WO2013175779A1 - 異常検出方法 - Google Patents

異常検出方法 Download PDF

Info

Publication number
WO2013175779A1
WO2013175779A1 PCT/JP2013/003247 JP2013003247W WO2013175779A1 WO 2013175779 A1 WO2013175779 A1 WO 2013175779A1 JP 2013003247 W JP2013003247 W JP 2013003247W WO 2013175779 A1 WO2013175779 A1 WO 2013175779A1
Authority
WO
WIPO (PCT)
Prior art keywords
calculated value
intercooler
egr
normal range
efficiency
Prior art date
Application number
PCT/JP2013/003247
Other languages
English (en)
French (fr)
Inventor
平 中野
Original Assignee
日野自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日野自動車株式会社 filed Critical 日野自動車株式会社
Priority to US14/398,823 priority Critical patent/US20150142338A1/en
Priority to CN201380027294.0A priority patent/CN104302901B/zh
Priority to EP13794026.8A priority patent/EP2857664B1/en
Publication of WO2013175779A1 publication Critical patent/WO2013175779A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
    • F02D21/08Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/042Testing internal-combustion engines by monitoring a single specific parameter not covered by groups G01M15/06 - G01M15/12
    • G01M15/048Testing internal-combustion engines by monitoring a single specific parameter not covered by groups G01M15/06 - G01M15/12 by monitoring temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/045Constructional details of the heat exchangers, e.g. pipes, plates, ribs, insulation, materials, or manufacturing and assembly
    • F02B29/0462Liquid cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0493Controlling the air charge temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/221Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/222Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/28Layout, e.g. schematics with liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/46Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition
    • F02M26/47Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition the characteristics being temperatures, pressures or flow rates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/02Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • F02D2041/0067Determining the EGR temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/021Engine temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0402Engine intake system parameters the parameter being determined by using a model of the engine intake or its components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0414Air temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M2026/001Arrangements; Control features; Details
    • F02M2026/004EGR valve controlled by a temperature signal or an air/fuel ratio (lambda) signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/02Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow
    • G01K13/024Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow of moving gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an abnormality detection method used for an internal combustion engine.
  • EGR exhaust gas recirculation
  • an EGR pipe is used between an appropriate position of the exhaust passage extending from the exhaust manifold to the exhaust pipe and an appropriate position of the intake passage extending from the intake pipe to the intake manifold.
  • the EGR gas is connected and recirculated through the EGR pipe.
  • OBD systems On Board Diagnostic Systems
  • Detection / monitoring is performed, an alarm is displayed when an abnormality occurs to notify the driver, and the details of the failure are stored and held.
  • Patent Document 1 As prior art document information related to a technique for detecting characteristic abnormality of this type of sensor, for example, the following Patent Document 1 by the same applicant as the present invention has already been proposed.
  • an intercooler outlet temperature sensor that detects the intake air temperature at the intercooler outlet
  • an intake manifold temperature sensor that detects the intake air temperature of the intake manifold
  • an EGR cooler outlet The EGR outlet temperature sensor for detecting the EGR gas temperature is required to determine whether or not a characteristic abnormality has occurred, but these intercooler outlet temperature sensor, intake manifold temperature sensor, EGR outlet temperature There is a problem that it is difficult to accurately determine whether or not a characteristic abnormality has occurred in the sensor.
  • the deterioration of the intercooler over time described here is that the foreign matter contained in the intake air, oil leaked from the turbocharger, etc., on the heat transfer surface inside the core of the intercooler over time. It indicates that the heat exchange efficiency decreases due to accumulation, and the deterioration of the EGR cooler over time is the heat transfer tube of the EGR cooler (generally, the EGR cooler is a shell-and-tube type heat exchanger).
  • the soot contained in the exhaust gas accumulates with time on the inner peripheral surface of the slag (which takes a form), and the heat exchange efficiency decreases.
  • the present invention has been made in view of the above circumstances, and an abnormality that can accurately specify which of the intercooler outlet temperature sensor, the intake manifold temperature sensor, the EGR outlet temperature sensor, the intercooler, and the EGR cooler is abnormal. It aims to provide a detection method.
  • the present invention is based on the premise that normal detection of the intake air temperature at the intercooler inlet, the outside air temperature, the EGR gas temperature at the EGR cooler inlet, and the coolant temperature entering the EGR cooler has been established. And the intercooler efficiency based on the intake air temperature and the outside air temperature at the intercooler outlet, and the EGR cooler efficiency based on the EGR gas temperature at the EGR cooler inlet, the EGR gas temperature at the outlet of the EGR cooler, and the cooling water temperature. Whether the calculated value of the intake manifold intake air temperature calculated based on the current EGR rate, the EGR gas temperature at the EGR cooler outlet, and the intake air temperature at the intercooler outlet is different from the measured value.
  • the difference between the calculated value of the cooler efficiency, EGR cooler efficiency, and intake manifold intake air temperature from the measured value A fault detection method by comparing the three elements to identify the abnormal point of the intake system, When the calculated value of the intercooler efficiency is out of the normal range and the calculated value of the EGR cooler efficiency is within the normal range, the calculated value of the intake manifold intake air temperature is different from the actual measured value.
  • the abnormality of the intercooler outlet temperature sensor that detects the intake air temperature if the calculated value of the intake manifold intake air temperature does not deviate from the actual measurement value, it is determined that the intercooler itself is abnormal, If the calculated value of the intercooler efficiency is within the normal range and the calculated value of the intake manifold intake air temperature deviates from the actual measured value, and the calculated value of the EGR cooler efficiency is within the normal range, the intake manifold intake air temperature If the calculated value of the EGR cooler efficiency is out of the normal range, the abnormality of the EGR outlet temperature sensor that detects the EGR gas temperature at the outlet of the EGR cooler is determined.
  • the EGR cooler efficiency When the calculated value of the intercooler efficiency is within the normal range and the calculated value of the intake manifold intake air temperature is not different from the actual measured value, if the calculated value of the EGR cooler efficiency is out of the normal range, the EGR cooler itself While it is determined that there is an abnormality, if the calculated value of the EGR cooler efficiency is within the normal range, it is determined that all of the intercooler outlet temperature sensor, the intercooler, the intake manifold temperature sensor, the EGR outlet temperature sensor, and the EGR cooler are normal. It is characterized by doing.
  • the calculated value of the intercooler efficiency is out of the normal range, the calculated value of the EGR cooler efficiency is within the normal range, and the normal detection of the intake air temperature and the outside air temperature at the intercooler inlet is confirmed. If there is an abnormality in the intercooler outlet temperature sensor or the abnormality in the intercooler itself, there are only two possible causes, but if there is an abnormality in the intercooler outlet temperature sensor, the calculation of the downstream intake manifold temperature sensor If the value becomes an abnormal value and a deviation from the actual measurement value should occur, such a deviation should not occur if the intercooler itself is abnormal.
  • the calculated value of the intercooler efficiency is out of the normal range and the calculated value of the EGR cooler efficiency is within the normal range, the calculated value of the intake manifold intake air temperature is different from the actual measured value. While determining the abnormality of the intercooler outlet temperature sensor that detects the intake air temperature of the cooler outlet, if the calculated value of the intake manifold intake air temperature does not deviate from the actual measurement value, it is determined that the intercooler itself is abnormal It becomes possible.
  • the intercooler outlet temperature sensor and the intercooler are considered to be normal, but even if the calculated value of the intercooler efficiency is within the normal range, the intake manifold When the calculated value of the intake air temperature deviates from the actually measured value, there are two possible causes: an intake manifold temperature sensor abnormality or an EGR outlet temperature sensor abnormality.
  • the calculated value of the EGR cooler efficiency that the detection value of the intake manifold temperature sensor does not affect should be within the normal range, and if the EGR outlet temperature sensor is abnormal, the EGR The calculated cooler efficiency should be outside the normal range.
  • the EGR outlet temperature sensor that detects the EGR gas temperature at the outlet of the EGR cooler is determined. It is possible to determine the abnormality.
  • the intake manifold temperature sensor and the EGR outlet temperature sensor are normal. If the calculated value of the EGR cooler is out of the normal range even though the calculated value of the intercooler efficiency is within the normal range and the calculated value of the intake manifold intake air temperature is not different from the actually measured value The cause can only be considered that the EGR cooler itself is abnormal.
  • the intercooler outlet temperature sensor, the intercooler, the intake manifold temperature sensor, the EGR outlet temperature sensor, and the EGR cooler are all normal.
  • the intercooler outlet temperature sensor is determined to have a characteristic abnormality that is higher than actual and erroneously detects the intake air temperature, while the calculated value of the intercooler efficiency is out of the normal range and the EGR cooler efficiency
  • the intercooler outlet temperature sensor is lower than the actual value, causing a characteristic abnormality that erroneously detects the intake air temperature. Can be determined.
  • the calculated value of the EGR cooler efficiency when the calculated value of the intercooler efficiency is within the normal range and the calculated value of the intake manifold intake air temperature is higher than the actual measured value, the calculated value of the EGR cooler efficiency is lower than the normal range. If it is off, it is determined that the EGR outlet temperature sensor is higher than the actual one and a characteristic abnormality that erroneously detects the EGR gas temperature has occurred, while the calculated value of the intercooler efficiency is within the normal range and the intake manifold intake temperature If the calculated value of the EGR cooler efficiency deviates higher than the normal range when the calculated value deviates below the actual measured value, the EGR outlet temperature sensor has a characteristic abnormality that is lower than the actual value and erroneously detects the EGR gas temperature. Can be determined.
  • the calculated value of the EGR cooler efficiency when the calculated value of the intercooler efficiency is within the normal range and the calculated value of the intake manifold intake air temperature is higher than the actual measured value, the calculated value of the EGR cooler efficiency is within the normal range. If there is, it is determined that the intake manifold temperature sensor has a characteristic abnormality that causes the intake air temperature to be erroneously detected, but the calculated value of the intercooler efficiency is within the normal range, and the calculated value of the intake manifold intake air temperature is actually measured. If the calculated value of the EGR cooler efficiency is within the normal range when the deviation is lower than the value, it is possible to determine that the intake manifold temperature sensor has caused a characteristic abnormality that erroneously detects the intake air temperature lower than the actual value. .
  • the intercooler efficiency, the EGR cooler efficiency, and the difference between the calculated value of the intake manifold intake air temperature and the actual measurement value are compared, thereby allowing the intercooler and the EGR cooler to deteriorate over time.
  • an abnormality occurs in any of the intercooler outlet temperature sensor, intake manifold temperature sensor, EGR outlet temperature sensor, intercooler, and EGR cooler.
  • OBD system On Board Diagnostic Systems
  • FIG. 1 is an overall schematic diagram showing an embodiment of the present invention. It is a graph which shows the relationship between a polytropic index and intake airflow. It is an abnormality determination table used with the control apparatus of FIG.
  • FIG. 1 shows an embodiment of the present invention.
  • reference numeral 1 denotes an engine on which a turbocharger 2 is mounted.
  • the intake 4 guided from an air cleaner 3 is passed through an intake pipe 5 and the compressor of the turbocharger 2 is shown.
  • the intake 4 pressurized by the compressor 2a is sent to the intercooler 6 to be cooled, and the intake 4 is further guided from the intercooler 6 to the intake manifold 7 to be distributed to each cylinder 8 of the engine 1. It is like that.
  • the exhaust gas 9 discharged from each cylinder 8 of the engine 1 is sent to the turbine 2b of the turbocharger 2 through the exhaust manifold 10, and the exhaust gas 9 driving the turbine 2b is discharged out of the vehicle through the exhaust pipe 11. I have to do it.
  • An end portion of the exhaust manifold 10 in the arrangement direction of the cylinders 8 and the intake pipe 5 downstream from the intercooler 6 are connected by an EGR pipe 12, and a part of the exhaust gas 9 is discharged from the exhaust manifold 10. It can be extracted and guided to the intake pipe 5 as EGR gas 9 '.
  • the EGR pipe 12 is equipped with an EGR valve 13 for opening and closing the EGR pipe 12 as appropriate, and an EGR cooler 14 for cooling the EGR gas 9 ′ flowing through the EGR pipe 12.
  • the temperature of the EGR gas 9 ' can be lowered by exchanging heat between the cooling water 15 guided from the engine 1 side and the EGR gas 9'.
  • the temperature of the cooling water 15 entering the EGR cooler 14 is detected by two cooling water temperature sensors 16 provided at the same position on the front of the engine 1, and the exhaust temperature at the outlet of the EGR cooler 14 is detected by the EGR outlet temperature sensor 17.
  • the temperature of the intake air 4 that has passed through the intercooler 6 is detected by the intercooler outlet temperature sensor 18, and the temperature of the intake air 4 that is mixed with the EGR gas 9 ′ and led to the intake manifold 7 is detected.
  • the intake manifold temperature sensor 19 detects the temperature of the intake air 4 (fresh air) introduced from the air cleaner 3, and the intake air flow rate sensor 24 detects the flow rate of the intake air. It is like that.
  • the intake air temperature sensor 20 and the intake air flow rate sensor 24 are shown separately, but actually, the temperature of the intake air 4 is required to obtain the flow rate of the intake air 4 (fresh air). For this reason, the intake air temperature sensor 20 is usually built in the intake air flow rate sensor 24.
  • the boost pressure of the intake air 4 guided to the intake manifold 7 is detected by a boost pressure sensor 25 provided in the intake pipe 5 close to the intake manifold 7 and is appropriately reduced with less influence of traveling wind.
  • the atmospheric pressure is detected by the atmospheric pressure sensor 26 provided at the place.
  • the control device 21 also receives a detection signal 22 a from an accelerator sensor 22 that detects the accelerator opening as a load of the engine 1 and a detection signal 23 a from a rotation sensor 23 that detects the rotation speed of the engine 1. It is like that.
  • the control device 21 it is assumed that normal detection of the intake air temperature and the outside air temperature at the inlet of the intercooler 6, the EGR gas temperature at the inlet of the EGR cooler 14, and the coolant temperature entering the EGR cooler 14 is confirmed.
  • the intercooler efficiency is calculated based on the intake air temperature at the inlet of the intercooler 6, the intake air temperature at the outlet of the intercooler 6, and the outside air temperature, and the EGR gas temperature at the inlet of the EGR cooler 14, the EGR gas temperature at the outlet of the EGR cooler 14, and the cooling.
  • the calculated value of the intake manifold 7 calculated based on the current EGR rate, the EGR gas temperature at the EGR cooler 14 outlet, and the intake air temperature at the intercooler 6 outlet is It is determined whether or not there is a deviation from the measured value, and these intercooler efficiency and EGR cooler efficiency By comparing three elements of divergence with respect to the measured value of the calculated value of the intake temperature of the intake manifold 7 is adapted to identify the abnormal point of the intake system.
  • the compressor work of the turbocharger 2 is regarded as a thermodynamic polytropic change, and the outlet gas temperature of the compressor 2a is estimated using a relational expression established by the polytropic change. This is used as the intake air temperature at the inlet of the intercooler 6.
  • the intake air temperature at the outlet of the compressor 2a can be calculated by the following formula (1) obtained by converting the relational expression established by the polytropic change.
  • Inlet air temperature T 2 T 1 ⁇ (P 2 / P 1 ) (( ⁇ -1) / ⁇ ) (1)
  • T 2 : Compressor outlet gas temperature intercooler inlet intake temperature
  • the actual measured value of the atmospheric pressure detected by the atmospheric pressure sensor 26 is used as the compressor 2a inlet pressure
  • the boost pressure is used as the outlet pressure of the compressor 2a
  • the outside air temperature detected by the intake air temperature sensor 20 is used as the inlet gas temperature of the compressor 2a
  • the supercharging detected by the intake air flow sensor 24 is used.
  • the polytropic index may be determined and used based on the test data with respect to the previous intake flow rate.
  • the relationship between the polytropic index and the intake flow rate is represented by a graph as shown in FIG. 2, and if the relationship between the polytropic index and the intake flow rate is known in advance through experiments, it is detected by the intake flow rate sensor 24.
  • the polytropic index can be determined from the intake air flow before supercharging.
  • the outlet gas temperature of the compressor 2a calculated by the equation (1) is used as an intake air temperature at the inlet of the intercooler 6 and is used for calculation of an intercooler efficiency described later.
  • the intake air temperature at the inlet of the intercooler 6 is determined to be normal detection as follows.
  • the engine 1 when the engine 1 is cold-started, the engine 1 is completely cooled, and the warm-up priority control with the EGR valve 13 closed is performed, so that the intercooler outlet temperature sensor 18, the intake manifold temperature sensor 19, and the EGR outlet are controlled. All the temperatures detected by the temperature sensor 17 should be values that are not different from the outside air temperature, and the intake air temperature sensor 20 that detects the outside air temperature should also show the same detection value.
  • the four sensors of the intake air temperature sensor 20, the intercooler outlet temperature sensor 18, the intake manifold temperature sensor 19, and the EGR outlet temperature sensor 17 indicate the same detection value, these four sensors are normal in at least the normal temperature range. Detection will be confirmed.
  • the reliability of the intake air temperature sensor 20 that is always used in the normal temperature range is determined to be normal, and normal detection of the outside air temperature is determined, but other intercooler outlet temperature sensors are used. 18, intake manifold temperature sensor 19, and EGR outlet temperature sensor 17 require further confirmation as described later for use in the high temperature range.
  • the intake air flow before supercharging is a cylinder obtained from the rotational speed of the engine 1 and the intake air temperature of the intake manifold 7 under the condition that the warm-up priority control is performed with the EGR valve 13 closed in the cold state.
  • the normal detection of the intake flow rate may be confirmed by confirming that the internal working gas flow rate is the same as the actual measurement value of the intake flow rate sensor 24.
  • the rotational speed of the engine 1 used here is detected by the rotational sensor 23.
  • the rotational speed of the engine 1 is not limited to the illustrated rotational sensor 23 (main rotational sensor).
  • a crank angle sensor (not shown) is provided, and it is confirmed that the rotation speed detected by the crank angle sensor matches the detection value of the rotation sensor 23, so that the rotation speed is detected normally. Can be confirmed.
  • normal detection of the intake air temperature of the intake manifold 7 used here is confirmed by checking the four sensors when the engine 1 is cold-started.
  • the calculated value of the intake air temperature at the inlet of the intercooler 6 calculated by the above equation (1), and the intercooler
  • the intercooler efficiency is calculated based on the actually measured value of the intake air temperature at the outlet of the intercooler 6 detected by the outlet temperature sensor 18 and the actually measured value of the outside air temperature detected by the intake air temperature sensor 20.
  • Intercooler efficiency (T ICIN -T ICOUT ) / (T ICIN -T AMBIENT ) ⁇ 100 (2)
  • T ICIN Intercooler inlet intake temperature
  • T ICOUT Intercooler outlet intake temperature
  • T AMBIENT Outside air temperature
  • the EGR gas temperature at the inlet of the EGR cooler 14 can be calculated from the rotational speed and load of the engine 1, but at this time, the rotational speed of the engine 1 confirms that the rotational sensor 23 is normal as described above. As a result, normal detection is confirmed, and the load of the engine 1 is stable when idling, and the fuel injection command value (designated fuel injection amount) when maintaining a constant idling rpm is appropriate. The normal detection is confirmed by confirming that there is, and if the normal detection of the rotational speed and load of these engines 1 is confirmed, the EGR of the EGR cooler 14 inlet calculated based on these is determined. Normal detection of gas temperature will also be established.
  • the cooling water temperature entering the EGR cooler 14 is confirmed to be normal by confirming that the two cooling water temperature sensors 16 have the same detection value.
  • the EGR cooler is determined. 14 under the condition that normal detection of the EGR gas temperature at the 14 inlet and the coolant temperature entering the EGR cooler 14 is confirmed, and the calculated value of the EGR gas temperature at the EGR cooler 14 inlet calculated from the rotational speed and load of the engine 1
  • the EGR cooler efficiency is calculated based on the measured value by the EGR outlet temperature sensor 17 that detects the EGR gas temperature at the outlet of the EGR cooler 14 and the measured value of the cooling water temperature sensor 16.
  • EGR cooler efficiency (T GEGRIN -T GEGROUT ) / (T GEGRIN -T WEGRCIN ) ⁇ 100 (3)
  • T GEGRIN EGR cooler inlet of the EGR gas temperature
  • T GEGROUT EGR cooler outlet of the EGR gas temperature
  • T WEGRCIN temperature of the coolant entering the EGR cooler
  • the intake manifold temperature sensor 19 measures the temperature of the intake air 4 mixed with the EGR gas 9 ′ and guided to the intake manifold 7, and also measures the current EGR rate, the actually measured value of the EGR outlet temperature sensor 17, and the intercooler outlet temperature sensor 18.
  • the intake air temperature that the intake manifold temperature sensor 19 will measure is calculated based on the actual measurement value of the intake manifold, and the actual measurement value of the intake manifold temperature sensor 19 deviates from the calculated intake air temperature that the intake manifold temperature sensor 19 will measure. It is determined whether or not.
  • the intake air temperature that the intake manifold temperature sensor 19 will measure is calculated by the following equation (4).
  • Intake air temperature sensor 19 that intake manifold temperature sensor 19 will measure (EGR rate ⁇ [T GEGROUT ⁇ T GICOUT ]) + T GICOUT (4)
  • T GEGROUT EGR cooler outlet exhaust temperature
  • T GICOUT Intercooler outlet intake temperature
  • the intake flow rate of the engine 1 is obtained by multiplying the volume of each cylinder 8 by the number of revolutions of the engine 1 and the pump efficiency, and the intake flow rate sensor 24 is obtained from this intake flow rate.
  • the difference obtained by subtracting the actual measurement value (fresh air amount) of EGR is obtained as the recirculation amount of the EGR gas 9 ', and the recirculation amount placed in the numerator and the swallowing flow rate placed in the denominator may be used as the EGR rate.
  • the control device 21 refers to the abnormality determination table as shown in FIG. By comparing the above three elements, it is specified as follows whether an abnormality has occurred in the intercooler outlet temperature sensor 18, intake manifold temperature sensor 19, EGR outlet temperature sensor 17, intercooler 6 or EGR cooler 14. .
  • the calculated value of the intercooler efficiency is out of the normal range and the calculated value of the EGR cooler efficiency is within the normal range
  • the calculated value of the intake air temperature of the intake manifold 7 is different from the actually measured value. While the abnormality of the intercooler outlet temperature sensor 18 that detects the intake air temperature at the outlet of the cooler 6 is confirmed, if the calculated value of the intake air temperature of the intake manifold 7 does not deviate from the actual measurement value, there is an abnormality in the intercooler 6 itself. Confirm that there is.
  • the calculated value of the intercooler efficiency is outside the normal range, the calculated value of the EGR cooler efficiency is within the normal range, and normal detection of the intake air temperature and the outside air temperature at the inlet of the intercooler 6 is confirmed. If this is the case, there are only two possible causes for the failure of the intercooler outlet temperature sensor 18 or the abnormality of the intercooler 6 itself.
  • the calculated value of 19 should be an abnormal value and a deviation from the actual measurement value should occur. If the intercooler 6 itself is abnormal, such a deviation should not occur.
  • the calculated value of the intercooler efficiency is out of the normal range and the calculated value of the EGR cooler efficiency is within the normal range, the calculated value of the intake air temperature of the intake manifold 7 is different from the actually measured value. While the abnormality of the intercooler outlet temperature sensor 18 that detects the intake air temperature at the outlet of the intercooler 6 is confirmed, if the calculated value of the intake air temperature of the intake manifold 7 does not deviate from the actual measurement value, the intercooler 6 itself is abnormal. It becomes possible to confirm that there is.
  • the calculated value of the intake air temperature of the intake manifold 7 is higher than the actually measured value.
  • the intercooler outlet temperature sensor 18 is determined to have a characteristic abnormality that is higher than actual and erroneously detects the intake air temperature, while the calculated value of the intercooler efficiency is out of the normal range and the calculated value of the EGR cooler efficiency.
  • the intercooler outlet temperature sensor 18 is lower than the actual temperature, causing a characteristic abnormality that erroneously detects the intake air temperature. Can be determined.
  • the calculated value of the intercooler efficiency is in the normal range and the calculated value of the intake air temperature of the intake manifold 7 is different from the actually measured value
  • the intake manifold 7 is detected, and if the calculated value of the EGR cooler efficiency is out of the normal range, the EGR outlet detecting the EGR gas temperature at the outlet of the EGR cooler 14
  • the abnormality of the temperature sensor 17 is determined.
  • the intercooler outlet temperature sensor 18 and the intercooler 6 are considered to be normal, but even if the calculated value of the intercooler efficiency is within the normal range.
  • the calculated value of the intake air temperature of the intake manifold 7 deviates from the actually measured value, there are two possible causes: an abnormality of the intake manifold temperature sensor 19 or an abnormality of the EGR outlet temperature sensor 17.
  • the calculated value of the EGR cooler efficiency that is not affected by the detection value of the intake manifold temperature sensor 19 should be within the normal range, and if the EGR outlet temperature sensor 17 is abnormal. For example, the calculated value of the EGR cooler efficiency should be out of the normal range.
  • the intake air While determining the abnormality of the intake manifold temperature sensor 19 that detects the intake air temperature of the manifold 7, if the calculated value of the EGR cooler efficiency is out of the normal range, the EGR gas temperature at the outlet of the EGR cooler 14 is detected.
  • the abnormality of the outlet temperature sensor 17 can be determined.
  • the calculated value of the EGR cooler efficiency is within the normal range. While it is determined that the intake manifold temperature sensor 19 has a characteristic abnormality that is higher than actual and erroneously detects the intake air temperature, the calculated value of the intercooler efficiency is within the normal range and the calculated value of the intake manifold 7 is actually measured. If the calculated value of the EGR cooler efficiency is within the normal range when the deviation is lower, it is possible to determine that the intake manifold temperature sensor 19 has caused a characteristic abnormality that erroneously detects the intake air temperature lower than the actual value. .
  • the EGR outlet temperature sensor 17 is determined to have a characteristic abnormality that is higher than actual and erroneously detects the EGR gas temperature, while the calculated value of the intercooler efficiency is within the normal range and the calculated value of the intake air temperature of the intake manifold 7 If the calculated value of the EGR cooler efficiency deviates higher than the normal range when the deviation is lower than the actual measurement value, the EGR outlet temperature sensor 17 is lower than the actual value, causing a characteristic abnormality that erroneously detects the EGR gas temperature. It is possible to confirm.
  • the calculated value of the EGR cooler efficiency is out of the normal range when the calculated value of the intercooler efficiency is within the normal range and the calculated value of the intake air temperature of the intake manifold 7 is not different from the actual measured value, While it is determined that the cooler 14 itself is abnormal, if the calculated value of the EGR cooler efficiency is within the normal range, the intercooler outlet temperature sensor 18, the intercooler 6, the intake manifold temperature sensor 19, the EGR outlet temperature sensor 17, and the EGR cooler. 14 is determined to be normal.
  • the intake manifold temperature sensor 19 and the EGR outlet temperature sensor 17 are normal.
  • the calculated value of the intercooler efficiency is within the normal range and the calculated value of the intake air temperature of the intake manifold 7 is not different from the actual measured value, the calculated value of the EGR cooler efficiency is out of the normal range. If so, the cause can only be considered that the EGR cooler 14 itself is abnormal.
  • the calculated value of the EGR cooler efficiency is within the normal range when the calculated value of the intercooler efficiency is within the normal range and the calculated value of the intake air temperature of the intake manifold 7 does not deviate from the actually measured value, nothing is done. Since it is considered that no abnormality has occurred, it is possible to determine that all of the intercooler outlet temperature sensor 18, the intercooler 6, the intake manifold temperature sensor 19, the EGR outlet temperature sensor 17, and the EGR cooler 14 are normal. .
  • the intercooler efficiency, the EGR cooler efficiency, and the intake air are determined when determining the deviation for determining the deviation between the normal range of the intercooler efficiency and the normal range of the EGR cooler efficiency, and the actual value of the calculated intake air temperature of the intake manifold 7.
  • the intercooler outlet temperature sensor 18, the intake manifold gas temperature sensor 19, the EGR outlet temperature sensor 17, the intercooler 6, and the EGR cooler 14 Needless to say, it is necessary to perform appropriate tuning so that it is possible to clearly determine which abnormality has occurred.
  • the time of the intercooler 6 and the EGR cooler 14 is changed.
  • Intercooler outlet temperature sensor 18, intake manifold temperature sensor 19, EGR outlet temperature sensor 17, intercooler 6, EGR while considering the possibility that an abnormal value is output due to the detection value being affected by the general deterioration It is possible to accurately identify which one of the coolers 14 is abnormal, and by establishing such an abnormality detection method, it has been adapted to exhaust purification technology that is expected to be further refined in the future. It can contribute to the construction of OBD system (On (Board Diagnostic Systems).
  • the abnormality of the intercooler outlet temperature sensor 18 in specifying the abnormality of the intercooler outlet temperature sensor 18, whether the intercooler outlet temperature sensor 18 has a characteristic abnormality that causes the intake air temperature to be erroneously detected higher than the actual one or a characteristic that erroneously detects the intake air temperature lower than the actual one. It is possible to determine whether or not an abnormality has occurred. Further, in specifying the abnormality of the intake manifold temperature sensor 19, whether or not the intake manifold temperature sensor 19 has caused a characteristic abnormality in which the intake air temperature is erroneously detected is actually detected.
  • abnormality detection method of the present invention is not limited to the above-described embodiment, and it is needless to say that various changes can be made without departing from the gist of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Analytical Chemistry (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

インタークーラ(6)入口の吸気温度、外気温度、EGRクーラ(14)入口のEGRガス温度、EGRクーラ(14)に入る冷却水温度の正常な検出が確定されていることを前提条件として、インタークーラ(6)入口の吸気温度とインタークーラ(6)出口の吸気温度と外気温度とに基づき算出されるインタークーラ効率と、EGRクーラ(14)入口のEGRガス温度とEGRクーラ(14)出口のEGRガス温度と冷却水温度とに基づき算出されるEGRクーラ効率と、現在のEGR率とEGRクーラ(14)出口のEGRガス温度とインタークーラ(6)出口の吸気温度とに基づき算出される吸気マニホールド(7)の吸気温度の計算値の実測値に対する乖離との三要素を対比して吸気系の異常箇所を特定する。

Description

異常検出方法
 本発明は内燃機関に用いる異常検出方法に関する。
 従来より、自動車のエンジン等では、排気側から排気ガスの一部を抜き出してEGRガスとして吸気側へと戻し、そのEGRガスでエンジン内での燃料の燃焼を抑制させて燃焼温度を下げることによりNOxの発生を低減するようにした、いわゆる排気ガス再循環(EGR:Exhaust Gas Recirculation)が行われている。
 一般的に、この種の排気ガス再循環を行う場合には、排気マニホールドから排気管に亘る排気通路の適宜位置と、吸気管から吸気マニホールドに亘る吸気通路の適宜位置との間をEGRパイプにより接続し、該EGRパイプを通してEGRガスを再循環するようにしている。
 尚、エンジンに再循環するEGRガスをEGRパイプの途中で冷却すると、EGRガスの温度が下がり且つその容積が小さくなることにより、エンジンの出力を余り低下させずに燃焼温度を低下して効果的にNOx(窒素酸化物)の発生を低減させることができるため、エンジンにEGRガスを再循環するEGRパイプの途中には水冷式のEGRクーラが装備されている。
 一方、近年においては、OBDシステム(On Board Diagnostic Systems)と呼称される車載式故障診断装置が車両に搭載されるようになってきており、車両自身が排気浄化設備の異常(突発的故障)を検知・監視し、異常発生時に警報表示して運転者に知らせ且つその故障内容を記憶保持することが行われている。
 尚、この種のセンサの特性異常を検出する技術に関連する先行技術文献情報としては、例えば、本発明と同じ出願人による下記の特許文献1等が既に提案されている。
特開2010-151039号公報
 しかしながら、排気浄化技術は今後更に高度精密化していくことになるため、インタークーラ出口の吸気温度を検出するインタークーラ出口温度センサや、吸気マニホールドの吸気温度を検出するインマニ温度センサや、EGRクーラ出口のEGRガス温度を検出するEGR出口温度センサに特性異常が発生しているか否かを判定することまで求められるようになってきているが、これらインタークーラ出口温度センサ、インマニ温度センサ、EGR出口温度センサに特性異常が発生しているか否かの判定を正確に行うことが難しいという問題があった。
 即ち、これまでのセンサ類に関する特性異常の判定には、ある特定の運転条件下で通常有り得ない値を示した時に特性異常が発生していると判定する手法が採られてきたが、前述の如きインタークーラ出口温度センサ、インマニ温度センサ、EGR出口温度センサの場合には、上流側のインタークーラやEGRクーラの経時的な劣化により検出値が影響を受けて異常な値を出力している可能性が否定できず、インタークーラ出口温度センサ、インマニ温度センサ、EGR出口温度センサ、インタークーラ、EGRクーラの何れに異常が生じているのかを正確に特定することが難しかった。
 尚、ここで述べているところのインタークーラの経時的な劣化とは、該インタークーラのコア内部における伝熱面に、吸気中に含まれる異物や、ターボチャージャから漏出したオイル等が経時的に堆積して熱交換効率が低下することを指しており、また、EGRクーラの経時的な劣化とは、該EGRクーラの伝熱チューブ(一般的にEGRクーラはシェルアンドチューブ型の熱交換器の形態を採る)の内周面に、排気ガス中に含まれる煤が経時的に堆積して熱交換効率が低下することを指している。
 本発明は上述の実情に鑑みてなしたもので、インタークーラ出口温度センサ、インマニ温度センサ、EGR出口温度センサ、インタークーラ、EGRクーラの何れに異常が生じているのかを正確に特定し得る異常検出方法を提供することを目的としている。
 本発明は、インタークーラ入口の吸気温度、外気温度、EGRクーラ入口のEGRガス温度、EGRクーラに入る冷却水温度の正常な検出が確定されていることを前提条件として、インタークーラ入口の吸気温度とインタークーラ出口の吸気温度と外気温度とに基づきインタークーラ効率を算出すると共に、EGRクーラ入口のEGRガス温度とEGRクーラ出口のEGRガス温度と冷却水温度とに基づきEGRクーラ効率を算出する一方、現在のEGR率とEGRクーラ出口のEGRガス温度とインタークーラ出口の吸気温度とに基づき算出される吸気マニホールドの吸気温度の計算値が実測値と乖離しているか否かを判定し、これらインタークーラ効率とEGRクーラ効率と吸気マニホールドの吸気温度の計算値の実測値に対する乖離との三要素を対比して吸気系の異常箇所を特定する異常検出方法であって、
  インタークーラ効率の計算値が正常範囲を外れており且つEGRクーラ効率の計算値が正常範囲内にある時に、吸気マニホールドの吸気温度の計算値が実測値と乖離していれば、インタークーラ出口の吸気温度を検出しているインタークーラ出口温度センサの異常を確定する一方、吸気マニホールドの吸気温度の計算値が実測値と乖離していなければ、インタークーラ自体に異常があると確定し、
  インタークーラ効率の計算値が正常範囲内にあり且つ吸気マニホールドの吸気温度の計算値が実測値と乖離している時に、EGRクーラ効率の計算値が正常範囲内にあれば、吸気マニホールドの吸気温度を検出しているインマニ温度センサの異常を確定する一方、EGRクーラ効率の計算値が正常範囲を外れていれば、EGRクーラ出口のEGRガス温度を検出しているEGR出口温度センサの異常を確定し、
  インタークーラ効率の計算値が正常範囲内にあり且つ吸気マニホールドの吸気温度の計算値が実測値と乖離していない時に、EGRクーラ効率の計算値が正常範囲を外れていれば、EGRクーラ自体に異常があると確定する一方、EGRクーラ効率の計算値が正常範囲内にあれば、インタークーラ出口温度センサとインタークーラとインマニ温度センサとEGR出口温度センサとEGRクーラの何れも正常であると確定することを特徴とするものである。
 而して、インタークーラ効率の計算値が正常範囲を外れている場合に、EGRクーラ効率の計算値が正常範囲内にあり、しかも、インタークーラ入口の吸気温度と外気温度の正常な検出が確定されているならば、その原因としてインタークーラ出口温度センサの異常かインタークーラ自体の異常の二つしか考えられないが、インタークーラ出口温度センサの異常であるならば、下流のインマニ温度センサの計算値が異常値となって実測値に対し乖離が生じるはずであり、インタークーラ自体の異常であるならば、このような乖離は生じないはずである。
 このため、インタークーラ効率の計算値が正常範囲を外れており且つEGRクーラ効率の計算値が正常範囲内にある時に、吸気マニホールドの吸気温度の計算値が実測値と乖離していれば、インタークーラ出口の吸気温度を検出しているインタークーラ出口温度センサの異常を確定する一方、吸気マニホールドの吸気温度の計算値が実測値と乖離していなければ、インタークーラ自体に異常があると確定することが可能となる。
 一方、インタークーラ効率の計算値が正常範囲内にある場合、インタークーラ出口温度センサとインタークーラは正常であると考えられるが、インタークーラ効率の計算値が正常範囲内にあっても、吸気マニホールドの吸気温度の計算値が実測値と乖離している場合には、その原因としてインマニ温度センサの異常かEGR出口温度センサの異常の二つが考えられる。
 ただし、インマニ温度センサの異常であるならば、該インマニ温度センサの検出値が影響しないEGRクーラ効率の計算値は正常範囲内に収まるはずであり、EGR出口温度センサの異常であるならば、EGRクーラ効率の計算値が正常範囲を外れるはずである。
 このため、インタークーラ効率の計算値が正常範囲内にあり且つ吸気マニホールドの吸気温度の計算値が実測値と乖離している時に、EGRクーラ効率の計算値が正常範囲内にあれば、吸気マニホールドの吸気温度を検出しているインマニ温度センサの異常を確定する一方、EGRクーラ効率の計算値が正常範囲を外れていれば、EGRクーラ出口のEGRガス温度を検出しているEGR出口温度センサの異常を確定することが可能となる。
 また、インタークーラ効率の計算値が正常範囲内にあり且つ吸気マニホールドの吸気温度の計算値が実測値と乖離していないならば、インマニ温度センサとEGR出口温度センサは正常であると考えられるが、インタークーラ効率の計算値が正常範囲内にあり且つ吸気マニホールドの吸気温度の計算値が実測値と乖離していないにもかかわらず、EGRクーラ効率の計算値が正常範囲を外れていたならば、その原因はEGRクーラ自体に異常があるとしか考えられない。
 依って、インタークーラ効率の計算値が正常範囲内にあり且つ吸気マニホールドの吸気温度の計算値が実測値と乖離していない時に、EGRクーラ効率の計算値が正常範囲を外れていれば、EGRクーラ自体に異常があると確定することが可能となる。
 一方、インタークーラ効率の計算値が正常範囲内にあり且つ吸気マニホールドの吸気温度の計算値が実測値と乖離していない時に、EGRクーラ効率の計算値が正常範囲内にあれば、何も異常が生じていないものと考えられるので、インタークーラ出口温度センサとインタークーラとインマニ温度センサとEGR出口温度センサとEGRクーラの何れも正常であると確定することが可能となる。
 また、本発明においては、インタークーラ効率の計算値が正常範囲より低く外れており且つEGRクーラ効率の計算値が正常範囲内にある時に、吸気マニホールドの吸気温度の計算値が実測値より高く乖離していれば、インタークーラ出口温度センサが実際より高く吸気温度を誤検出する特性異常を起こしていると確定する一方、インタークーラ効率の計算値が正常範囲より高く外れており且つEGRクーラ効率の計算値が正常範囲内にある時に、吸気マニホールドの吸気温度の計算値が実測値より低く乖離していれば、インタークーラ出口温度センサが実際より低く吸気温度を誤検出する特性異常を起こしていると確定することが可能である。
 更に、本発明においては、インタークーラ効率の計算値が正常範囲内にあり且つ吸気マニホールドの吸気温度の計算値が実測値より高く乖離している時に、EGRクーラ効率の計算値が正常範囲より低く外れていれば、EGR出口温度センサが実際より高くEGRガス温度を誤検出する特性異常を起こしていると確定する一方、インタークーラ効率の計算値が正常範囲内にあり且つ吸気マニホールドの吸気温度の計算値が実測値より低く乖離している時に、EGRクーラ効率の計算値が正常範囲より高く外れていれば、EGR出口温度センサが実際より低くEGRガス温度を誤検出する特性異常を起こしていると確定することが可能である。
 また、本発明においては、インタークーラ効率の計算値が正常範囲内にあり且つ吸気マニホールドの吸気温度の計算値が実測値より高く乖離している時に、EGRクーラ効率の計算値が正常範囲内にあれば、インマニ温度センサが実際より高く吸気温度を誤検出する特性異常を起こしていると確定する一方、インタークーラ効率の計算値が正常範囲内にあり且つ吸気マニホールドの吸気温度の計算値が実測値より低く乖離している時に、EGRクーラ効率の計算値が正常範囲内にあれば、インマニ温度センサが実際より低く吸気温度を誤検出する特性異常を起こしていると確定することが可能である。
 本発明の異常検出方法によれば、下記のような優れた効果を奏し得る。
 (I)本発明によれば、インタークーラ効率とEGRクーラ効率と吸気マニホールドの吸気温度の計算値の実測値に対する乖離との三要素を対比することによって、インタークーラやEGRクーラの経時的な劣化により検出値が影響を受けて異常な値を出力している可能性を考慮しながらも、インタークーラ出口温度センサ、インマニ温度センサ、EGR出口温度センサ、インタークーラ、EGRクーラの何れに異常が生じているのかを正確に特定することができ、このような異常検出方法を確立することによって、今後更に高度精密化していくことが予想される排気浄化技術に対応したOBDシステム(On Board Diagnostic Systems)の構築に寄与することができる。
 (II)本発明によれば、インタークーラ出口温度センサの異常を特定するにあたり、該インタークーラ出口温度センサが実際より高く吸気温度を誤検出する特性異常を起こしているのか、実際より低く吸気温度を誤検出する特性異常を起こしているのかまで確定することができる。
 (III)本発明によれば、インマニ温度センサの異常を特定するにあたり、該インマニ温度センサが実際より高く吸気温度を誤検出する特性異常を起こしているのか、実際より低く吸気温度を誤検出する特性異常を起こしているのかまで確定することができる。
 (IV)本発明によれば、EGR出口温度センサの異常を特定するにあたり、該EGR出口温度センサが実際より高くEGRガス温度を誤検出する特性異常を起こしているのか、実際より低くEGRガス温度を誤検出する特性異常を起こしているのかまで確定することができる。
本発明の一実施例を示す全体概略図である。 ポリトロープ指数と吸気流量との関係を示すグラフである。 図1の制御装置で用いられる異常確定テーブルである。
 以下、本発明の実施の形態を図面を参照しつつ説明する。
 図1は本発明の一実施例を示すものであり、図1中における1はターボチャージャ2を搭載したエンジンを示し、エアクリーナ3から導いた吸気4を吸気管5を通し前記ターボチャージャ2のコンプレッサ2aへ送り、該コンプレッサ2aで加圧された吸気4をインタークーラ6へと送って冷却し、該インタークーラ6から更に吸気マニホールド7へと吸気4を導いてエンジン1の各気筒8に分配するようにしてある。
 また、このエンジン1の各気筒8から排出された排気ガス9を排気マニホールド10を介し前記ターボチャージャ2のタービン2bへ送り、該タービン2bを駆動した排気ガス9を排気管11を介し車外へ排出するようにしてある。
 そして、排気マニホールド10における各気筒8の並び方向の一端部と、インタークーラ6より下流の吸気管5との間がEGRパイプ12により接続されており、排気マニホールド10から排気ガス9の一部を抜き出してEGRガス9'として吸気管5に導き得るようにしてある。
 ここで、前記EGRパイプ12には、該EGRパイプ12を適宜に開閉するEGRバルブ13と、EGRパイプ12を流れるEGRガス9'を冷却するためのEGRクーラ14とが装備されており、該EGRクーラ14では、エンジン1側から導いた冷却水15とEGRガス9'とを熱交換させることにより該EGRガス9'の温度を低下し得るようになっている。
 更に、EGRクーラ14に入る冷却水15の温度が、エンジン1前部の同じ位置に備えられた二つの冷却水温度センサ16により検出され、EGRクーラ14出口の排気温度がEGR出口温度センサ17により検出されるようになっており、また、インタークーラ6を経た吸気4の温度がインタークーラ出口温度センサ18により検出され、EGRガス9'を混合されて吸気マニホールド7に導かれる吸気4の温度がインマニ温度センサ19により検出されるようになっており、更には、エアクリーナ3から導いた吸気4(新気)の温度が吸気温度センサ20により検出され且つその流量が吸気流量センサ24により検出されるようになっている。
 ただし、ここでは説明の便宜上から吸気温度センサ20と吸気流量センサ24を分けて記載しているが、実際には、吸気4(新気)の流量を求めるのに該吸気4の温度が必要であるため、吸気温度センサ20が吸気流量センサ24に内蔵されているのが通常である。
 また、吸気マニホールド7に導かれる吸気4のブースト圧が、吸気マニホールド7に近い吸気管5に備えられたブースト圧センサ25により検出されるようになっていると共に、走行風の影響の少ない適宜な場所に備えられた大気圧センサ26により大気圧が検出されるようになっている。
 そして、これら各冷却水温度センサ16,EGR出口温度センサ17,インタークーラ出口温度センサ18,インマニ温度センサ19,吸気温度センサ20,吸気流量センサ24,ブースト圧センサ25,大気圧センサ26からの検出信号16a,17a,18a,19a,20a,24a,25a,26aが、エンジン制御コンピュータ(ECU:Electronic Control Unit)を成す制御装置21に入力されるようになっている。
 尚、前記制御装置21には、アクセル開度をエンジン1の負荷として検出するアクセルセンサ22からの検出信号22aと、エンジン1の回転数を検出する回転センサ23からの検出信号23aも入力されるようになっている。
 そして、前記制御装置21においては、インタークーラ6入口の吸気温度、外気温度、EGRクーラ14入口のEGRガス温度、EGRクーラ14に入る冷却水温度の正常な検出が確定されていることを前提条件として、インタークーラ6入口の吸気温度とインタークーラ6出口の吸気温度と外気温度とに基づきインタークーラ効率を算出すると共に、EGRクーラ14入口のEGRガス温度とEGRクーラ14出口のEGRガス温度と冷却水温度とに基づきEGRクーラ効率を算出する一方、現在のEGR率とEGRクーラ14出口のEGRガス温度とインタークーラ6出口の吸気温度とに基づき算出される吸気マニホールド7の吸気温度の計算値が実測値と乖離しているか否かを判定し、これらインタークーラ効率とEGRクーラ効率と吸気マニホールド7の吸気温度の計算値の実測値に対する乖離との三要素を対比して吸気系の異常箇所を特定するようになっている。
 ここで、本実施例では、インタークーラ効率を算出するにあたり、ターボチャージャ2のコンプレッサ仕事を熱力学のポリトロープ変化としてとらえ、該ポリトロープ変化で成立する関係式を用いてコンプレッサ2aの出口ガス温度を推定し、これをインタークーラ6入口の吸気温度として用いるようにしている。
 即ち、コンプレッサ2a出口の吸気温度は、ポリトロープ変化で成立する関係式を変換した下記の式(1)により算出することが可能である。
[数1]
コンプレッサ出口の吸気温度T2=T1×(P2/P1((γ-1)/γ)…(1)
2:コンプレッサの出口ガス温度=インタークーラ入口の吸気温度
1:コンプレッサの入口ガス温度=吸気温度センサの検出値
2:コンプレッサの出口圧力=ブースト圧センサの検出値
1:コンプレッサの入口圧力=大気圧センサの検出値
γ:ポリトロープ指数
 この式(1)を用いてコンプレッサ2aの出口ガス温度(インタークーラ入口の吸気温度)を推定するにあたっては、大気圧センサ26により検出される大気圧の実測値をコンプレッサ2a入口圧力とし、ブースト圧センサ25により検出されるブースト圧の実測値をコンプレッサ2aの出口圧力とし、吸気温度センサ20により検出される外気温度をコンプレッサ2aの入口ガス温度として用いると共に、吸気流量センサ24により検出される過給前の吸気流量に対しポリトロープ指数を試験データに基づき決定して用いれば良い。
 例えば、ポリトロープ指数と吸気流量との関係は図2に示す如きグラフで表わされ、このようなポリトロープ指数と吸気流量との関係を予め実験して把握しておけば、吸気流量センサ24により検出される過給前の吸気流量からポリトロープ指数を決定することが可能となる。
 そして、前記式(1)により算出されるコンプレッサ2aの出口ガス温度は、インタークーラ6入口の吸気温度として、後述するインタークーラ効率の算出に用いられることになるが、このようにして求められたインタークーラ6入口の吸気温度は、以下のようにして正常な検出であることが確定される。
 先ず、大気圧とブースト圧について、エンジン1停止時に大気圧センサ26とブースト圧センサ25の実測値が同じであることを確認して正常に検出されていることを確定し、外気温度については、冷機始動時に吸気温度センサ20の実測値がインタークーラ出口温度センサ18とインマニ温度センサ19とEGR出口温度センサ17の実測値と同じであることを確認して正常に検出されていることを確定すれば良い。
 即ち、エンジン1の冷機始動時には、エンジン1がすっかり冷えきっていて、EGRバルブ13を閉じた暖機優先の制御が行われることになり、インタークーラ出口温度センサ18とインマニ温度センサ19とEGR出口温度センサ17とで検出される温度は全て外気温度と変わらない値となるはずであり、外気温度を検出している吸気温度センサ20とも同じ検出値を示すはずである。
 依って、吸気温度センサ20とインタークーラ出口温度センサ18とインマニ温度センサ19とEGR出口温度センサ17の4つのセンサが同じ検出値を示せば、これら4つのセンサに関し、少なくとも常温レンジでの正常な検出が確定されることになる。
 ただし、常に常温レンジで使用される吸気温度センサ20は、これで正常であることの信頼性が確定し、外気温度の正常な検出が確定することになるが、これ以外のインタークーラ出口温度センサ18とインマニ温度センサ19とEGR出口温度センサ17は、高温レンジでの使用について後述の如き更なる確認が必要である。
 更に、過給前の吸気流量については、冷機状態におけるEGRバルブ13を閉じた暖機優先の制御が行われている条件下でエンジン1の回転数と吸気マニホールド7の吸気温度とから求められるシリンダ内作動ガス流量が吸気流量センサ24の実測値と同じであることを確認して吸気流量の正常な検出を確定すれば良い。
 尚、ここで用いられるエンジン1の回転数は、回転センサ23により検出されるものであるが、一般的にエンジン1の回転数は、図示している回転センサ23(主回転センサ)の他に、図示しないクランクアングルセンサを備えているのが通常であり、このクランクアングルセンサの検出する回転数と前記回転センサ23の検出値とが一致していることを確認して回転数の正常な検出を確定すれば良い。また、ここで用いられる吸気マニホールド7の吸気温度は、前述したエンジン1の冷機始動時における4つのセンサの確認により正常な検出が確定されることになる。
 以上の如くしてインタークーラ6入口の吸気温度及び外気温度の正常な検出が確定された条件下において、前記式(1)により算出されたインタークーラ6入口の吸気温度の計算値と、インタークーラ出口温度センサ18により検出されているインタークーラ6出口の吸気温度の実測値と、吸気温度センサ20により検出されている外気温度の実測値とに基づきインタークーラ効率を算出する。
 ここで、インタークーラ効率は、下記の式(2)により算出される。
[数2]
インタークーラ効率=(TICIN-TICOUT)/(TICIN-TAMBIENT)×100…(2)
ICIN:インタークーラ入口の吸気温度
ICOUT:インタークーラ出口の吸気温度
AMBIENT:外気温度
 また、EGRクーラ14入口のEGRガス温度は、エンジン1の回転数と負荷から算出することができるが、この際、エンジン1の回転数は、前述した通り回転センサ23が正常であることを確認することで正常な検出が確定され、エンジン1の負荷は、アイドリング時に回転数が安定しており且つ一定のアイドリング回転数を保とうとする時の燃料噴射の指示値(指示噴射量)が適正であることを確認することで正常な検出が確定されることになり、これらエンジン1の回転数と負荷の正常な検出が確定されたならば、これらに基づいて算出されるEGRクーラ14入口のEGRガス温度の正常な検出も確定されることになる。
 更に、EGRクーラ14に入る冷却水温度は、二つの冷却水温度センサ16が同じ検出値であることを確認することで正常な検出が確定されることになるが、このようにして、EGRクーラ14入口のEGRガス温度、EGRクーラ14に入る冷却水温度の正常な検出が確定された条件下において、エンジン1の回転数と負荷から算出されるEGRクーラ14入口のEGRガス温度の計算値と、EGRクーラ14出口のEGRガス温度を検出するEGR出口温度センサ17による実測値と、前記冷却水温度センサ16の実測値とに基づきEGRクーラ効率を算出する。
 ここで、EGRクーラ効率は、下記の式(3)により算出される。
[数3]
EGRクーラ効率=(TGEGRIN-TGEGROUT)/(TGEGRIN-TWEGRCIN)×100…(3)
GEGRIN:EGRクーラ入口のEGRガス温度
GEGROUT:EGRクーラ出口のEGRガス温度
WEGRCIN:EGRクーラに入る冷却水の温度
 また、EGRガス9'を混合されて吸気マニホールド7に導かれる吸気4の温度をインマニ温度センサ19により実測すると共に、現在のEGR率とEGR出口温度センサ17の実測値とインタークーラ出口温度センサ18の実測値とに基づき前記インマニ温度センサ19が計測するであろう吸気温度を算出し、インマニ温度センサ19の実測値が、インマニ温度センサ19が計測するであろう吸気温度の計算値と乖離しているか否かを判定する。
 ここで、インマニ温度センサ19が計測するであろう吸気温度は、下記の式(4)により算出される。
[数4]
インマニ温度センサ19が計測するであろう吸気温度=(EGR率×[TGEGROUT-TGICOUT])+TGICOUT…(4)
GEGROUT:EGRクーラ出口の排気温度
GICOUT:インタークーラ出口の吸気温度
 尚、この式(4)で用いるEGR率については、例えば、各気筒8の容積とエンジン1の回転数とポンプ効率を乗算してエンジン1の飲み込み流量を求め、この飲み込み流量から吸気流量センサ24の実測値(新気量)を減算した差をEGRガス9'の再循環量として求め、この再循環量を分子に置き且つ分母に前記飲み込み流量を置いたものをEGR率として用いれば良い。
 このようにして、インタークーラ効率とEGRクーラ効率と吸気マニホールドの吸気温度の計算値の実測値に対する乖離との三要素が求められたら、制御装置21において、図3に示す如き異常確定テーブルに照らして前記三要素を対比し、インタークーラ出口温度センサ18、インマニ温度センサ19、EGR出口温度センサ17、インタークーラ6、EGRクーラ14の何れに異常が生じているのかを以下のようにして特定する。
 例えば、インタークーラ効率の計算値が正常範囲を外れており且つEGRクーラ効率の計算値が正常範囲内にある時に、吸気マニホールド7の吸気温度の計算値が実測値と乖離していれば、インタークーラ6出口の吸気温度を検出しているインタークーラ出口温度センサ18の異常を確定する一方、吸気マニホールド7の吸気温度の計算値が実測値と乖離していなければ、インタークーラ6自体に異常があると確定する。
 なぜなら、インタークーラ効率の計算値が正常範囲を外れている場合に、EGRクーラ効率の計算値が正常範囲内にあり、しかも、インタークーラ6入口の吸気温度と外気温度の正常な検出が確定されているならば、その原因としてインタークーラ出口温度センサ18の異常かインタークーラ6自体の異常の二つしか考えられないが、インタークーラ出口温度センサ18の異常であるならば、下流のインマニ温度センサ19の計算値が異常値となって実測値に対し乖離が生じるはずであり、インタークーラ6自体の異常であるならば、このような乖離は生じないはずである。
 このため、インタークーラ効率の計算値が正常範囲を外れており且つEGRクーラ効率の計算値が正常範囲内にある時に、吸気マニホールド7の吸気温度の計算値が実測値と乖離していれば、インタークーラ6出口の吸気温度を検出しているインタークーラ出口温度センサ18の異常を確定する一方、吸気マニホールド7の吸気温度の計算値が実測値と乖離していなければ、インタークーラ6自体に異常があると確定することが可能となる。
 この際、インタークーラ効率の計算値が正常範囲より低く外れており且つEGRクーラ効率の計算値が正常範囲内にある時に、吸気マニホールド7の吸気温度の計算値が実測値より高く乖離していれば、インタークーラ出口温度センサ18が実際より高く吸気温度を誤検出する特性異常を起こしていると確定する一方、インタークーラ効率の計算値が正常範囲より高く外れており且つEGRクーラ効率の計算値が正常範囲内にある時に、吸気マニホールド7の吸気温度の計算値が実測値より低く乖離していれば、インタークーラ出口温度センサ18が実際より低く吸気温度を誤検出する特性異常を起こしていると確定することが可能である。
 また、インタークーラ効率の計算値が正常範囲内にあり且つ吸気マニホールド7の吸気温度の計算値が実測値と乖離している時に、EGRクーラ効率の計算値が正常範囲内にあれば、吸気マニホールド7の吸気温度を検出しているインマニ温度センサ19の異常を確定する一方、EGRクーラ効率の計算値が正常範囲を外れていれば、EGRクーラ14出口のEGRガス温度を検出しているEGR出口温度センサ17の異常を確定する。
 なぜなら、インタークーラ効率の計算値が正常範囲内にある場合、インタークーラ出口温度センサ18とインタークーラ6は正常であると考えられるが、インタークーラ効率の計算値が正常範囲内にあっても、吸気マニホールド7の吸気温度の計算値が実測値と乖離している場合には、その原因としてインマニ温度センサ19の異常かEGR出口温度センサ17の異常の二つが考えられる。
 ただし、インマニ温度センサ19の異常であるならば、該インマニ温度センサ19の検出値が影響しないEGRクーラ効率の計算値は正常範囲内に収まるはずであり、EGR出口温度センサ17の異常であるならば、EGRクーラ効率の計算値が正常範囲を外れるはずである。
 このため、インタークーラ効率の計算値が正常範囲内にあり且つ吸気マニホールド7の吸気温度の計算値が実測値と乖離している時に、EGRクーラ効率の計算値が正常範囲内にあれば、吸気マニホールド7の吸気温度を検出しているインマニ温度センサ19の異常を確定する一方、EGRクーラ効率の計算値が正常範囲を外れていれば、EGRクーラ14出口のEGRガス温度を検出しているEGR出口温度センサ17の異常を確定することが可能となる。
 この際、インタークーラ効率の計算値が正常範囲内にあり且つ吸気マニホールド7の吸気温度の計算値が実測値より高く乖離している時に、EGRクーラ効率の計算値が正常範囲内にあれば、インマニ温度センサ19が実際より高く吸気温度を誤検出する特性異常を起こしていると確定する一方、インタークーラ効率の計算値が正常範囲内にあり且つ吸気マニホールド7の吸気温度の計算値が実測値より低く乖離している時に、EGRクーラ効率の計算値が正常範囲内にあれば、インマニ温度センサ19が実際より低く吸気温度を誤検出する特性異常を起こしていると確定することが可能である。
 また、インタークーラ効率の計算値が正常範囲内にあり且つ吸気マニホールド7の吸気温度の計算値が実測値より高く乖離している時に、EGRクーラ効率の計算値が正常範囲より低く外れていれば、EGR出口温度センサ17が実際より高くEGRガス温度を誤検出する特性異常を起こしていると確定する一方、インタークーラ効率の計算値が正常範囲内にあり且つ吸気マニホールド7の吸気温度の計算値が実測値より低く乖離している時に、EGRクーラ効率の計算値が正常範囲より高く外れていれば、EGR出口温度センサ17が実際より低くEGRガス温度を誤検出する特性異常を起こしていると確定することが可能である。
 更に、インタークーラ効率の計算値が正常範囲内にあり且つ吸気マニホールド7の吸気温度の計算値が実測値と乖離していない時に、EGRクーラ効率の計算値が正常範囲を外れていれば、EGRクーラ14自体に異常があると確定する一方、EGRクーラ効率の計算値が正常範囲内にあれば、インタークーラ出口温度センサ18とインタークーラ6とインマニ温度センサ19とEGR出口温度センサ17とEGRクーラ14の何れも正常であると確定する。
 なぜなら、インタークーラ効率の計算値が正常範囲内にあり且つ吸気マニホールド7の吸気温度の計算値が実測値と乖離していないならば、インマニ温度センサ19とEGR出口温度センサ17は正常であると考えられるが、インタークーラ効率の計算値が正常範囲内にあり且つ吸気マニホールド7の吸気温度の計算値が実測値と乖離していないにもかかわらず、EGRクーラ効率の計算値が正常範囲を外れていたならば、その原因はEGRクーラ14自体に異常があるとしか考えられない。
 依って、インタークーラ効率の計算値が正常範囲内にあり且つ吸気マニホールド7の吸気温度の計算値が実測値と乖離していない時に、EGRクーラ効率の計算値が正常範囲を外れていれば、EGRクーラ14自体に異常があると確定することが可能となる。
 一方、インタークーラ効率の計算値が正常範囲内にあり且つ吸気マニホールド7の吸気温度の計算値が実測値と乖離していない時に、EGRクーラ効率の計算値が正常範囲内にあれば、何も異常が生じていないものと考えられるので、インタークーラ出口温度センサ18とインタークーラ6とインマニ温度センサ19とEGR出口温度センサ17とEGRクーラ14の何れも正常であると確定することが可能となる。
 尚、インタークーラ効率の正常範囲とEGRクーラ効率の正常範囲、吸気マニホールド7の吸気温度の計算値の実測値に対する乖離を認定するための偏差を決めるに際しては、インタークーラ効率とEGRクーラ効率と吸気マニホールド7の吸気温度の計算値の実測値に対する乖離との三要素を対比することにより、インタークーラ出口温度センサ18、インマニガス温度センサ19、EGR出口温度センサ17、インタークーラ6、EGRクーラ14の何れに異常が生じているかを明確に判別できるように、適切なチューニングを施して決める必要があることは勿論である。
 従って、上記実施例によれば、インタークーラ効率とEGRクーラ効率と吸気マニホールド7の吸気温度の計算値の実測値に対する乖離との三要素を対比することによって、インタークーラ6やEGRクーラ14の経時的な劣化により検出値が影響を受けて異常な値を出力している可能性を考慮しながらも、インタークーラ出口温度センサ18、インマニ温度センサ19、EGR出口温度センサ17、インタークーラ6、EGRクーラ14の何れに異常が生じているのかを正確に特定することができ、このような異常検出方法を確立することによって、今後更に高度精密化していくことが予想される排気浄化技術に対応したOBDシステム(On Board Diagnostic Systems)の構築に寄与することができる。
 また、インタークーラ出口温度センサ18の異常を特定するにあたり、該インタークーラ出口温度センサ18が実際より高く吸気温度を誤検出する特性異常を起こしているのか、実際より低く吸気温度を誤検出する特性異常を起こしているのかまで確定することができ、更に、インマニ温度センサ19の異常を特定するにあたり、該インマニ温度センサ19が実際より高く吸気温度を誤検出する特性異常を起こしているのか、実際より低く吸気温度を誤検出する特性異常を起こしているのかまで確定することができ、また、EGR出口温度センサ17の異常を特定するにあたり、該EGR出口温度センサ17が実際より高くEGRガス温度を誤検出する特性異常を起こしているのか、実際より低くEGRガス温度を誤検出する特性異常を起こしているのかまで確定することができる。
 尚、本発明の異常検出方法は、上述の実施例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
  1  エンジン
  4  吸気
  6  インタークーラ
  7  吸気マニホールド
  9  排気ガス
  9'  EGRガス
 14  EGRクーラ
 15  冷却水
 16  冷却水温度センサ
 17  EGR出口温度センサ
 17a  検出信号
 18  インタークーラ出口温度センサ
 18a  検出信号
 19  インマニ温度センサ
 19a  検出信号
 20  吸気温度センサ
 20a  検出信号

Claims (8)

  1.  インタークーラ入口の吸気温度、外気温度、EGRクーラ入口のEGRガス温度、EGRクーラに入る冷却水温度の正常な検出が確定されていることを前提条件として、インタークーラ入口の吸気温度とインタークーラ出口の吸気温度と外気温度とに基づきインタークーラ効率を算出すると共に、EGRクーラ入口のEGRガス温度とEGRクーラ出口のEGRガス温度と冷却水温度とに基づきEGRクーラ効率を算出する一方、現在のEGR率とEGRクーラ出口のEGRガス温度とインタークーラ出口の吸気温度とに基づき算出される吸気マニホールドの吸気温度の計算値が実測値と乖離しているか否かを判定し、これらインタークーラ効率とEGRクーラ効率と吸気マニホールドの吸気温度の計算値の実測値に対する乖離との三要素を対比して吸気系の異常箇所を特定する異常検出方法であって、
      インタークーラ効率の計算値が正常範囲を外れており且つEGRクーラ効率の計算値が正常範囲内にある時に、吸気マニホールドの吸気温度の計算値が実測値と乖離していれば、インタークーラ出口の吸気温度を検出しているインタークーラ出口温度センサの異常を確定する一方、吸気マニホールドの吸気温度の計算値が実測値と乖離していなければ、インタークーラ自体に異常があると確定し、
      インタークーラ効率の計算値が正常範囲内にあり且つ吸気マニホールドの吸気温度の計算値が実測値と乖離している時に、EGRクーラ効率の計算値が正常範囲内にあれば、吸気マニホールドの吸気温度を検出しているインマニ温度センサの異常を確定する一方、EGRクーラ効率の計算値が正常範囲を外れていれば、EGRクーラ出口のEGRガス温度を検出しているEGR出口温度センサの異常を確定し、
      インタークーラ効率の計算値が正常範囲内にあり且つ吸気マニホールドの吸気温度の計算値が実測値と乖離していない時に、EGRクーラ効率の計算値が正常範囲を外れていれば、EGRクーラ自体に異常があると確定する一方、EGRクーラ効率の計算値が正常範囲内にあれば、インタークーラ出口温度センサとインタークーラとインマニ温度センサとEGR出口温度センサとEGRクーラの何れも正常であると確定する異常検出方法。
  2.  インタークーラ効率の計算値が正常範囲より低く外れており且つEGRクーラ効率の計算値が正常範囲内にある時に、吸気マニホールドの吸気温度の計算値が実測値より高く乖離していれば、インタークーラ出口温度センサが実際より高く吸気温度を誤検出する特性異常を起こしていると確定する一方、インタークーラ効率の計算値が正常範囲より高く外れており且つEGRクーラ効率の計算値が正常範囲内にある時に、吸気マニホールドの吸気温度の計算値が実測値より低く乖離していれば、インタークーラ出口温度センサが実際より低く吸気温度を誤検出する特性異常を起こしていると確定する請求項1に記載の異常検出方法。
  3.  インタークーラ効率の計算値が正常範囲内にあり且つ吸気マニホールドの吸気温度の計算値が実測値より高く乖離している時に、EGRクーラ効率の計算値が正常範囲内にあれば、インマニ温度センサが実際より高く吸気温度を誤検出する特性異常を起こしていると確定する一方、インタークーラ効率の計算値が正常範囲内にあり且つ吸気マニホールドの吸気温度の計算値が実測値より低く乖離している時に、EGRクーラ効率の計算値が正常範囲内にあれば、インマニ温度センサが実際より低く吸気温度を誤検出する特性異常を起こしていると確定する請求項1に記載の異常検出方法。
  4.  インタークーラ効率の計算値が正常範囲内にあり且つ吸気マニホールドの吸気温度の計算値が実測値より高く乖離している時に、EGRクーラ効率の計算値が正常範囲内にあれば、インマニ温度センサが実際より高く吸気温度を誤検出する特性異常を起こしていると確定する一方、インタークーラ効率の計算値が正常範囲内にあり且つ吸気マニホールドの吸気温度の計算値が実測値より低く乖離している時に、EGRクーラ効率の計算値が正常範囲内にあれば、インマニ温度センサが実際より低く吸気温度を誤検出する特性異常を起こしていると確定する請求項2に記載の異常検出方法。
  5.  インタークーラ効率の計算値が正常範囲内にあり且つ吸気マニホールドの吸気温度の計算値が実測値より高く乖離している時に、EGRクーラ効率の計算値が正常範囲より低く外れていれば、EGR出口温度センサが実際より高くEGRガス温度を誤検出する特性異常を起こしていると確定する一方、インタークーラ効率の計算値が正常範囲内にあり且つ吸気マニホールドの吸気温度の計算値が実測値より低く乖離している時に、EGRクーラ効率の計算値が正常範囲より高く外れていれば、EGR出口温度センサが実際より低くEGRガス温度を誤検出する特性異常を起こしていると確定する請求項1に記載の異常検出方法。
  6.  インタークーラ効率の計算値が正常範囲内にあり且つ吸気マニホールドの吸気温度の計算値が実測値より高く乖離している時に、EGRクーラ効率の計算値が正常範囲より低く外れていれば、EGR出口温度センサが実際より高くEGRガス温度を誤検出する特性異常を起こしていると確定する一方、インタークーラ効率の計算値が正常範囲内にあり且つ吸気マニホールドの吸気温度の計算値が実測値より低く乖離している時に、EGRクーラ効率の計算値が正常範囲より高く外れていれば、EGR出口温度センサが実際より低くEGRガス温度を誤検出する特性異常を起こしていると確定する請求項2に記載の異常検出方法。
  7.  インタークーラ効率の計算値が正常範囲内にあり且つ吸気マニホールドの吸気温度の計算値が実測値より高く乖離している時に、EGRクーラ効率の計算値が正常範囲より低く外れていれば、EGR出口温度センサが実際より高くEGRガス温度を誤検出する特性異常を起こしていると確定する一方、インタークーラ効率の計算値が正常範囲内にあり且つ吸気マニホールドの吸気温度の計算値が実測値より低く乖離している時に、EGRクーラ効率の計算値が正常範囲より高く外れていれば、EGR出口温度センサが実際より低くEGRガス温度を誤検出する特性異常を起こしていると確定する請求項3に記載の異常検出方法。
  8.  インタークーラ効率の計算値が正常範囲内にあり且つ吸気マニホールドの吸気温度の計算値が実測値より高く乖離している時に、EGRクーラ効率の計算値が正常範囲より低く外れていれば、EGR出口温度センサが実際より高くEGRガス温度を誤検出する特性異常を起こしていると確定する一方、インタークーラ効率の計算値が正常範囲内にあり且つ吸気マニホールドの吸気温度の計算値が実測値より低く乖離している時に、EGRクーラ効率の計算値が正常範囲より高く外れていれば、EGR出口温度センサが実際より低くEGRガス温度を誤検出する特性異常を起こしていると確定する請求項4に記載の異常検出方法。
PCT/JP2013/003247 2012-05-25 2013-05-22 異常検出方法 WO2013175779A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/398,823 US20150142338A1 (en) 2012-05-25 2013-05-22 Fault detection method
CN201380027294.0A CN104302901B (zh) 2012-05-25 2013-05-22 异常检测方法
EP13794026.8A EP2857664B1 (en) 2012-05-25 2013-05-22 Fault detection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-119158 2012-05-25
JP2012119158A JP5897403B2 (ja) 2012-05-25 2012-05-25 異常検出方法

Publications (1)

Publication Number Publication Date
WO2013175779A1 true WO2013175779A1 (ja) 2013-11-28

Family

ID=49623489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/003247 WO2013175779A1 (ja) 2012-05-25 2013-05-22 異常検出方法

Country Status (5)

Country Link
US (1) US20150142338A1 (ja)
EP (1) EP2857664B1 (ja)
JP (1) JP5897403B2 (ja)
CN (1) CN104302901B (ja)
WO (1) WO2013175779A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2995803A1 (de) * 2014-09-12 2016-03-16 MAN Truck & Bus AG Brennkraftmaschine, insbesondere gasmotor, für ein fahrzeug, insbesondere für ein nutzfahrzeug

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6125942B2 (ja) * 2013-07-31 2017-05-10 いすゞ自動車株式会社 排気系の状態検出装置
JP6146192B2 (ja) * 2013-07-31 2017-06-14 いすゞ自動車株式会社 診断装置
KR101481303B1 (ko) * 2013-08-09 2015-01-09 현대자동차주식회사 Egr시스템 진단방법
WO2016195558A1 (en) * 2015-06-03 2016-12-08 Volvo Construction Equipment Ab Method for monitoring clogging of a charge air cooler
US11333096B2 (en) * 2018-01-30 2022-05-17 Ford Global Technologies, Llc Ambient temperature sensor rationality check
JP6559291B1 (ja) * 2018-04-25 2019-08-14 本田技研工業株式会社 内燃機関の吸気冷却装置異常検知システム
JP6926046B2 (ja) * 2018-09-28 2021-08-25 ダイキン工業株式会社 異常判定装置、この異常判定装置を備える冷凍装置、及び圧縮機の異常判定方法
CN109340992B (zh) * 2018-10-16 2021-02-26 宁波奥克斯电气股份有限公司 一种控制空调可靠性的运行方法、系统及空调器
CN111103071B (zh) * 2018-10-26 2021-08-10 南京市比亚迪汽车有限公司 一种车辆、发动机的进气温度传感器故障诊断方法与系统
KR20210052908A (ko) * 2019-11-01 2021-05-11 현대자동차주식회사 에어필터 후단 온도센서 진단 방법
CN111042941B (zh) * 2020-01-07 2022-12-13 一汽解放汽车有限公司 一种进气温度传感器可信性故障诊断方法
JP7380527B2 (ja) * 2020-11-11 2023-11-15 トヨタ自動車株式会社 ダメージ推定装置、及びダメージ推定方法
CN114459765B (zh) * 2022-01-24 2023-09-29 东风汽车股份有限公司 散热器冷却效率监测方法
CN115219262B (zh) * 2022-09-19 2022-11-29 吉林大学 水凝胶太阳能蒸发器净水效率测试装置及测试方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001164999A (ja) * 1999-12-14 2001-06-19 Toyota Motor Corp 排気再循環装置の詰まり検出装置
JP2005188479A (ja) * 2003-12-26 2005-07-14 Toyota Motor Corp エンジンシステムの異常判定装置
JP2006242080A (ja) * 2005-03-02 2006-09-14 Denso Corp 排気還流装置の異常診断装置
JP2009167927A (ja) * 2008-01-17 2009-07-30 Toyota Motor Corp 内燃機関の吸気制御装置
WO2010073566A1 (ja) * 2008-12-25 2010-07-01 日野自動車株式会社 センサの異常検出装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4967717A (en) * 1987-11-20 1990-11-06 Mitsubishi Denki Kabushiki Kaisha Abnormality detecting device for an EGR system
DE19946874A1 (de) * 1999-09-30 2001-04-05 Bosch Gmbh Robert Diagnose von Stellgliedern und Sensoren in Verbindung mit der Gemischbildung bei Brennkraftmaschinen
US6434476B1 (en) * 2000-10-04 2002-08-13 Detroit Diesel Corporation High voltage fault discrimination for EGR temperature sensor
JP2008150955A (ja) * 2006-12-14 2008-07-03 Denso Corp 排気還流装置
US7516009B1 (en) * 2007-09-19 2009-04-07 Detroit Diesel Corporation Intake charge deficit method for engine real-time diagnostics application
DE102008001418A1 (de) * 2008-04-28 2009-10-29 Robert Bosch Gmbh Verfahren und Vorrichtung zur Adaption des Wirkungsgrads eines Kühlers im Rückführungskreis von Abgas in einem Verbrennungsmotor
JP4582231B2 (ja) * 2008-09-26 2010-11-17 トヨタ自動車株式会社 吸気温センサの異常診断装置
US8583349B2 (en) * 2009-11-05 2013-11-12 GM Global Technology Operations LLC Systems and methods for diagnosing oxygen sensors and catalytic converters of exhaust systems
WO2013080353A1 (ja) * 2011-12-01 2013-06-06 トヨタ自動車株式会社 Egrシステムの異常診断装置
US10030588B2 (en) * 2013-12-04 2018-07-24 General Electric Company Gas turbine combustor diagnostic system and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001164999A (ja) * 1999-12-14 2001-06-19 Toyota Motor Corp 排気再循環装置の詰まり検出装置
JP2005188479A (ja) * 2003-12-26 2005-07-14 Toyota Motor Corp エンジンシステムの異常判定装置
JP2006242080A (ja) * 2005-03-02 2006-09-14 Denso Corp 排気還流装置の異常診断装置
JP2009167927A (ja) * 2008-01-17 2009-07-30 Toyota Motor Corp 内燃機関の吸気制御装置
WO2010073566A1 (ja) * 2008-12-25 2010-07-01 日野自動車株式会社 センサの異常検出装置
JP2010151039A (ja) 2008-12-25 2010-07-08 Hino Motors Ltd センサの異常検出装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2857664A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2995803A1 (de) * 2014-09-12 2016-03-16 MAN Truck & Bus AG Brennkraftmaschine, insbesondere gasmotor, für ein fahrzeug, insbesondere für ein nutzfahrzeug
CN105422297A (zh) * 2014-09-12 2016-03-23 曼卡车和巴士股份公司 用于车辆、尤其用于商用车的内燃机、尤其燃气发动机
RU2698225C2 (ru) * 2014-09-12 2019-08-23 Ман Трак Унд Бас Аг Двигатель внутреннего сгорания, в частности газовый двигатель, для транспортного средства, в частности для автомобиля промышленного назначения
US10436130B2 (en) 2014-09-12 2019-10-08 Man Truck & Bus Ag Combustion engine, in particular gas engine, for a vehicle, in particular for a commercial vehicle

Also Published As

Publication number Publication date
JP5897403B2 (ja) 2016-03-30
EP2857664A1 (en) 2015-04-08
US20150142338A1 (en) 2015-05-21
EP2857664A4 (en) 2016-03-23
EP2857664B1 (en) 2017-04-26
CN104302901A (zh) 2015-01-21
CN104302901B (zh) 2017-06-13
JP2013245600A (ja) 2013-12-09

Similar Documents

Publication Publication Date Title
JP5897403B2 (ja) 異常検出方法
JP5883289B2 (ja) 異常検出方法
US9146176B2 (en) Thermostat failure judgment device
JP5222715B2 (ja) センサの異常検出装置
US8267069B2 (en) EMG temp signal model based on EGRC out temp for EGR system anti-fouling protection
KR101836285B1 (ko) 센서의 고장 진단 장치 및 방법
JP5857666B2 (ja) インタークーラー診断システム
US7802427B2 (en) System and method for monitoring boost leak
US20090076716A1 (en) Characteristic number method for engine real-time diagnostics application
WO2011132289A1 (ja) Egrシステムの異常検出装置及び異常検出方法
JP2013108416A (ja) インタークーラー診断システム
JP6082242B2 (ja) 水温センサのバックアップシステム
WO2013073456A1 (ja) Egrクーラー診断システム
JP5738576B2 (ja) 水温センサ故障判定装置
KR102323409B1 (ko) 부스트 압력 센서의 진단 방법 및 진단 시스템
JP5857665B2 (ja) Egrクーラー診断システム
JP2020122464A (ja) Egrクーラの診断装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13794026

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14398823

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013794026

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013794026

Country of ref document: EP