WO2013177815A1 - 立体三角形结构的非晶合金变压器铁心 - Google Patents
立体三角形结构的非晶合金变压器铁心 Download PDFInfo
- Publication number
- WO2013177815A1 WO2013177815A1 PCT/CN2012/076604 CN2012076604W WO2013177815A1 WO 2013177815 A1 WO2013177815 A1 WO 2013177815A1 CN 2012076604 W CN2012076604 W CN 2012076604W WO 2013177815 A1 WO2013177815 A1 WO 2013177815A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- amorphous alloy
- core
- alloy transformer
- iron core
- single frame
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F3/00—Cores, Yokes, or armatures
- H01F3/04—Cores, Yokes, or armatures made from strips or ribbons
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/24—Magnetic cores
- H01F27/26—Fastening parts of the core together; Fastening or mounting the core on casing or support
- H01F27/263—Fastening parts of the core together
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0206—Manufacturing of magnetic cores by mechanical means
- H01F41/0213—Manufacturing of magnetic circuits made from strip(s) or ribbon(s)
- H01F41/0226—Manufacturing of magnetic circuits made from strip(s) or ribbon(s) from amorphous ribbons
Definitions
- the invention relates to an amorphous alloy transformer with a three-dimensional triangular structure, in particular to a method for manufacturing an amorphous alloy transformer core with a three-dimensional triangular structure.
- amorphous alloy transformers have significant energy saving and environmental protection performance, they have gradually been accepted by users and become an ideal new generation distribution transformer.
- the core of the amorphous alloy transformer appearing on the market has a three-phase five-column type and a three-phase three-column flat type wound core.
- the two-plane amorphous alloy transformer core has a rectangular cross section, the core is large in volume, high in weight, and processing time. Long, the size design of the transformer is easily limited by the width of the amorphous alloy sheet, and the design and manufacture are not flexible. In addition, the cost of the above two amorphous alloy cores is also high.
- the cores of the three-phase five-column and three-phase three-column structure are all planar structures, and the magnetic circuit lengths of the various stems will be different.
- the three-phase power supply will not guarantee the balance, and the upper iron yoke or There is a seam in the lower iron yoke, and a high energy consumption zone will appear at the joint, and the high magnetic permeability of the amorphous alloy strip cannot be fully exerted, and the air gap formed at the joint will also increase the corresponding loss, and the core of the rectangular structure is further increased.
- the transformer coil also causes the product to have poor short-circuit resistance.
- the present invention is realized by a three-dimensional triangular structure amorphous alloy transformer core, which is composed of three identical rectangular single-frames having an approximately semi-circular cross section, and is characterized in that the manufacturing method comprises the following steps:
- the rectangular module is used for the inner support.
- the trapezoidal tape is wound from the inside to the outside from the beginning, and the trapezoidal tape is advanced on the winder in the set direction. a shape that is inclined outwardly from the upper and lower ends;
- a complete amorphous alloy core consists of three identical single frame of Figure 3. Since the two core columns of each single frame are semi-circular, the three single-framed cores are brought together and fixed. a circular column of iron cores;
- the assembled three-dimensional triangular core is pushed into the annealing furnace to complete the annealing process, eliminate internal stress, restore magnetism, and further improve the performance of the core;
- the insulated heart straps are used to tie the split heart column, making the iron core a solid whole.
- the amorphous alloy transformer core of the three-dimensional triangular structure is special in that the rectangular single frame has an approximately semicircular cross section.
- the invention relates to a three-dimensional triangular structure amorphous alloy transformer core.
- the amorphous alloy transformer core with a three-dimensional triangular structure is formed by three identical cross-sections of approximately semi-circular single-frames and then processed by a special process.
- the split three-phase column is nearly circular, and each single frame is tightly wound by several trapezoidal amorphous alloy strips to form a semi-circular overall frame.
- the weight of the iron yoke of the structure is reduced by more than 20%, the core angle is light, and the amount of the amorphous alloy material is greatly reduced; the iron yoke of the core can be provided with no seam. Without opening and reclosing, the transformer coil can be wound directly on the stem, resulting in fewer production and processing hours and improved labor efficiency.
- the magnetic direction of the amorphous alloy ribbon is exactly the same as the magnetic path of the core, and the vibration during operation is small, which can greatly improve the noise problem of the conventional amorphous alloy; the three-phase magnetic circuit of the core is completely symmetric and equal.
- the amorphous alloy transformer core of the three-dimensional triangular structure can be seamless without joints, and there is no high energy-consuming area, which can fully exert the non-existence
- the high magnetic permeability of the crystal alloy minimizes the loss caused by the air gap formed at the joint; the no-load loss is proportional to the weight of the core, so the no-load loss of the amorphous alloy transformer core of the three-dimensional triangular structure is greatly reduced.
- the cross section of the core of the amorphous alloy transformer is approximately circular, and the coil has a circular structure, so that the short circuit resistance of the amorphous alloy transformer is greatly improved.
- Figure 1 is a front elevational view of a ladder strip of the present invention.
- Figure 2 is a single frame roll of the present invention.
- Figure 3 is a front view of the single frame of the present invention.
- Fig. 4 is a cross-sectional view taken along line A-A of Fig. 3;
- Figure 5 is a perspective view of a single frame of the present invention.
- Figure 6 is a top plan view of the single frame merged in accordance with the present invention.
- Figure 7 is a plan view of a solid amorphous alloy core of the present invention.
- Figure 8 is a perspective view of a solid amorphous alloy core of the present invention.
- a three-dimensional triangular structure amorphous alloy transformer core is composed of three identical rectangular single-frames with approximately semi-circular cross sections.
- the thickness of the amorphous alloy strip is usually 0.025 mm, and the rectangular amorphous alloy strip of fixed width is cut into a plurality of trapezoidal strips of various specifications as shown in FIG. 1 according to design requirements;
- the rectangular module 1 is used for internal support.
- the trapezoidal tape is wound from the inside to the outside layer by layer, and the tape is placed on a dedicated winder. Advancing in the direction of the setting, winding into a shape in which the upper and lower ends are inclined outward; after winding the thickness required for the first stage, the outer layer of the first stage is then replaced with another size of the trapezoidal material. With the thickness of the second stage of winding, the required thickness is sequentially wound in the same way; if the number of stages of a single frame is 7, then seven types of trapezoidal tapes are required, and the next level of tape is required.
- the width of the starting width is the width dimension of the tail of the upper strip, and the thickness of each level is not necessarily equal; 3 is a front view of the completed single frame, FIG. 4 is a cross-sectional view of the single frame, and FIG. 5 is a side view of the single frame.
- a complete amorphous alloy core needs to be composed of three identical single frames 2 as shown in Figure 3. Since the two core columns of each single frame 2 are semi-circular, the three single-frame 2 hearts will be The columns are merged together and fixed, and the circular cores 3 constituting the core are formed.
- the top view of the combined three-dimensional triangular amorphous alloy core is as shown in FIG. In Fig. 8, 2 is an upper iron yoke, and 4 is a lower iron yoke.
- the assembled three-dimensional triangular core is pushed into the annealing furnace to complete the annealing process, eliminate internal stress, restore magnetism, and further improve the performance of the core;
- the insulated tying strap is used to bind the split heart column, so that the iron core becomes a solid whole, as shown in FIG.
- Figure 8 is a perspective view of the final three-dimensional triangular structure of the amorphous alloy transformer core. As can be seen from Fig. 8, three single frames are combined to form three cores of the core, and the three columns are arranged in a three-dimensional equilateral triangle. The column section is a quasi-polygon that is very close to the full circle.
- the thickness of the amorphous alloy strip is usually 0.025 mm, and the material is hard and brittle.
- the special process, tools and equipment are adopted in the invention, which overcomes the difficulty that the amorphous alloy strip is difficult to shear and the solid amorphous alloy core is difficult to manufacture.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
Claims (2)
- 一种立体三角形结构的非晶合金变压器铁心,它由三个完全相同的截面呈近似半圆形的矩形单框拼合组成,其特征在于:其制造方法包括以下步骤:(1)裁片将固定宽度的矩形非晶合金料带裁剪成梯形料带;(2)卷绕用矩形模块做内支撑,从单框的第1级卷绕开始,将梯形料带从起头由内侧向外侧逐层卷绕,并使梯形料带在卷绕机上按照设置的方向前进,卷绕成上、下两端向外倾斜的形状;卷绕完第1级所需的厚度后,在第1级的外层再接着换用另一种尺寸的梯形料带卷绕第2级的厚度,按照同样方法依次卷绕完所需的几级厚度;(3)组装一台完整的非晶合金铁心由3个完全相同的图3单框组成,由于每个单框的两个心柱截面近似半圆形,将3个单框的心柱进行靠拢合并并固定,则组成铁心的圆形心柱;(4)退火将组装好的立体三角形铁心推进退火炉中完成退火过程,消除内应力、恢复磁性,进一步提高铁心的性能;(5)成型铁心校位后用绝缘绑扎带对拼合后的心柱进行绑扎,使铁心成为一个牢固的整体。
- 根据权利要求1所述的一种立体三角形结构的非晶合金变压器铁心,其特征在于:所述矩形单框的截面呈近似半圆形。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020147021408A KR101644447B1 (ko) | 2012-05-28 | 2012-06-07 | 입체 삼각형 구조를 가진 비정질 합금 변압기 철심의 제조방법 |
JP2014555920A JP5953541B2 (ja) | 2012-05-28 | 2012-06-07 | 立体三角形構造のアモルファス合金変圧器鉄心の製造方法 |
US14/372,634 US20160086706A1 (en) | 2012-05-28 | 2012-06-07 | Amorphous alloy transformer iron core of three-dimensional triangle structure |
US16/171,243 US10937580B2 (en) | 2012-05-28 | 2018-10-25 | Amorphous alloy transformer iron core of three-dimensional triangle structure |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012101676987A CN102682988A (zh) | 2012-05-28 | 2012-05-28 | 立体三角形结构的非晶合金变压器铁芯 |
CN201210167698.7 | 2012-05-28 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/372,634 A-371-Of-International US20160086706A1 (en) | 2012-05-28 | 2012-06-07 | Amorphous alloy transformer iron core of three-dimensional triangle structure |
US16/171,243 Continuation US10937580B2 (en) | 2012-05-28 | 2018-10-25 | Amorphous alloy transformer iron core of three-dimensional triangle structure |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013177815A1 true WO2013177815A1 (zh) | 2013-12-05 |
Family
ID=46814753
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/076604 WO2013177815A1 (zh) | 2012-05-28 | 2012-06-07 | 立体三角形结构的非晶合金变压器铁心 |
Country Status (6)
Country | Link |
---|---|
US (2) | US20160086706A1 (zh) |
JP (1) | JP5953541B2 (zh) |
KR (1) | KR101644447B1 (zh) |
CN (1) | CN102682988A (zh) |
MY (1) | MY171914A (zh) |
WO (1) | WO2013177815A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112687455A (zh) * | 2020-12-22 | 2021-04-20 | 武汉万实新能源科技股份有限公司 | 一种省电铁芯 |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104252952A (zh) * | 2014-06-25 | 2014-12-31 | 上海置信电气非晶有限公司 | 一种三相非晶合金变压器的断轭铁心 |
CN104252953A (zh) * | 2014-06-25 | 2014-12-31 | 上海置信电气非晶有限公司 | 一种三相非晶合金变压器的断轭铁心 |
CN104252955A (zh) * | 2014-06-25 | 2014-12-31 | 上海置信电气非晶有限公司 | 一种三相非晶合金变压器的断轭铁心 |
CN104795211B (zh) * | 2015-04-10 | 2017-05-31 | 海鸿电气有限公司 | 一种空心式立体卷铁心及其制作工艺 |
CN106783062B (zh) * | 2016-12-08 | 2018-05-29 | 上海日港置信非晶体金属有限公司 | 一种断轭式非晶合金立体卷铁心及其制造方法 |
CN107025984A (zh) * | 2017-06-08 | 2017-08-08 | 吴茂安 | 不等截面立体三相变压器铁芯 |
CN107369534B (zh) * | 2017-07-14 | 2024-04-12 | 合肥天威众元电气有限公司 | 一种三相立体叠铁芯变压器 |
CN108878130B (zh) * | 2018-09-17 | 2024-04-30 | 青岛云路先进材料技术股份有限公司 | 立体三角形铁芯的装配装置 |
CN109801775A (zh) * | 2019-04-04 | 2019-05-24 | 青岛云路先进材料技术股份有限公司 | 非晶合金立体卷铁芯及其单框 |
CN109801774A (zh) * | 2019-04-04 | 2019-05-24 | 青岛云路先进材料技术股份有限公司 | 非晶合金立体卷铁芯及其单框 |
CN109859939A (zh) * | 2019-04-04 | 2019-06-07 | 青岛云路先进材料技术股份有限公司 | 非晶合金立体卷铁芯及其制备方法、非晶合金变压器 |
CN111180187A (zh) * | 2020-01-20 | 2020-05-19 | 河南泰隆电力设备股份有限公司 | 抗突发短路非晶合金变压器器身装配方法 |
CN113782333B (zh) * | 2021-11-12 | 2022-03-15 | 佛山市南海矽钢铁芯制造有限公司 | 一种小型矩形铁芯挤压成型的方法 |
KR102368210B1 (ko) * | 2021-12-17 | 2022-03-02 | 주식회사 케이피일렉트릭 | 변압기 철심 |
CN117690722B (zh) * | 2023-12-28 | 2024-07-23 | 广东康德威电气股份有限公司 | 用于变压器单框铁芯成型的卷绕装置及成型方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN200959265Y (zh) * | 2006-09-20 | 2007-10-10 | 张明德 | 一种非晶合金卷铁芯 |
CN101150006A (zh) * | 2006-09-20 | 2008-03-26 | 张明德 | 一种非晶合金卷铁芯及其制造方法 |
CN102362321A (zh) * | 2009-02-05 | 2012-02-22 | 哈克萨弗尔默公司 | 非晶态金属连续磁通路径变压器及其制造方法 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4557039A (en) * | 1979-10-19 | 1985-12-10 | Susan V. Manderson | Method of manufacturing transformer cores |
FR2518306B1 (fr) * | 1981-12-11 | 1986-11-28 | Transfix Soc Nouv | Transformateur electrique et procede pour sa fabrication |
JPS60133712A (ja) * | 1983-12-22 | 1985-07-16 | Toshiba Corp | 鉄心の固着方法 |
JPH0620017B2 (ja) * | 1986-10-28 | 1994-03-16 | 大崎電気工業株式会社 | アモルフアス変流器 |
SE0000410D0 (sv) * | 2000-02-06 | 2000-02-06 | Lennart Hoeglund | Trefas transformatorkärna |
JP2003163124A (ja) * | 2001-11-27 | 2003-06-06 | Hitachi Ltd | 三相変圧器 |
CN2515777Y (zh) * | 2001-12-14 | 2002-10-09 | 上海置信电气股份有限公司 | 一种非晶合金变压器的卷绕式铁芯 |
CN2562322Y (zh) | 2002-07-09 | 2003-07-23 | 董军 | 电力、电子三相变压器的立体三角形铁芯 |
JP4794999B2 (ja) * | 2005-11-22 | 2011-10-19 | 音羽電機工業株式会社 | 耐雷強化型低圧用絶縁変圧器 |
CN201741535U (zh) * | 2010-05-28 | 2011-02-09 | 广东海鸿变压器有限公司 | 一种110kV及以上电压等级立体三角形卷铁心电力变压器 |
CN102339667A (zh) * | 2010-07-28 | 2012-02-01 | 吴茂安 | 非晶合金三角形变压器铁芯 |
KR101140443B1 (ko) * | 2010-09-17 | 2012-04-30 | 한양전기공업(주) | 장방형상의 단위코어가 결합된 변압기 |
CN102314997A (zh) * | 2011-05-27 | 2012-01-11 | 广东海鸿变压器有限公司 | 非晶合金立体卷铁心 |
-
2012
- 2012-05-28 CN CN2012101676987A patent/CN102682988A/zh active Pending
- 2012-06-07 WO PCT/CN2012/076604 patent/WO2013177815A1/zh active Application Filing
- 2012-06-07 MY MYPI2014701888A patent/MY171914A/en unknown
- 2012-06-07 US US14/372,634 patent/US20160086706A1/en not_active Abandoned
- 2012-06-07 KR KR1020147021408A patent/KR101644447B1/ko active IP Right Grant
- 2012-06-07 JP JP2014555920A patent/JP5953541B2/ja active Active
-
2018
- 2018-10-25 US US16/171,243 patent/US10937580B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN200959265Y (zh) * | 2006-09-20 | 2007-10-10 | 张明德 | 一种非晶合金卷铁芯 |
CN101150006A (zh) * | 2006-09-20 | 2008-03-26 | 张明德 | 一种非晶合金卷铁芯及其制造方法 |
CN102362321A (zh) * | 2009-02-05 | 2012-02-22 | 哈克萨弗尔默公司 | 非晶态金属连续磁通路径变压器及其制造方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112687455A (zh) * | 2020-12-22 | 2021-04-20 | 武汉万实新能源科技股份有限公司 | 一种省电铁芯 |
Also Published As
Publication number | Publication date |
---|---|
MY171914A (en) | 2019-11-06 |
KR20140117471A (ko) | 2014-10-07 |
US20190131041A1 (en) | 2019-05-02 |
KR101644447B1 (ko) | 2016-08-01 |
US20160086706A1 (en) | 2016-03-24 |
JP5953541B2 (ja) | 2016-07-20 |
JP2015510267A (ja) | 2015-04-02 |
CN102682988A (zh) | 2012-09-19 |
US10937580B2 (en) | 2021-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013177815A1 (zh) | 立体三角形结构的非晶合金变压器铁心 | |
WO2013016903A1 (zh) | 油浸式立体卷铁心非晶合金变压器 | |
WO2012163035A1 (zh) | 非包封立体卷铁心非晶合金干式变压器 | |
CN202601376U (zh) | 立体三角形结构的非晶合金变压器铁芯 | |
CN105810411A (zh) | 轴向分裂变压器低压绕组一体绕制箔式线圈结构及工艺 | |
CN105632714B (zh) | 一种复合型非晶变压器铁芯 | |
CN202940106U (zh) | 一种开口卷铁芯干式变压器 | |
CN205666124U (zh) | 一种三相对称磁路高效节材电抗器铁芯 | |
RU2008128354A (ru) | Трансформатор тока для источника электропитания и способ его изготовления | |
CN101950662B (zh) | 一种三角形卷铁芯变压器的卷铁芯制作方法及产品 | |
CN206533204U (zh) | 电机定子铁芯 | |
CN214336520U (zh) | 一种三相立体叠铁芯及其夹持装置 | |
CN202285189U (zh) | 变压器的三相等磁路铁心 | |
CN107103986A (zh) | 一种非晶合金变压器铁心 | |
CN204632528U (zh) | 一种非晶合金变压器器身结构 | |
CN208923924U (zh) | 盘式电机及定子铁芯 | |
CN207009248U (zh) | 一种非晶合金变压器铁心 | |
CN205943735U (zh) | 一种用于环氧干式变压器高压分段层式矩形线圈的绕线模具 | |
CN209402256U (zh) | 一种铰链式定子 | |
CN203366925U (zh) | 非晶带叠片式电力变压器 | |
CN202871488U (zh) | 一种新型三相卷铁心配电变压器 | |
CN202034184U (zh) | 一种开口式三角卷铁心 | |
CN201655540U (zh) | 用于变压器分段式线圈的绕线模 | |
CN206541726U (zh) | 连续卷绕的单相大型铁芯 | |
CN206271518U (zh) | 一种电抗器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12877661 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20147021408 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2014555920 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12877661 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14372634 Country of ref document: US |