WO2013176178A1 - Exposure device, exposure method, and method for manufacturing device - Google Patents

Exposure device, exposure method, and method for manufacturing device Download PDF

Info

Publication number
WO2013176178A1
WO2013176178A1 PCT/JP2013/064213 JP2013064213W WO2013176178A1 WO 2013176178 A1 WO2013176178 A1 WO 2013176178A1 JP 2013064213 W JP2013064213 W JP 2013064213W WO 2013176178 A1 WO2013176178 A1 WO 2013176178A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical unit
illumination
illumination optical
unit
exposure apparatus
Prior art date
Application number
PCT/JP2013/064213
Other languages
French (fr)
Japanese (ja)
Inventor
福井 達雄
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Publication of WO2013176178A1 publication Critical patent/WO2013176178A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/201Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by an oblique exposure; characterised by the use of plural sources; characterised by the rotation of the optical device; characterised by a relative movement of the optical device, the light source, the sensitive system or the mask

Definitions

  • the present invention relates to an exposure apparatus, an exposure method, and a device manufacturing method for projecting and exposing a pattern on a mask onto a plate.
  • An object of an aspect of the present invention is to provide an exposure apparatus, an exposure method, and a device manufacturing method that can expose a plate while relatively moving illumination light with respect to a mask at high speed.
  • a mask support mechanism for supporting a mask on which a pattern is formed and a plate support mechanism for holding a plate are provided, and the pattern is placed on the plate using illumination light output from a light source.
  • An illumination optical system that irradiates the mask with the illumination light, a lens array that projects an image of the pattern illuminated by the illumination optical system onto the plate, and an illumination optical system.
  • an exposure apparatus comprising: a support unit that supports at least a part of the lens array; and a moving device that moves the support unit in a direction along the mask and the plate relative to the light source.
  • an exposure method in which illumination light output from a light source is irradiated onto a mask via an illumination optical system, and a pattern formed on the mask is transferred to a plate via a lens array.
  • the illumination light is transferred from the illumination optical system to the pattern while moving at least a part of the illumination optical system and the lens array in a direction along the mask and the plate relative to the light source. And an image of the pattern is projected onto the plate through the lens array.
  • the pattern formed on the mask is transferred to a plate by the above exposure method, and the plate to which the pattern is transferred is transferred to the plate based on the transferred pattern. And a device manufacturing method is provided.
  • the plate is exposed while moving the illumination light relative to the mask at a high speed by exposing the plate while moving at least a part of the illumination optical system relative to the mask at a high speed.
  • FIG. 1 is a side view of the exposure apparatus according to the first embodiment.
  • FIG. 2 is a view of the exposure apparatus according to the first embodiment as seen from between the projection optical system and the mask.
  • FIG. 3 is a view of the exposure apparatus according to the first embodiment as viewed from the direction in which the illumination optical unit and the projection optical system move.
  • FIG. 4 is a side view showing a state where the illumination optical unit and the projection optical system of the exposure apparatus shown in FIG. 1 are moved.
  • FIG. 5 is a side view showing a state where the illumination optical unit and the projection optical system of the exposure apparatus shown in FIG. 1 are moved.
  • FIG. 6 is a side view of the exposure apparatus according to the second embodiment.
  • FIG. 7 is a side view of the exposure apparatus according to the third embodiment.
  • FIG. 8 is a side view showing a state where the illumination optical unit and the projection optical system of the exposure apparatus shown in FIG. 7 are moved.
  • FIG. 9 is a side view of the exposure apparatus according to the fourth embodiment.
  • FIG. 10 is a side view showing a state where the illumination optical unit and the projection optical system of the exposure apparatus shown in FIG. 9 are moved.
  • FIG. 11 is a side view of the exposure apparatus according to the fifth embodiment.
  • FIG. 12 is a side view showing a state where the illumination optical unit and the projection optical system of the exposure apparatus shown in FIG. 11 are moved.
  • FIG. 13 is a side view of the exposure apparatus according to the sixth embodiment.
  • FIG. 14 is a view of the exposure apparatus according to the sixth embodiment as seen from between the projection optical system and the mask.
  • FIG. 15 is a view of the exposure apparatus according to the sixth embodiment as viewed from the direction in which the illumination optical unit and the projection optical system move.
  • FIG. 16 is a side view showing a state where the illumination optical unit and the projection optical system of the exposure apparatus shown in FIG. 13 are moved.
  • FIG. 17 is a side view showing a state where the illumination optical unit and the projection optical system of the exposure apparatus shown in FIG. 13 are moved.
  • FIG. 18 is a flowchart showing each step of the device manufacturing method according to the present embodiment.
  • FIG. 1 is a side view of the exposure apparatus according to the first embodiment.
  • FIG. 2 is a view of the exposure apparatus according to the first embodiment as seen from between the projection optical system and the mask.
  • FIG. 3 is a view of the exposure apparatus according to the first embodiment as viewed from the direction in which the illumination optical unit and the projection optical system move.
  • the exposure apparatus 1 uses a micro lens array (MLA) as a projection optical system, and moves (scans) the illumination optical unit and the projection optical system with respect to the mask and the plate (photosensitive substrate), thereby forming a mask pattern on the plate.
  • MLA micro lens array
  • This is a scanning type exposure apparatus that exposes (mask pattern).
  • the Z axis is taken in a direction parallel to the optical axis AXL (see FIG. 1) of the projection optical system
  • the X axis is taken in the scanning direction of the illumination optical system and the projection optical system, and orthogonal to the Z axis and the X axis.
  • the Y axis is taken in the direction of First, the outline of the exposure apparatus 1 will be described.
  • the exposure apparatus 1 includes a frame 1F, an illumination optical system 2, a projection optical system 3, a moving device 21, and a moving mechanism 40.
  • the illumination optical system 2 includes a guide optical unit 30 and an illumination optical unit 31.
  • the guide optical unit (second unit) 30, the illumination optical unit (first unit) 31, and the moving mechanism 40 serve as an illumination apparatus.
  • the illumination device may include the light source 6 in addition to the illumination optical unit 31, the guide optical unit 30, and the moving mechanism 40.
  • the exposure apparatus 1 is controlled by the control device 9.
  • the frame 1F includes a base 1V, side portions 1W attached to the base 1V, a pair of illumination system guides 5L that support the illumination optical unit 31, and a pair of projection system guides 5P that support the projection optical system 3. .
  • the base 1 ⁇ / b> V is attached to an installation target (for example, a foundation) of the exposure apparatus 1 and is positioned below the exposure apparatus 1.
  • a side portion 1W is attached to the upper portion of the base portion 1V.
  • a pair of illumination system guides 5L and a pair of projection system guides 5P are attached to the side portion 1W.
  • the former is arrange
  • the illumination system guide 5L and the projection system guide 5P extend in a direction parallel to the X axis.
  • the pair of illumination system guides 5L and the pair of projection system guides 5P are arranged at a predetermined interval in the Y-axis direction.
  • the illumination optical unit 31 is supported by these across the pair of illumination system guides 5L.
  • the illumination optical unit 31 moves in the X-axis direction (the direction indicated by the arrow xl in FIG. 1) along the pair of illumination system guides 5L.
  • the projection optical system 3 is supported by these across the pair of projection system guides 5P.
  • the projection optical system 3 moves along the pair of projection system guides 5P in the X-axis direction (the direction indicated by the arrow xp in FIG. 1). Since the illumination system guide 5L is disposed above the projection system guide 5P, the illumination optical unit 31 is disposed above the projection optical system 3.
  • a plate stage 1S is provided above the base 1V.
  • the plate stage 1S places and supports the plate P to be exposed.
  • the plate stage 1S is placed with the plate P held by the holder.
  • the plate P of this embodiment is a flat glass plate with a length of one side or a diagonal length of 500 mm or more coated with a photoresist (photosensitive material) for manufacturing a liquid crystal display element as an example.
  • a ceramic substrate for manufacturing a thin film magnetic head or a circular semiconductor wafer for manufacturing a semiconductor element can be used.
  • the mask stage 1T supports the mask M.
  • the mask M is supported above the plate stage 1S by the mask stage 1T protruding from the side 1W to the inside of the frame 1F.
  • the mask stage 1T is placed and supported while the mask M is held by a holder.
  • the plate stage 1S supports the plate P in a state of being opposed to the mask M supported by the mask stage 1T.
  • the mask M is air-adsorbed and fixed by a vacuum chuck provided on the mask stage 1T.
  • the air suction is released, and the mask M can be replaced with a desired one.
  • the mask M is disposed above the plate P.
  • the plate P is disposed at the bottom, and the projection optical system 3, the mask M, and the illumination optical unit 31 are disposed in this order upward.
  • the illumination optical unit 31 and the projection optical system 3 project and expose the mask pattern onto the plate P while moving in the X-axis direction in synchronization.
  • the exposure apparatus 1 includes a moving device 21.
  • the moving device 21 includes a support unit 22 that supports the illumination optical unit 31 and the projection optical system 3, and moves the support unit 22 in the X direction along the illumination system guide 5 ⁇ / b> L and the projection system guide 5 ⁇ / b> P.
  • the unit 31 and the projection optical system 3 are moved in the X direction along the illumination system guide 5L and the projection system guide 5P. That is, the moving device 21 moves the illumination optical unit 31 and the projection optical system 3 in the X direction by moving the support 22 in a direction along the surfaces of the mask M and the plate P.
  • a mask stage 1T and a plate stage 1S are attached to a frame 1F and fixed.
  • the illumination optical unit 31 and the projection optical system 3 project and expose the mask pattern onto the plate P while moving in the X-axis direction with respect to the mask stage 1T and the plate stage 1S.
  • the illumination optical unit 31 and the projection optical system 3 move in the X-axis direction with respect to the mask stage 1T and the plate stage 1S when projecting and exposing the mask pattern onto the plate P.
  • the exposure apparatus 1 is provided with a light source 6 that outputs light toward the illumination optical unit 31.
  • the light source 6 is fixed to a support base 20 that does not move during exposure, and the relative position does not change with the stator side of the moving mechanism 40 during exposure.
  • the support table 20 is connected to the frame 1F and the like.
  • the support base 20 is a separate member from the support unit 22 of the moving device 21 that supports a part of the illumination optical system 2 and the projection optical system 3, and is independent of the moving unit. That is, the moving device 21 can move the support portion 22 relative to the support base 20.
  • the exposure apparatus 1 supports the mask M using the mask stage 1T, but various configurations can be used as a mask support mechanism for supporting the mask M.
  • the exposure apparatus 1 supports the plate P using the plate stage 1S, but various configurations can be used as a plate support mechanism for supporting the plate P.
  • the illumination optical system 2 guides the light emitted from the light source 6 and enters it as light for illuminating the mask M.
  • the illumination optical system 2 includes a guide optical unit 30 and an illumination optical unit 31.
  • the guide optical unit 30 is an optical system that guides the light output from the light source 6 to the illumination optical unit 31.
  • a part of the guide optical unit 30 on the light source 6 side is supported by the support base 20.
  • a part of the guide optical unit 30 on the illumination optical unit 31 side is supported by the moving mechanism 40.
  • the moving mechanism 40 is a mechanism that moves the guide optical unit 30, and is fixed to a member that does not move during exposure, such as the frame 1F.
  • the illumination optical unit 31 causes the light guided by the guide optical unit 30 to enter as light for illuminating the mask M.
  • the illumination optical unit 31 is supported by the support unit 22 and moved by the moving device 21.
  • a mechanism for moving the illumination optical unit 31, that is, the moving device 21 is also included in a part of the moving mechanism 40.
  • the guide optical unit 30 is an optical system that guides the laser light (light) output from the light source 6 to the illumination optical unit 31.
  • the guide optical unit 30 includes a plurality of condensing lenses 6L, a plurality of optical fibers (light guiding fibers) 7, and a bundle 32.
  • a part (first end) on the light source 6 side of the condenser lens 6 ⁇ / b> L and the optical fiber 7 is supported by the support base 20.
  • a part (second end) of the optical fiber 7 on the side of the illumination optical unit 31 is supported by the moving mechanism 40.
  • the exposure apparatus 1 includes a plurality of light sources 6.
  • the exposure apparatus 1 should just be provided with two or more output parts which output light, and you may implement
  • the light source 6 is a laser light source, but is not limited thereto.
  • a condenser lens 6 ⁇ / b> L and an optical fiber 7 are arranged corresponding to the light source 6.
  • the guide optical unit 30 condenses the light output from the light source 6 with the condenser lens 6 ⁇ / b> L and makes it incident on the optical fiber 7.
  • the optical fiber 7 is a single quartz fiber.
  • One end (first end) of the optical fiber 7 is disposed in the vicinity of the focal point of the condensing lens 6L, and the other end (second end) is disposed facing the illumination optical unit 31. .
  • the other end of the optical fiber 7 is fixed to a movable element of a moving mechanism of the illumination optical unit 31 and moves together with the illumination optical unit 31.
  • the light condensed by the condenser lens 6L enters from one end.
  • the optical fiber 7 causes light input from one end to be output from the other end.
  • portions other than the vicinity of the ends of the plurality of optical fibers 7 are combined into one.
  • one end (the end on the first end side) is fixed to the light source 6 and the other end (the end on the second end side) is illuminated. It is fixed with respect to the optical unit 31.
  • the guide optical unit 30 can make it difficult to produce a shift in the relative relationship between the light source 6 and the illumination optical unit 31.
  • the moving mechanism 40 moves the position of the guide optical unit 30 while maintaining the optical path length from the light source 6 side end (first end) of the guide optical unit 30 to the illumination optical unit 31 within a predetermined range. It is.
  • maintaining the optical path length in a predetermined range means maintaining the optical path length from the end (first end) on the light source 6 side of the guide optical unit 30 to the illumination optical unit 31 at a substantially constant optical path length. It is. That is, the moving mechanism 40 moves the guide optical unit 30 in accordance with the movement of the illumination optical unit 31 by the moving device 21, and the optical path length from the end of the guide optical unit 30 on the light source 6 side to the illumination optical unit 31 is increased. This is a mechanism that keeps the change below a predetermined threshold.
  • the guide optical unit 30 when the first end of the guide optical unit 30 is supported at a predetermined position with respect to the light source 6 and the second end of the guide optical unit 30 is supported at a predetermined position with respect to the illumination optical unit 31, the guide It can be said that the portion from the end of the optical unit 30 on the light source 6 side to the illumination optical unit 31 is the portion supported by the support portion 22 of the illumination optical system 2 from the light source 6.
  • the moving mechanism 40 includes a fixed pulley 44 and a linear actuator 46.
  • the fixed pulley 44 is held on the frame 1F by a holding mechanism (not shown), and supports the bundle 32 in a movable state.
  • the linear actuator 46 includes a mover 48 and a stator 50.
  • the linear actuator 46 is arranged in a state where the movable element 48 can move in the X direction with respect to the stator 50.
  • the stator 50 is held on the frame 1F by a holding mechanism (not shown).
  • the mover 48 is, for example, a pulley, and is connected to the stator 50 in a state where the fulcrum can move in the X direction while being rotatable.
  • the mover 48 rotates as the bundle 32 moves.
  • the pulley of the movable element 48 supports the bundle 32.
  • the moving mechanism 40 moves the position of the bundle 32 by moving the mover 48 of the linear actuator 46 in the X direction.
  • the fixed pulley 44 and the stator 50 are fixed to the frame 1F, for example.
  • the moving mechanism 40 may be fixed to a portion that does not move during exposure of the exposure apparatus 1, that is, a portion that does not scan. .
  • the illumination optical unit 31 guides light emitted from the light source 6 and guided and output by the guide optical unit 30 and enters as light for illuminating the mask M.
  • the illumination optical unit 31 includes partial illumination optical units 10L and 10R that form the illumination fields SR and SL shown in FIG. 2, and a partial illumination optical unit 10C that forms the illumination field SC.
  • the light output from the optical fiber 7 of the guide optical unit 30 is incident on the partial illumination optical units 10L and 10R, and the relay optical systems 11 and 12 cause the emission end face of the optical fiber 7 of the guide optical unit 30 to pass through the fly-eye lens 13. Project onto the entrance surface.
  • the relay optical systems 11 and 12 enlarge the exit end face of the optical fiber 7 of the guide optical unit 30 to a predetermined multiple and project it onto the incident surface of the fly-eye lens 13.
  • the fly-eye lens 13 has a plurality of element lenses arranged and joined. In the present embodiment, eight element lenses are arranged in the column direction and ten element lenses are arranged in the row direction, and a total of 80 elements are joined.
  • the light emitted from the fly-eye lens 13 passes through the ⁇ stop 14.
  • the ⁇ stop 14 determines the illumination NA by limiting the diameter of light.
  • the light that has passed through the ⁇ stop 14 is condensed on the surface of the mask M (the surface on the side of the illumination optical system 2) via the two condenser lenses 15 and the mirror 16 to form an illumination field.
  • the entrance surface of the fly-eye lens 13 and the surface of the mask M have a conjugate relationship, and the illuminance distribution on the entrance surface of the fly-eye lens 13 is averaged so as to overlap each element lens of the fly-eye lens 13. A uniform illuminance distribution can be obtained on the surface.
  • the partial illumination optical unit 10C that forms the illumination field SC also has the same structure as the partial illumination optical units 10L and 10R, except that the arrangement of the condenser lens 15 and the mirror 16 is different.
  • the projection optical system 3 is an optical system for forming an image of the mask pattern on the surface of the plate P and projecting it.
  • the projection optical system 3 includes a lens array movably provided between a mask M supported by the mask stage 1T and a plate P supported by the plate stage 1S, and an image of a pattern formed on the mask M is obtained. Project onto the plate P.
  • the projection optical system 3 forms an image of the mask pattern on the surface of the plate P and projects it using an imaging optical system using a microlens array.
  • a microlens array is an imaging element in which a number of element lenses are two-dimensionally arranged.
  • the projection optical system 3 has a plurality of micro lens arrays (MLA) 8. As shown in FIGS. 1 and 2, the MLA 8 is mounted on the stage 3 ⁇ / b> S of the projection optical system 3. As the stage 3S moves along the projection system guide 5P, the MLA 8 moves in the X-axis direction. Although the projection optical system 3 of the present embodiment uses the MLA 8, a lens array other than the micro lens array can be used.
  • MLA micro lens arrays
  • MLA8R, MLA8C, and MLA8L are arranged at positions corresponding to the illumination fields SR, SC, and SL formed by the illumination optical system 2, respectively.
  • MLA8R, MLA8C, and MLA8L are not distinguished, they are simply referred to as MLA8.
  • the illumination visual fields SR, SC, SL are arranged in a staggered manner with a predetermined distance from each other in the X-axis direction toward the Y-axis direction.
  • the exposure apparatus 1 includes a distance meter that measures the distance between the mask stage 1T and the plate stage 1S as a detection unit.
  • the exposure apparatus 1 can detect the distance between the mask M and the plate P by measuring the distance between the mask stage 1T and the plate stage 1S with a distance meter.
  • the exposure apparatus 1 adjusts the relative position of the mask stage 1T and the plate stage 1S in the optical axis direction based on the distance between the mask M and the plate P measured by the distance meter when projecting and exposing the mask pattern onto the plate P. To do.
  • the exposure apparatus 1 can correctly arrange the mask and the plate at the in-focus position of the projection lens (in this embodiment, the MLA 8 included in the projection optical system 3).
  • the exposure apparatus 1 can correct a focus shift caused by the variation in the thickness of the plate P, and can suppress a decrease in exposure performance.
  • the exposure apparatus 1 includes a measurement system that measures position information of each stage.
  • a measurement system that measures position information of each stage using an interferometer system including a laser interferometer may be used, or an encoder system that detects a scale (diffraction grating) provided in each stage. May be used.
  • FIGS. 4 and 5 are side views showing a state where the illumination optical unit and the projection optical system of the exposure apparatus shown in FIG. 1 are moved.
  • FIG. 4 shows a state in which the illumination optical unit 31 is arranged at the end on the + side (right side in the figure) in the X direction
  • FIG. 5 shows the illumination optical unit 31 on the ⁇ side (left side in the figure) in the X direction. It is the state arrange
  • the control device 9 starts projection exposure of the mask pattern on the plate P.
  • the control device 9 moves (scans) the illumination optical unit 31 and the projection optical system 3 in the X-axis direction on the movement direction side of the MLA 8, that is, on the movement direction side of the projection optical system 3.
  • the exposure apparatus 1 moves the illumination optical unit 31 and the projection optical system 3 from the position shown in FIG. 4 to the position shown in FIG. 5 or from the position shown in FIG. 5 to the position shown in FIG.
  • the illumination optical unit 31 and the projection optical system 3 are scanned with respect to the mask M and the plate P.
  • the exposure apparatus 1 transfers the pattern formed on the mask M to the plate P.
  • the exposure apparatus 1 does not have to move the illumination optical unit 31 and the projection optical system 3 over the entire area in the X direction, that is, from the position shown in FIG. 4 to the position shown in FIG.
  • the exposure apparatus 1 may perform pattern transfer by scanning that moves the illumination optical unit 31 and the projection optical system 3 to a position between the position shown in FIG. 4 and the position shown in FIG. .
  • the illumination optical unit 31 and the projection optical system 3 are moved by the moving device 21, and the light path length of the guide optical unit 30, that is, the light source 6 side end (first end) is illuminated by the moving mechanism 40.
  • the position of the optical path is moved while maintaining the optical path length to the optical unit 31 within a predetermined range, that is, substantially the same.
  • the moving mechanism 40 of the present embodiment moves the mover 48 of the linear actuator 46 in the same direction as the movement of the illumination optical unit 31 and the projection optical system 3 in the X direction, the same distance as the illumination optical unit 31 and the projection optical system 3, Move.
  • the mover 48 of the moving mechanism 40 moves, the bundle 32 supported by the mover 48 also moves.
  • the relative position between the mover 48 and the fixed pulley 44 changes.
  • the bundle 32 moves at a position in contact with the fixed pulley 44 in response to a change in the relative position between the movable element 48 and the fixed pulley 44.
  • the fixed pulley 44 can rotate and change the position where it comes into contact with the bundle 32, so that the contact position can be changed smoothly.
  • the guide optical unit 30 that guides the light output from the light source 6 to the illumination optical unit 31 includes the optical fiber 7, and fixes one end of the optical fiber 7 to the light source 6. Are fixed to the illumination optical unit 31. Thereby, the exposure apparatus 1 can maintain the optical path length until the light output from the light source 6 reaches the illumination optical unit 31 within a predetermined range. That is, even if the illumination optical unit 31 moves in the Z direction during exposure, the optical path length between the fixed light source 6 and the moving illumination optical unit 31 can be maintained within a predetermined range. As a result, the exposure apparatus 1 can suppress the light that illuminates the mask M from fluctuating depending on the position of the mask M in the X direction, and can irradiate the mask M with stable light. The pattern of M can be transferred more appropriately.
  • the optical fiber 7 of the guide optical unit 30 is arranged on the optical path of the illumination light whose one end (the end on the first end side) is output from the light source 6 and the other end ( The moving device 21 may move the second end portion side end) together with the illumination optical unit 31. That is, the exposure apparatus 1 does not have to fix the end of the guide optical unit 30 on the light source 6 side to the light source 6.
  • the optical path length can be maintained within a predetermined range by adjusting the optical path amount based on the relative position shift between the light source 6 and the guide optical unit 30. Thereby, even when it is set as the structure which can adjust the position of the light source 6, the process similar to the above is realizable.
  • the exposure apparatus 1 fixes the light source 6 to a position at which the light source 6 is not scanned at the time of exposure, such as the frame 1F, in this embodiment, to the support base 20, that is, the light source is a scanning optical system (illumination optical unit and projection optical system).
  • the structure for scanning at the time of exposure can be reduced in weight.
  • the exposure apparatus 1 can reduce the size of the scanning exposure system and can reduce the energy required for scanning of the scanning exposure system.
  • the exposure apparatus 1 maintains the optical path amount between the light source 6 and the illumination optical unit 31 within a predetermined range with the guide optical unit 30, so that the scanning optical system can be separated from the scanning optical system.
  • the exposure conditions can be prevented from fluctuating depending on the position, and exposure can be performed with performance comparable to that when the light source is integrated with the scanning optical system.
  • the exposure apparatus 1 can be enlarged in size by leaving the scanning configuration as it is by separating the light source from the scanning optical system. Thereby, the output of a light source can be enlarged easily, the illumination intensity of light can be improved, and production efficiency can be improved.
  • the exposure apparatus 1 is provided with a plurality of light sources that output laser light for one optical fiber 7 (or one partial illumination optical unit), and the light output from the plurality of light sources is incident on one optical fiber.
  • the illuminance can be increased.
  • the exposure apparatus 1 uses the moving mechanism 40 to move the guide optical unit 30 in accordance with the movement of the illumination optical unit 31 and the projection optical system 3, thereby guiding the light output from the light source 6. 7 can be moved smoothly.
  • a part of the other end of the optical fiber 7 is supported by a housing that supports the illumination optical unit 31.
  • a housing that supports the illumination optical unit 31 and a movement mechanism that moves the illumination optical unit 31 are also part of the movement mechanism 40.
  • the diameter (radius) of the pulley of the fixed pulley 44 and the movable element 48 is larger than the allowable bending of the optical fiber 7 (or the bundle 32). Thereby, light can be guided without impairing the light guide characteristics of the optical fiber 7 guided by the moving mechanism 40.
  • the exposure apparatus 1 is provided with the fixed pulley 44 and the linear actuator 46 that assist the movement of the optical fiber 7 as the moving mechanism 40, it is not always necessary to provide it. Since the moving mechanism that moves the guide optical unit 30 only needs to maintain the optical path length of the guide optical unit 30 within a predetermined range, when using the optical fiber 7 as in the present embodiment, both ends of the optical fiber 7 are fixed, What is necessary is just to make it the state which can move at least one part of another area
  • FIG. 6 is a side view of the exposure apparatus according to the second embodiment.
  • the exposure apparatus 101 of Embodiment 2 shown in FIG. 6 has the same configuration as the exposure apparatus 1 except for the configuration of the guide optical unit 130 and the moving mechanism 140 of the illumination optical system 102. A description of the same configuration as that of the exposure apparatus 1 will be omitted, and a configuration unique to the exposure apparatus 101 will be described.
  • the exposure apparatus 101 includes a frame 1F, an illumination optical system 102, a projection optical system 3, a moving device 21, and a moving mechanism 140.
  • the illumination optical system 102 includes a guide optical unit 130 and an illumination optical unit 31.
  • the guide optical unit 130 includes a plurality of partial guide optical units 131.
  • the partial guide optical unit 131 includes a beam expander including a concave lens 132 and a convex lens 133, a bundle fiber 134, a condenser lens 135, and a rod integrator 136.
  • One partial guide optical unit 131 is provided for each of the partial illumination optical units 10C, 10R, and 10L. In the partial illumination optical units 10C, 10R, and 10L of the present embodiment, the relay optical system 11 is not disposed.
  • the support base 20 supports the light source 6 and a part of the partial guide optical unit 131 on the light source 6 side.
  • the partial guide optical unit 131 expands the light output from the light source 6 with a beam expander composed of a concave lens 132 and a convex lens 133 and makes the light enter the bundle fiber 134.
  • the bundle fiber 134 is an aggregate of optical fibers in which a plurality of optical fibers are collected, and guides light through each optical fiber.
  • the bundle fiber 134 has one end fixed to the light source 6 and the other end fixed to the illumination optical unit 31.
  • the other end of the bundle fiber 134 is supported by the housing of the illumination optical unit 31.
  • the bundle fiber 134 of the present embodiment has a configuration in which 130 optical fibers having an NA of 0.2 and ⁇ 0.25 mm are bundled, and the overall ⁇ is 3 mm.
  • the light output from the bundle fiber 134 enters the condenser lens 135.
  • the condenser lens 135 is supported by the housing of the illumination optical unit 31.
  • the rod integrator 136 is disposed at a position facing the other end of the bundle fiber 134, that is, the end on the light output side through the condenser lens 135.
  • the rod integrator 136 is output from the bundle fiber 134 and receives light collected by the condenser lens 135.
  • the rod integrator 136 is supported by the housing of the illumination optical unit 31, specifically, the support portion 22 that supports the illumination optical unit 31.
  • the rod integrator 136 emits the incident light toward the illumination optical unit 31.
  • the rod integrator 136 of this embodiment is a hexagonal rod integrator.
  • the moving mechanism 140 has a plurality of partial moving mechanisms 141 arranged corresponding to the partial guide optical unit 131.
  • the partial moving mechanism 141 maintains the optical path length from the end (first end) on the light source 6 side of the corresponding partial guide optical unit 131 to the illumination optical unit 31 within a predetermined range, while the partial guide optical unit 131 This is a mechanism for moving the position, and the corresponding partial guide optical unit 131 is moved in accordance with the movement of the illumination optical unit 31.
  • the partial movement mechanism 141 includes a fixed pulley 144 and a linear actuator 146 that are mechanisms for moving the bundle fiber 134.
  • the linear actuator 146 includes a mover 148 and a stator 150.
  • the fixed pulley 144 and the linear actuator 146 have the same configuration as the fixed pulley 44 and the linear actuator 46 of the moving mechanism 40.
  • the exposure apparatus 101 is configured as described above.
  • a bundle fiber as an optical member for guiding light
  • the number of fibers can be increased, and output from the end face of the guide optical unit 130 (end face of the bundle fiber). Can be averaged, and fluctuations in the total amount of emitted light on the exit end face can be reduced.
  • the exposure apparatus 101 can be provided for each partial guide optical unit 131 as in the moving mechanism 140 of the present embodiment. However, like the exposure apparatus 1, all the partial guide optical units 131 are formed by one mechanism. May be moved.
  • FIG. 7 is a side view of the exposure apparatus according to the third embodiment.
  • FIG. 8 is a side view showing a state where the illumination optical unit and the projection optical system of the exposure apparatus shown in FIG. 7 are moved.
  • the exposure apparatus 201 of Embodiment 3 shown in FIGS. 7 and 8 has the same configuration as the exposure apparatus 101 except for the configuration of the guide optical unit 230 and the moving mechanism 240 of the illumination optical system 202. A description of the same configuration as that of the exposure apparatus 101 is omitted, and a configuration unique to the exposure apparatus 201 will be described.
  • the exposure apparatus 201 uses a reflecting member instead of an optical fiber as a guide optical unit.
  • the exposure apparatus 201 includes a frame 1F, an illumination optical system 202, a projection optical system 3, a moving device 21, and a moving mechanism 240.
  • the illumination optical system 202 includes a guide optical unit 230 and an illumination optical unit 31.
  • the guide optical unit 230 includes a plurality of partial guide optical units 231.
  • the partial guide optical unit 231 includes a beam expander including a concave lens 232 and a convex lens 233, a mirror 234, a mirror 235, a condenser lens 236, and a rod integrator 237.
  • One partial guide optical unit 231 is provided for each of the partial illumination optical units 10C, 10R, and 10L. Note that the relay optical system 11 is not arranged in the partial illumination optical units 10C, 10R, and 10L of the present embodiment.
  • the support base 20 supports the light source 6 and a part of the partial guide optical unit 231 on the light source 6 side.
  • the partial guide optical unit 231 expands the light output from the light source 6 with a beam expander composed of a concave lens 232 and a convex lens 233 to obtain parallel light.
  • the light that has passed through the convex lens 233 is reflected by the mirror 234 and then reflected by the mirror 235.
  • the light reflected by the mirror 235 enters the condenser lens 236 and is condensed.
  • the light condensed by the condenser lens 236 is incident on the rod integrator 237.
  • the rod integrator 237 emits the incident light toward the illumination optical unit 31.
  • the mirror 234 is supported by the mirror driving unit 242.
  • the mirror 235 is supported by the mirror driving unit 243.
  • the condenser lens 236 and the rod integrator 237 are supported by the housing of the illumination optical unit 31.
  • the mirror driving unit 243 is supported by the housing of the illumination optical unit 31. Therefore, the mirror 235, the condenser lens 236, and the rod integrator 237 move integrally with the illumination optical unit 31.
  • the moving mechanism 240 has a plurality of partial moving mechanisms 241 arranged corresponding to the partial guide optical units 231.
  • the partial moving mechanism 241 maintains the optical path length from the end (first end) on the light source 6 side of the corresponding partial guide optical unit 231 to the illumination optical unit 31 within a predetermined range, while the partial guide optical unit 231 It is a mechanism for moving the position, and the corresponding partial guide optical unit 231 is moved in accordance with the movement of the illumination optical unit 31.
  • the partial movement mechanism 241 includes a mirror driving unit 242 that moves the mirror 234 and a mirror driving unit 243 that moves the mirror 235.
  • the mirror driving unit 242 is a mechanism that moves the mirror 234 in the X direction and rotates the mirror 234 around the Y axis.
  • the mirror driving unit 243 is a mechanism that rotates the mirror 235 around the Y axis.
  • the partial movement mechanism 241 rotates the mirror 234 around the Y axis while moving the mirror 234 in the X direction by the mirror driving unit 242 in accordance with the movement of the illumination optical unit 31 and the projection optical system 3 in the X direction.
  • the partial movement mechanism 241 rotates the mirror 235 around the Y axis by the mirror driving unit 243 in accordance with the movement of the illumination optical unit 31 and the projection optical system 3 in the X direction. In this way, the partial movement mechanism 241 rotates the mirrors 234 and 235 so that the light source 6 can be moved even if the illumination optical unit 31 and the projection optical system 3 move in the X direction as shown in FIGS.
  • the light output from is reflected by the mirrors 234 and 235 to maintain the state of being incident on the illumination optical unit 31. Further, the partial moving mechanism 241 moves the mirror 234 in the X direction, so that the illumination optical unit 31 and the projection optical system 3 move in the X direction as shown in FIGS.
  • the optical path length of the light from the end portion (first end portion) to the illumination optical unit 31 is maintained within a predetermined range.
  • the mirrors 234 and 235 are moved in accordance with the movement of the illumination optical unit 31 and the projection optical system 3 in the X direction.
  • the optical path length of light from the end (first end) on the light source 6 side to the illumination optical unit 31 is maintained within a predetermined range by moving the mirror 234, which is one of the mirrors, in the X direction while rotating. can do.
  • FIG. 9 is a side view of the exposure apparatus according to the fourth embodiment.
  • FIG. 10 is a side view showing a state where the illumination optical unit and the projection optical system of the exposure apparatus shown in FIG. 9 are moved.
  • the exposure apparatus 301 of Embodiment 4 shown in FIGS. 9 and 10 has the same configuration as the exposure apparatus 201 except for the configuration of the guide optical unit 330 and the moving mechanism 340. A description of the same configuration as that of the exposure apparatus 201 will be omitted, and a configuration specific to the exposure apparatus 301 will be described.
  • the exposure apparatus 301 includes a frame 1F, an illumination optical system 302, a projection optical system 3, a moving device 21, and a moving mechanism 340.
  • the illumination optical system 302 includes a guide optical unit 330 and an illumination optical unit 31.
  • the guide optical unit 330 includes a plurality of partial guide optical units 331.
  • the partial guide optical unit 331 includes a beam expander including a concave lens 332 and a convex lens 333, mirrors 334, 335, 336, 337, a condenser lens 338, and a rod integrator 339.
  • One partial guide optical unit 331 is provided for each of the partial illumination optical units 10C, 10R, and 10L. Note that the relay optical system 11 is not arranged in the partial illumination optical units 10C, 10R, and 10L of the present embodiment.
  • the support base 20 supports the light source 6 and a part of the partial guide optical unit 331 on the light source 6 side.
  • the partial guide optical unit 331 expands the light output from the light source 6 with a beam expander composed of a concave lens 332 and a convex lens 333 to obtain parallel light.
  • the light that has passed through the convex lens 333 is reflected by the mirror 334 and then is reflected in the order of the mirror 335, the mirrors 336, and 337.
  • the light reflected by the mirror 337 enters the condenser lens 338 and is condensed.
  • the light condensed by the condenser lens 338 is incident on the rod integrator 339.
  • the rod integrator 339 emits incident light toward the illumination optical unit 31.
  • the mirror 334 is fixed to the frame 1F and fixed to a predetermined position with respect to the light source 6.
  • the mirror 335 is supported by the mirror driving unit 342.
  • the mirror 336 is supported by the mirror driving unit 343.
  • the mirror 337, the condenser lens 338, and the rod integrator 339 are supported by the housing of the illumination optical unit 31. Accordingly, in the partial guide optical unit 331, the mirror 334 is fixed at a predetermined position, and the mirror 337, the condenser lens 338, and the rod integrator 339 move integrally with the illumination optical unit 31.
  • the moving mechanism 340 includes a plurality of partial moving mechanisms 341 arranged corresponding to the partial guide optical unit 331.
  • the partial movement mechanism 341 maintains the optical path length from the end portion (first end portion) on the light source 6 side of the corresponding partial guide optical unit 331 to the illumination optical unit 31 within a predetermined range, while the partial guide optical unit 331 This is a mechanism for moving the position, and the corresponding partial guide optical unit 331 is moved in accordance with the movement of the illumination optical unit 31.
  • the partial movement mechanism 341 includes a mirror driving unit 342 that moves the mirror 335 and a mirror driving unit 343 that moves the mirror 336.
  • the mirror 337, the condenser lens 338, and the rod integrator 339 move together with the illumination optical unit 31.
  • the mirror driving unit 342 is a mechanism that moves the mirror 335 in the Y direction.
  • the mirror driving unit 343 is a mechanism that moves the mirror 336 in the X direction and the Y direction.
  • the partial movement mechanism 341 moves the mirror 335 in the Y direction by the mirror driving unit 342 in accordance with the movement of the illumination optical unit 31 and the projection optical system 3 in the X direction.
  • the partial movement mechanism 341 moves the mirror 336 in the X direction and the Y direction by the mirror driving unit 343 in accordance with the movement of the illumination optical unit 31 and the projection optical system 3 in the X direction.
  • the light source 6 outputs light in the X direction
  • the mirrors 334, 335, 336, and 337 are in a direction to refract the light at right angles on the XY plane.
  • the mirror driving unit 343 moves the mirror 336 to a position where the X coordinate is the same as the mirror 337 and the Y coordinate is the same as the mirror 335.
  • the partial movement mechanism 341 moves the mirrors 335 and 336, so that the light source 6 can be moved even if the illumination optical unit 31 and the projection optical system 3 move in the X direction as shown in FIGS. 9 and 10.
  • the light output from is reflected by the mirrors 334, 335, 336, and 337 to maintain the state of being incident on the illumination optical unit 31.
  • the partial movement mechanism 341 moves the mirror 335 and the mirror 336 in the Y direction, so that when the distance between the mirror 335 and the mirror 336 increases, the distance between the mirror 334 and the mirror 335, and the mirror 336 and the mirror 337. Reduce the distance to When the distance between the mirror 335 and the mirror 336 decreases, the partial movement mechanism 341 increases the distance between the mirror 334 and the mirror 335 and increases the distance between the mirror 336 and the mirror 337. 9 and 10, even if the illumination optical unit 31 and the projection optical system 3 move in the X direction, the light source 6 side end (first end) to the illumination optical unit 31 can be moved. The optical path length of light is maintained within a predetermined range.
  • the mirror is adjusted in accordance with the movement of the illumination optical unit 31 and the projection optical system 3 in the X direction.
  • the optical path length of light from the end (first end) on the light source 6 side to the illumination optical unit 31 can be maintained within a predetermined range.
  • the exposure apparatus 301 can maintain a state in which light is incident on the illumination optical unit 31 without rotating the mirror even if the positions of the illumination optical unit 31 and the projection optical system 3 in the X direction change. it can. Thereby, control can be simplified.
  • FIG. 11 is a side view of the exposure apparatus according to the fifth embodiment.
  • FIG. 12 is a side view showing a state where the illumination optical unit and the projection optical system of the exposure apparatus shown in FIG. 11 are moved.
  • the exposure apparatus 401 of Embodiment 4 shown in FIGS. 11 and 12 has the same configuration as the exposure apparatus 301 except for the configuration of the guide optical unit 430 and the moving mechanism 440. A description of the same configuration as that of the exposure apparatus 301 will be omitted, and a configuration specific to the exposure apparatus 401 will be described.
  • the exposure device 401 includes a frame 1F, an illumination optical system 402, a projection optical system 3, a moving device 21, and a moving mechanism 440.
  • the illumination optical system 402 includes a guide optical unit 430 and an illumination optical unit 31.
  • the guide optical unit 430 includes a plurality of partial guide optical units 431.
  • the partial guide optical unit 431 includes a beam expander including a concave lens 432 and a convex lens 433, a mirror 434, a corner cube 435, a mirror 436, a condenser lens 437, and a rod integrator 438.
  • One partial guide optical unit 431 is provided for each of the partial illumination optical units 10C, 10R, and 10L. Note that the relay optical system 11 is not arranged in the partial illumination optical units 10C, 10R, and 10L of the present embodiment.
  • the support base 20 supports a part of the light source 6 and the partial guide optical unit 431 on the light source 6 side.
  • the partial guide optical unit 431 expands the light output from the light source 6 with a beam expander composed of a concave lens 432 and a convex lens 433 to obtain parallel light.
  • the light that has passed through the convex lens 433 is reflected by the mirror 434 and then is reflected in the order of the corner cube 435 and the mirror 436.
  • the light reflected by the mirror 436 enters the condenser lens 437 and is condensed.
  • the light condensed by the condenser lens 437 enters the rod integrator 438.
  • the rod integrator 438 emits the incident light toward the illumination optical unit 31.
  • the mirrors 434 and 436 are fixed to the frame 1F and fixed to a predetermined position with respect to the light source 6.
  • the corner cube 435 is supported by the drive unit 442.
  • the condenser lens 437 and the rod integrator 438 are supported by the housing of the illumination optical unit 31. Accordingly, in the partial guide optical unit 431, the mirrors 434 and 436 are fixed at predetermined positions, and the condenser lens 437 and the rod integrator 438 move integrally with the illumination optical unit 31.
  • the moving mechanism 440 has a plurality of partial moving mechanisms 441 arranged corresponding to the partial guide optical unit 431.
  • the partial moving mechanism 441 maintains the optical path length from the end (first end) on the light source 6 side of the corresponding partial guide optical unit 431 to the illumination optical unit 31 within a predetermined range, while the partial guide optical unit 431 This is a mechanism for moving the position, and the corresponding partial guide optical unit 431 is moved in accordance with the movement of the illumination optical unit 31.
  • the partial moving mechanism 441 includes a driving unit 442 that moves the corner cube 435. In the exposure apparatus 401, as described above, the condenser lens 437 and the rod integrator 438 move integrally with the illumination optical unit 31.
  • the drive unit 442 is a mechanism that moves the corner cube 435 in the Y direction.
  • the partial movement mechanism 441 moves the corner cube 435 in the Y direction by the driving unit 442 in accordance with the movement of the illumination optical unit 31 and the projection optical system 3 in the X direction.
  • the light source 6 outputs light in the X direction
  • the mirrors 434 and 436 refract the light at right angles on the XY plane.
  • the drive unit 442 moves in the Y direction by a distance that is half the amount of movement of the illumination optical unit 31 in the X direction. In this way, the partial movement mechanism 441 moves the corner cube 435 so that the illumination optical unit 31 and the projection optical system 3 move from the light source 6 even if the illumination optical unit 31 and the projection optical system 3 move in the X direction, as shown in FIGS.
  • the output light is reflected by the mirror 434, the corner cube 435, and the mirror 436, and the state where the light is incident on the illumination optical unit 31 is maintained. Further, the partial movement mechanism 441 moves the corner cube 435 in the Y direction, so that even if the illumination optical unit 31 and the projection optical system 3 move in the X direction, the end of the partial guide optical unit 431 on the light source 6 side. The optical path length of light from the (first end) to the illumination optical unit 31 is maintained within a predetermined range.
  • a corner cube 435 is provided as a mirror in the guide optical unit 430, and the corner cube 435 is moved by moving the position of the corner cube 435, which is one of the mirrors, by the moving mechanism 440.
  • the optical path length of the light from the end (first end) on the light source 6 side of the partial guide optical unit 431 to the illumination optical unit 31 is maintained within a predetermined range only by controlling the movement in one direction of the position. Can be executed. Thereby, control can be simplified.
  • FIG. 13 is a side view of the exposure apparatus according to the sixth embodiment.
  • FIG. 14 is a view of the exposure apparatus according to the sixth embodiment as seen from between the projection optical system and the mask.
  • FIG. 15 is a view of the exposure apparatus according to the sixth embodiment as viewed from the direction in which the illumination optical unit and the projection optical system move.
  • FIG. 16 is a side view showing a state where the illumination optical unit and the projection optical system of the exposure apparatus shown in FIG. 13 are moved.
  • FIG. 17 is a side view showing a state where the illumination optical unit and the projection optical system of the exposure apparatus shown in FIG. 13 are moved.
  • the exposure apparatus 501 includes a frame 1F, an illumination optical system 502, a projection optical system 503, a moving apparatus 21, and a moving mechanism 540.
  • the illumination optical system 502 includes a guide optical unit 530 and an illumination optical unit 550.
  • the projection optical system 3 included in the exposure apparatus 1 includes a plurality of MLAs 8, but the projection optical system 503 included in the exposure apparatus 501 of the present embodiment extends in the Y-axis direction. It has one MLA 508.
  • the illumination optical unit 550 emits light to the projection optical system 503 using one concave mirror 516.
  • the exposure apparatus 1 guides the light output from one light source 506 by the guide optical unit 530 and causes the light to enter the illumination optical unit 550.
  • the support 20 supports a part of the light source 506 and the guide optical unit 530 on the light source 506 side.
  • the guide optical unit 530 includes a condenser lens 531 and an optical fiber 532.
  • the guide optical unit 530 condenses the light emitted from the light source 506 by the condenser lens 531 and enters the optical fiber 532.
  • the light guided by the optical fiber 532 enters the illumination optical unit 550.
  • one end of the optical fiber 532 is fixed to the light source 506, and the other end is fixed to the illumination optical unit 550.
  • the moving mechanism 540 has the same configuration as the moving mechanism 40 of the exposure apparatus 1 and includes a fixed pulley 44 and a linear actuator 46.
  • the moving mechanism 540 moves the mover 48 of the linear actuator 46 in the X direction in accordance with the movement of the illumination optical unit 550 and the projection optical system 503 in the X direction, and smoothly assists the movement of the optical fiber 532 in the X direction. .
  • the illumination optical unit 550 is configured to output the light guided by the guide optical unit 530 as light for illuminating the mask M.
  • the illumination optical unit 550 has an optical system that forms an illumination field S shown in FIG.
  • the light guided by the guide optical unit 530 is collimated by the relay optical system 511, reflected by the mirror 512, and enters the fly-eye lens 514 via the relay optical system 513.
  • the relay optical systems 511 and 513 enlarge the exit end face of the optical fiber 532 to a predetermined multiple and enter the incident face of the fly-eye lens 514.
  • the fly-eye lens 514 has a plurality of element lenses arranged and joined.
  • the fly-eye lens 514 passes through the ⁇ stop 515.
  • the ⁇ stop 515 determines the illumination NA by limiting the diameter of light passing therethrough.
  • the light that has passed through the ⁇ stop 515 is condensed on the surface of the mask M (surface on the side of the illumination optical unit 550) by the concave mirror 516 to form an illumination field S.
  • the projection optical system 503 has one MLA 508 extending in the Y-axis direction.
  • the MLA 508 is disposed at a position corresponding to the illumination visual field S formed by the illumination optical unit 550.
  • the MLA 508 is mounted on the stage 503S of the projection optical system 503. As the stage 503S moves along the projection system guide 5P, the MLA 508 moves in the X-axis direction.
  • the exposure apparatus 501 is configured as described above. As shown in FIGS. 16 and 17, the movable element 48 of the linear actuator 46 is moved in the same direction as the movement of the illumination optical unit 550 and the projection optical system 503 in the X direction. Are moved the same distance as the illumination optical unit 550 and the projection optical system 503. That is, the exposure apparatus 501 performs the same control as the movement mechanism 40 of the exposure apparatus 1. In this manner, the optical fiber 532 can be moved more smoothly in the X direction by the moving mechanism 540, so that the optical fiber 532 can be driven more smoothly by the illumination optical unit 550.
  • the light guide 6 side of the guide optical unit 530 is composed of the guide optical unit 530 and the moving mechanism 540 as described above.
  • FIG. 18 is a flowchart showing each step of the device manufacturing method according to the present embodiment.
  • the function and performance of the device are designed (step S201).
  • a mask M based on the design in step S201 is manufactured (step S202).
  • a process in which the mask pattern of the mask M manufactured in step S202 is projected and exposed onto the plate P on which the resist has been applied, a process in which the exposed plate P is developed, a process in which the developed plate P is heated, and an etching process A substrate process including the above is performed (step S203).
  • the pattern formed on the mask M by the exposure apparatuses 1, 101, 201, 301, 401, and 501 executing the exposure method according to the present embodiment That is, a pattern having the same shape as the mask pattern is transferred to the plate P.
  • the plate P to which the mask pattern is transferred is processed based on the transferred pattern by development, heating, and etching.
  • device assembly including processing processes such as a dicing process, a bonding process, and a packaging process is performed (step S204), and the device is completed through subsequent inspection (step S205).
  • the projection system (mainly the projection optical system) of the exposure apparatuses 1, 101, 201, 301, 401, and 501 of the above embodiment has been described as a case where the projection magnification is 1, the present invention is not limited to this.
  • the exposure apparatuses 1, 101, 201, 301, 401, and 501 can change the projection magnification to an arbitrary magnification by changing the arrangement and focal position of lenses that constitute the optical system of the projection system.
  • the exposure apparatuses 1, 101, 201, 301, 401, and 501 have a configuration in which the projection magnification is less than 1, the line width of the mask pattern is reduced by the projection magnification, and an image is formed on the plate P, that is, the mask pattern
  • the line width may be several times (2 times, 3 times) the line width of the pattern formed on the plate P.
  • the exposure apparatus 1, 101, 201, 301, 401, 501 has a configuration in which the projection magnification is larger than 1, the line width of the mask pattern is enlarged by the projection magnification, and an image is formed on the plate P, that is,
  • the line width of the mask pattern may be a fraction (1/2, 1/3) of the line width of the pattern imaged on the plate P.
  • the plate P is not limited to a glass substrate for a display device, but also a semiconductor wafer for manufacturing a semiconductor device, a ceramic wafer for a thin film magnetic head, or a mask or reticle used in an exposure apparatus (synthetic quartz, A silicon wafer) or the like can be used.
  • the present invention relates to a twin stage type exposure having a plurality of substrate stages as disclosed in US Pat. No. 6,341,007, US Pat. No. 6,208,407, US Pat. No. 6,262,796 and the like. It can also be applied to devices.
  • the present invention relates to a substrate stage for holding a substrate as disclosed in US Pat. No. 6,897,963 and European Patent Application No. 1713113, and a reference mark without holding the substrate.
  • the present invention can also be applied to an exposure apparatus that includes a formed reference member and / or a measurement stage on which various photoelectric sensors are mounted.
  • An exposure apparatus including a plurality of substrate stages and measurement stages can be employed.
  • the types of exposure apparatuses 1, 101, 201, 301, 401, and 501 are not limited to exposure apparatuses for manufacturing liquid crystal display elements or displays, but exposure apparatuses for manufacturing semiconductor elements that expose a semiconductor element pattern on a plate P. It can be widely applied to an exposure apparatus for manufacturing a thin film magnetic head, an imaging device (CCD), a micromachine, a MEMS, a DNA chip, a reticle, a mask, or the like.
  • a light-transmitting mask in which a predetermined light-shielding pattern (or phase pattern / dimming pattern) is formed on a light-transmitting substrate is used.
  • a variable shaped mask also called an electronic mask, an active mask, or an image generator
  • a pattern forming apparatus including a self-luminous image display element may be provided instead of the variable molding mask including the non-luminous image display element.
  • the exposure apparatuses 1, 101, 201, 301, 401, and 501 are used to convert various subsystems including the constituent elements recited in the claims of the present application into predetermined mechanical accuracy, electrical accuracy, and optical accuracy. Manufactured by assembling to maintain accuracy. In order to ensure these various accuracies, before and after assembly, various optical systems are adjusted to achieve optical accuracy, various mechanical systems are adjusted to achieve mechanical accuracy, and various electrical systems are Adjustments are made to achieve electrical accuracy.
  • the assembly process from the various subsystems to the exposure apparatus includes mechanical connection, electrical circuit wiring connection, pneumatic circuit piping connection and the like between the various subsystems.
  • the exposure apparatus is preferably manufactured in a clean room in which the temperature and cleanliness are controlled.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

The present invention provides an exposure device for exposing a plate while causing an illumination optical system to move relative to a mask at high speed, an exposure method for same, and a method for manufacturing the device. An exposure device for transferring a pattern onto the plate using illumination light outputted by a light source is provided with a mask-support mechanism for supporting a mask on which the pattern is formed, and a plate-support mechanism for supporting the plate, wherein the exposure device has: an illumination optical system for irradiating illumination light onto the mask, a lens array for projecting onto the plate the image of a pattern illuminated using the illumination optical system, and a moving device, provided with a support part for supporting at least a portion of the illumination optical system and the lens array, the moving device moving the support part relative to the light source in a direction along the mask and plate.

Description

露光装置、露光方法及びデバイス製造方法Exposure apparatus, exposure method, and device manufacturing method
 本発明は、マスク上のパターンをプレート上に投影露光する露光装置、露光方法及びデバイス製造方法に関する。 The present invention relates to an exposure apparatus, an exposure method, and a device manufacturing method for projecting and exposing a pattern on a mask onto a plate.
 近年、情報表示装置として、液晶又は有機EL(Electro Luminescence)等の素子を用いた薄型の表示パネルが多用されている。これらの表示パネルは、薄いガラス基板に透明薄膜電極をフォトリソグラフィ手法でパターンニングすることにより製造されている。このフォトリソグラフィ工程で、マスクに形成されたパターンを感光基板(以下、プレートともいう)に投影露光する装置として、MLA(Micro Lens Array)を用いてパターンの像をプレートに投影する露光装置がある(例えば、特許文献1)。特許文献1に記載の露光装置では、パターンの像をプレートに露光する際に、マスクおよびウエハと、マスクを照明する照明光学系およびパターンの像を投影する投影光学系としてのMLAと、を相対移動させることが開示されている。 In recent years, thin display panels using elements such as liquid crystal or organic EL (Electro Luminescence) have been widely used as information display devices. These display panels are manufactured by patterning transparent thin film electrodes on a thin glass substrate by a photolithography technique. As an apparatus that projects and exposes a pattern formed on a mask onto a photosensitive substrate (hereinafter also referred to as a plate) in this photolithography process, there is an exposure apparatus that projects an image of a pattern onto a plate using an MLA (Micro-Lens-Array). (For example, patent document 1). In the exposure apparatus described in Patent Document 1, when a pattern image is exposed on a plate, a mask and a wafer, an illumination optical system that illuminates the mask, and an MLA as a projection optical system that projects the pattern image are relative to each other. Displacement is disclosed.
特開平9-244255号公報JP-A-9-244255
 一般に、露光装置ではタクトタイムを向上させるため、プレートを露光する際に移動させるステージ等の移動速度(スキャン速度)を高速化することが求められている。ところが、特許文献1に記載のMLAを用いた露光装置では、照明光学系およびMLAを、マスクおよびウエハに対して相対移動させる場合、光源としての高圧水銀ランプが付設された照明光学系を移動(スキャン)させる必要があり、その移動速度を高速化することが困難になる恐れがある。 Generally, in order to improve the tact time in an exposure apparatus, it is required to increase the moving speed (scanning speed) of a stage or the like that is moved when the plate is exposed. However, in the exposure apparatus using the MLA described in Patent Document 1, when the illumination optical system and the MLA are moved relative to the mask and the wafer, the illumination optical system provided with a high-pressure mercury lamp as a light source is moved ( Scanning), and it may be difficult to increase the moving speed.
 本発明の態様は、照明光をマスクに対して高速に相対移動させながらプレートを露光することができる露光装置、露光方法及びデバイス製造方法を提供することを目的とする。 An object of an aspect of the present invention is to provide an exposure apparatus, an exposure method, and a device manufacturing method that can expose a plate while relatively moving illumination light with respect to a mask at high speed.
 本発明の第1の態様に従えば、パターンが形成されたマスクを支持するマスク支持機構とプレートを保持するプレート支持機構とを備え、光源から出力される照明光を用いて前記パターンを前記プレートに転写する露光装置であって、前記照明光を前記マスクに照射させる照明光学系と、前記照明光学系によって照明される前記パターンの像を前記プレートに投影するレンズアレイと、前記照明光学系の少なくとも一部及び前記レンズアレイを支持する支持部を備え、前記支持部を前記光源に対して相対的に前記マスク及び前記プレートに沿った方向に移動させる移動装置と、を有する露光装置が提供される。 According to the first aspect of the present invention, a mask support mechanism for supporting a mask on which a pattern is formed and a plate support mechanism for holding a plate are provided, and the pattern is placed on the plate using illumination light output from a light source. An illumination optical system that irradiates the mask with the illumination light, a lens array that projects an image of the pattern illuminated by the illumination optical system onto the plate, and an illumination optical system. There is provided an exposure apparatus comprising: a support unit that supports at least a part of the lens array; and a moving device that moves the support unit in a direction along the mask and the plate relative to the light source. The
 本発明の第2の態様に従えば、光源から出力された照明光を照明光学系を介してマスクに照射し、前記マスクに形成されたパターンをレンズアレイを介してプレートに転写する露光方法であって、前記照明光学系の少なくとも一部及び前記レンズアレイを、前記光源に対して相対的に前記マスク及び前記プレートに沿った方向に移動させつつ、前記照明光学系から前記パターンに前記照明光を照射し、前記パターンの像を前記レンズアレイを介して前記プレートに投影することを含む露光方法が提供される。 According to the second aspect of the present invention, there is provided an exposure method in which illumination light output from a light source is irradiated onto a mask via an illumination optical system, and a pattern formed on the mask is transferred to a plate via a lens array. The illumination light is transferred from the illumination optical system to the pattern while moving at least a part of the illumination optical system and the lens array in a direction along the mask and the plate relative to the light source. And an image of the pattern is projected onto the plate through the lens array.
 本発明の第3の態様に従えば、上記の露光方法によって、前記マスクに形成されたパターンをプレートに転写することと、前記パターンが転写された前記プレートを、転写された前記パターンに基づいて加工することと、を含むデバイス製造方法が提供される。 According to the third aspect of the present invention, the pattern formed on the mask is transferred to a plate by the above exposure method, and the plate to which the pattern is transferred is transferred to the plate based on the transferred pattern. And a device manufacturing method is provided.
 本発明の態様によれば、照明光学系の少なくとも一部をマスクに対して高速に相対移動させながらプレートを露光することで、照明光をマスクに対して高速に相対移動させながらプレートを露光することができる。 According to the aspect of the present invention, the plate is exposed while moving the illumination light relative to the mask at a high speed by exposing the plate while moving at least a part of the illumination optical system relative to the mask at a high speed. be able to.
図1は、実施形態1に係る露光装置の側面図である。FIG. 1 is a side view of the exposure apparatus according to the first embodiment. 図2は、実施形態1に係る露光装置を、投影光学系とマスクとの間から見た図である。FIG. 2 is a view of the exposure apparatus according to the first embodiment as seen from between the projection optical system and the mask. 図3は、実施形態1に係る露光装置を照明光学ユニット及び投影光学系が移動する方向側から見た図である。FIG. 3 is a view of the exposure apparatus according to the first embodiment as viewed from the direction in which the illumination optical unit and the projection optical system move. 図4は、図1に示す露光装置の照明光学ユニット及び投影光学系が移動した状態を示す側面図である。FIG. 4 is a side view showing a state where the illumination optical unit and the projection optical system of the exposure apparatus shown in FIG. 1 are moved. 図5は、図1に示す露光装置の照明光学ユニット及び投影光学系が移動した状態を示す側面図である。FIG. 5 is a side view showing a state where the illumination optical unit and the projection optical system of the exposure apparatus shown in FIG. 1 are moved. 図6は、実施形態2に係る露光装置の側面図である。FIG. 6 is a side view of the exposure apparatus according to the second embodiment. 図7は、実施形態3に係る露光装置の側面図である。FIG. 7 is a side view of the exposure apparatus according to the third embodiment. 図8は、図7に示す露光装置の照明光学ユニット及び投影光学系が移動した状態を示す側面図である。FIG. 8 is a side view showing a state where the illumination optical unit and the projection optical system of the exposure apparatus shown in FIG. 7 are moved. 図9は、実施形態4に係る露光装置の側面図である。FIG. 9 is a side view of the exposure apparatus according to the fourth embodiment. 図10は、図9に示す露光装置の照明光学ユニット及び投影光学系が移動した状態を示す側面図である。FIG. 10 is a side view showing a state where the illumination optical unit and the projection optical system of the exposure apparatus shown in FIG. 9 are moved. 図11は、実施形態5に係る露光装置の側面図である。FIG. 11 is a side view of the exposure apparatus according to the fifth embodiment. 図12は、図11に示す露光装置の照明光学ユニット及び投影光学系が移動した状態を示す側面図である。FIG. 12 is a side view showing a state where the illumination optical unit and the projection optical system of the exposure apparatus shown in FIG. 11 are moved. 図13は、実施形態6に係る露光装置の側面図である。FIG. 13 is a side view of the exposure apparatus according to the sixth embodiment. 図14は、実施形態6に係る露光装置を、投影光学系とマスクとの間から見た図である。FIG. 14 is a view of the exposure apparatus according to the sixth embodiment as seen from between the projection optical system and the mask. 図15は、実施形態6に係る露光装置を照明光学ユニット及び投影光学系が移動する方向側から見た図である。FIG. 15 is a view of the exposure apparatus according to the sixth embodiment as viewed from the direction in which the illumination optical unit and the projection optical system move. 図16は、図13に示す露光装置の照明光学ユニット及び投影光学系が移動した状態を示す側面図である。FIG. 16 is a side view showing a state where the illumination optical unit and the projection optical system of the exposure apparatus shown in FIG. 13 are moved. 図17は、図13に示す露光装置の照明光学ユニット及び投影光学系が移動した状態を示す側面図である。FIG. 17 is a side view showing a state where the illumination optical unit and the projection optical system of the exposure apparatus shown in FIG. 13 are moved. 図18は、本実施形態に係るデバイス製造方法の各ステップを示すフローチャートである。FIG. 18 is a flowchart showing each step of the device manufacturing method according to the present embodiment.
 本発明を実施するための形態(実施形態)につき、図面を参照しつつ詳細に説明する。以下に記載の実施形態により本発明が限定されるものではない。以下において、下は重力が作用する方向(鉛直方向)側であり、上は重力が作用する方向とは反対方向側である。 DETAILED DESCRIPTION OF EMBODIMENTS Embodiments (embodiments) for carrying out the present invention will be described in detail with reference to the drawings. The present invention is not limited to the embodiments described below. In the following, the lower side is the direction (vertical direction) in which gravity acts, and the upper side is the direction opposite to the direction in which gravity acts.
(実施形態1)
 以下、図1から図5を用いて、実施形態1の露光装置について説明する。図1は、実施形態1に係る露光装置の側面図である。図2は、実施形態1に係る露光装置を、投影光学系とマスクとの間から見た図である。図3は、実施形態1に係る露光装置を照明光学ユニット及び投影光学系が移動する方向側から見た図である。露光装置1は、投影光学系にMLA(Micro Lens Array)を用いて、照明光学ユニット及び投影光学系をマスク及びプレート(感光基板)に対して移動(走査)させることにより、プレートにマスクのパターン(マスクパターン)を露光する走査型の露光装置である。以下においては、投影光学系の光軸AXL(図1参照)と平行な方向にZ軸をとり、照明光学系及び投影光学系の走査方向にX軸をとり、Z軸とX軸とに直交する方向にY軸をとる。まず、露光装置1の概要を説明する。
(Embodiment 1)
The exposure apparatus according to the first embodiment will be described below with reference to FIGS. FIG. 1 is a side view of the exposure apparatus according to the first embodiment. FIG. 2 is a view of the exposure apparatus according to the first embodiment as seen from between the projection optical system and the mask. FIG. 3 is a view of the exposure apparatus according to the first embodiment as viewed from the direction in which the illumination optical unit and the projection optical system move. The exposure apparatus 1 uses a micro lens array (MLA) as a projection optical system, and moves (scans) the illumination optical unit and the projection optical system with respect to the mask and the plate (photosensitive substrate), thereby forming a mask pattern on the plate. This is a scanning type exposure apparatus that exposes (mask pattern). In the following, the Z axis is taken in a direction parallel to the optical axis AXL (see FIG. 1) of the projection optical system, the X axis is taken in the scanning direction of the illumination optical system and the projection optical system, and orthogonal to the Z axis and the X axis. The Y axis is taken in the direction of First, the outline of the exposure apparatus 1 will be described.
<露光装置の概要>
 露光装置1は、フレーム1Fと、照明光学系2と、投影光学系3と、移動装置21と、移動機構40と、を含む。照明光学系2は、案内光学ユニット30と、照明光学ユニット31と、を有する。露光装置1は、案内光学ユニット(第2ユニット)30と照明光学ユニット(第1ユニット)31と移動機構40が照明装置となる。照明装置は、照明光学ユニット31と案内光学ユニット30と移動機構40とに加え光源6を含んでもよい。露光装置1は、制御装置9によって制御される。フレーム1Fは、基部1Vと、基部1Vに取り付けられた側部1Wと、照明光学ユニット31を支持する一対の照明系ガイド5Lと、投影光学系3を支持する一対の投影系ガイド5Pとを有する。基部1Vは、露光装置1の設置対象(例えば、基礎)に取り付けられて、露光装置1の下部に位置することになる。基部1Vの上部には、側部1Wが取り付けられている。側部1Wには、一対の照明系ガイド5Lと、一対の投影系ガイド5Pとが取り付けられている。一対の照明系ガイド5Lと一対の投影系ガイド5Pとは、前者が後者よりも上側に配置されて、側部1Wに支持される。
<Outline of exposure apparatus>
The exposure apparatus 1 includes a frame 1F, an illumination optical system 2, a projection optical system 3, a moving device 21, and a moving mechanism 40. The illumination optical system 2 includes a guide optical unit 30 and an illumination optical unit 31. In the exposure apparatus 1, the guide optical unit (second unit) 30, the illumination optical unit (first unit) 31, and the moving mechanism 40 serve as an illumination apparatus. The illumination device may include the light source 6 in addition to the illumination optical unit 31, the guide optical unit 30, and the moving mechanism 40. The exposure apparatus 1 is controlled by the control device 9. The frame 1F includes a base 1V, side portions 1W attached to the base 1V, a pair of illumination system guides 5L that support the illumination optical unit 31, and a pair of projection system guides 5P that support the projection optical system 3. . The base 1 </ b> V is attached to an installation target (for example, a foundation) of the exposure apparatus 1 and is positioned below the exposure apparatus 1. A side portion 1W is attached to the upper portion of the base portion 1V. A pair of illumination system guides 5L and a pair of projection system guides 5P are attached to the side portion 1W. As for a pair of illumination system guide 5L and a pair of projection system guide 5P, the former is arrange | positioned above the latter and is supported by the side part 1W.
 照明系ガイド5L及び投影系ガイド5Pは、X軸と平行な方向に向かって延在している。一対の照明系ガイド5L及び一対の投影系ガイド5Pは、Y軸方向に所定の間隔を空けて配置される。照明光学ユニット31は、一対の照明系ガイド5Lを跨いでこれらに支持される。そして、照明光学ユニット31は、一対の照明系ガイド5Lに沿ってX軸方向(図1の矢印xlで示す方向)に移動する。投影光学系3は、一対の投影系ガイド5Pを跨いでこれらに支持される。そして、投影光学系3は、一対の投影系ガイド5Pに沿ってX軸方向(図1の矢印xpで示す方向)に移動する。照明系ガイド5Lは投影系ガイド5Pよりも上に配置されるので、照明光学ユニット31は投影光学系3よりも上に配置される。 The illumination system guide 5L and the projection system guide 5P extend in a direction parallel to the X axis. The pair of illumination system guides 5L and the pair of projection system guides 5P are arranged at a predetermined interval in the Y-axis direction. The illumination optical unit 31 is supported by these across the pair of illumination system guides 5L. The illumination optical unit 31 moves in the X-axis direction (the direction indicated by the arrow xl in FIG. 1) along the pair of illumination system guides 5L. The projection optical system 3 is supported by these across the pair of projection system guides 5P. Then, the projection optical system 3 moves along the pair of projection system guides 5P in the X-axis direction (the direction indicated by the arrow xp in FIG. 1). Since the illumination system guide 5L is disposed above the projection system guide 5P, the illumination optical unit 31 is disposed above the projection optical system 3.
 基部1Vの上部には、プレートステージ1Sが設けられている。プレートステージ1Sは、露光対象のプレートPを載置し、支持する。本実施形態において、プレートステージ1Sは、プレートPをホルダに保持した状態で載置する。なお、本実施形態のプレートPは、一例として液晶表示素子製造用のフォトレジスト(感光材料)が塗布された一辺の長さもしくは対角長が500mm以上の平板状のガラスプレートである。なお、そのプレートPとしては、薄膜磁気ヘッド製造用のセラミックス基板又は半導体素子製造用の円形の半導体ウエハ等も使用できる。マスクステージ1Tは、マスクMを支持する。マスクMは、プレートステージ1Sの上方で、側部1Wからフレーム1Fの内側に突出したマスクステージ1Tに支持される。本実施形態において、マスクステージ1Tは、マスクMをホルダに保持した状態で載置し、支持する。このようにすることで、プレートステージ1Sは、マスクステージ1Tに支持されたマスクMに対向させた状態にプレートPを支持する。マスクパターンをプレートPに投影露光している間、マスクMはマスクステージ1Tに設けられた真空チャックによってエアー吸着され、固定されている。マスクMを交換するときはエアー吸着が開放され、所望のマスクMに交換することができる。マスクMは、プレートPよりも上に配置される。プレートPに露光する際には、プレートPが最も下に配置され、上に向かって投影光学系3、マスクM、照明光学ユニット31の順に配置される。照明光学ユニット31及び投影光学系3は、同期してX軸方向に移動しながらマスクパターンをプレートPに投影露光する。露光装置1は、移動装置21を備えている。移動装置21は、照明光学ユニット31及び投影光学系3を支持する支持部22を有し、支持部22を照明系ガイド5L及び投影系ガイド5Pに沿ってX方向に移動させることで、照明光学ユニット31及び投影光学系3を照明系ガイド5L及び投影系ガイド5Pに沿ってX方向に移動させる。つまり、移動装置21は、マスクM及びプレートPの表面に沿った方向に支持部22を移動させることで、照明光学ユニット31及び投影光学系3をX方向に移動させる。 A plate stage 1S is provided above the base 1V. The plate stage 1S places and supports the plate P to be exposed. In the present embodiment, the plate stage 1S is placed with the plate P held by the holder. In addition, the plate P of this embodiment is a flat glass plate with a length of one side or a diagonal length of 500 mm or more coated with a photoresist (photosensitive material) for manufacturing a liquid crystal display element as an example. As the plate P, a ceramic substrate for manufacturing a thin film magnetic head or a circular semiconductor wafer for manufacturing a semiconductor element can be used. The mask stage 1T supports the mask M. The mask M is supported above the plate stage 1S by the mask stage 1T protruding from the side 1W to the inside of the frame 1F. In the present embodiment, the mask stage 1T is placed and supported while the mask M is held by a holder. By doing so, the plate stage 1S supports the plate P in a state of being opposed to the mask M supported by the mask stage 1T. While the mask pattern is projected and exposed onto the plate P, the mask M is air-adsorbed and fixed by a vacuum chuck provided on the mask stage 1T. When replacing the mask M, the air suction is released, and the mask M can be replaced with a desired one. The mask M is disposed above the plate P. When exposing the plate P, the plate P is disposed at the bottom, and the projection optical system 3, the mask M, and the illumination optical unit 31 are disposed in this order upward. The illumination optical unit 31 and the projection optical system 3 project and expose the mask pattern onto the plate P while moving in the X-axis direction in synchronization. The exposure apparatus 1 includes a moving device 21. The moving device 21 includes a support unit 22 that supports the illumination optical unit 31 and the projection optical system 3, and moves the support unit 22 in the X direction along the illumination system guide 5 </ b> L and the projection system guide 5 </ b> P. The unit 31 and the projection optical system 3 are moved in the X direction along the illumination system guide 5L and the projection system guide 5P. That is, the moving device 21 moves the illumination optical unit 31 and the projection optical system 3 in the X direction by moving the support 22 in a direction along the surfaces of the mask M and the plate P.
 露光装置1は、マスクステージ1T及びプレートステージ1Sがフレーム1Fに取り付けられ、固定されている。照明光学ユニット31及び投影光学系3は、マスクステージ1T及びプレートステージ1Sに対してX軸方向に移動しながらマスクパターンをプレートPに投影露光する。照明光学ユニット31及び投影光学系3は、マスクパターンをプレートPに投影露光するにあたって、マスクステージ1T及びプレートステージ1Sに対してX軸方向へ移動する。 In the exposure apparatus 1, a mask stage 1T and a plate stage 1S are attached to a frame 1F and fixed. The illumination optical unit 31 and the projection optical system 3 project and expose the mask pattern onto the plate P while moving in the X-axis direction with respect to the mask stage 1T and the plate stage 1S. The illumination optical unit 31 and the projection optical system 3 move in the X-axis direction with respect to the mask stage 1T and the plate stage 1S when projecting and exposing the mask pattern onto the plate P.
 露光装置1は、照明光学ユニット31に向けて光を出力する光源6が配置されている。光源6は、露光時に移動しない支持台20に固定されており、露光時に移動機構40の固定子側等と相対位置が変化しない。支持台20は、フレーム1F等に連結されている。支持台20は、照明光学系2の一部及び投影光学系3を支持する移動装置21の支持部22とは別体の部材であり、移動部に対して独立している。つまり、移動装置21は、支持部22を支持台20に対して相対的に移動させることができる。また、露光装置1は、マスクステージ1Tを用いてマスクMを支持したがマスクMを支持するマスク支持機構としては、種々の構成を用いることができる。露光装置1は、プレートステージ1Sを用いてプレートPを支持したがプレートPを支持するプレート支持機構としては、種々の構成を用いることができる。 The exposure apparatus 1 is provided with a light source 6 that outputs light toward the illumination optical unit 31. The light source 6 is fixed to a support base 20 that does not move during exposure, and the relative position does not change with the stator side of the moving mechanism 40 during exposure. The support table 20 is connected to the frame 1F and the like. The support base 20 is a separate member from the support unit 22 of the moving device 21 that supports a part of the illumination optical system 2 and the projection optical system 3, and is independent of the moving unit. That is, the moving device 21 can move the support portion 22 relative to the support base 20. The exposure apparatus 1 supports the mask M using the mask stage 1T, but various configurations can be used as a mask support mechanism for supporting the mask M. The exposure apparatus 1 supports the plate P using the plate stage 1S, but various configurations can be used as a plate support mechanism for supporting the plate P.
<照明光学系>
 照明光学系2は、光源6から発された光を導光し、マスクMを照明する光として入射する。照明光学系2は、案内光学ユニット30と照明光学ユニット31とを有する。案内光学ユニット30は、光源6から出力された光を照明光学ユニット31に案内する光学系である。案内光学ユニット30は、光源6側の一部が支持台20に支持されている。また、案内光学ユニット30は、照明光学ユニット31側の一部が移動機構40に支持されている。移動機構40は、案内光学ユニット30を移動させる機構であり、フレーム1F等の露光時に移動しない部材に固定されている。照明光学ユニット31は、案内光学ユニット30で導光された光を、マスクMを照明する光として入射させる。照明光学ユニット31は、支持部22により支持され、移動装置21により移動される。なお、露光装置1は、照明光学ユニット31を移動させる機構、つまり移動装置21も移動機構40の一部に含まれる。
<Illumination optics>
The illumination optical system 2 guides the light emitted from the light source 6 and enters it as light for illuminating the mask M. The illumination optical system 2 includes a guide optical unit 30 and an illumination optical unit 31. The guide optical unit 30 is an optical system that guides the light output from the light source 6 to the illumination optical unit 31. A part of the guide optical unit 30 on the light source 6 side is supported by the support base 20. Further, a part of the guide optical unit 30 on the illumination optical unit 31 side is supported by the moving mechanism 40. The moving mechanism 40 is a mechanism that moves the guide optical unit 30, and is fixed to a member that does not move during exposure, such as the frame 1F. The illumination optical unit 31 causes the light guided by the guide optical unit 30 to enter as light for illuminating the mask M. The illumination optical unit 31 is supported by the support unit 22 and moved by the moving device 21. In the exposure apparatus 1, a mechanism for moving the illumination optical unit 31, that is, the moving device 21 is also included in a part of the moving mechanism 40.
<案内光学ユニット>
 案内光学ユニット30は、光源6から出力されたレーザ光(光)を照明光学ユニット31に案内する光学系である。案内光学ユニット30は、複数の集光レンズ6Lと複数の光ファイバ(導光ファイバ)7とバンドル32とを有する。案内光学ユニット30は、集光レンズ6L及び光ファイバ7の光源6側の一部(第1端部)が支持台20に支持されている。また、案内光学ユニット30は、光ファイバ7の照明光学ユニット31側の一部(第2端部)が移動機構40に支持されている。なお、露光装置1は、光源6を複数備えている。なお、露光装置1は、光を出力する出力部を複数備えていればよく、複数の光源6を1つの装置で実現してもよい。本実施形態において、光源6は、レーザ光源であるが、これに限定されるものではない。案内光学ユニット30は、光源6に対応して、それぞれ集光レンズ6Lと光ファイバ7とが配置されている。案内光学ユニット30は、光源6から出力された光を集光レンズ6Lで集光し、光ファイバ7に入射させる。本実施形態において、光ファイバ7は単一の石英ファイバである。光ファイバ7は、一方の端部(第1端部)が集光レンズ6Lの焦点近傍に配置され、他方の端部(第2端部)が照明光学ユニット31に対面して配置されている。また、光ファイバ7は、他方の端部が照明光学ユニット31の移動機構の可動子に固定されており、照明光学ユニット31とともに移動する。光ファイバ7は、集光レンズ6Lで集光された光が一方の端部から入射される。光ファイバ7は、一方の端部から入力された光を他方の端部から出力させる。バンドル32は、複数の光ファイバ7の端部近傍以外の部分を1つにまとめている。なお、本実施形態の光ファイバ7は、一方の端部(第1端部側の端部)が光源6に対して固定され、他方の端部(第2端部側の端部)が照明光学ユニット31に対して固定されている。これにより、案内光学ユニット30は、光源6及び照明光学ユニット31との相対関係にずれを生じにくくすることができる。
<Guiding optical unit>
The guide optical unit 30 is an optical system that guides the laser light (light) output from the light source 6 to the illumination optical unit 31. The guide optical unit 30 includes a plurality of condensing lenses 6L, a plurality of optical fibers (light guiding fibers) 7, and a bundle 32. In the guide optical unit 30, a part (first end) on the light source 6 side of the condenser lens 6 </ b> L and the optical fiber 7 is supported by the support base 20. Further, in the guide optical unit 30, a part (second end) of the optical fiber 7 on the side of the illumination optical unit 31 is supported by the moving mechanism 40. The exposure apparatus 1 includes a plurality of light sources 6. In addition, the exposure apparatus 1 should just be provided with two or more output parts which output light, and you may implement | achieve the several light source 6 with one apparatus. In the present embodiment, the light source 6 is a laser light source, but is not limited thereto. In the guide optical unit 30, a condenser lens 6 </ b> L and an optical fiber 7 are arranged corresponding to the light source 6. The guide optical unit 30 condenses the light output from the light source 6 with the condenser lens 6 </ b> L and makes it incident on the optical fiber 7. In the present embodiment, the optical fiber 7 is a single quartz fiber. One end (first end) of the optical fiber 7 is disposed in the vicinity of the focal point of the condensing lens 6L, and the other end (second end) is disposed facing the illumination optical unit 31. . The other end of the optical fiber 7 is fixed to a movable element of a moving mechanism of the illumination optical unit 31 and moves together with the illumination optical unit 31. In the optical fiber 7, the light condensed by the condenser lens 6L enters from one end. The optical fiber 7 causes light input from one end to be output from the other end. In the bundle 32, portions other than the vicinity of the ends of the plurality of optical fibers 7 are combined into one. In the optical fiber 7 of the present embodiment, one end (the end on the first end side) is fixed to the light source 6 and the other end (the end on the second end side) is illuminated. It is fixed with respect to the optical unit 31. Thereby, the guide optical unit 30 can make it difficult to produce a shift in the relative relationship between the light source 6 and the illumination optical unit 31.
<移動機構>
 移動機構40は、案内光学ユニット30の光源6側の端部(第1端部)から照明光学ユニット31までの光路長を所定の範囲に維持しつつ、案内光学ユニット30の位置を移動させる機構である。ここで、光路長を所定の範囲に維持するとは、案内光学ユニット30の光源6側の端部(第1端部)から照明光学ユニット31までの光路長を略一定の光路長に維持することである。つまり、移動機構40は、移動装置21による照明光学ユニット31の移動に合わせて案内光学ユニット30を移動させて、案内光学ユニット30の光源6側の端部から照明光学ユニット31までの光路長の変化を所定のしきい値以下とする機構である。また、案内光学ユニット30の第1端部が光源6に対して所定位置に支持され、案内光学ユニット30の第2端部が照明光学ユニット31に対して所定位置に支持されている場合、案内光学ユニット30の光源6側の端部から照明光学ユニット31までは、光源6から照明光学系2の支持部22に支持されていている部分までとも言える。
<Movement mechanism>
The moving mechanism 40 moves the position of the guide optical unit 30 while maintaining the optical path length from the light source 6 side end (first end) of the guide optical unit 30 to the illumination optical unit 31 within a predetermined range. It is. Here, maintaining the optical path length in a predetermined range means maintaining the optical path length from the end (first end) on the light source 6 side of the guide optical unit 30 to the illumination optical unit 31 at a substantially constant optical path length. It is. That is, the moving mechanism 40 moves the guide optical unit 30 in accordance with the movement of the illumination optical unit 31 by the moving device 21, and the optical path length from the end of the guide optical unit 30 on the light source 6 side to the illumination optical unit 31 is increased. This is a mechanism that keeps the change below a predetermined threshold. Further, when the first end of the guide optical unit 30 is supported at a predetermined position with respect to the light source 6 and the second end of the guide optical unit 30 is supported at a predetermined position with respect to the illumination optical unit 31, the guide It can be said that the portion from the end of the optical unit 30 on the light source 6 side to the illumination optical unit 31 is the portion supported by the support portion 22 of the illumination optical system 2 from the light source 6.
 移動機構40は、定滑車44とリニアアクチュエータ46とを有する。定滑車44は、フレーム1Fに図示しない保持機構により保持されており、バンドル32を移動自在な状態で支持している。リニアアクチュエータ46は、可動子48と固定子50とを有する。リニアアクチュエータ46は、可動子48が固定子50に対して、X方向に移動可能な状態で配置されている。固定子50は、フレーム1Fに図示しない保持機構により保持されている。可動子48は、例えば滑車であり、回転可能な状態で支点がX方向に移動可能な状態で固定子50と連結している。可動子48は、バンドル32の移動とともに回転する。リニアアクチュエータ46は、可動子48の滑車がバンドル32を支持している。 The moving mechanism 40 includes a fixed pulley 44 and a linear actuator 46. The fixed pulley 44 is held on the frame 1F by a holding mechanism (not shown), and supports the bundle 32 in a movable state. The linear actuator 46 includes a mover 48 and a stator 50. The linear actuator 46 is arranged in a state where the movable element 48 can move in the X direction with respect to the stator 50. The stator 50 is held on the frame 1F by a holding mechanism (not shown). The mover 48 is, for example, a pulley, and is connected to the stator 50 in a state where the fulcrum can move in the X direction while being rotatable. The mover 48 rotates as the bundle 32 moves. In the linear actuator 46, the pulley of the movable element 48 supports the bundle 32.
 移動機構40は、リニアアクチュエータ46の可動子48をX方向に移動させることで、バンドル32の位置を移動させる。本実施形態の移動機構40は、定滑車44、固定子50が例えばフレーム1Fに固定されるものとしたが、露光装置1の露光時に移動しない部分、つまり走査しない部分に固定されていればよい。 The moving mechanism 40 moves the position of the bundle 32 by moving the mover 48 of the linear actuator 46 in the X direction. In the moving mechanism 40 of the present embodiment, the fixed pulley 44 and the stator 50 are fixed to the frame 1F, for example. However, the moving mechanism 40 may be fixed to a portion that does not move during exposure of the exposure apparatus 1, that is, a portion that does not scan. .
<照明光学ユニット>
 照明光学ユニット31は、光源6から発され案内光学ユニット30で案内され出力された光を導光し、マスクMを照明する光として入射する。照明光学ユニット31は、図2に示す照明視野SR、SLを形成する部分照明光学ユニット10L、10Rと、照明視野SCを形成する部分照明光学ユニット10Cと、を有する。案内光学ユニット30の光ファイバ7から出力された光は、部分照明光学ユニット10L、10Rに入射し、リレー光学系11、12によって案内光学ユニット30の光ファイバ7の出射端面をフライアイレンズ13の入射面に投影する。このとき、リレー光学系11、12は、案内光学ユニット30の光ファイバ7の出射端面を所定の倍数に拡大して、フライアイレンズ13の入射面に投影する。フライアイレンズ13は、複数のエレメントレンズが配列し、接合されている。本実施形態においては、列方向に8個、行方向に10個のエレメントレンズが配列するとともに、合計80個のエレメントが接合されている。
<Illumination optical unit>
The illumination optical unit 31 guides light emitted from the light source 6 and guided and output by the guide optical unit 30 and enters as light for illuminating the mask M. The illumination optical unit 31 includes partial illumination optical units 10L and 10R that form the illumination fields SR and SL shown in FIG. 2, and a partial illumination optical unit 10C that forms the illumination field SC. The light output from the optical fiber 7 of the guide optical unit 30 is incident on the partial illumination optical units 10L and 10R, and the relay optical systems 11 and 12 cause the emission end face of the optical fiber 7 of the guide optical unit 30 to pass through the fly-eye lens 13. Project onto the entrance surface. At this time, the relay optical systems 11 and 12 enlarge the exit end face of the optical fiber 7 of the guide optical unit 30 to a predetermined multiple and project it onto the incident surface of the fly-eye lens 13. The fly-eye lens 13 has a plurality of element lenses arranged and joined. In the present embodiment, eight element lenses are arranged in the column direction and ten element lenses are arranged in the row direction, and a total of 80 elements are joined.
 フライアイレンズ13を射出した光は、σ絞り14を通過する。σ絞り14は、光の径を制限して照明NAを定める。σ絞り14を通過した光は、2個のコンデンサレンズ15及びミラー16を介してマスクMの表面(照明光学系2側の表面)に集光されて、照明視野を形成する。フライアイレンズ13の入射面とマスクMの表面とは共役関係になっており、フライアイレンズ13の入射面の照度分布がフライアイレンズ13のエレメントレンズ毎に重なり合って平均化されて、マスクMの表面では均一な照度分布が得られる。このような部分照明光学ユニット10L、10Rにより、マスクMの表面には、図2に示す照明視野SR、SLが形成される。照明視野SCを形成する部分照明光学ユニット10Cも、コンデンサレンズ15とミラー16との配置が異なる以外は、部分照明光学ユニット10L、10Rと同様の構造である。 The light emitted from the fly-eye lens 13 passes through the σ stop 14. The σ stop 14 determines the illumination NA by limiting the diameter of light. The light that has passed through the σ stop 14 is condensed on the surface of the mask M (the surface on the side of the illumination optical system 2) via the two condenser lenses 15 and the mirror 16 to form an illumination field. The entrance surface of the fly-eye lens 13 and the surface of the mask M have a conjugate relationship, and the illuminance distribution on the entrance surface of the fly-eye lens 13 is averaged so as to overlap each element lens of the fly-eye lens 13. A uniform illuminance distribution can be obtained on the surface. The illumination fields SR and SL shown in FIG. 2 are formed on the surface of the mask M by the partial illumination optical units 10L and 10R. The partial illumination optical unit 10C that forms the illumination field SC also has the same structure as the partial illumination optical units 10L and 10R, except that the arrangement of the condenser lens 15 and the mirror 16 is different.
<投影光学系>
 次に、投影光学系3についてより詳細に説明する。投影光学系3は、マスクパターンをプレートPの表面に結像して投影するための光学系である。投影光学系3は、マスクステージ1Tに支持されたマスクMとプレートステージ1Sに支持されたプレートPとの間を移動可能に設けられたレンズアレイを含み、マスクMに形成されたパターンの像をプレートPに投影する。本実施形態において、投影光学系3は、マイクロレンズアレイを用いた結像光学系を用いて、マスクパターンをプレートPの表面に結像して投影する。マイクロレンズアレイとは、多数の要素レンズを2次元的に配置した結像素子のことである。投影光学系3は、複数のマイクロレンズアレイ(MLA:Micro Lens Array)8を有している。図1、図2に示すように、MLA8は、投影光学系3のステージ3Sに搭載される。ステージ3Sが投影系ガイド5Pに沿って移動することにより、MLA8がX軸方向に移動する。本実施形態の投影光学系3はMLA8を用いたが、マイクロレンズアレイ以外のレンズアレイを用いることもできる。
<Projection optical system>
Next, the projection optical system 3 will be described in more detail. The projection optical system 3 is an optical system for forming an image of the mask pattern on the surface of the plate P and projecting it. The projection optical system 3 includes a lens array movably provided between a mask M supported by the mask stage 1T and a plate P supported by the plate stage 1S, and an image of a pattern formed on the mask M is obtained. Project onto the plate P. In the present embodiment, the projection optical system 3 forms an image of the mask pattern on the surface of the plate P and projects it using an imaging optical system using a microlens array. A microlens array is an imaging element in which a number of element lenses are two-dimensionally arranged. The projection optical system 3 has a plurality of micro lens arrays (MLA) 8. As shown in FIGS. 1 and 2, the MLA 8 is mounted on the stage 3 </ b> S of the projection optical system 3. As the stage 3S moves along the projection system guide 5P, the MLA 8 moves in the X-axis direction. Although the projection optical system 3 of the present embodiment uses the MLA 8, a lens array other than the micro lens array can be used.
 本実施形態においては、照明光学系2が形成した照明視野SR、SC、SLに対応した位置に、それぞれMLA8R、MLA8C、MLA8Lが配置されている。以下において、MLA8R、MLA8C、MLA8Lを区別しない場合、単にMLA8という。本実施形態において、照明視野SR、SC、SLは、Y軸方向に向かって互いにX軸方向に所定間隔ずれて、千鳥状に配置されている。このようにすることで、MLA8R、MLA8C、MLA8LもY軸方向に向かって千鳥状に配置されるので、これらの干渉を回避することができる。その結果、Y軸方向の照明視野を拡大することが可能になる。MLA8は薄いため、投影光学系3も薄くなる。 In the present embodiment, MLA8R, MLA8C, and MLA8L are arranged at positions corresponding to the illumination fields SR, SC, and SL formed by the illumination optical system 2, respectively. Hereinafter, when MLA8R, MLA8C, and MLA8L are not distinguished, they are simply referred to as MLA8. In the present embodiment, the illumination visual fields SR, SC, SL are arranged in a staggered manner with a predetermined distance from each other in the X-axis direction toward the Y-axis direction. By doing in this way, since MLA8R, MLA8C, and MLA8L are also arranged in a staggered manner in the Y-axis direction, these interferences can be avoided. As a result, the illumination visual field in the Y-axis direction can be enlarged. Since the MLA 8 is thin, the projection optical system 3 is also thin.
 また、露光装置1は、検出部としてマスクステージ1Tとプレートステージ1Sとの距離を計測する距離計を備えている。露光装置1は、距離計でマスクステージ1Tとプレートステージ1Sとの距離を計測することで、マスクMとプレートPとの距離を検出することができる。露光装置1は、マスクパターンをプレートPに投影露光する場合、距離計で計測したマスクMとプレートPとの距離に基づいて、マスクステージ1Tとプレートステージ1Sとの光軸方向の相対位置を調整する。これにより、露光装置1は、投影レンズ(本実施形態では、投影光学系3が有するMLA8)の合焦位置にマスク及びプレートを正しく配置させることができる。露光装置1は、プレートPの厚さがばらつくことに起因したフォーカスのずれを補正することができ、露光性能の低下を抑制することができる。 Further, the exposure apparatus 1 includes a distance meter that measures the distance between the mask stage 1T and the plate stage 1S as a detection unit. The exposure apparatus 1 can detect the distance between the mask M and the plate P by measuring the distance between the mask stage 1T and the plate stage 1S with a distance meter. The exposure apparatus 1 adjusts the relative position of the mask stage 1T and the plate stage 1S in the optical axis direction based on the distance between the mask M and the plate P measured by the distance meter when projecting and exposing the mask pattern onto the plate P. To do. Thereby, the exposure apparatus 1 can correctly arrange the mask and the plate at the in-focus position of the projection lens (in this embodiment, the MLA 8 included in the projection optical system 3). The exposure apparatus 1 can correct a focus shift caused by the variation in the thickness of the plate P, and can suppress a decrease in exposure performance.
 また、露光装置1は、各ステージの位置情報を計測する計測システムを備えている。なお、計測システムとしては、レーザ干渉計を含む干渉計システムを用いて各ステージの位置情報を計測する計測システムを用いてもよいし、各ステージに設けられるスケール(回折格子)を検出するエンコーダシステムを用いてもよい。 Further, the exposure apparatus 1 includes a measurement system that measures position information of each stage. As the measurement system, a measurement system that measures position information of each stage using an interferometer system including a laser interferometer may be used, or an encoder system that detects a scale (diffraction grating) provided in each stage. May be used.
<露光方法>
 次に、図4及び図5を用いて露光方法について説明する。本実施形態に係る露光方法は、露光装置1によって実現できる。図4及び図5は、図1に示す露光装置の照明光学ユニット及び投影光学系が移動した状態を示す側面図である。図4は、照明光学ユニット31がX方向の+側(図中右側)の端部に配置された状態であり、図5は、照明光学ユニット31がX方向の-側(図中左側)の端部に配置された状態である。
<Exposure method>
Next, an exposure method will be described with reference to FIGS. The exposure method according to the present embodiment can be realized by the exposure apparatus 1. 4 and 5 are side views showing a state where the illumination optical unit and the projection optical system of the exposure apparatus shown in FIG. 1 are moved. FIG. 4 shows a state in which the illumination optical unit 31 is arranged at the end on the + side (right side in the figure) in the X direction, and FIG. 5 shows the illumination optical unit 31 on the − side (left side in the figure) in the X direction. It is the state arrange | positioned at the edge part.
 露光装置1のマスクステージ1Tの真空チャックにマスクMがエアー吸着され、プレートステージ1Sに露光対象のプレートPが載置されたら、制御装置9は、プレートPに対するマスクパターンの投影露光を開始する。 When the mask M is air adsorbed on the vacuum chuck of the mask stage 1T of the exposure apparatus 1 and the exposure target plate P is placed on the plate stage 1S, the control device 9 starts projection exposure of the mask pattern on the plate P.
 投影露光が開始されると、制御装置9は、MLA8の移動方向側、すなわち投影光学系3の移動方向側で、照明光学ユニット31及び投影光学系3をX軸方向に移動(走査)させる。露光装置1は、例えば、図4に示す位置から図5に示す位置まで、または、図5に示す位置から図4に示す位置まで移動装置21により照明光学ユニット31及び投影光学系3を移動させることで、マスクM及びプレートPに対して照明光学ユニット31及び投影光学系3を走査させる。これにより、露光装置1は、マスクMに形成されたパターンをプレートPに転写させる。なお、露光装置1は、照明光学ユニット31及び投影光学系3をX方向の全域につまり図4に示す位置から図5に示す位置まで移動させなくてもよい。露光装置1は、マスクMの形状によっては照明光学ユニット31及び投影光学系3を図4に示す位置と図5に示す位置との間の位置まで移動させる走査でパターンの転写を行ってもよい。 When the projection exposure is started, the control device 9 moves (scans) the illumination optical unit 31 and the projection optical system 3 in the X-axis direction on the movement direction side of the MLA 8, that is, on the movement direction side of the projection optical system 3. For example, the exposure apparatus 1 moves the illumination optical unit 31 and the projection optical system 3 from the position shown in FIG. 4 to the position shown in FIG. 5 or from the position shown in FIG. 5 to the position shown in FIG. Thus, the illumination optical unit 31 and the projection optical system 3 are scanned with respect to the mask M and the plate P. Thus, the exposure apparatus 1 transfers the pattern formed on the mask M to the plate P. Note that the exposure apparatus 1 does not have to move the illumination optical unit 31 and the projection optical system 3 over the entire area in the X direction, that is, from the position shown in FIG. 4 to the position shown in FIG. Depending on the shape of the mask M, the exposure apparatus 1 may perform pattern transfer by scanning that moves the illumination optical unit 31 and the projection optical system 3 to a position between the position shown in FIG. 4 and the position shown in FIG. .
 露光装置1は、移動装置21で照明光学ユニット31及び投影光学系3を移動させるとともに、移動機構40で案内光学ユニット30の光路長、つまり光源6側の端部(第1端部)から照明光学ユニット31までの光路長を所定の範囲に維持、つまり略同一にしたまま、光路の位置を移動させる。本実施形態の移動機構40は、リニアアクチュエータ46の可動子48を、照明光学ユニット31及び投影光学系3のX方向への移動と同じ方向に照明光学ユニット31及び投影光学系3と同じ距離、移動させる。移動機構40の可動子48が移動すると、可動子48が支持しているバンドル32も移動する。可動子48が移動すると、可動子48と定滑車44との相対位置が変化する。バンドル32は、可動子48と定滑車44との相対位置の変化に対応して、定滑車44と接触している位置が移動する。定滑車44は、回転してバンドル32と接触する位置を変化し、接触位置を円滑に変化させることができる。 In the exposure apparatus 1, the illumination optical unit 31 and the projection optical system 3 are moved by the moving device 21, and the light path length of the guide optical unit 30, that is, the light source 6 side end (first end) is illuminated by the moving mechanism 40. The position of the optical path is moved while maintaining the optical path length to the optical unit 31 within a predetermined range, that is, substantially the same. The moving mechanism 40 of the present embodiment moves the mover 48 of the linear actuator 46 in the same direction as the movement of the illumination optical unit 31 and the projection optical system 3 in the X direction, the same distance as the illumination optical unit 31 and the projection optical system 3, Move. When the mover 48 of the moving mechanism 40 moves, the bundle 32 supported by the mover 48 also moves. When the mover 48 moves, the relative position between the mover 48 and the fixed pulley 44 changes. The bundle 32 moves at a position in contact with the fixed pulley 44 in response to a change in the relative position between the movable element 48 and the fixed pulley 44. The fixed pulley 44 can rotate and change the position where it comes into contact with the bundle 32, so that the contact position can be changed smoothly.
 露光装置1は、光源6から出力される光を照明光学ユニット31に案内する案内光学ユニット30が光ファイバ7を含み、当該光ファイバ7の一方の端部を光源6に対して固定し、他方の端部を照明光学ユニット31に対して固定する。これにより、露光装置1は、光源6から出力された光が照明光学ユニット31に到達するまでの光路長を所定の範囲に維持することができる。つまり、露光時に照明光学ユニット31がZ方向に移動しても、固定された光源6と移動する照明光学ユニット31との間の光路長を所定の範囲に維持することができる。これにより、露光装置1は、マスクMを照明する光がマスクMのX方向の位置によって変動することを抑制することができ、安定した光をマスクMに照射することができ、プレートPにマスクMのパターンをより適切に転写させることができる。 In the exposure apparatus 1, the guide optical unit 30 that guides the light output from the light source 6 to the illumination optical unit 31 includes the optical fiber 7, and fixes one end of the optical fiber 7 to the light source 6. Are fixed to the illumination optical unit 31. Thereby, the exposure apparatus 1 can maintain the optical path length until the light output from the light source 6 reaches the illumination optical unit 31 within a predetermined range. That is, even if the illumination optical unit 31 moves in the Z direction during exposure, the optical path length between the fixed light source 6 and the moving illumination optical unit 31 can be maintained within a predetermined range. As a result, the exposure apparatus 1 can suppress the light that illuminates the mask M from fluctuating depending on the position of the mask M in the X direction, and can irradiate the mask M with stable light. The pattern of M can be transferred more appropriately.
 露光装置1は、案内光学ユニット30の光ファイバ7を、一方の端部(第1端部側の端部)が光源6から出力された照明光の光路上に配置され、他方の端部(第2端部側の端部)が照明光学ユニット31とともに移動装置21によって移動させる構成としてもよい。つまり、露光装置1は、案内光学ユニット30の光源6側の端部を光源6に対して固定しなくてもよい。この場合は、光源6と案内光学ユニット30の相対位置のずれに基づいて光路量を調整することで、光路長を所定範囲に維持することができる。これにより、光源6の位置を調整できる構成とした場合でも、上記と同様の処理を実現することができる。 In the exposure apparatus 1, the optical fiber 7 of the guide optical unit 30 is arranged on the optical path of the illumination light whose one end (the end on the first end side) is output from the light source 6 and the other end ( The moving device 21 may move the second end portion side end) together with the illumination optical unit 31. That is, the exposure apparatus 1 does not have to fix the end of the guide optical unit 30 on the light source 6 side to the light source 6. In this case, the optical path length can be maintained within a predetermined range by adjusting the optical path amount based on the relative position shift between the light source 6 and the guide optical unit 30. Thereby, even when it is set as the structure which can adjust the position of the light source 6, the process similar to the above is realizable.
 また、露光装置1は、光源6をフレーム1F等の露光時に走査しない位置、本実施形態では支持台20に固定することで、つまり、光源を走査光学系(照明光学ユニットおよび投影光学系)と分離することで、露光時に走査する構成を軽量化することができる。これにより、走査する構成を走査させる駆動源の大型化を抑制することができ、走査する構成を支持する機構の大型化を抑制することができる。したがって、露光装置1は、走査露光系を小型化することができ、走査露光系の走査に必要なエネルギーを少なくすることができる。 Further, the exposure apparatus 1 fixes the light source 6 to a position at which the light source 6 is not scanned at the time of exposure, such as the frame 1F, in this embodiment, to the support base 20, that is, the light source is a scanning optical system (illumination optical unit and projection optical system). By separating, the structure for scanning at the time of exposure can be reduced in weight. Thereby, the enlargement of the drive source which scans the structure to scan can be suppressed, and the enlargement of the mechanism which supports the structure to scan can be suppressed. Therefore, the exposure apparatus 1 can reduce the size of the scanning exposure system and can reduce the energy required for scanning of the scanning exposure system.
 また、露光装置1は、案内光学ユニット30で、光源6と照明光学ユニット31との間の光路量を所定の範囲に維持することで、光源を走査光学系と分離しても、走査光学系の位置によって露光条件が変動することを抑制することができ、光源を走査光学系と一体とした場合と遜色のない性能で露光を行うことができる。また、露光装置1は、光源を走査光学系から分離した構成とすることで、走査する構成をそのままにして、光源を大型化することができる。これにより、光源の出力を簡単に大きくすることができ、光の照度を向上させ、生産効率を向上させることができる。例えば、露光装置1は、1つの光ファイバ7(または1つの部分照明光学ユニット)に対して、レーザ光を出力する光源を複数設け、複数の光源から出力された光を1つの光ファイバに入射させることで、照度を上げることができる。 Further, the exposure apparatus 1 maintains the optical path amount between the light source 6 and the illumination optical unit 31 within a predetermined range with the guide optical unit 30, so that the scanning optical system can be separated from the scanning optical system. The exposure conditions can be prevented from fluctuating depending on the position, and exposure can be performed with performance comparable to that when the light source is integrated with the scanning optical system. In addition, the exposure apparatus 1 can be enlarged in size by leaving the scanning configuration as it is by separating the light source from the scanning optical system. Thereby, the output of a light source can be enlarged easily, the illumination intensity of light can be improved, and production efficiency can be improved. For example, the exposure apparatus 1 is provided with a plurality of light sources that output laser light for one optical fiber 7 (or one partial illumination optical unit), and the light output from the plurality of light sources is incident on one optical fiber. By doing so, the illuminance can be increased.
 また、露光装置1は、移動機構40を用いて、案内光学ユニット30を照明光学ユニット31及び投影光学系3の移動に合わせて移動させることで、光源6から出力された光を案内する光ファイバ7を、円滑に移動させることができる。なお、露光装置1は、光ファイバ7の他方の端部の一部が照明光学ユニット31を支持する筐体に支持されている。このため、露光装置1は、照明光学ユニット31を支持する筐体、照明光学ユニット31を移動させる移動機構も、移動機構40の一部となる。 Further, the exposure apparatus 1 uses the moving mechanism 40 to move the guide optical unit 30 in accordance with the movement of the illumination optical unit 31 and the projection optical system 3, thereby guiding the light output from the light source 6. 7 can be moved smoothly. In the exposure apparatus 1, a part of the other end of the optical fiber 7 is supported by a housing that supports the illumination optical unit 31. For this reason, in the exposure apparatus 1, a housing that supports the illumination optical unit 31 and a movement mechanism that moves the illumination optical unit 31 are also part of the movement mechanism 40.
 また、移動機構40は、定滑車44、可動子48の滑車の径(半径)を光ファイバ7(またはバンドル32)の許容曲げよりも大きい径(半径)とすることが好ましい。これにより、移動機構40が案内する光ファイバ7の導光特性を損なわずに光を導光できる。 Further, in the moving mechanism 40, it is preferable that the diameter (radius) of the pulley of the fixed pulley 44 and the movable element 48 is larger than the allowable bending of the optical fiber 7 (or the bundle 32). Thereby, light can be guided without impairing the light guide characteristics of the optical fiber 7 guided by the moving mechanism 40.
 なお、露光装置1は、移動機構40として光ファイバ7の移動を補助する定滑車44及びリニアアクチュエータ46を設けたが、必ずしも設けなくてもよい。案内光学ユニット30を移動させる移動機構は、案内光学ユニット30の光路長を所定の範囲に維持できればよいため、本実施形態のように光ファイバ7を用いる場合、光ファイバ7の両端を固定し、その他の領域の少なくとも一部が移動可能な状態とすればよい。つまり、露光装置1は、光ファイバ7を光路長を所定の範囲に維持する移動機構の一部として用いることができる。 In addition, although the exposure apparatus 1 is provided with the fixed pulley 44 and the linear actuator 46 that assist the movement of the optical fiber 7 as the moving mechanism 40, it is not always necessary to provide it. Since the moving mechanism that moves the guide optical unit 30 only needs to maintain the optical path length of the guide optical unit 30 within a predetermined range, when using the optical fiber 7 as in the present embodiment, both ends of the optical fiber 7 are fixed, What is necessary is just to make it the state which can move at least one part of another area | region. That is, the exposure apparatus 1 can use the optical fiber 7 as part of a moving mechanism that maintains the optical path length within a predetermined range.
<実施形態2>
 以下、図6を用いて、実施形態2の露光装置について説明する。図6は、実施形態2に係る露光装置の側面図である。図6に示す実施形態2の露光装置101は、照明光学系102の案内光学ユニット130及び移動機構140の構成以外は、露光装置1と同様の構成である。露光装置1と同様の構成についての説明は省略し、露光装置101に特有の構成について、説明する。
<Embodiment 2>
Hereinafter, the exposure apparatus of Embodiment 2 will be described with reference to FIG. FIG. 6 is a side view of the exposure apparatus according to the second embodiment. The exposure apparatus 101 of Embodiment 2 shown in FIG. 6 has the same configuration as the exposure apparatus 1 except for the configuration of the guide optical unit 130 and the moving mechanism 140 of the illumination optical system 102. A description of the same configuration as that of the exposure apparatus 1 will be omitted, and a configuration unique to the exposure apparatus 101 will be described.
 露光装置101は、フレーム1Fと、照明光学系102と、投影光学系3と、移動装置21と、移動機構140と、を含む。照明光学系102は、案内光学ユニット130と、照明光学ユニット31と、を含む。案内光学ユニット130は、複数の部分案内光学ユニット131を備える。部分案内光学ユニット131は、凹レンズ132、凸レンズ133で構成されるビームエキスパンダと、バンドルファイバ134と、集光レンズ135と、ロッドインテグレータ136とを有する。部分案内光学ユニット131は、部分照明光学ユニット10C、10R、10Lに対応してそれぞれ1つずつ設けられている。なお、本実施形態の部分照明光学ユニット10C、10R、10Lは、リレー光学系11が配置されていない。支持台20は、光源6と部分案内光学ユニット131の光源6側の一部を支持している。 The exposure apparatus 101 includes a frame 1F, an illumination optical system 102, a projection optical system 3, a moving device 21, and a moving mechanism 140. The illumination optical system 102 includes a guide optical unit 130 and an illumination optical unit 31. The guide optical unit 130 includes a plurality of partial guide optical units 131. The partial guide optical unit 131 includes a beam expander including a concave lens 132 and a convex lens 133, a bundle fiber 134, a condenser lens 135, and a rod integrator 136. One partial guide optical unit 131 is provided for each of the partial illumination optical units 10C, 10R, and 10L. In the partial illumination optical units 10C, 10R, and 10L of the present embodiment, the relay optical system 11 is not disposed. The support base 20 supports the light source 6 and a part of the partial guide optical unit 131 on the light source 6 side.
 部分案内光学ユニット131は、光源6から出力された光を凹レンズ132、凸レンズ133で構成されるビームエキスパンダで拡大してバンドルファイバ134に入射させる。バンドルファイバ134は、複数の光ファイバが纏められた、光ファイバの集合体であり、それぞれの光ファイバで光を案内する。バンドルファイバ134は、一方の端部が光源6に対して固定され、他方の端部が照明光学ユニット31に対して固定される。バンドルファイバ134は、他方の端部が照明光学ユニット31の筐体に支持されている。本実施形態のバンドルファイバ134は、NAが0.2でφ0.25mmの光ファイバを130本束ねた構成であり、全体のφが3mmとなる。バンドルファイバ134から出力された光は、集光レンズ135に入射される。集光レンズ135は、照明光学ユニット31の筐体に支持されている。 The partial guide optical unit 131 expands the light output from the light source 6 with a beam expander composed of a concave lens 132 and a convex lens 133 and makes the light enter the bundle fiber 134. The bundle fiber 134 is an aggregate of optical fibers in which a plurality of optical fibers are collected, and guides light through each optical fiber. The bundle fiber 134 has one end fixed to the light source 6 and the other end fixed to the illumination optical unit 31. The other end of the bundle fiber 134 is supported by the housing of the illumination optical unit 31. The bundle fiber 134 of the present embodiment has a configuration in which 130 optical fibers having an NA of 0.2 and φ0.25 mm are bundled, and the overall φ is 3 mm. The light output from the bundle fiber 134 enters the condenser lens 135. The condenser lens 135 is supported by the housing of the illumination optical unit 31.
 ロッドインテグレータ136は、バンドルファイバ134の他方の端部、つまり光が出力される側の端部と集光レンズ135を介して対向する位置に配置されている。ロッドインテグレータ136は、バンドルファイバ134から出力され、集光レンズ135で集光された光が入射される。ロッドインテグレータ136は、照明光学ユニット31の筐体、具体的には照明光学ユニット31を支持する支持部22に支持されている。ロッドインテグレータ136は、入射された光を照明光学ユニット31に向けて出射させる。本実施形態のロッドインテグレータ136は、6角形ロッドインテグレータである。 The rod integrator 136 is disposed at a position facing the other end of the bundle fiber 134, that is, the end on the light output side through the condenser lens 135. The rod integrator 136 is output from the bundle fiber 134 and receives light collected by the condenser lens 135. The rod integrator 136 is supported by the housing of the illumination optical unit 31, specifically, the support portion 22 that supports the illumination optical unit 31. The rod integrator 136 emits the incident light toward the illumination optical unit 31. The rod integrator 136 of this embodiment is a hexagonal rod integrator.
 移動機構140は、部分案内光学ユニット131に対応して配置された複数の部分移動機構141を有する。部分移動機構141は、対応する部分案内光学ユニット131の光源6側の端部(第1端部)から照明光学ユニット31までの光路長を所定の範囲に維持しつつ、部分案内光学ユニット131の位置を移動させる機構であり、対応する部分案内光学ユニット131を照明光学ユニット31の移動に合わせて移動させる。部分移動機構141は、バンドルファイバ134を移動させる機構である定滑車144とリニアアクチュエータ146とを有する。なお、上述したように、集光レンズ135とロッドインテグレータ136は、照明光学ユニット31の筐体に支持されており、照明光学ユニット31と一体で移動する。リニアアクチュエータ146は、可動子148と固定子150とで構成される。なお、定滑車144及びリニアアクチュエータ146は、移動機構40の定滑車44及びリニアアクチュエータ46と同様の構成である。 The moving mechanism 140 has a plurality of partial moving mechanisms 141 arranged corresponding to the partial guide optical unit 131. The partial moving mechanism 141 maintains the optical path length from the end (first end) on the light source 6 side of the corresponding partial guide optical unit 131 to the illumination optical unit 31 within a predetermined range, while the partial guide optical unit 131 This is a mechanism for moving the position, and the corresponding partial guide optical unit 131 is moved in accordance with the movement of the illumination optical unit 31. The partial movement mechanism 141 includes a fixed pulley 144 and a linear actuator 146 that are mechanisms for moving the bundle fiber 134. As described above, the condenser lens 135 and the rod integrator 136 are supported by the casing of the illumination optical unit 31 and move together with the illumination optical unit 31. The linear actuator 146 includes a mover 148 and a stator 150. The fixed pulley 144 and the linear actuator 146 have the same configuration as the fixed pulley 44 and the linear actuator 46 of the moving mechanism 40.
 露光装置101は、以上のような構成であり、光を案内する光学部材としてバンドルファイバを用いることで、ファイバの本数を増やすことができ、案内光学ユニット130の端面(バンドルファイバの端面)から出力される光を平均化することができ、出射端面の総合的な出射光量の変動を低減できる。 The exposure apparatus 101 is configured as described above. By using a bundle fiber as an optical member for guiding light, the number of fibers can be increased, and output from the end face of the guide optical unit 130 (end face of the bundle fiber). Can be averaged, and fluctuations in the total amount of emitted light on the exit end face can be reduced.
 また、露光装置101は、本実施形態の移動機構140のように、部分案内光学ユニット131ごとに設けることもできるが、露光装置1と同様に、1つの機構で、全ての部分案内光学ユニット131を移動させてもよい。 In addition, the exposure apparatus 101 can be provided for each partial guide optical unit 131 as in the moving mechanism 140 of the present embodiment. However, like the exposure apparatus 1, all the partial guide optical units 131 are formed by one mechanism. May be moved.
<実施形態3>
 以下、図7及び図8を用いて、実施形態3の露光装置について説明する。図7は、実施形態3に係る露光装置の側面図である。図8は、図7に示す露光装置の照明光学ユニット及び投影光学系が移動した状態を示す側面図である。図7及び図8に示す実施形態3の露光装置201は、照明光学系202の案内光学ユニット230及び移動機構240の構成以外は、露光装置101と同様の構成である。露光装置101と同様の構成についての説明は省略し、露光装置201に特有の構成について、説明する。なお、露光装置201は、案内光学ユニットとして光ファイバに換えて反射部材を用いている。
<Embodiment 3>
Hereinafter, the exposure apparatus of Embodiment 3 will be described with reference to FIGS. 7 and 8. FIG. 7 is a side view of the exposure apparatus according to the third embodiment. FIG. 8 is a side view showing a state where the illumination optical unit and the projection optical system of the exposure apparatus shown in FIG. 7 are moved. The exposure apparatus 201 of Embodiment 3 shown in FIGS. 7 and 8 has the same configuration as the exposure apparatus 101 except for the configuration of the guide optical unit 230 and the moving mechanism 240 of the illumination optical system 202. A description of the same configuration as that of the exposure apparatus 101 is omitted, and a configuration unique to the exposure apparatus 201 will be described. The exposure apparatus 201 uses a reflecting member instead of an optical fiber as a guide optical unit.
 露光装置201は、フレーム1Fと、照明光学系202と、投影光学系3と、移動装置21と、移動機構240と、を含む。照明光学系202は、案内光学ユニット230と、照明光学ユニット31と、を含む。案内光学ユニット230は、複数の部分案内光学ユニット231を備える。部分案内光学ユニット231は、凹レンズ232、凸レンズ233で構成されるビームエキスパンダと、ミラー234と、ミラー235と、集光レンズ236と、ロッドインテグレータ237とを有する。部分案内光学ユニット231は、部分照明光学ユニット10C、10R、10Lに対応してそれぞれ1つずつ設けられている。なお、本実施形態の部分照明光学ユニット10C、10R、10Lも、リレー光学系11が配置されていない。支持台20は、光源6と部分案内光学ユニット231の光源6側の一部を支持している。 The exposure apparatus 201 includes a frame 1F, an illumination optical system 202, a projection optical system 3, a moving device 21, and a moving mechanism 240. The illumination optical system 202 includes a guide optical unit 230 and an illumination optical unit 31. The guide optical unit 230 includes a plurality of partial guide optical units 231. The partial guide optical unit 231 includes a beam expander including a concave lens 232 and a convex lens 233, a mirror 234, a mirror 235, a condenser lens 236, and a rod integrator 237. One partial guide optical unit 231 is provided for each of the partial illumination optical units 10C, 10R, and 10L. Note that the relay optical system 11 is not arranged in the partial illumination optical units 10C, 10R, and 10L of the present embodiment. The support base 20 supports the light source 6 and a part of the partial guide optical unit 231 on the light source 6 side.
 部分案内光学ユニット231は、光源6から出力された光を凹レンズ232、凸レンズ233で構成されるビームエキスパンダで拡大して平行光とする。凸レンズ233を通過した光は、ミラー234で反射された後、ミラー235で反射される。ミラー235で反射された光は、集光レンズ236に入射され、集光される。集光レンズ236で集光された光は、ロッドインテグレータ237に入射される。ロッドインテグレータ237は、入射された光を照明光学ユニット31に向けて出射させる。 The partial guide optical unit 231 expands the light output from the light source 6 with a beam expander composed of a concave lens 232 and a convex lens 233 to obtain parallel light. The light that has passed through the convex lens 233 is reflected by the mirror 234 and then reflected by the mirror 235. The light reflected by the mirror 235 enters the condenser lens 236 and is condensed. The light condensed by the condenser lens 236 is incident on the rod integrator 237. The rod integrator 237 emits the incident light toward the illumination optical unit 31.
 ここで、ミラー234は、ミラー駆動部242に支持されている。ミラー235は、ミラー駆動部243に支持されている。集光レンズ236とロッドインテグレータ237とは、照明光学ユニット31の筐体に支持されている。また、ミラー駆動部243は、照明光学ユニット31の筐体に支持されている。したがって、ミラー235と、集光レンズ236と、ロッドインテグレータ237と、は、照明光学ユニット31と一体で移動する。 Here, the mirror 234 is supported by the mirror driving unit 242. The mirror 235 is supported by the mirror driving unit 243. The condenser lens 236 and the rod integrator 237 are supported by the housing of the illumination optical unit 31. The mirror driving unit 243 is supported by the housing of the illumination optical unit 31. Therefore, the mirror 235, the condenser lens 236, and the rod integrator 237 move integrally with the illumination optical unit 31.
 移動機構240は、部分案内光学ユニット231に対応して配置された複数の部分移動機構241を有する。部分移動機構241は、対応する部分案内光学ユニット231の光源6側の端部(第1端部)から照明光学ユニット31までの光路長を所定の範囲に維持しつつ、部分案内光学ユニット231の位置を移動させる機構であり、対応する部分案内光学ユニット231を照明光学ユニット31の移動に合わせて移動させる。部分移動機構241は、ミラー234を移動させるミラー駆動部242と、ミラー235を移動させるミラー駆動部243と、を有する。また、露光装置201は、上述したように、ミラー235と、集光レンズ236と、ロッドインテグレータ237と、が、照明光学ユニット31と一体で移動する。ミラー駆動部242は、ミラー234をX方向に移動させ、かつ、ミラー234をY軸周りに回転させる機構である。ミラー駆動部243は、ミラー235をY軸周りに回転させる機構である。 The moving mechanism 240 has a plurality of partial moving mechanisms 241 arranged corresponding to the partial guide optical units 231. The partial moving mechanism 241 maintains the optical path length from the end (first end) on the light source 6 side of the corresponding partial guide optical unit 231 to the illumination optical unit 31 within a predetermined range, while the partial guide optical unit 231 It is a mechanism for moving the position, and the corresponding partial guide optical unit 231 is moved in accordance with the movement of the illumination optical unit 31. The partial movement mechanism 241 includes a mirror driving unit 242 that moves the mirror 234 and a mirror driving unit 243 that moves the mirror 235. Further, in the exposure apparatus 201, as described above, the mirror 235, the condenser lens 236, and the rod integrator 237 move integrally with the illumination optical unit 31. The mirror driving unit 242 is a mechanism that moves the mirror 234 in the X direction and rotates the mirror 234 around the Y axis. The mirror driving unit 243 is a mechanism that rotates the mirror 235 around the Y axis.
 部分移動機構241は、照明光学ユニット31及び投影光学系3のX方向の移動に合わせて、ミラー駆動部242でミラー234をX方向に移動させつつ、ミラー234をY軸周りに回転させる。また、部分移動機構241は、照明光学ユニット31及び投影光学系3のX方向の移動に合わせて、ミラー駆動部243でミラー235をY軸周りに回転させる。このように、部分移動機構241は、ミラー234、235を回転させることで、図7及び図8に示すように、照明光学ユニット31及び投影光学系3がX方向に移動しても、光源6から出力された光を、ミラー234、235で反射させて、照明光学ユニット31に入射される状態を維持する。また、部分移動機構241は、ミラー234をX方向に移動させることで、図7及び図8に示すように、照明光学ユニット31及び投影光学系3がX方向に移動しても、光源6側の端部(第1端部)から照明光学ユニット31までの光の光路長を所定の範囲に維持する。 The partial movement mechanism 241 rotates the mirror 234 around the Y axis while moving the mirror 234 in the X direction by the mirror driving unit 242 in accordance with the movement of the illumination optical unit 31 and the projection optical system 3 in the X direction. The partial movement mechanism 241 rotates the mirror 235 around the Y axis by the mirror driving unit 243 in accordance with the movement of the illumination optical unit 31 and the projection optical system 3 in the X direction. In this way, the partial movement mechanism 241 rotates the mirrors 234 and 235 so that the light source 6 can be moved even if the illumination optical unit 31 and the projection optical system 3 move in the X direction as shown in FIGS. The light output from is reflected by the mirrors 234 and 235 to maintain the state of being incident on the illumination optical unit 31. Further, the partial moving mechanism 241 moves the mirror 234 in the X direction, so that the illumination optical unit 31 and the projection optical system 3 move in the X direction as shown in FIGS. The optical path length of the light from the end portion (first end portion) to the illumination optical unit 31 is maintained within a predetermined range.
 実施形態3の露光装置201に示すように、案内光学ユニット230にミラー234、235を用いた場合でも、照明光学ユニット31及び投影光学系3のX方向の移動に合わせて、ミラー234、235を回転させつつ、ミラーの1つであるミラー234をX方向に移動させることで、光源6側の端部(第1端部)から照明光学ユニット31までの光の光路長を所定の範囲に維持することができる。また、案内光学ユニット230にミラーを用いることで、光源6から出力される光の効率利用を高くすることができる。 As shown in the exposure apparatus 201 of Embodiment 3, even when the mirrors 234 and 235 are used for the guide optical unit 230, the mirrors 234 and 235 are moved in accordance with the movement of the illumination optical unit 31 and the projection optical system 3 in the X direction. The optical path length of light from the end (first end) on the light source 6 side to the illumination optical unit 31 is maintained within a predetermined range by moving the mirror 234, which is one of the mirrors, in the X direction while rotating. can do. Further, by using a mirror for the guide optical unit 230, it is possible to increase the efficient use of the light output from the light source 6.
<実施形態4>
 以下、図9及び図10を用いて、実施形態4の露光装置について説明する。図9は、実施形態4に係る露光装置の側面図である。図10は、図9に示す露光装置の照明光学ユニット及び投影光学系が移動した状態を示す側面図である。図9及び図10に示す実施形態4の露光装置301は、案内光学ユニット330及び移動機構340の構成以外は、露光装置201と同様の構成である。露光装置201と同様の構成についての説明は省略し、露光装置301に特有の構成について説明する。
<Embodiment 4>
Hereinafter, the exposure apparatus according to the fourth embodiment will be described with reference to FIGS. 9 and 10. FIG. 9 is a side view of the exposure apparatus according to the fourth embodiment. FIG. 10 is a side view showing a state where the illumination optical unit and the projection optical system of the exposure apparatus shown in FIG. 9 are moved. The exposure apparatus 301 of Embodiment 4 shown in FIGS. 9 and 10 has the same configuration as the exposure apparatus 201 except for the configuration of the guide optical unit 330 and the moving mechanism 340. A description of the same configuration as that of the exposure apparatus 201 will be omitted, and a configuration specific to the exposure apparatus 301 will be described.
 露光装置301は、フレーム1Fと、照明光学系302と、投影光学系3と、移動装置21と、移動機構340と、を含む。照明光学系302は、案内光学ユニット330と、照明光学ユニット31と、を含む。案内光学ユニット330は、複数の部分案内光学ユニット331を備える。部分案内光学ユニット331は、凹レンズ332、凸レンズ333で構成されるビームエキスパンダと、ミラー334、335、336、337と、集光レンズ338と、ロッドインテグレータ339と、を有する。部分案内光学ユニット331は、部分照明光学ユニット10C、10R、10Lに対応してそれぞれ1つずつ設けられている。なお、本実施形態の部分照明光学ユニット10C、10R、10Lも、リレー光学系11が配置されていない。支持台20は、光源6と部分案内光学ユニット331の光源6側の一部を支持している。 The exposure apparatus 301 includes a frame 1F, an illumination optical system 302, a projection optical system 3, a moving device 21, and a moving mechanism 340. The illumination optical system 302 includes a guide optical unit 330 and an illumination optical unit 31. The guide optical unit 330 includes a plurality of partial guide optical units 331. The partial guide optical unit 331 includes a beam expander including a concave lens 332 and a convex lens 333, mirrors 334, 335, 336, 337, a condenser lens 338, and a rod integrator 339. One partial guide optical unit 331 is provided for each of the partial illumination optical units 10C, 10R, and 10L. Note that the relay optical system 11 is not arranged in the partial illumination optical units 10C, 10R, and 10L of the present embodiment. The support base 20 supports the light source 6 and a part of the partial guide optical unit 331 on the light source 6 side.
 部分案内光学ユニット331は、光源6から出力された光を凹レンズ332、凸レンズ333で構成されるビームエキスパンダで拡大して平行光とする。凸レンズ333を通過した光は、ミラー334で反射された後、ミラー335、ミラー336、337の順で反射される。ミラー337で反射された光は、集光レンズ338に入射され、集光される。集光レンズ338で集光された光は、ロッドインテグレータ339に入射される。ロッドインテグレータ339は、入射された光を照明光学ユニット31に向けて出射させる。 The partial guide optical unit 331 expands the light output from the light source 6 with a beam expander composed of a concave lens 332 and a convex lens 333 to obtain parallel light. The light that has passed through the convex lens 333 is reflected by the mirror 334 and then is reflected in the order of the mirror 335, the mirrors 336, and 337. The light reflected by the mirror 337 enters the condenser lens 338 and is condensed. The light condensed by the condenser lens 338 is incident on the rod integrator 339. The rod integrator 339 emits incident light toward the illumination optical unit 31.
 ここで、ミラー334は、フレーム1Fに固定され、光源6に対して所定位置に固定されている。ミラー335は、ミラー駆動部342に支持されている。ミラー336は、ミラー駆動部343に支持されている。ミラー337と、集光レンズ338と、ロッドインテグレータ339と、は、照明光学ユニット31の筐体に支持されている。したがって、部分案内光学ユニット331は、ミラー334が所定位置に固定され、ミラー337と、集光レンズ338と、ロッドインテグレータ339と、が、照明光学ユニット31と一体で移動する。 Here, the mirror 334 is fixed to the frame 1F and fixed to a predetermined position with respect to the light source 6. The mirror 335 is supported by the mirror driving unit 342. The mirror 336 is supported by the mirror driving unit 343. The mirror 337, the condenser lens 338, and the rod integrator 339 are supported by the housing of the illumination optical unit 31. Accordingly, in the partial guide optical unit 331, the mirror 334 is fixed at a predetermined position, and the mirror 337, the condenser lens 338, and the rod integrator 339 move integrally with the illumination optical unit 31.
 移動機構340は、部分案内光学ユニット331に対応して配置された複数の部分移動機構341を有する。部分移動機構341は、対応する部分案内光学ユニット331の光源6側の端部(第1端部)から照明光学ユニット31までの光路長を所定の範囲に維持しつつ、部分案内光学ユニット331の位置を移動させる機構であり、対応する部分案内光学ユニット331を照明光学ユニット31の移動に合わせて移動させる。部分移動機構341は、ミラー335を移動させるミラー駆動部342と、ミラー336を移動させるミラー駆動部343と、を有する。また、露光装置301は、上述したように、ミラー337と、集光レンズ338と、ロッドインテグレータ339と、が、照明光学ユニット31と一体で移動する。ミラー駆動部342は、ミラー335をY方向に移動させる機構である。ミラー駆動部343は、ミラー336をX方向及びY方向に移動させる機構である。 The moving mechanism 340 includes a plurality of partial moving mechanisms 341 arranged corresponding to the partial guide optical unit 331. The partial movement mechanism 341 maintains the optical path length from the end portion (first end portion) on the light source 6 side of the corresponding partial guide optical unit 331 to the illumination optical unit 31 within a predetermined range, while the partial guide optical unit 331 This is a mechanism for moving the position, and the corresponding partial guide optical unit 331 is moved in accordance with the movement of the illumination optical unit 31. The partial movement mechanism 341 includes a mirror driving unit 342 that moves the mirror 335 and a mirror driving unit 343 that moves the mirror 336. In the exposure apparatus 301, as described above, the mirror 337, the condenser lens 338, and the rod integrator 339 move together with the illumination optical unit 31. The mirror driving unit 342 is a mechanism that moves the mirror 335 in the Y direction. The mirror driving unit 343 is a mechanism that moves the mirror 336 in the X direction and the Y direction.
 部分移動機構341は、照明光学ユニット31及び投影光学系3のX方向の移動に合わせて、ミラー駆動部342でミラー335をY方向に移動させる。また、部分移動機構341は、照明光学ユニット31及び投影光学系3のX方向の移動に合わせて、ミラー駆動部343でミラー336をX方向及びY方向に移動させる。ここで、本実施形態は、光源6がX方向に光を出力し、ミラー334、335、336、337が光をXY平面で直角に屈折させる向きである。ミラー駆動部343は、X座標がミラー337と同じ座標となり、Y座標がミラー335と同じ座標となる位置にミラー336を移動させる。このように、部分移動機構341は、ミラー335、336を移動させることで、図9及び図10に示すように、照明光学ユニット31及び投影光学系3がX方向に移動しても、光源6から出力された光を、ミラー334、335、336、337で反射させて、照明光学ユニット31に入射される状態を維持する。また、部分移動機構341は、ミラー335及びミラー336をY方向に移動させることで、ミラー335とミラー336との距離が長くなったら、ミラー334とミラー335との距離と、ミラー336とミラー337との距離を短くする。部分移動機構341は、ミラー335とミラー336との距離が短くなったら、ミラー334とミラー335との距離を長くし、ミラー336とミラー337との距離を長くする。これにより、図9及び図10に示すように、照明光学ユニット31及び投影光学系3がX方向に移動しても、光源6側の端部(第1端部)から照明光学ユニット31までの光の光路長を所定の範囲で維持する。 The partial movement mechanism 341 moves the mirror 335 in the Y direction by the mirror driving unit 342 in accordance with the movement of the illumination optical unit 31 and the projection optical system 3 in the X direction. The partial movement mechanism 341 moves the mirror 336 in the X direction and the Y direction by the mirror driving unit 343 in accordance with the movement of the illumination optical unit 31 and the projection optical system 3 in the X direction. Here, in the present embodiment, the light source 6 outputs light in the X direction, and the mirrors 334, 335, 336, and 337 are in a direction to refract the light at right angles on the XY plane. The mirror driving unit 343 moves the mirror 336 to a position where the X coordinate is the same as the mirror 337 and the Y coordinate is the same as the mirror 335. As described above, the partial movement mechanism 341 moves the mirrors 335 and 336, so that the light source 6 can be moved even if the illumination optical unit 31 and the projection optical system 3 move in the X direction as shown in FIGS. 9 and 10. The light output from is reflected by the mirrors 334, 335, 336, and 337 to maintain the state of being incident on the illumination optical unit 31. Further, the partial movement mechanism 341 moves the mirror 335 and the mirror 336 in the Y direction, so that when the distance between the mirror 335 and the mirror 336 increases, the distance between the mirror 334 and the mirror 335, and the mirror 336 and the mirror 337. Reduce the distance to When the distance between the mirror 335 and the mirror 336 decreases, the partial movement mechanism 341 increases the distance between the mirror 334 and the mirror 335 and increases the distance between the mirror 336 and the mirror 337. 9 and 10, even if the illumination optical unit 31 and the projection optical system 3 move in the X direction, the light source 6 side end (first end) to the illumination optical unit 31 can be moved. The optical path length of light is maintained within a predetermined range.
 実施形態4の露光装置301に示すように、案内光学ユニット330で光を案内する経路を異なる経路とした場合でも、照明光学ユニット31及び投影光学系3のX方向の移動に合わせて、ミラーの1つであるミラー335、336を移動させることで、光源6側の端部(第1端部)から照明光学ユニット31までの光の光路長を所定の範囲で維持することができる。また、露光装置301は、照明光学ユニット31及び投影光学系3のX方向の位置が変化しても、ミラーを回転させずに、照明光学ユニット31に光が入射される状態を維持することができる。これにより、制御を簡単にすることができる。 As shown in the exposure apparatus 301 of the fourth embodiment, even when the light guiding path by the guide optical unit 330 is a different path, the mirror is adjusted in accordance with the movement of the illumination optical unit 31 and the projection optical system 3 in the X direction. By moving one of the mirrors 335 and 336, the optical path length of light from the end (first end) on the light source 6 side to the illumination optical unit 31 can be maintained within a predetermined range. Further, the exposure apparatus 301 can maintain a state in which light is incident on the illumination optical unit 31 without rotating the mirror even if the positions of the illumination optical unit 31 and the projection optical system 3 in the X direction change. it can. Thereby, control can be simplified.
<実施形態5>
 以下、図11及び図12を用いて、実施形態5の露光装置について説明する。図11は、実施形態5に係る露光装置の側面図である。図12は、図11に示す露光装置の照明光学ユニット及び投影光学系が移動した状態を示す側面図である。図11及び図12に示す実施形態4の露光装置401は、案内光学ユニット430及び移動機構440の構成以外は、露光装置301と同様の構成である。露光装置301と同様の構成についての説明は省略し、露光装置401に特有の構成について説明する。
<Embodiment 5>
Hereinafter, the exposure apparatus of Embodiment 5 will be described with reference to FIGS. 11 and 12. FIG. 11 is a side view of the exposure apparatus according to the fifth embodiment. FIG. 12 is a side view showing a state where the illumination optical unit and the projection optical system of the exposure apparatus shown in FIG. 11 are moved. The exposure apparatus 401 of Embodiment 4 shown in FIGS. 11 and 12 has the same configuration as the exposure apparatus 301 except for the configuration of the guide optical unit 430 and the moving mechanism 440. A description of the same configuration as that of the exposure apparatus 301 will be omitted, and a configuration specific to the exposure apparatus 401 will be described.
 露光装置401は、フレーム1Fと、照明光学系402と、投影光学系3と、移動装置21と、移動機構440と、を含む。照明光学系402は、案内光学ユニット430と、照明光学ユニット31と、を含む。案内光学ユニット430は、複数の部分案内光学ユニット431を備える。部分案内光学ユニット431は、凹レンズ432、凸レンズ433で構成されるビームエキスパンダと、ミラー434と、コーナーキューブ435と、ミラー436と、集光レンズ437と、ロッドインテグレータ438と、を有する。部分案内光学ユニット431は、部分照明光学ユニット10C、10R、10Lに対応してそれぞれ1つずつ設けられている。なお、本実施形態の部分照明光学ユニット10C、10R、10Lも、リレー光学系11が配置されていない。支持台20は、光源6と部分案内光学ユニット431の光源6側の一部を支持している。 The exposure device 401 includes a frame 1F, an illumination optical system 402, a projection optical system 3, a moving device 21, and a moving mechanism 440. The illumination optical system 402 includes a guide optical unit 430 and an illumination optical unit 31. The guide optical unit 430 includes a plurality of partial guide optical units 431. The partial guide optical unit 431 includes a beam expander including a concave lens 432 and a convex lens 433, a mirror 434, a corner cube 435, a mirror 436, a condenser lens 437, and a rod integrator 438. One partial guide optical unit 431 is provided for each of the partial illumination optical units 10C, 10R, and 10L. Note that the relay optical system 11 is not arranged in the partial illumination optical units 10C, 10R, and 10L of the present embodiment. The support base 20 supports a part of the light source 6 and the partial guide optical unit 431 on the light source 6 side.
 部分案内光学ユニット431は、光源6から出力された光を凹レンズ432、凸レンズ433で構成されるビームエキスパンダで拡大して平行光の光とする。凸レンズ433を通過した光は、ミラー434で反射された後、コーナーキューブ435、ミラー436の順で反射される。ミラー436で反射された光は、集光レンズ437に入射され、集光される。集光レンズ437で集光された光は、ロッドインテグレータ438に入射される。ロッドインテグレータ438は、入射された光を照明光学ユニット31に向けて出射させる。 The partial guide optical unit 431 expands the light output from the light source 6 with a beam expander composed of a concave lens 432 and a convex lens 433 to obtain parallel light. The light that has passed through the convex lens 433 is reflected by the mirror 434 and then is reflected in the order of the corner cube 435 and the mirror 436. The light reflected by the mirror 436 enters the condenser lens 437 and is condensed. The light condensed by the condenser lens 437 enters the rod integrator 438. The rod integrator 438 emits the incident light toward the illumination optical unit 31.
 ここで、ミラー434、436は、フレーム1Fに固定され、光源6に対して所定位置に固定されている。コーナーキューブ435は、駆動部442に支持されている。集光レンズ437、ロッドインテグレータ438は、照明光学ユニット31の筐体に支持されている。したがって、部分案内光学ユニット431は、ミラー434、436が、所定位置に固定され、集光レンズ437と、ロッドインテグレータ438と、が、照明光学ユニット31と一体で移動する。 Here, the mirrors 434 and 436 are fixed to the frame 1F and fixed to a predetermined position with respect to the light source 6. The corner cube 435 is supported by the drive unit 442. The condenser lens 437 and the rod integrator 438 are supported by the housing of the illumination optical unit 31. Accordingly, in the partial guide optical unit 431, the mirrors 434 and 436 are fixed at predetermined positions, and the condenser lens 437 and the rod integrator 438 move integrally with the illumination optical unit 31.
 移動機構440は、部分案内光学ユニット431に対応して配置された複数の部分移動機構441を有する。部分移動機構441は、対応する部分案内光学ユニット431の光源6側の端部(第1端部)から照明光学ユニット31までの光路長を所定の範囲に維持しつつ、部分案内光学ユニット431の位置を移動させる機構であり、対応する部分案内光学ユニット431を照明光学ユニット31の移動に合わせて移動させる。部分移動機構441は、コーナーキューブ435を移動させる駆動部442を有する。また、露光装置401は、上述したように、集光レンズ437と、ロッドインテグレータ438と、が、照明光学ユニット31と一体で移動する。駆動部442は、コーナーキューブ435をY方向に移動させる機構である。 The moving mechanism 440 has a plurality of partial moving mechanisms 441 arranged corresponding to the partial guide optical unit 431. The partial moving mechanism 441 maintains the optical path length from the end (first end) on the light source 6 side of the corresponding partial guide optical unit 431 to the illumination optical unit 31 within a predetermined range, while the partial guide optical unit 431 This is a mechanism for moving the position, and the corresponding partial guide optical unit 431 is moved in accordance with the movement of the illumination optical unit 31. The partial moving mechanism 441 includes a driving unit 442 that moves the corner cube 435. In the exposure apparatus 401, as described above, the condenser lens 437 and the rod integrator 438 move integrally with the illumination optical unit 31. The drive unit 442 is a mechanism that moves the corner cube 435 in the Y direction.
 部分移動機構441は、照明光学ユニット31及び投影光学系3のX方向の移動に合わせて、駆動部442でコーナーキューブ435をY方向に移動させる。ここで、本実施形態は、光源6がX方向に光を出力し、ミラー434、436が光をXY平面で直角に屈折させる向きである。駆動部442は、照明光学ユニット31のX方向の移動量の半分の距離、Y方向に移動する。このように、部分移動機構441は、コーナーキューブ435を移動させることで、図11及び図12に示すように、照明光学ユニット31及び投影光学系3がX方向に移動しても、光源6から出力された光を、ミラー434、コーナーキューブ435、ミラー436で反射させて、照明光学ユニット31に入射される状態を維持する。また、部分移動機構441は、コーナーキューブ435をY方向に移動させることで、照明光学ユニット31及び投影光学系3がX方向に移動しても、部分案内光学ユニット431の光源6側の端部(第1端部)からから照明光学ユニット31までの光の光路長を所定の範囲に維持する。 The partial movement mechanism 441 moves the corner cube 435 in the Y direction by the driving unit 442 in accordance with the movement of the illumination optical unit 31 and the projection optical system 3 in the X direction. Here, in the present embodiment, the light source 6 outputs light in the X direction, and the mirrors 434 and 436 refract the light at right angles on the XY plane. The drive unit 442 moves in the Y direction by a distance that is half the amount of movement of the illumination optical unit 31 in the X direction. In this way, the partial movement mechanism 441 moves the corner cube 435 so that the illumination optical unit 31 and the projection optical system 3 move from the light source 6 even if the illumination optical unit 31 and the projection optical system 3 move in the X direction, as shown in FIGS. The output light is reflected by the mirror 434, the corner cube 435, and the mirror 436, and the state where the light is incident on the illumination optical unit 31 is maintained. Further, the partial movement mechanism 441 moves the corner cube 435 in the Y direction, so that even if the illumination optical unit 31 and the projection optical system 3 move in the X direction, the end of the partial guide optical unit 431 on the light source 6 side. The optical path length of light from the (first end) to the illumination optical unit 31 is maintained within a predetermined range.
 実施形態5の露光装置401に示すように、案内光学ユニット430にミラーとしてコーナーキューブ435を設け、移動機構440でミラーの1つである当該コーナーキューブ435の位置を移動させることで、コーナーキューブ435の位置の一方向の移動を制御するのみで、部分案内光学ユニット431の光源6側の端部(第1端部)から照明光学ユニット31までの光の光路長を所定の範囲に維持する制御を実行することができる。これにより、制御を簡単にすることができる。 As shown in the exposure apparatus 401 of the fifth embodiment, a corner cube 435 is provided as a mirror in the guide optical unit 430, and the corner cube 435 is moved by moving the position of the corner cube 435, which is one of the mirrors, by the moving mechanism 440. The optical path length of the light from the end (first end) on the light source 6 side of the partial guide optical unit 431 to the illumination optical unit 31 is maintained within a predetermined range only by controlling the movement in one direction of the position. Can be executed. Thereby, control can be simplified.
<実施形態6>
 以下、図13から図17を用いて、実施形態6の露光装置501について説明する。図13は、実施形態6に係る露光装置の側面図である。図14は、実施形態6に係る露光装置を、投影光学系とマスクとの間から見た図である。図15は、実施形態6に係る露光装置を照明光学ユニット及び投影光学系が移動する方向側から見た図である。図16は、図13に示す露光装置の照明光学ユニット及び投影光学系が移動した状態を示す側面図である。図17は、図13に示す露光装置の照明光学ユニット及び投影光学系が移動した状態を示す側面図である。
<Embodiment 6>
Hereinafter, the exposure apparatus 501 of Embodiment 6 will be described with reference to FIGS. 13 to 17. FIG. 13 is a side view of the exposure apparatus according to the sixth embodiment. FIG. 14 is a view of the exposure apparatus according to the sixth embodiment as seen from between the projection optical system and the mask. FIG. 15 is a view of the exposure apparatus according to the sixth embodiment as viewed from the direction in which the illumination optical unit and the projection optical system move. FIG. 16 is a side view showing a state where the illumination optical unit and the projection optical system of the exposure apparatus shown in FIG. 13 are moved. FIG. 17 is a side view showing a state where the illumination optical unit and the projection optical system of the exposure apparatus shown in FIG. 13 are moved.
 露光装置501は、フレーム1Fと、照明光学系502と、投影光学系503と、移動装置21と、移動機構540と、を含む。照明光学系502は、案内光学ユニット530と、照明光学ユニット550と、を含む。上述した露光装置1(図1等参照)が備える投影光学系3は、複数のMLA8を備えていたが、本実施形態の露光装置501が備える投影光学系503は、Y軸方向に延在した1個のMLA508を有する。また、照明光学ユニット550は、1個の凹面ミラー516を用いて光を投影光学系503に出射する。露光装置1は、1つの光源506から出力された光を案内光学ユニット530で案内して、照明光学ユニット550に入射させる。支持台20は、光源506と案内光学ユニット530の光源506側の一部を支持している。 The exposure apparatus 501 includes a frame 1F, an illumination optical system 502, a projection optical system 503, a moving apparatus 21, and a moving mechanism 540. The illumination optical system 502 includes a guide optical unit 530 and an illumination optical unit 550. The projection optical system 3 included in the exposure apparatus 1 (see FIG. 1 and the like) described above includes a plurality of MLAs 8, but the projection optical system 503 included in the exposure apparatus 501 of the present embodiment extends in the Y-axis direction. It has one MLA 508. Further, the illumination optical unit 550 emits light to the projection optical system 503 using one concave mirror 516. The exposure apparatus 1 guides the light output from one light source 506 by the guide optical unit 530 and causes the light to enter the illumination optical unit 550. The support 20 supports a part of the light source 506 and the guide optical unit 530 on the light source 506 side.
 案内光学ユニット530は、集光レンズ531と、光ファイバ532と、を有する。案内光学ユニット530は、光源506から射出した光を集光レンズ531で集光して、光ファイバ532に入射する。光ファイバ532で導光された光は、照明光学ユニット550に入射される。ここで、光ファイバ532は、光ファイバ7と同様に、一方の端部が光源506に対して固定され、他方の端部が照明光学ユニット550に対して固定されている。 The guide optical unit 530 includes a condenser lens 531 and an optical fiber 532. The guide optical unit 530 condenses the light emitted from the light source 506 by the condenser lens 531 and enters the optical fiber 532. The light guided by the optical fiber 532 enters the illumination optical unit 550. Here, like the optical fiber 7, one end of the optical fiber 532 is fixed to the light source 506, and the other end is fixed to the illumination optical unit 550.
 移動機構540は、露光装置1の移動機構40と同様の構成であり、定滑車44とリニアアクチュエータ46とを有する。移動機構540は、照明光学ユニット550及び投影光学系503のX方向の移動に合わせて、リニアアクチュエータ46の可動子48をX方向に移動させ、光ファイバ532のX方向の移動を円滑に補助する。 The moving mechanism 540 has the same configuration as the moving mechanism 40 of the exposure apparatus 1 and includes a fixed pulley 44 and a linear actuator 46. The moving mechanism 540 moves the mover 48 of the linear actuator 46 in the X direction in accordance with the movement of the illumination optical unit 550 and the projection optical system 503 in the X direction, and smoothly assists the movement of the optical fiber 532 in the X direction. .
 照明光学ユニット550は、案内光学ユニット530で案内された光を、マスクMを照明する光として出力する構成である。照明光学ユニット550は、図14に示す照明視野Sを形成する光学系を有する。照明光学ユニット550は、案内光学ユニット530で案内された光が、リレー光学系511でコリメートされ、ミラー512で反射し、リレー光学系513を介してフライアイレンズ514に入射する。このとき、リレー光学系511、513は、光ファイバ532の出射端面を所定の倍数に拡大して、フライアイレンズ514の入射面に入射する。フライアイレンズ514は、複数のエレメントレンズが配列し、接合されている。本実施形態においては、列方向に5個、行方向に17個のエレメントレンズが配列するとともに、合計85個のエレメントが接合されている。フライアイレンズ514を射出した光は、σ絞り515を通過する。σ絞り515は、通過する光の径を制限して照明NAを定める。σ絞り515を通過した光は、凹面ミラー516によって、マスクMの表面(照明光学ユニット550側の表面)に集光され、照明視野Sを形成する。 The illumination optical unit 550 is configured to output the light guided by the guide optical unit 530 as light for illuminating the mask M. The illumination optical unit 550 has an optical system that forms an illumination field S shown in FIG. In the illumination optical unit 550, the light guided by the guide optical unit 530 is collimated by the relay optical system 511, reflected by the mirror 512, and enters the fly-eye lens 514 via the relay optical system 513. At this time, the relay optical systems 511 and 513 enlarge the exit end face of the optical fiber 532 to a predetermined multiple and enter the incident face of the fly-eye lens 514. The fly-eye lens 514 has a plurality of element lenses arranged and joined. In this embodiment, five element lenses are arranged in the column direction and 17 element lenses are arranged in the row direction, and a total of 85 elements are joined. The light emitted from the fly-eye lens 514 passes through the σ stop 515. The σ stop 515 determines the illumination NA by limiting the diameter of light passing therethrough. The light that has passed through the σ stop 515 is condensed on the surface of the mask M (surface on the side of the illumination optical unit 550) by the concave mirror 516 to form an illumination field S.
 投影光学系503は、Y軸方向に向かって延在する1つのMLA508を有する。MLA508は、照明光学ユニット550が形成した照明視野Sに対応した位置に配置されている。MLA508は、投影光学系503のステージ503Sに搭載される。ステージ503Sが投影系ガイド5Pに沿って移動することにより、MLA508がX軸方向に移動する。 The projection optical system 503 has one MLA 508 extending in the Y-axis direction. The MLA 508 is disposed at a position corresponding to the illumination visual field S formed by the illumination optical unit 550. The MLA 508 is mounted on the stage 503S of the projection optical system 503. As the stage 503S moves along the projection system guide 5P, the MLA 508 moves in the X-axis direction.
 露光装置501は、以上のような構成であり、図16及び図17に示すように、リニアアクチュエータ46の可動子48を、照明光学ユニット550及び投影光学系503のX方向への移動と同じ方向に照明光学ユニット550及び投影光学系503と同じ距離、移動させる。つまり、露光装置501は、露光装置1の移動機構40と同様の制御を実行する。このように、移動機構540で、光ファイバ532をX方向に移動させることで、光ファイバ532をより円滑に照明光学ユニット550に従動させることができる。 The exposure apparatus 501 is configured as described above. As shown in FIGS. 16 and 17, the movable element 48 of the linear actuator 46 is moved in the same direction as the movement of the illumination optical unit 550 and the projection optical system 503 in the X direction. Are moved the same distance as the illumination optical unit 550 and the projection optical system 503. That is, the exposure apparatus 501 performs the same control as the movement mechanism 40 of the exposure apparatus 1. In this manner, the optical fiber 532 can be moved more smoothly in the X direction by the moving mechanism 540, so that the optical fiber 532 can be driven more smoothly by the illumination optical unit 550.
 以上のように、1つの照明光学ユニット550で、照明視野Sの全域を照明する構成の場合も、上記と同様に、案内光学ユニット530と移動機構540とで、案内光学ユニット530の光源6側の端部(第1端部)から照明光学ユニット550との距離を所定の範囲に維持することで上記実施形態と同様の効果を得ることができる。 As described above, even when the entire illumination field S is illuminated by one illumination optical unit 550, the light guide 6 side of the guide optical unit 530 is composed of the guide optical unit 530 and the moving mechanism 540 as described above. By maintaining the distance from the end portion (first end portion) to the illumination optical unit 550 within a predetermined range, the same effect as in the above embodiment can be obtained.
<デバイス製造方法>
 図18は、本実施形態に係るデバイス製造方法の各ステップを示すフローチャートである。本実施形態に係るデバイス製造方法でデバイスを製造するにあたって、まず、デバイス(電子デバイス)の機能及び性能の設計が行われる(ステップS201)。次に、ステップS201における設計に基づいたマスクMが製造される(ステップS202)。次に、レジストが塗布されたプレートPに、ステップS202で製造されたマスクMのマスクパターンが投影露光される工程、露光したプレートPを現像する工程、現像されたプレートPの加熱工程及びエッチング工程等を含む基板処理が行われる(ステップS203)。
<Device manufacturing method>
FIG. 18 is a flowchart showing each step of the device manufacturing method according to the present embodiment. In manufacturing a device by the device manufacturing method according to the present embodiment, first, the function and performance of the device (electronic device) are designed (step S201). Next, a mask M based on the design in step S201 is manufactured (step S202). Next, a process in which the mask pattern of the mask M manufactured in step S202 is projected and exposed onto the plate P on which the resist has been applied, a process in which the exposed plate P is developed, a process in which the developed plate P is heated, and an etching process A substrate process including the above is performed (step S203).
 基板処理においてマスクパターンがプレートPに投影露光される工程では、露光装置1、101、201、301、401、501が本実施形態に係る露光方法を実行することにより、マスクMに形成されたパターン、すなわちマスクパターンと同形状のパターンがプレートPに転写される。マスクパターンが転写されたプレートPは、現像、加熱及びエッチングによって、転写されたパターンに基づいて加工される。基板処理が終了したら、ダイシング工程、ボンディング工程及びパッケージ工程等の加工プロセスを含むデバイスの組み立てが行われ(ステップS204)、その後の検査(ステップS205)を経てデバイスが完成する。 In the process in which the mask pattern is projected and exposed to the plate P in the substrate processing, the pattern formed on the mask M by the exposure apparatuses 1, 101, 201, 301, 401, and 501 executing the exposure method according to the present embodiment. That is, a pattern having the same shape as the mask pattern is transferred to the plate P. The plate P to which the mask pattern is transferred is processed based on the transferred pattern by development, heating, and etching. When the substrate processing is completed, device assembly including processing processes such as a dicing process, a bonding process, and a packaging process is performed (step S204), and the device is completed through subsequent inspection (step S205).
 上記の実施形態の露光装置1、101、201、301、401、501の投影システム(主として投影光学系)は、投影倍率を1として投影する場合として説明したがこれに限定されない。露光装置1、101、201、301、401、501は、投影システムの光学系を構成するレンズの配置や焦点位置を変更することで、投影倍率を任意の倍率とすることができる。露光装置1、101、201、301、401、501は、投影倍率を1未満とし、マスクのパターンの線幅を投影倍率分縮小して、プレートPで結像される構成、つまり、マスクのパターンの線幅がプレートPで結像されるパターンの線幅の数倍(2倍、3倍)の大きさとなる構成としてもよい。また、露光装置1、101、201、301、401、501は、投影倍率を1より大きくし、マスクのパターンの線幅を投影倍率分拡大して、プレートPで結像される構成、つまり、マスクのパターンの線幅がプレートPで結像されるパターンの線幅の数分の1(1/2、1/3)の大きさとなる構成としてもよい。 Although the projection system (mainly the projection optical system) of the exposure apparatuses 1, 101, 201, 301, 401, and 501 of the above embodiment has been described as a case where the projection magnification is 1, the present invention is not limited to this. The exposure apparatuses 1, 101, 201, 301, 401, and 501 can change the projection magnification to an arbitrary magnification by changing the arrangement and focal position of lenses that constitute the optical system of the projection system. The exposure apparatuses 1, 101, 201, 301, 401, and 501 have a configuration in which the projection magnification is less than 1, the line width of the mask pattern is reduced by the projection magnification, and an image is formed on the plate P, that is, the mask pattern The line width may be several times (2 times, 3 times) the line width of the pattern formed on the plate P. The exposure apparatus 1, 101, 201, 301, 401, 501 has a configuration in which the projection magnification is larger than 1, the line width of the mask pattern is enlarged by the projection magnification, and an image is formed on the plate P, that is, The line width of the mask pattern may be a fraction (1/2, 1/3) of the line width of the pattern imaged on the plate P.
 なお、上述のプレートPとしては、ディスプレイデバイス用のガラス基板のみならず、半導体デバイス製造用の半導体ウエハ、薄膜磁気ヘッド用のセラミックウエハ、あるいは露光装置で用いられるマスクまたはレチクルの原版(合成石英、シリコンウエハ)などを用いることができる。 The plate P is not limited to a glass substrate for a display device, but also a semiconductor wafer for manufacturing a semiconductor device, a ceramic wafer for a thin film magnetic head, or a mask or reticle used in an exposure apparatus (synthetic quartz, A silicon wafer) or the like can be used.
 また、本発明は、米国特許第6341007号明細書、米国特許第6208407号明細書、米国特許第6262796号明細書などに開示されているような、複数の基板ステージを備えたツインステージ型の露光装置にも適用できる。 Further, the present invention relates to a twin stage type exposure having a plurality of substrate stages as disclosed in US Pat. No. 6,341,007, US Pat. No. 6,208,407, US Pat. No. 6,262,796 and the like. It can also be applied to devices.
 また、本発明は、米国特許第6897963号明細書、欧州特許出願公開第1713113号明細書などに開示されているような、基板を保持する基板ステージと、基板を保持せずに、基準マークが形成された基準部材及び/又は各種の光電センサを搭載した計測ステージとを備えた露光装置にも適用することができる。また、複数の基板ステージと計測ステージとを備えた露光装置を採用することができる。 Further, the present invention relates to a substrate stage for holding a substrate as disclosed in US Pat. No. 6,897,963 and European Patent Application No. 1713113, and a reference mark without holding the substrate. The present invention can also be applied to an exposure apparatus that includes a formed reference member and / or a measurement stage on which various photoelectric sensors are mounted. An exposure apparatus including a plurality of substrate stages and measurement stages can be employed.
 露光装置1、101、201、301、401、501の種類としては、液晶表示素子製造用又はディスプレイ製造用の露光装置に限られず、プレートPに半導体素子パターンを露光する半導体素子製造用の露光装置、薄膜磁気ヘッド、撮像素子(CCD)、マイクロマシン、MEMS、DNAチップ、あるいはレチクル又はマスクなどを製造するための露光装置などにも広く適用できる。 The types of exposure apparatuses 1, 101, 201, 301, 401, and 501 are not limited to exposure apparatuses for manufacturing liquid crystal display elements or displays, but exposure apparatuses for manufacturing semiconductor elements that expose a semiconductor element pattern on a plate P. It can be widely applied to an exposure apparatus for manufacturing a thin film magnetic head, an imaging device (CCD), a micromachine, a MEMS, a DNA chip, a reticle, a mask, or the like.
 なお、上述の実施形態においては、光透過性の基板上に所定の遮光パターン(又は位相パターン・減光パターン)を形成した光透過型マスクを用いたが、このマスクに代えて、例えば米国特許第6778257号明細書に開示されているように、露光すべきパターンの電子データに基づいて透過パターン又は反射パターン、あるいは発光パターンを形成する可変成形マスク(電子マスク、アクティブマスク、あるいはイメージジェネレータとも呼ばれる)を用いてもよい。また、非発光型画像表示素子を備える可変成形マスクに代えて、自発光型画像表示素子を含むパターン形成装置を備えるようにしても良い。 In the above-described embodiment, a light-transmitting mask in which a predetermined light-shielding pattern (or phase pattern / dimming pattern) is formed on a light-transmitting substrate is used. As disclosed in US Pat. No. 6,778,257, a variable shaped mask (also called an electronic mask, an active mask, or an image generator) that forms a transmission pattern, a reflection pattern, or a light emission pattern based on electronic data of a pattern to be exposed. ) May be used. Further, a pattern forming apparatus including a self-luminous image display element may be provided instead of the variable molding mask including the non-luminous image display element.
 上述の実施形態の露光装置1、101、201、301、401、501は、本願請求の範囲に挙げられた各構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的精度を保つように、組み立てることで製造される。これら各種精度を確保するために、この組み立ての前後には、各種光学系については光学的精度を達成するための調整、各種機械系については機械的精度を達成するための調整、各種電気系については電気的精度を達成するための調整が行われる。各種サブシステムから露光装置への組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、気圧回路の配管接続などが含まれる。この各種サブシステムから露光装置への組み立て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない。各種サブシステムの露光装置への組み立て工程が終了した後、総合調整が行われ、露光装置全体としての各種精度が確保される。なお、露光装置の製造は温度及びクリーン度などが管理されたクリーンルームで行うことが望ましい。 The exposure apparatuses 1, 101, 201, 301, 401, and 501 according to the above-described embodiments are used to convert various subsystems including the constituent elements recited in the claims of the present application into predetermined mechanical accuracy, electrical accuracy, and optical accuracy. Manufactured by assembling to maintain accuracy. In order to ensure these various accuracies, before and after assembly, various optical systems are adjusted to achieve optical accuracy, various mechanical systems are adjusted to achieve mechanical accuracy, and various electrical systems are Adjustments are made to achieve electrical accuracy. The assembly process from the various subsystems to the exposure apparatus includes mechanical connection, electrical circuit wiring connection, pneumatic circuit piping connection and the like between the various subsystems. Needless to say, there is an assembly process for each subsystem before the assembly process from the various subsystems to the exposure apparatus. After the assembly process of the various subsystems to the exposure apparatus is completed, comprehensive adjustment is performed to ensure various accuracies as the entire exposure apparatus. The exposure apparatus is preferably manufactured in a clean room in which the temperature and cleanliness are controlled.
 なお、上述の実施形態及び変形例の要件は、適宜組み合わせることができる。また、一部の構成要素を用いない場合もある。また、本発明の要旨を逸脱しない範囲で構成要素の種々の省略、置換又は変更を行うことができる。また、法令で許容される限りにおいて、上述の実施形態及び変形例で引用した露光装置などに関する全ての公開公報及び米国特許の開示を援用して本文の記載の一部とする。このように、上記実施形態に基づいて当業者等によりなされる他の実施形態及び運用技術等は、すべて本発明の範囲に含まれる。 It should be noted that the requirements of the above-described embodiments and modifications can be combined as appropriate. Some components may not be used. In addition, various omissions, substitutions, or changes of components can be made without departing from the scope of the present invention. In addition, as long as it is permitted by law, the disclosure of all published publications and US patents related to the exposure apparatus and the like cited in the above-described embodiments and modifications are incorporated herein by reference. As described above, all other embodiments and operation techniques made by those skilled in the art based on the above-described embodiments are all included in the scope of the present invention.
1、101、201、301、401、501 露光装置
1S プレートステージ
1T マスクステージ
2 照明光学系
3 投影光学系
3S ステージ
6 光源
7 光ファイバ
9 制御装置
10C、10L、10R 部分照明光学ユニット
11、12、511、513 リレー光学系
13、514 フライアイレンズ
15 コンデンサレンズ
16 ミラー
20 支持台
21 移動装置
22 支持部
30 案内光学ユニット
31 照明光学ユニット
32 バンドル
40 移動機構
44 定滑車
46 リニアアクチュエータ
48 可動子
50 固定子
516 凹面ミラー
1, 101, 201, 301, 401, 501 Exposure apparatus 1S Plate stage 1T Mask stage 2 Illumination optical system 3 Projection optical system 3S Stage 6 Light source 7 Optical fiber 9 Controllers 10C, 10L, 10R Partial illumination optical units 11, 12 511, 513 Relay optical system 13, 514 Fly eye lens 15 Condenser lens 16 Mirror 20 Support base 21 Moving device 22 Support unit 30 Guide optical unit 31 Illumination optical unit 32 Bundle 40 Moving mechanism 44 Fixed pulley 46 Linear actuator 48 Movable element 50 Fixed Child 516 Concave mirror

Claims (14)

  1.  パターンが形成されたマスクを支持するマスク支持機構とプレートを保持するプレート支持機構とを備え、光源から出力される照明光を用いて前記パターンを前記プレートに転写する露光装置であって、
     前記照明光を前記マスクに照射させる照明光学系と、
     前記照明光学系によって照明される前記パターンの像を前記プレートに投影するレンズアレイと、
     前記照明光学系の少なくとも一部及び前記レンズアレイを支持する支持部を備え、前記支持部を前記光源に対して相対的に前記マスク及び前記プレートに沿った方向に移動させる移動装置と、
    を有する露光装置。
    An exposure apparatus comprising a mask support mechanism for supporting a mask on which a pattern is formed and a plate support mechanism for holding a plate, and transferring the pattern onto the plate using illumination light output from a light source,
    An illumination optical system for irradiating the mask with the illumination light;
    A lens array that projects an image of the pattern illuminated by the illumination optical system onto the plate;
    A moving device that includes a support unit that supports at least a part of the illumination optical system and the lens array, and moves the support unit in a direction along the mask and the plate relative to the light source;
    An exposure apparatus.
  2.  前記照明光学系は、前記支持部に支持される照明光学ユニットと、前記照明光を前記照明光学ユニットに案内する案内光学ユニットと、を有する請求項1に記載の露光装置。 2. The exposure apparatus according to claim 1, wherein the illumination optical system includes an illumination optical unit supported by the support portion, and a guide optical unit that guides the illumination light to the illumination optical unit.
  3.  前記案内光学ユニットは、前記光源側の第1端部が前記光源から出力された前記照明光の光路上に配置され、前記照明光学ユニット側の第2端部が前記照明光学ユニットとともに前記移動装置によって移動される請求項2に記載の露光装置。 The guide optical unit has a first end on the light source side disposed on an optical path of the illumination light output from the light source, and a second end on the illumination optical unit side together with the illumination optical unit and the moving device. The exposure apparatus according to claim 2, wherein the exposure apparatus is moved by the step.
  4.  前記案内光学ユニットは、前記移動装置による前記第2端部の移動にともない、前記第1端部から前記照明光学ユニットまでの光路長を所定の範囲に維持する請求項3に記載の露光装置。 4. The exposure apparatus according to claim 3, wherein the guide optical unit maintains an optical path length from the first end to the illumination optical unit within a predetermined range as the second end is moved by the moving device.
  5.  前記案内光学ユニットは、光ファイバを備え、
     前記光ファイバは、一方の端部が前記光源に対して固定され、他方の端部が前記照明光学系に対して固定されている請求項3または4に記載の露光装置。
    The guide optical unit includes an optical fiber,
    5. The exposure apparatus according to claim 3, wherein one end of the optical fiber is fixed to the light source, and the other end is fixed to the illumination optical system.
  6.  前記移動装置は、前記照明光学ユニットの移動に合わせて、前記光ファイバを移動させる移動機構をさらに備える請求項5に記載の露光装置。 6. The exposure apparatus according to claim 5, wherein the moving device further includes a moving mechanism that moves the optical fiber in accordance with the movement of the illumination optical unit.
  7.  前記案内光学ユニットは、前記照明光を反射させる少なくとも1つのミラーを含み、
     前記移動装置は、前記照明光学ユニットの移動に合わせて前記ミラーを移動し、前記第1端部から前記照明光学ユニットまでの光路長を所定の範囲に維持する請求項3に記載の露光装置。
    The guide optical unit includes at least one mirror that reflects the illumination light,
    The exposure apparatus according to claim 3, wherein the moving device moves the mirror in accordance with the movement of the illumination optical unit and maintains an optical path length from the first end to the illumination optical unit within a predetermined range.
  8.  前記少なくとも1つのミラーは、コーナーキューブを含む請求項7に記載の露光装置。 The exposure apparatus according to claim 7, wherein the at least one mirror includes a corner cube.
  9.  前記照明光学ユニットは、複数の部分照明光学ユニットを有し、
     前記案内光学ユニットは、前記部分照明光学ユニットに対応した複数の部分案内光学ユニットを有し、
     複数の前記部分案内光学ユニットは、前記照明光がそれぞれ入射される請求項2から8のいずれか一項に記載の露光装置。
    The illumination optical unit has a plurality of partial illumination optical units,
    The guide optical unit has a plurality of partial guide optical units corresponding to the partial illumination optical unit,
    The exposure apparatus according to claim 2, wherein the illumination light is incident on each of the plurality of partial guide optical units.
  10.  前記照明光は、レーザ光であることを特徴とする請求項1から9のいずれか一項に記載の露光装置。 The exposure apparatus according to any one of claims 1 to 9, wherein the illumination light is laser light.
  11.  光源から出力された照明光を照明光学系を介してマスクに照射し、前記マスクに形成されたパターンをレンズアレイを介してプレートに転写する露光方法であって、
     前記照明光学系の少なくとも一部及び前記レンズアレイを、前記光源に対して相対的に前記マスク及び前記プレートに沿った方向に移動させつつ、前記照明光学系から前記パターンに前記照明光を照射し、前記パターンの像を前記レンズアレイを介して前記プレートに投影することを含む露光方法。
    An exposure method of irradiating a mask with illumination light output from a light source via an illumination optical system, and transferring a pattern formed on the mask to a plate via a lens array,
    The illumination optical system is irradiated with the illumination light from the illumination optical system while moving at least a part of the illumination optical system and the lens array in a direction along the mask and the plate relative to the light source. An exposure method comprising projecting an image of the pattern onto the plate through the lens array.
  12.  前記照明光学系、前記レンズアレイとともに移動される第1ユニットと、前記照明光を前記第1ユニットに案内する第2ユニットとを含み、
     前記第2ユニットのうち前記第1ユニット側の端部は、前記第1ユニットとともに移動される請求項11に記載の露光方法。
    A first unit that is moved together with the illumination optical system and the lens array; and a second unit that guides the illumination light to the first unit;
    The exposure method according to claim 11, wherein an end portion on the first unit side of the second unit is moved together with the first unit.
  13.  前記第2ユニットの前記光源側の端部から前記第1ユニットまでの光路長は、前記第1ユニット側の端部の移動にともない所定の範囲に維持される請求項12に記載の露光方法。 13. The exposure method according to claim 12, wherein the optical path length from the light source side end of the second unit to the first unit is maintained within a predetermined range as the end of the first unit moves.
  14.  請求項11から13のいずれか一項に記載の露光方法によって、前記マスクに形成されたパターンをプレートに転写することと、
     前記パターンが転写された前記プレートを、転写された前記パターンに基づいて加工することと、を含むデバイス製造方法。
    Transferring the pattern formed on the mask to a plate by the exposure method according to any one of claims 11 to 13;
    Processing the plate to which the pattern has been transferred based on the transferred pattern.
PCT/JP2013/064213 2012-05-22 2013-05-22 Exposure device, exposure method, and method for manufacturing device WO2013176178A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012116933A JP2013242488A (en) 2012-05-22 2012-05-22 Exposure device, exposure method and device manufacturing method
JP2012-116933 2012-05-22

Publications (1)

Publication Number Publication Date
WO2013176178A1 true WO2013176178A1 (en) 2013-11-28

Family

ID=49623863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/064213 WO2013176178A1 (en) 2012-05-22 2013-05-22 Exposure device, exposure method, and method for manufacturing device

Country Status (2)

Country Link
JP (1) JP2013242488A (en)
WO (1) WO2013176178A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159200A1 (en) * 2015-03-31 2016-10-06 株式会社ニコン Exposure device, method for producing flat panel display, method for producing device, and exposure method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6727554B2 (en) * 2015-03-31 2020-07-22 株式会社ニコン Exposure apparatus, flat panel display manufacturing method, device manufacturing method, and exposure method
DE102017113475A1 (en) * 2016-06-20 2017-12-21 Cognex Corporation Device for projecting a temporally variable optical pattern onto an object to be measured three-dimensionally

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000019741A (en) * 1998-07-01 2000-01-21 Toshiba Electronic Engineering Corp Exposing method and exposing device
JP2001521278A (en) * 1997-10-23 2001-11-06 ハグル・リソグラフィ Lens array photolithography
JP2001313251A (en) * 2000-02-21 2001-11-09 Tokyo Denki Univ Optical fiber matrix projection aligner
JP2008176257A (en) * 2007-01-22 2008-07-31 Tokyo Denki Univ Projection exposure device and projection exposure method
JP2012058388A (en) * 2010-09-07 2012-03-22 V Technology Co Ltd Exposure device
WO2012046540A1 (en) * 2010-10-05 2012-04-12 株式会社ブイ・テクノロジー Scanning exposure device using microlens array

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001521278A (en) * 1997-10-23 2001-11-06 ハグル・リソグラフィ Lens array photolithography
JP2000019741A (en) * 1998-07-01 2000-01-21 Toshiba Electronic Engineering Corp Exposing method and exposing device
JP2001313251A (en) * 2000-02-21 2001-11-09 Tokyo Denki Univ Optical fiber matrix projection aligner
JP2008176257A (en) * 2007-01-22 2008-07-31 Tokyo Denki Univ Projection exposure device and projection exposure method
JP2012058388A (en) * 2010-09-07 2012-03-22 V Technology Co Ltd Exposure device
WO2012046540A1 (en) * 2010-10-05 2012-04-12 株式会社ブイ・テクノロジー Scanning exposure device using microlens array

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159200A1 (en) * 2015-03-31 2016-10-06 株式会社ニコン Exposure device, method for producing flat panel display, method for producing device, and exposure method
CN107533303A (en) * 2015-03-31 2018-01-02 株式会社尼康 Exposure device, the manufacture method of flat-panel screens, manufacturing method and exposure method
JPWO2016159200A1 (en) * 2015-03-31 2018-02-01 株式会社ニコン Exposure apparatus, flat panel display manufacturing method, device manufacturing method, and exposure method

Also Published As

Publication number Publication date
JP2013242488A (en) 2013-12-05

Similar Documents

Publication Publication Date Title
US8922786B2 (en) Detector, imprint apparatus, and article manufacturing method
CN107407894B (en) Measuring apparatus and measuring method, exposure apparatus and exposure method, and device manufacturing method
US11255514B2 (en) Illumination apparatus having planar array of LEDs and movable pair of lens arrays for modifying light output
KR20080065940A (en) Position detection apparatus and exposure apparatus
KR102556125B1 (en) Layout method, mark detection method, light exposure method, measurement apparatus, light exposure apparatus, and method for manufacturing device
WO2013176178A1 (en) Exposure device, exposure method, and method for manufacturing device
KR100846337B1 (en) Exposure method and exposure apparatus
JP5692076B2 (en) Exposure apparatus, exposure method, and device manufacturing method
JP6286813B2 (en) Exposure apparatus, exposure method, and device manufacturing method
JP6428839B2 (en) Exposure method, exposure apparatus, and device manufacturing method
JP2008098325A (en) Exposure device and exposure method
JP2005085991A (en) Exposure apparatus and manufacturing method of device using the apparatus
JP6131607B2 (en) Exposure method, exposure apparatus, and device manufacturing method
US11698589B2 (en) Light source device, illuminating apparatus, exposing apparatus, and method for manufacturing article
JP6729663B2 (en) Exposure method and exposure apparatus
JP2006261361A (en) Aligner and manufacturing method of micro device
KR101501967B1 (en) Lithographic apparatus and device manufacturing method
JP2010272631A (en) Lighting apparatus, exposure apparatus, and device manufacturing method
TW201608344A (en) Exposure apparatus, exposure method and device manufacturing method
WO2024038533A1 (en) Light source unit, illumination unit, exposure device, and exposure method
WO2024038535A1 (en) Lighting unit, exposure device, and exposure method
JP2014134591A (en) Illumination device, exposure device, illumination method, and device manufacturing method
JP6051905B2 (en) Light distribution apparatus, illumination system, and exposure apparatus including the same
JP2014236211A (en) Illuminating device, exposure device, illuminating method and method of manufacturing device
JP2012146702A (en) Exposure method and exposure device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13794733

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13794733

Country of ref document: EP

Kind code of ref document: A1