WO2013177720A1 - 旋转半圈并借助重力反向回位的节能装置 - Google Patents

旋转半圈并借助重力反向回位的节能装置 Download PDF

Info

Publication number
WO2013177720A1
WO2013177720A1 PCT/CN2012/000743 CN2012000743W WO2013177720A1 WO 2013177720 A1 WO2013177720 A1 WO 2013177720A1 CN 2012000743 W CN2012000743 W CN 2012000743W WO 2013177720 A1 WO2013177720 A1 WO 2013177720A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating shaft
motor rotor
motor
rotor
shaft
Prior art date
Application number
PCT/CN2012/000743
Other languages
English (en)
French (fr)
Inventor
蔡瑞安
Original Assignee
Tsai Jui-An
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsai Jui-An filed Critical Tsai Jui-An
Priority to JP2015600027U priority Critical patent/JP3197912U/ja
Priority to EP12877928.7A priority patent/EP2857679A4/en
Priority to PCT/CN2012/000743 priority patent/WO2013177720A1/zh
Publication of WO2013177720A1 publication Critical patent/WO2013177720A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K53/00Alleged dynamo-electric perpetua mobilia
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/10Alleged perpetua mobilia

Definitions

  • the invention relates to an energy-saving device, in particular to a motor rotor which is rotated by a half rotation of a circumference to a highest position by a rotation of a drive shaft in a first half cycle by means of rotation of a transmission shaft thereof, and then a motor rotor in a second half cycle.
  • the drive shaft stops rotating and returns to the lowest position by its own gravity to follow the same half-turn path from the highest position to form a rotating half-turn and then return to the energy-saving device by gravity.
  • the present invention provides an energy-saving device for energy-saving problems and needs, and can achieve further results in terms of energy-saving efficiency and cost-effectiveness, and to meet the functional requirements of current and future applications. Summary of the invention
  • the main object of the present invention is to provide an energy-saving device for rotating a half turn and returning back by gravity, so that the rotor of the motor rotates for half a turn in the first half cycle and then reverses back by gravity in the second half cycle to complete a periodicity. Cycling movement, the use of energy-saving devices that rotate half a turn and return with gravity, to meet the energy-saving functional requirements of current and future applications.
  • Another object of the present invention is to provide an energy-saving device that rotates a half turn and reverses back by gravity.
  • the energy-saving device can be combined in series with a plurality of energy-saving devices according to actual use requirements, so that each of the plurality of energy-saving devices
  • the energy storage first shafts are connected in series to form the same rotating shaft, and finally assembled on an output second rotating shaft, by means of combining to form a composite rotating half turn and returning by gravity.
  • the device can be used to enhance the energy-saving effect and increase the output energy or load of the second rotating shaft for output.
  • the present invention provides an energy saving device that rotates a half turn and reverses back by gravity, and includes: a first rotating shaft for energy storage, which is a one-way rotating shaft for one-way rotation:
  • a motor rotor is provided with a motor mechanism therein, and a half-turn periodic rotation is performed by a switch control mechanism to control and drive a drive shaft of the motor rotor to switch the switch state in a half cycle;
  • An arm coupled between the rotor of the motor and the first rotating shaft, so that the rotor of the motor can perform a half-turn periodic rotation with a center of the first rotating shaft and a circumference defined by the radius of the arm;
  • a first shifting gear mechanism is formed by a plurality of gears of different sizes and coupled between a transmission shaft of the rotor of the motor and the first rotating shaft, the first shifting gear mechanism including a coupling for coupling to the rotor of the motor a starting end transmission gear of the transmission shaft, and a terminating end transmission gear for coupling to the first rotating shaft and synchronously rotating, wherein the starting transmission gear is driven by the motor by the shifting function of the first transmission gear mechanism When the drive shaft of the rotor is driven at a high speed, it can be converted into a low speed one-way rotation by the end end transmission gear to drive the first shaft;
  • a second shifting gear mechanism is formed by a plurality of gears of different sizes and coupled between the first rotating shaft and an output second rotating shaft, so that the rotation of the first rotating shaft can drive the second rotating shaft to continue Rotate
  • a seat for supporting the first rotating shaft for energy storage, the rotor of the motor, the arm, the first variable speed gear mechanism, the second shifting gear mechanism and the second rotating shaft for the output;
  • the switch control mechanism is used to switch the motor rotor into an energized state, so that the drive shaft of the motor rotor starts to rotate, and at this time, the shifting by the first shift gear mechanism Function, the motor rotor drives the first rotating shaft to perform low-speed one-way rotation by the driving force of the driving shaft thereof, and the motor rotor is also rotated upward by a half turn from the lowest position of the circumference to the highest position of the circumference, and is completed.
  • Half circle rotates and enters the second half cycle;
  • the switch control mechanism is used to switch the motor rotor to a power-off state, so that the drive shaft of the motor rotor stops rotating. At this time, the motor rotor is rotated by the shifting function of the first shift gear mechanism. With its own gravity, the highest position of the circumference follows the half-turn path of the first half cycle back to the lowest position of the circumference and again to the first half of the next cycle.
  • the energy-saving device wherein the motor rotor borrows by the gravity of the motor by the highest position of the circumference and follows the half-turn path of the first half cycle back to the lowest position of the circumference Helping its own gravity to drive the first shaft for one-way rotation.
  • the energy-saving device wherein the motor rotor is opposite to the first rotor when the rotor of the motor is reversely returned to the lowest position of the circumference by the highest position of the circumference and the half-turn path of the first half cycle by its own gravity A rotating shaft forms an idling state.
  • the speed ratio between the drive shaft of the motor rotor and the first rotating shaft is set to 12:1.
  • the energy saving device wherein the support comprises a bottom frame disposed at the bottom, a tripod support spanning the chassis, and a frame support disposed above the tripod.
  • the energy saving device wherein the support is provided with a cushion for the motor rotor to touch the cushion when rotated to the highest position.
  • the energy-saving device wherein the switch control mechanism is disposed near a center of the first rotating shaft for energy storage, and an upper sensing switch and a lower sensing switch are respectively disposed at upper and lower ends of the switch control mechanism, when the motor rotor When the rotation is returned to the lowest position, the lower sensing switch is activated to switch the motor rotor to the power supply state, and when the motor rotor rotates to the highest position, the upper sensing switch is activated to switch the motor rotor to the power-off state.
  • the utility model has the beneficial effects that: during operation, the switch control mechanism first controls the rotation of the drive shaft of the motor rotor in a half cycle open state, and drives the first rotary shaft to rotate in one direction and synchronously drives the motor rotor by the first transfer gear mechanism.
  • the energy-saving device can be connected in series by using a plurality of energy-saving devices, and the first rotating shafts of the plurality of energy-saving devices are connected in series to form the same rotating shaft, and finally integrated into a second rotating shaft for output.
  • an energy-saving device that combines to form a composite rotating half turn and reverses back by gravity is used to enhance the energy-saving use effect and to improve the output energy or load of the second rotating shaft for output.
  • FIG. 1 is a perspective view of an embodiment of an energy saving device of the present invention
  • 2 is a perspective view of another right perspective view of the embodiment of FIG. 1;
  • FIG. 3 is a perspective view of a left perspective of the embodiment of FIG. 1;
  • Figure 4 is a right side view of the embodiment of Figure 1;
  • Figure 5 is a left side view of the embodiment of Figure 1;
  • Figure 6 is a front elevational view of the embodiment of Figure 1;
  • Figure 7 is a perspective exploded view of the embodiment of Figure 1;
  • Figure 8A is a schematic view of the rotary half-turn process (first half cycle) of the embodiment of Figure 1;
  • FIG. 8B is a schematic diagram of a self-gravity automatic returning process (second half cycle) of the embodiment of FIG. 1;
  • FIG. 9 is a perspective view of a right perspective view of a composite embodiment of the energy saving device of the present invention.
  • Figure 10 is a perspective view of the left perspective of the embodiment of Figure 9.
  • energy-saving device 1 energy-saving device 1; support 10; chassis 1 1; tripod 12; frame 13; cushion 14; first shaft 20; motor rotor 30; motor mechanism 31; switch control mechanism 32; Switch 321; lower sensing switch 322; transmission shaft 33; arm 40; first transmission gear mechanism 50; starting end transmission gear 51; terminating end transmission gear 52; second transmission gear mechanism 60; second shaft 70; detailed description
  • FIG. 1 to FIG. 7 are respectively a perspective view of an embodiment of an “energy-saving device for rotating a half turn and returning by gravity”, another stereo view of the right perspective, a left perspective view, and a right Side view, left side view, front view and exploded (explosion) perspective view.
  • the energy-saving device 1 of the rotating half-turn and back-return by gravity mainly comprises: a seat 10, a first rotating shaft 20 for energy storage, a motor rotor 30, an arm 40, and a first shifting gear mechanism. 50.
  • a second shifting gear mechanism 60 and an output second rotating shaft 70 mainly comprises: a seat 10, a first rotating shaft 20 for energy storage, a motor rotor 30, an arm 40, and a first shifting gear mechanism. 50.
  • a second shifting gear mechanism 60 and an output second rotating shaft 70 mainly comprises: a seat 10, a first rotating shaft 20 for energy storage, a motor rotor 30, an arm 40, and a first shifting gear mechanism. 50.
  • the support 10 is configured to support the related mechanism of the energy saving device 1 of the present invention, the first rotating shaft 20 for energy storage, the motor rotor 30, the arm 40, the first transmission gear mechanism 50, and the The second transmission gear mechanism 60 and the second rotating shaft 70 for output are associated with each other, and the energy saving device 1 of the present invention is conveniently fixed at a place or position to be used, thereby improving the applicability of the present invention.
  • the structure of the support 10 is not limited, and the height, width or strength of the support structure, etc. of the support 10 may be changed depending on the actual use needs or the spatial type and relative position between the related mechanisms.
  • the support 10 can be designed to include a chassis 1 1 at the bottom, a tripod 12 support spanned over the chassis 1 1 , and a frame 13 supported above the tripod 12;
  • the structure of the support 10 of this embodiment is not used to Limit the invention.
  • a cushion 14 is provided at a suitable position on the frame 13, that is, at the highest position.
  • the first rotating shaft 20 for energy storage is disposed on the support 10.
  • the first rotating shaft 20 for energy storage of the present embodiment is disposed at the proximal end of the tripod 12, but is not intended to limit the present invention.
  • the energy storage first rotating shaft 20 is a one-way rotating rotating shaft, and the ratchet mechanism can be used to design a rotating shaft that can only rotate in one direction, since the internal mechanism of the first rotating shaft 20 for energy storage can utilize various mechanisms. It is designed to achieve the design function of the one-way rotary shaft, and the mechanism design utilized is not the focus of the present invention, and therefore will not be described herein.
  • the motor rotor 30, such as a high-power motor, is internally provided with a motor mechanism 31 for controlling an exposed drive shaft 33 for rotation; and the motor rotor 30 is controlled by a switch control mechanism 32 for controlling the drive shaft 33 of the motor mechanism 31.
  • Rotating mode; here, the switching control mechanism 32 shown in FIG. 3 and FIG. 5 is taken as an example, but is not intended to limit the present invention.
  • the switch control mechanism 32 is disposed near the center of the first rotating shaft 20 for energy storage.
  • the upper and lower ends of the switch control mechanism 32 are respectively provided with an upper inductive switch 321 and a lower inductive switch 322.
  • the The lower sensing switch 322 is configured to switch the motor rotor 30 to a power supply state, and when the motor rotor 30 is located (or reached) at the highest position (as shown in FIG. 8B), the upper sensing switch 321 can be activated by The motor rotor 30 is switched to a power-off state. Since the detailed structure of the motor mechanism 31 and the switch control mechanism 32 can be achieved by mechanical design, and the mechanical design utilized is not the focus of the present invention, it will not be described herein.
  • the switch control mechanism 32 controls the switch rotation mode of the motor mechanism 31 and the drive shaft 33; in the embodiment, the motor rotor 30 delivers the switch state in a half cycle by the control of the switch control mechanism 32.
  • the motor rotor 30 is switched to the "on (powered)" state by the switch control mechanism 32 (ie, the lower sensing switch 322 is activated).
  • the switch control mechanism 32 ie, the upper induction switch 321 is activated
  • the motor rotor 30 is controlled by the switch control mechanism 32 (ie, the upper induction switch 321 is activated) to switch the motor rotor 30 to the "closed (power off)” state. Stop the rotation, and the detailed operation status will be described later.
  • the arm 40 is coupled and carried between the motor rotor 30 and the first rotating shaft 20, so that the motor rotor 30 can be centered on the first rotating shaft 20 and the circumference defined by the radius of the arm 40.
  • the arm 40 supports the motor rotor 30 to perform a half-turn rotation about the first rotating shaft 20 between the lowest position and the highest position of the circumference.
  • the first transmission gear mechanism 50 is coupled between the transmission shaft 33 of the motor rotor 30 and the first rotating shaft 20, and is configured by a plurality of gears of different sizes and connected to each other to have a shifting function; in this embodiment
  • the first transmission gear mechanism 50 further includes: a starting end transmission gear 51 and a final a stop drive gear 52, wherein the start end drive gear 51 is coupled to the drive shaft 33 of the motor rotor 30; the end drive gear 52 is coupled to the first shaft 20 for driving the first shaft 20 can be synchronously rotated in one direction; in operation, when the starting end transmission gear 51 is driven at high speed by the transmission shaft 33 of the motor rotor 30, the shifting function of the first transmission gear mechanism 50 can be switched to the termination.
  • the end drive gear 52 is driven by the terminating end drive gear 52 to drive the first shaft 20 for a lower speed one-way rotation.
  • the motor rotor 30 is connected by the gears of the first transmission gear mechanism 50. Simultaneously performing a half-turn rotation on a circumference defined by the center of the first rotating shaft 20 and having the radius of the arm 40, that is, the lowest position of the defined circumference (as shown in FIG. 8A)
  • the first rotating shaft 20 is moved and the displacement is raised to a highest position (as shown in Fig. 8B) and the cushion 14 provided on the frame 13 is touched to complete the half-turn rotation.
  • the drive shaft 33 of the motor rotor 30 is controlled by the switch control mechanism 32 (ie, the upper induction switch 321 is activated). And switching to stop the rotation, the motor rotor 30 is reversely returned to the original lowest position by the half-turn rotation path before the highest position (as shown in FIG. 8B) by its own gravity (as shown in FIG. 8C).
  • the motor rotor 30 is converted into an idling state with respect to the first rotating shaft 20 during the reverse returning.
  • the speed ratio of the rotational speed of the drive shaft 33 (or the start end drive gear 51) of the motor rotor 30 to the rotational speed of the first rotary shaft 20 (or the final end drive gear 52) can be set to about 12 : 1 , in the case of rpm, the first rotating shaft 20 (or the terminating end transmission gear 52) rotates at 125 rpm (125 rpm).
  • the second transmission gear mechanism 60 is coupled between the first rotating shaft 20 and an output second rotating shaft 70, and is configured by a plurality of gears of different sizes and connected to each other to have a shifting function; when the first rotating shaft 20 (or the terminating end transmission gear 52), when rotating at a rotation speed of 125 rpm (125 rpm), by the shifting function of the second transmission gear mechanism 60, the output can be made by the second rotating shaft 70 A predetermined rotational speed is used to move by outputting energy such as to drive a load.
  • the output of the second rotating shaft 70 can be erected with a blade 71 as a load as shown in the figure but not limited.
  • FIG. 8A and FIG. 8B are respectively a schematic diagram of the rotation half-turn process (first half cycle) of the energy-saving device 1 of the present invention and a schematic diagram of the gravity return process (second half cycle).
  • first half cycle the rotation half-turn process
  • second half cycle the gravity return process
  • the switch control mechanism 32 When entering the first half cycle, the switch control mechanism 32 is used to switch the motor rotor 30 to the "on (energized)" state, so that the drive shaft 33 of the motor rotor 30 starts to rotate.
  • the shifting function of the first transmission gear mechanism 50 the motor rotor 30 can drive the first rotating shaft 20 (that is, the terminating end transmission gear 52) by the driving force of the transmission shaft 33 to rotate at a low speed in one direction, as shown by the arrow "C in FIG. 8A".
  • the drive shaft 33 of the motor rotor 30 has stopped rotating, but if the motor If the gravity of the rotor 30 is insufficient to drive the first rotating shaft 20 (that is, the terminating end transmission gear 52), the first rotating shaft 20 may also be designed as a ratchet type one-way rotating rotating shaft, so that the motor rotor 30 The idling state is formed with respect to the first rotating shaft 20, so that the motor rotor 30 can still be lowered back to a lowest position as shown in FIG. 8A, and can be entered into the first half cycle of the next cycle.
  • the energy saving device 1 of the present invention enters the first half.
  • the first rotating shaft 20 that is, the terminating end transmission gear 52
  • the rotation is as shown by the arrow "C" (clockwise) in Figs. 8A, 8B, so that by the shifting and acting kinetic energy of the second shifting gear mechanism 60, the output second shaft 70 can maintain one-way rotation to stably And continuously output energy outward.
  • the motor rotor 30 when the energy saving device 1 of the present invention enters the second half cycle (the process of performing automatic return by gravity), the motor rotor 30 has been switched to the "off (power off)" state, that is, in the second half.
  • the cycle does not provide any energy (power) to the motor rotor 30, but the motor rotor 30 can still drive the first shaft 20 (ie, the terminating end gear 52) by returning from its own gravity.
  • the unidirectional rotation is performed in the direction indicated by the arrow "C" (clockwise) in Fig. 8B, that is, in the case where the motor rotor 30 is not supplied again in the latter half cycle, the energy saving device 1 of the present invention can be completed.
  • the energy-saving device 1 of the present invention performs a half-turn drive rotation of the motor rotor 30 of the present invention as compared with a device that is generally externally powered for full-turn rotation. Thereafter, the gravity is returned to the position in the power-off state, whereby the periodic rotation of the first rotating shaft 20 is continuously rotated, and the energy-saving use effect can be naturally achieved.
  • FIG. 9 and FIG. 10 are respectively a perspective view of a right perspective view and a perspective view of a left perspective view of a composite embodiment of the energy saving device of the present invention.
  • a plurality of energy-saving devices 1 of the present invention can be combined in series to form a composite energy-saving device as shown in FIG. 9 and FIG. 10, wherein the first rotating shafts 20 of the plurality of energy-saving devices 1 are connected in series.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Transmission Devices (AREA)

Abstract

一种旋转半圈再借助重力反向回位的节能装置,其在一周期性运作的前半周期中,先控制一电机转子的传动轴进行转动,使其借助一第一变速齿轮机构以驱动一第一转轴进行单向旋转,且同步驱动该电机转子由一以该第一转轴为圆心及以支臂为半径所定义的圆周的最低位置升至最高位置,以完成一半圈的旋转,之后即进入后半周期,此时控制电机转子的传动轴停止转动,使电机转子借助本身重力由最高位置以相同半圈路径反向回位至最低位置,如此完成电机转子的周期性半圈式旋转,并驱使第一转轴持续地进行单向旋转,达成节能的使用效果。

Description

旋转半圈并借助重力反向回位的节能装置 技术领域
本发明涉及一种节能装置, 尤指一种利用一电机转子于前半周期中借助其 传动轴的转动而由一圆周的最低位置旋转半圈以升至最高位置, 再于后半周期 中电机转子的传动轴停止转动而借助其本身重力以由最高位置循着相同半圈路 径反向回位至最低位置, 以形成一旋转半圏再借助重力反向回位的节能装置。 背景技术
地球上的自然能源如石油、 煤矿等, 自工业革命之后已被高度消耗而曰渐 衰竭, 终有耗尽的一天到来, 因此续有核能的产生, 但核能及其相关的核废料 长久来一直存在着危险性及环保问题, 尤其近几年多次的核灾事变更令人畏惧, 因此探讨另类能源, 如风力、 水力、 潮汐、 太阳能发电等, 有其必需性; 然至 目前为止, 另类能源的开发及技术尚无法达到足以完全取代石油的地步。 因此, 面对当前能源开发的困境, 就相对地突显节能的重要性; 换言之, 如果能在节 能方面有一分的成效, 即相对地可在能源上少一分的耗费, 例如目前世界上各 车厂都戮力在研究油电共生的汽车即可了解节能的重要性。 本发明即是针对节 能的问题及需要而提供一种节能装置, 期能在节能功效及成本效益上能达到进 一步成果, 借助以满足目前及未来应用上的功能需求。 发明内容
本发明的主要目的在于提供一种旋转半圏并借助重力反向回位的节能装 置, 使电机转子在前半周期中旋转半圏再于后半周期中借助重力反向回位而完 成一周期性循环运动, 达成旋转半圏并借助重力回位的节能装置的使用效果, 借助以满足目前及未来应用上的节能功能需求。
本发明的另一目的在于提供一种旋转半圏并借助重力反向回位的节能装 置, 该节能装置能依实际使用需要, 而利用多个节能装置串联组合, 使该多个 节能装置的各储能用第一转轴以串联方式连结成同一转轴, 最后再汇总于一输 出用第二转轴上, 借助以组合形成一复合式旋转半圏并借助重力反向回位的节 能装置, 用以增进节能使用效果, 并增进输出用第二转轴的输出能量或负载。 为达上述目的, 本发明提供一种旋转半圈并借助重力反向回位的节能装置, 其包含: 一储能用第一转轴, 其为一单向旋转式转轴以单向转动:
一电机转子, 其内设有电机机构, 并借助由一开关控制机构以控制并驱动 该电机转子上一传动轴以半周期交递开关状态进行半圈式周期性转动;
一支臂, 其连结在该电机转子与第一转轴之间, 以使该电机转子能以第一 转轴为圆心及以支臂为半径所定义的圆周进行半圈式周期性旋转;
一第一变速齿轮机构, 其利用多个大小不同的齿轮构成并连结设置于该电 机转子的传动轴与该第一转轴之间, 该第一变速齿轮机构包含一用以连结至该 电机转子的传动轴的起始端传动齿轮, 及一用以连结至该第一转轴上并同步转 动的终止端传动齿轮, 其中借由该第一变速齿轮机构的变速功能, 以使该起始 端传动齿轮被电机转子的传动轴高速驱动时, 能转换成由该终止端传动齿轮以 驱动该第一转轴低速单向转动;
一第二变速齿轮机构, 其利用多个大小不同的齿轮构成并连结设置于该第 一转轴与一输出用第二转轴之间, 用以使该第一转轴的转动能驱动该第二转轴 持续转动;
一支座, 其用以支撑该储能用第一转轴、 该电机转子、 该支臂、 该第一变 速齿轮机构、 该第二变速齿轮机构及该输出用第二转轴;
其中在该半圏式周期性转动的前半周期中, 借助该开关控制机构以将该电 机转子切换成通电状态, 使该电机转子的传动轴开始转动, 此时借助由第一变 速齿轮机构的变速功能, 该电机转子借助其传动轴的驱动力以驱动该第一转轴 进行低速单向旋转, 且该电机转子亦同步由该圆周的最低位置向上旋转半圏至 该圆周的最高位置, 此时完成一半圈式旋转并进入后半周期中;
其中在后半周期中, 借助该开关控制机构以将该电机转子切换成断电状态, 以使该电机转子的传动轴停止转动, 此时借助由第一变速齿轮机构的变速功能, 该电机转子借助其本身重力而由该圆周的最高位置循着前半周期的半圈路径反 向回位至该圆周的最低位置并又进入下一循环周期的前半周期。
所述的节能装置, 其中, 当该电机转子借助其本身重力而由该圆周的最高 位置循着前半周期的半圏路径反向回位至该圆周的最低位置时, 该电机转子借 助其本身重力以驱动该第一转轴进行单向旋转。
所述的节能装置, 其中, 当该电机转子借助其本身重力而由该圆周的最高 位置循着前半周期的半圏路径反向回位至该圓周的最低位置时, 该电机转子相 对于该第一转轴形成空转状态。
所述的节能装置, 其中, 该电机转子的传动轴与该第一转轴之间的转速比 设为 12: 1。
所述的节能装置, 其中, 该支座包含一底架设在底部、 一三角架支撑跨设 在该底架上及一框架支撑设在该三角架上方。
所述的节能装置, 其中, 该支座上设有一缓冲垫供该电机转子在旋转至最 高位置时能触抵该緩冲垫。
所述的节能装置, 其中, 该开关控制机构设在靠近该储能用第一转轴的中 心处, 在该开关控制机构的上、 下端分别设有一上感应开关及一下感应开关, 当该电机转子旋转回位至最低位置时即触动该下感应开关, 以使该电机转子切 换成供电状态, 当该电机转子旋转至最高位置时即触动该上感应开关以使该电 机转子切换成断电状态。
本发明的有益效果是: 运作时, 开关控制机构先以半周期的开启状态以控 制电机转子的传动轴转动, 并借由第一变速齿轮机构以驱动第一转轴单向旋转 并同步带动电机转子由一以支臂为半径的最低位置绕行第一转轴至一最高位 置, 以在该前半周期的一半圈的旋转; 之后该开关控制机构即切换至次一半周 期的关闭状态以使电机转子的传动轴停止转动, 使电机转子借由本身重力由最 高位置以相同半圈路径反向回位至最低位置, 且使第一转轴保持相同方向的单 向转动; 藉此, 使电机转子在前半周期中旋转半圏再于后半周期中借助重力反 向回位而完成一周期性循环运动, 达成旋转半圈并借助重力回位的节能装置的 使用效果, 借助以满足目前及未来应用上的节能功能需求。
该节能装置能依实际使用需要, 而利用多个节能装置串联组合, 使该多个 节能装置的各储能用第一转轴以串联方式连结成同一转轴, 最后再汇总于一输 出用第二转轴上, 借助以组合形成一复合式旋转半圏并借助重力反向回位的节 能装置, 用以增进节能使用效果, 并增进输出用第二转轴的输出能量或负载。 附图说明
图 1为本发明的节能装置一实施例的立体示意图; 图 2为图 1实施例的另一右视角立体示意图;
图 3为图 1实施例的一左视角立体示意图;
图 4为图 1实施例的右侧视图;
图 5为图 1实施例的左侧视图;
图 6为图 1实施例的正视示意图;
图 7为图 1实施例的分解 (爆炸) 立体示意图;
图 8A为图 1实施例的旋转半圏过程 (前半周期) 示意图;
图 8B为图 1实施例的借助重力自动回位过程 (后半周期) 示意图; 图 9为本发明的节能装置的复合式实施例的右视角立体示意图;
图 10为图 9实施例的左视角立体示意图。
附图标记说明: 节能装置 1 ; 支座 10; 底架 1 1 ; 三角架 12; 框架 13 ; 緩冲 垫 14; 第一转轴 20; 电机转子 30; 电机机构 31 ; 开关控制机构 32; 上感应开 关 321 ; 下感应开关 322; 传动轴 33 ; 支臂 40; 第一变速齿轮机构 50; 起始端 传动齿轮 51 ; 终止端传动齿轮 52; 第二变速齿轮机构 60; 第二转轴 70; 叶片 71。 具体实施方式
请参考图 1至图 7所示, 其分别为本发明 「旋转半圏并借助重力反向回位 的节能装置」 一实施例的立体示意图、 另一右视角立体示意图、 左视角立体示 意图、 右侧视图、 左侧视图、 正视示意图及分解 (爆炸) 立体示意图。 本发明 的旋转半圈并借助重力反向回位的节能装置 1主要包含: 一支座 10、 一储能用 第一转轴 20、 一电机转子 30、 一支臂 40、 一第一变速齿轮机构 50、 一第二变 速齿轮机构 60及一输出用第二转轴 70。
该支座 10用以支撑本发明的节能装置 1的相关机构如图所示的该储能用第 一转轴 20、 该电机转子 30、 该支臂 40、 该第一变速齿轮机构 50、 该第二变速 齿轮机构 60及该输出用第二转轴 70等相关机构, 并使本发明的节能装置 1得 方便地固设于所欲使用的场所或位置处, 以此提升本发明的应用性。 该支座 10 的结构并不限制, 其可随实际使用需要或相关机构之间的空间型态及相对位置, 而改变该支座 10的高度、 宽度或支撑结构强度等。 在本实施例中, 该支座 10 可设计包含一底架 1 1位于底部, 一三角架 12支撑跨设在该底架 1 1上, 及一框 架 13支撑设在该三角架 12上方; 但本实施例的该支座 10的结构型态并非用来 限制本发明。 又在该框架 13上的适位处, 即最高位置处, 得设一緩冲垫 14。 该储能用第一转轴 20设在该支座 10上, 本实施例的该储能用第一转轴 20 设在该三角架 12的近顶端处但并非用来限制本发明。 该储能用第一转轴 20为 一单向旋转式转轴, 如可利用棘齿机构以设计成一只能单向旋转的转轴, 由于 该储能用第一转轴 20的内部机构能利用各种机构设计来达成单向旋转式转轴的 设计功能, 且所利用的机构设计并非本发明的诉求重点, 故在此不再赘述。
该电机转子 30如一高功率马达, 其内部设有一电机机构 31以控制一外露 的传动轴 33进行转动; 又该电机转子 30借助一开关控制机构 32以控制该电机 机构 31的传动轴 33的开关转动模式; 在此以图 3、 图 5所示的开关控制机构 32为例说明但非用以限制本发明,该开关控制机构 32设在靠近该储能用第一转 轴 20的中心处, 在该开关控制机构 32的上、 下端分别设一上感应开关 321及 一下感应开关 322, 当该电机转子 30位于 (或抵达) 在最低位置时 (如图 8A 所示) , 即能借由触动该下感应开关 322以使该电机转子 30切换成供电状态, 而当该电机转子 30位于 (或抵达) 在最高位置时 (如图 8B所示) , 即能借由 触动该上感应开关 321 以使该电机转子 30切换成断电状态。由于该电机机构 31 及开关控制机构 32的详细结构可利用机械设计来达成, 且所利用的机械设计并 非本发明的诉求重点, 故在此不再赘述。 借由该开关控制机构 32以控制该电机 机构 31及该传动轴 33的开关转动模式; 在本实施例中, 该电机转子 30借由该 开关控制机构 32的控制而以半周期交递开关状态来进行半圈式转动, 也就是, 在前半周期中, 该电机转子 30借助该开关控制机构 32 (即触动该下感应开关 322 ) 以将该电机转子 30切换成 "开启 (通电) " 状态以进行半圏式转动; 而 在后半周期中, 该电机转子 30则借助该开关控制机构 32 (即触动该上感应开关 321 ) 以将该电机转子 30切换成 "关闭 (断电) " 状态而停止转动, 详细的作 动状态容后再述。
该支臂 40连结并承载设在该电机转子 30与该第一转轴 20之间, 以使该电 机转子 30能以该第一转轴 20为圆心及以该支臂 40为半径所定义的圆周进行半 圏式旋转; 在本实施例中, 该支臂 40用以支撑该电机转子 30以绕着第一转轴 20在圆周的最低位置及最高位置之间进行半圏式旋转。
该第一变速齿轮机构 50连结设于该电机转子 30的传动轴 33与该第一转轴 20之间, 其利用多个大小不同且相互连结的齿轮所构成以具有变速功能; 在本 实施例中, 该第一变速齿轮机构 50进一步包含: 一起始端传动齿轮 51及一终 止端传动齿轮 52 , 其中该起始端传动齿轮 51用以与该电机转子 30的传动轴 33 连结传动; 该终止端传动齿轮 52用以与该第一转轴 20连结传动, 以驱使该第 一转轴 20能同步地单向转动; 运作时, 当该起始端传动齿轮 51被该电机转子 30的传动轴 33高速驱动时, 即可借由该第一变速齿轮机构 50的变速功能而转 换至该终止端传动齿轮 52, 并借由该终止端传动齿轮 52以驱动该第一转轴 20 进行较低速的单向转动。 又当该电机转子 30的传动轴 33正在进行高速转动而 同时该第一转轴 20正在进行低速单向转动时, 借由该第一变速齿轮机构 50中 各齿轮的连结关系, 该电机转子 30即可同步地在一以该第一转轴 20为圆心及 以该支臂 40为半径所定义的圓周上进行半圏式旋转, 即由该所定义的圆周的最 低位置 (如图 8A所示) 绕行该第一转轴 20而位移升至一最高位置 (如图 8B 所示)并得触抵设在该框架 13上的緩冲垫 14 , 完成一半圏式旋转。 当该电机转 子 30经半圏式旋转而位移至最高位置之后(如图 8B所示) , 该电机转子 30的 传动轴 33即借助该开关控制机构 32的控制(即触动该上感应开关 321 )而切换 成停止转动, 该电机转子 30即借由本身重力而由最高位置 (如图 8B所示)循 之前的半圈式旋转路径而反向回位至原来的最低位置 (如图 8C所示) , 此时, 由于该储能用第一转轴 20为一单向旋转式转轴, 故该电机转子 30在反向回位 的过程中相对于该第一转轴 20是转换成空转状态而不会影响该第一转轴 20的 单向转动状态; 或者, 若该电机转子 30的本身具相当的重力时, 则该电机转子 30在反向回位的过程中, 该电机转子 30的重力亦可借由该第一变速齿轮机构 50中各齿轮的连结关系以带动该第一转轴 20仍以原有的单向方向进行转动。在 本实施例中, 该电机转子 30的传动轴 33 (或起始端传动齿轮 51 ) 的转速与该 第一转轴 20 (或该终止端传动齿轮 52 ) 的转速的变速比可设定约为 12: 1 , 如 转 /min ) 时, 该第一转轴 20 (或该终止端传动齿轮 52 ) 的转速为每分钟 125转 ( 125转 /min ) 。
该第二变速齿轮机构 60连结设于该第一转轴 20与一输出用第二转轴 70之 间, 其利用多个大小不同且相互连结的齿轮所构成以具有变速功能; 当该第一 转轴 20 (或该终止端传动齿轮 52 ) 以一转速如每分钟 125转 ( 125转 /min ) 转 动时, 借由该第二变速齿轮机构 60的变速功能, 即可使该输出用第二转轴 70 以一预设的转速进行转动, 借助以向外输出能量如带动一负载以进行运动。 以 本实施例而言, 该输出用第二转轴 70上可架设一叶片 71 当作负载如图所示但 不限制。
请参考图 8A及图 8B所示,其分别本发明的节能装置 1的旋转半圈过程(前 半周期) 示意图及借助重力回位过程 (后半周期) 示意图。 当本发明的节能装 置 1开始进行周期性运动时, 其运动可分成下列的前半周期及后半周期以形成 一周期性循环运动, 兹分别说明如下:
< 1 >前半周期: 当进入前半周期时, 借助该开关控制机构 32以将该电机 转子 30切换成 "开启(通电) "状态, 使该电机转子 30的传动轴 33开始转动, 此时借由第一变速齿轮机构 50的变速功能, 该电机转子 30可借助其传动轴 33 的驱动力而驱动第一转轴 20 (亦即该终止端传动齿轮 52 )低速单向旋转如图 8A 中箭头 "C" (顺时针)所示, 此时借由第一变速齿轮机构 50的齿轮连结关系, 该电机转子 30亦同步由一最低位置如图 8A所示,绕行该第一转轴 20而向上旋 转如图 8A中箭头 "A" (逆时针) 所示, 并逐渐升上至一最高位置如图 8B所 示, 完成一半圈式旋转; 此时该电机转子 30可触抵设在该框架 13上的緩冲垫 14以减少撞击力, 之后即进入后半周期。
< 2 >后半周期: 当进入后半周期时如图 8B所示, 借助该开关控制机构 32 以将该电机转子 30切换成 "关闭 (断电) " 状态, 以使该电机转子 30的传动 轴 33停止转动, 此时借由第一变速齿轮机构 50的变速功能, 该电机转子 30可 借助其本身重力而开始反向下降如图 8B中箭头 "B" (顺时针)所示, 由于此 时该电机转子 30的传动轴 33已停止转动, 故借由该电机转子 30的本身重力可 驱动该第一转轴 20 (亦即该终止端传动齿轮 52 ) 仍同步进行单向旋转如图 8B 中箭头 "C" (顺时针) 所示; 此时借由该电机转子 30的本身重力及该第一变 速齿轮机构 50的齿轮连结关系, 该电机转子 30即由一最高位置如图 8B所示, 又反向 (如图 8B中箭头 "B" 所示)逐渐降下以回位至一最低位置如图 8A所 示, 之后即又进入下一循环的前半周期。 其中, 当该电机转子 30借助其本身重 力而开始反向下降时如图 8B中箭头 "B" (顺时针) 所示, 此时该电机转子 30的传动轴 33已停止转动, 但若该电机转子 30的本身重力不足以驱动该第一 转轴 20 (亦即该终止端传动齿轮 52 ) , 则亦可将该第一转轴 20设计为棘轮式 的单向旋转式转轴, 以使该电机转子 30相对于该第一转轴 20形成空转状态, 使该电机转子 30仍可下降回位至一最低位置如图 8A所示, 供又可进入下一循 环的前半周期。
由上述并参考图 8A及图 8B可知, 本发明的节能装置 1, 无论是进入前半 周期 (借助外部供电以进行半圈旋转的过程) 或后半周期 (借助重力以进行自 动回位的过程) , 该第一转轴 20 (亦即该终止端传动齿轮 52 )仍保持同一单向 的旋转如图 8A、 8B中箭头 "C" (顺时针) 所示, 因此借由该第二变速齿轮机 构 60的变速及作用动能, 该输出用第二转轴 70即能保持单向旋转以稳定地并 持续地向外输出能量。
更言之, 本发明的节能装置 1在进入后半周期 (借助重力以进行自动回位 的过程) 时, 该电机转子 30已被切换成 "关闭 (断电) " 状态, 也就是在后半 周期并未再提供任何能源(供电)给该电机转子 30, 但该电机转子 30借助由本 身重力而反向回位时仍可驱动该第一转轴 20 (亦即该终止端传动齿轮 52 )仍以 图 8B中箭头 "C" (顺时针) 所示的方向进行单向旋转, 也就是在后半周期中 并未再供电给该电机转子 30的情况下, 本发明的节能装置 1仍可完成后半周期 的借助重力以进行自动回位的过程; 因此本发明的节能装置 1与一般借助外部 供电以进行全圏式旋转的装置相比, 本发明的电机转子 30先进行半圈式驱动旋 转之后, 在切断供电状态下利用重力作用回位, 以此形成第一转轴 20的周期性 持续正向旋转, 自然可达成节能的使用效果。
请参考图 9及图 10所示, 其分别为本发明的节能装置的复合式实施例的右 视角立体示意图及左视角立体示意图。 在实际使用时, 可利用多个本发明的节 能装置 1以串联组合成一复合式节能装置如图 9及图 10所示, 其中多个节能装 置 1的各储能用第一转轴 20以串联方式连结成同一转轴, 最后再借助一第二变 速齿轮机构 60以汇总并传动至一输出用第二转轴 70上, 用以增进节能使用效 果, 并增进输出用第二转轴 70的总输出的负载量。
以上所示仅为本发明的优选实施例, 对本发明而言仅是说明性的, 而非限 制性的。 本技术领域具通常知识人员理解, 在本发明权利要求所限定的精神和 范围内可对其进行许多改变、 修改、 甚至等效变更, 但都将落入本发明的权利 范围内。

Claims

权 利 要 求
1.一种旋转半圏并借助重力反向回位的节能装置, 其特征在于, 包含: 一储能用第一转轴, 其为一单向旋转式转轴以单向转动:
一电机转子, 其内设有电机机构, 并借助由一开关控制机构以控制并驱动 该电机转子上一传动轴以半周期交递开关状态进行半圈式周期性转动;
一支臂, 其连结在该电机转子与第一转轴之间, 以使该电机转子能以第一 转轴为圆心及以支臂为半径所定义的圓周进行半圈式周期性旋转;
一第一变速齿轮机构, 其利用多个大小不同的齿轮构成并连结设置于该电 机转子的传动轴与该第一转轴之间, 该第一变速齿轮机构包含一用以连结至该 电机转子的传动轴的起始端传动齿轮, 及一用以连结至该第一转轴上并同步转 动的终止端传动齿轮, 其中借由该第一变速齿轮机构的变速功能, 以使该起始 端传动齿轮被电机转子的传动轴高速驱动时, 能转换成由该终止端传动齿轮以 驱动该第一转轴低速单向转动;
一第二变速齿轮机构, 其利用多个大小不同的齿轮构成并连结设置于该第 一转轴与一输出用第二转轴之间, 用以使该第一转轴的转动能驱动该第二转轴 持续转动;
一支座, 其用以支撑该储能用第一转轴、 该电机转子、 该支臂、 该第一变 速齿轮机构、 该第二变速齿轮机构及该输出用第二转轴;
其中在该半圈式周期性转动的前半周期中, 借助该开关控制机构以将该电 机转子切换成通电状态, 使该电机转子的传动轴开始转动, 此时借助由第一变 速齿轮机构的变速功能, 该电机转子借助其传动轴的驱动力以驱动该第一转轴 进行低速单向旋转, 且该电机转子亦同步由该圓周的最低位置向上旋转半圈至 该圆周的最高位置, 此时完成一半圈式旋转并进入后半周期中;
其中在后半周期中, 借助该开关控制机构以将该电机转子切换成断电状态, 以使该电机转子的传动轴停止转动, 此时借助由第一变速齿轮机构的变速功能, 该电机转子借助其本身重力而由该圓周的最高位置循着前半周期的半圏路径反 向回位至该圆周的最低位置并又进入下一循环周期的前半周期。
2.如权利要求 1所述的节能装置, 其特征在于, 当该电机转子借助其本身重 力而由该圓周的最高位置循着前半周期的半圈路径反向回位至该圆周的最低位 置时, 该电机转子借助其本身重力以驱动该第一转轴进行单向旋转。
3.如权利要求 1所述的节能装置, 其特征在于, 当该电机转子借助其本身重 力而由该圆周的最高位置循着前半周期的半圈路径反向回位至该圆周的最低位 置时, 该电机转子相对于该第一转轴形成空转状态。
4.如权利要求 1所述的节能装置, 其特征在于, 该电机转子的传动轴与该第 一转轴之间的转速比设为 12: 1。
5.如权利要求 1所述的节能装置,其特征在于,该支座包含一底架设在底部、 一三角架支撑跨设在该底架上及一框架支撑设在该三角架上方。
6.如权利要求 1所述的节能装置, 其特征在于, 该支座上设有一緩沖垫供该 电机转子在旋转至最高位置时能触抵该緩冲垫。
7.如权利要求 1所述的节能装置, 其特征在于, 该开关控制机构设在靠近该 储能用第一转轴的中心处, 在该开关控制机构的上、 下端分别设有一上感应开 关及一下感应开关, 当该电机转子旋转回位至最低位置时即触动该下感应开关, 以使该电机转子切换成供电状态, 当该电机转子旋转至最高位置时即触动该上 感应开关以使该电机转子切换成断电状态。
PCT/CN2012/000743 2012-05-29 2012-05-29 旋转半圈并借助重力反向回位的节能装置 WO2013177720A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015600027U JP3197912U (ja) 2012-05-29 2012-05-29 半回転し、重力により逆向きに復位する省エネルギー装置
EP12877928.7A EP2857679A4 (en) 2012-05-29 2012-05-29 ENERGY SAVING DEVICE FOR TURNING IN SEMICONDUCTURES AND FOR RESETTING IN THE INVERSIVE DIRECTION THROUGH THE POWER OF GRAVITATION
PCT/CN2012/000743 WO2013177720A1 (zh) 2012-05-29 2012-05-29 旋转半圈并借助重力反向回位的节能装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/000743 WO2013177720A1 (zh) 2012-05-29 2012-05-29 旋转半圈并借助重力反向回位的节能装置

Publications (1)

Publication Number Publication Date
WO2013177720A1 true WO2013177720A1 (zh) 2013-12-05

Family

ID=49672259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/000743 WO2013177720A1 (zh) 2012-05-29 2012-05-29 旋转半圈并借助重力反向回位的节能装置

Country Status (3)

Country Link
EP (1) EP2857679A4 (zh)
JP (1) JP3197912U (zh)
WO (1) WO2013177720A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI671980B (zh) * 2018-01-25 2019-09-11 許博吉 驅動裝置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2830431A (en) * 1954-03-22 1958-04-15 Deering Milliken Res Corp Strand twisting machine
JPS60173371A (ja) * 1984-02-18 1985-09-06 Sadao Monma 重力式モ−タ−
CN2361869Y (zh) * 1999-03-24 2000-02-02 周继昌 内能动力机
CN1379178A (zh) * 2002-05-23 2002-11-13 杨永明 机械能链动力源装置
CN2603229Y (zh) * 2002-12-13 2004-02-11 邱金和 机械式动力产生装置
CN202628411U (zh) * 2012-05-29 2012-12-26 蔡瑞安 旋转半圈并借助重力反向回位的节能装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997010433A1 (de) * 1995-09-15 1997-03-20 Kurt Schupp Antriebsaggregat
HRP20010020A2 (en) * 2001-01-10 2002-02-28 Augustin Lehkec Freely standing self-rotating wheel for converting mechanical into electrical energy
EP2110554A1 (en) * 2008-04-18 2009-10-21 Mexon Laboratorio di Ricerca Tecnologica di Soncin Giancarlo Gravity motor
NL2003725C2 (nl) * 2009-10-28 2011-05-02 Triple W Trading B V Energiesysteem.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2830431A (en) * 1954-03-22 1958-04-15 Deering Milliken Res Corp Strand twisting machine
JPS60173371A (ja) * 1984-02-18 1985-09-06 Sadao Monma 重力式モ−タ−
CN2361869Y (zh) * 1999-03-24 2000-02-02 周继昌 内能动力机
CN1379178A (zh) * 2002-05-23 2002-11-13 杨永明 机械能链动力源装置
CN2603229Y (zh) * 2002-12-13 2004-02-11 邱金和 机械式动力产生装置
CN202628411U (zh) * 2012-05-29 2012-12-26 蔡瑞安 旋转半圈并借助重力反向回位的节能装置

Also Published As

Publication number Publication date
EP2857679A4 (en) 2016-04-06
JP3197912U (ja) 2015-06-11
EP2857679A1 (en) 2015-04-08

Similar Documents

Publication Publication Date Title
CN202381271U (zh) 一种手摇式发电机构
CN101206082B (zh) 自动跟踪太阳装置
CN201739072U (zh) 波浪能发电装置
CN104791203B (zh) 一种环保型重力发电蓄能装置
CN207049788U (zh) 一种自动跟踪太阳光的太阳能路灯
CN103856157A (zh) 一种单台电机驱动的光伏板二维运动机构
CN201151827Y (zh) 一种新型直驱离合的洗衣机
CN105023814A (zh) 具有到位离合与单向传动功能的电动操作机构
WO2013177720A1 (zh) 旋转半圈并借助重力反向回位的节能装置
CN201304891Y (zh) 重力发电装置及应用其的电动车
TWM444968U (zh) 旋轉半圈並藉重力反向回位之節能裝置
CN103195671A (zh) 循环发电装置
CN204740993U (zh) 具有到位离合与单向传动功能的电动操作机构
CN202628411U (zh) 旋转半圈并借助重力反向回位的节能装置
TWM629037U (zh) 節能發電裝置
CN204948007U (zh) 一种带有回转和曲柄摇杆机构的箱体展开式太阳能板架体
CN203261112U (zh) 便携式多动力源发电装置
TWM454038U (zh) 具二電機轉子作半圈式上下往復旋轉之功輸出裝置
CN202675142U (zh) 一种具有手摇发电机构的照明装置
CN201818448U (zh) 一种轴单向旋转传动的发电装置
WO2005108787A1 (fr) Equipement et procede de production d&#39;energie mecanique
CN205666722U (zh) 多功能牵动机
WO2014089724A1 (zh) 具有双电机转子作半圈式上下往复旋转的功率输出装置
CN104564571B (zh) 门的开关能量回收发电装置
CN201448736U (zh) 一种帐篷灯

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12877928

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012877928

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015600027

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE