号を分離して復調し、さらに復調後のベースバンド信号を必要に応じて光または電気信号に変換することを特徴とする請求項4記載の光無線伝送方法。
  6.  入力ベースバンド信号を必要に応じて光または電気信号に変換して入出力する複数のベースバンド信号入出力ステップと、
     前記ベースバンド信号入出力ステップから出力されるベースバンド信号を必要に応じて光または電気信号に変換し所定の出力先に出力する切替ステップと、
     前記切替ステップから出力される電気ベースバンド信号を夫々異なる周波数で変調しまたは無線変調信号を復調する複数の無線入出力ステップと、
     前記切替ステップから出力される光ベースバンド信号を夫々異なる周波数で変調しまたは光変調信号を復調する複数の光入出力ステップと、
     前記複数の無線入出力ステップのうち所定数の回路から出力される無線変調信号を多重し、指向性アンテナを介して対向装置へ伝送する周波数選択/切替/多重ステップと、
     前記複数の光入出力ステップのうち所定数の回路から出力される光変調信号を多重し、所定の光ファイバを介して対向装置へ伝送する端子選択/切替/多重ステップとを含むことを特徴とする請求項4または5記載の光無線伝送方法。
  7.  請求項1から3のいずれかの光無線伝送装置と、前記光無線伝送装置に対し入力ベースバンド信号をどの方向におよびどの周波数で伝送するかを指示する制御システムと、一方の光無線伝送装置から出力される光多重信号を分離して他方の複数の光無線伝送装置へ出力する光分岐装置とを含むことを特徴とする光無線伝送システム。
  8.  光無線伝送装置の制御回路に、
     複数の入力ベースバンド信号を必要に応じて光または電気信号に変換し、それらの信号を夫々異なる周波数で変調し、さらに所定数の光変調信号同士および所定数の無線変調信号同士を多重し、光多重信号は所定の光ファイバを介してまた無線多重信号は指向性アンテナを介して夫々対向装置へ伝送する光無線伝送ステップを実行させるためのプログラムを格納した非一時的なコンピュータ可読媒体。
PCT/JP2012/008290 2012-05-30 2012-12-25 光無線伝送装置および光無線伝送方法ならびに光無線伝送システム WO2013179363A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12878010.3A EP2874320A4 (en) 2012-05-30 2012-12-25 OPTICAL WIRELESS TRANSMISSION DEVICE, OPTICAL WIRELESS TRANSMISSION METHOD AND OPTICAL WIRELESS TRANSMISSION SYSTEM
CN201280073592.9A CN104350684B (zh) 2012-05-30 2012-12-25 光/无线通信装置、光/无线通信方法和光/无线通信系统
US14/400,783 US20150147056A1 (en) 2012-05-30 2012-12-25 Optical/wireless communication apparatus, optical/wireless communication method and optical/wireless communication system
IN9694DEN2014 IN2014DN09694A (ja) 2012-05-30 2014-11-17

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-122584 2012-05-30
JP2012122584 2012-05-30

Publications (1)

Publication Number Publication Date
WO2013179363A1 true WO2013179363A1 (ja) 2013-12-05

Family

ID=49672619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/008290 WO2013179363A1 (ja) 2012-05-30 2012-12-25 光無線伝送装置および光無線伝送方法ならびに光無線伝送システム

Country Status (5)

Country Link
US (1) US20150147056A1 (ja)
EP (1) EP2874320A4 (ja)
CN (1) CN104350684B (ja)
IN (1) IN2014DN09694A (ja)
WO (1) WO2013179363A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105680968B (zh) * 2016-01-04 2019-07-12 浙江宇视科技有限公司 一种单向串行传输装置
CN105656507B (zh) * 2016-03-24 2018-03-09 中国电子科技集团公司第三十四研究所 一种无线光与射频混合通信系统及使用方法
CN111698034A (zh) * 2020-06-22 2020-09-22 合肥国科天迅科技有限公司 一种激光光端机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001189962A (ja) * 1999-12-28 2001-07-10 Ntt Docomo Inc 無線基地局システム、統括局及び該統括局における信号処理方法
JP2001320348A (ja) * 2000-05-10 2001-11-16 Ntt Docomo Inc 移動通信用基地局ネットワーク及び前記ネットワークにおける基地局切換え方法
JP2002185995A (ja) * 2000-12-08 2002-06-28 Ntt Docomo Inc 移動通信システム及びスイッチング装置
JP2003219459A (ja) * 2002-01-21 2003-07-31 Sony Corp 無線通信システム、無線通信端末および基地局
JP2003298605A (ja) 2002-04-04 2003-10-17 Sumitomo Electric Ind Ltd 通信路切替システム、及び、光ファイバ線路

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1250018B1 (en) * 2000-05-10 2010-10-13 NTT DoCoMo, Inc. Wireless base station network system, control station, base station switching method, signal processing method, and handover control method
US20020012495A1 (en) * 2000-06-29 2002-01-31 Hiroyuki Sasai Optical transmission system for radio access and high frequency optical transmitter
JP4605362B2 (ja) * 2004-11-02 2011-01-05 日本電気株式会社 Sdh信号挿入分岐変換多重装置
JP5099493B2 (ja) * 2007-09-28 2012-12-19 独立行政法人情報通信研究機構 無線通信ネットワークシステム
US8175459B2 (en) * 2007-10-12 2012-05-08 Corning Cable Systems Llc Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same
TWI382684B (zh) * 2008-11-07 2013-01-11 Univ Nat Chiao Tung Dual Service Fiber Capture System
TWI385958B (zh) * 2009-03-20 2013-02-11 Ind Tech Res Inst 支援無線通訊之被動光網路系統

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001189962A (ja) * 1999-12-28 2001-07-10 Ntt Docomo Inc 無線基地局システム、統括局及び該統括局における信号処理方法
JP2001320348A (ja) * 2000-05-10 2001-11-16 Ntt Docomo Inc 移動通信用基地局ネットワーク及び前記ネットワークにおける基地局切換え方法
JP2002185995A (ja) * 2000-12-08 2002-06-28 Ntt Docomo Inc 移動通信システム及びスイッチング装置
JP2003219459A (ja) * 2002-01-21 2003-07-31 Sony Corp 無線通信システム、無線通信端末および基地局
JP2003298605A (ja) 2002-04-04 2003-10-17 Sumitomo Electric Ind Ltd 通信路切替システム、及び、光ファイバ線路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2874320A4

Also Published As

Publication number Publication date
CN104350684B (zh) 2016-06-08
IN2014DN09694A (ja) 2015-07-31
EP2874320A4 (en) 2016-05-11
US20150147056A1 (en) 2015-05-28
CN104350684A (zh) 2015-02-11
EP2874320A1 (en) 2015-05-20

Similar Documents

Publication Publication Date Title
EP1250018B1 (en) Wireless base station network system, control station, base station switching method, signal processing method, and handover control method
US8958706B2 (en) Coherent optical communication device and method
US10200132B2 (en) Optical communication system, transmission station, and method of optical communication
JP2012151841A (ja) 通信システム及び通信システム内のノード間で信号を直接伝送する方法
US20210021348A1 (en) Optical transmission apparatus, optical reception apparatus, optical communications apparatus, optical communication system, and methods of controlling them
EP3297187B1 (en) Transmission system and transmission method
JP5894094B2 (ja) 分散型無線通信基地局システム、olt部、及びonu部
WO2013179363A1 (ja) 光無線伝送装置および光無線伝送方法ならびに光無線伝送システム
US11804900B2 (en) Communication network system
US20120189303A1 (en) Optical transport multiplexing client traffic onto parallel line system paths
CN109691032A (zh) Pon系统、无线网络系统、数据传输方法、olt和onu
WO2019201100A1 (zh) Amcc装置及传输波长调控方法
JP3670576B2 (ja) 移動通信システム及びスイッチング装置
US11942991B2 (en) Optical submarine branching apparatus, optical submarine cable system, switching method, non-transitory computer-readable medium
CN107547135B (zh) 一种实现bbu与rru组网的方法、装置及组网系统
JP4608936B2 (ja) 通信方法および通信装置
WO2020137821A1 (ja) 光伝送装置及び光伝送方法
JP3798622B2 (ja) 無線基地局ネットワークシステム、統括局、信号処理方法、及びハンドオーバー制御方法
WO2010021371A1 (ja) 無線基地局装置
CN111295851A (zh) 海底光学通信系统和海底分支装置
JP4547221B2 (ja) 無線基地局装置
JP4696270B2 (ja) 通信システム及び通信方法
JP3854446B2 (ja) 移動通信用基地局ネットワーク及び前記ネットワークにおける基地局切換え方法
JPWO2019188633A1 (ja) 光伝送装置、光通信システム及び光通信方法
JP2013070280A (ja) 光通信装置、光通信システム、および経路制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12878010

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14400783

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012878010

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012878010

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP