WO2013173141A2 - Limiting failure rate by serving through multiple channels - Google Patents
Limiting failure rate by serving through multiple channels Download PDFInfo
- Publication number
- WO2013173141A2 WO2013173141A2 PCT/US2013/040151 US2013040151W WO2013173141A2 WO 2013173141 A2 WO2013173141 A2 WO 2013173141A2 US 2013040151 W US2013040151 W US 2013040151W WO 2013173141 A2 WO2013173141 A2 WO 2013173141A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wireless communication
- wireless
- wireless device
- processor
- server
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/10—Connection setup
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/10—Connection setup
- H04W76/15—Setup of multiple wireless link connections
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/02—Details
- H04L12/14—Charging, metering or billing arrangements for data wireline or wireless communications
- H04L12/1442—Charging, metering or billing arrangements for data wireline or wireless communications at network operator level
- H04L12/145—Charging, metering or billing arrangements for data wireline or wireless communications at network operator level trading network capacity or selecting route based on tariff
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L65/00—Network arrangements, protocols or services for supporting real-time applications in data packet communication
- H04L65/60—Network streaming of media packets
- H04L65/61—Network streaming of media packets for supporting one-way streaming services, e.g. Internet radio
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M7/00—Arrangements for interconnection between switching centres
- H04M7/0024—Services and arrangements where telephone services are combined with data services
- H04M7/0057—Services where the data services network provides a telephone service in addition or as an alternative, e.g. for backup purposes, to the telephone service provided by the telephone services network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
- H04W84/04—Large scale networks; Deep hierarchical networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/022—Site diversity; Macro-diversity
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M2207/00—Type of exchange or network, i.e. telephonic medium, in which the telephonic communication takes place
- H04M2207/18—Type of exchange or network, i.e. telephonic medium, in which the telephonic communication takes place wireless networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
- H04W84/04—Large scale networks; Deep hierarchical networks
- H04W84/042—Public Land Mobile systems, e.g. cellular systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/02—Terminal devices
- H04W88/06—Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Definitions
- Cellular telephone communications such as voice calls, involving at least one wireless device routinely fail because a wireless device enters a location lacking specific network coverage (i.e., a "dead zone") or high network congestion. Dropping a call, particularly an urgent call, can be frustrating and inconvenient for the parties to the phone call. The failure of a data communication session may be costly and inconvenient to wireless device users.
- Current wireless devices may enable data transmission over multiple communication pathways, but wireless devices lack a way to leverage simultaneous transmissions across multiple communication pathways to improve data transmission reliability.
- the systems, methods, and devices of the various embodiments use a wireless communication device's capability to transmit and receive data over multiple communication pathways to improve data transmission reliability.
- the same continuous data stream may be transmitted and/or received via different communication pathways.
- different communications pathways may be established using different antennas of a wireless device, different wireless networks, different wireless communications protocols, and/or additional wireless devices.
- the continuous data stream may be transmitted and/or received via different communication pathways in a manner that enables the continuous data stream to be reconstructed from one or more of the different communication pathways.
- additional communication pathways may be established based on user input indicating a voice call is high priority and/or approving the expenditure of additional resources.
- the continuous data stream may be transmitted and/or received as a series of indexed packets.
- FIG. 1 is a communication system block diagram of a wireless communication system suitable for use with the various embodiments.
- FIG. 2 is a process flow diagram illustrating an embodiment method for
- FIG. 3 is a process flow diagram illustrating an embodiment method for
- FIG. 4 is a process flow diagram illustrating an embodiment method for managing the transmission/reception of data between two communications devices over different wireless communications pathways.
- FIG. 5 is a process flow diagram illustrating an embodiment method for managing the transmission/reception of data between two communications devices over different wireless communications pathways based on the acceptance of a dual communication pathway request.
- FIG. 6 is a process flow diagram illustrating a second embodiment method for transmitting/receiving dual pathway communications at a wireless device.
- FIG. 7 illustrates example wireless communication pathways established according to the various embodiments.
- FIG. 8 illustrates additional example wireless communication pathways established according to the various embodiments.
- FIG. 9 illustrates additional example wireless communication pathways established according to the various embodiments.
- FIG. 10 is a process flow diagram illustrating an embodiment method for establishing additional wireless communication pathways in response to user approval.
- FIG. 11 is a process flow diagram illustrating an embodiment method for establishing an additional wireless communication pathway across an additional wireless device.
- FIG. 12 illustrates example wireless communication pathways established across additional wireless devices according to the various embodiments.
- FIG. 13 is a process flow diagram illustrating an embodiment method for
- FIG. 14 illustrates example communications pathways established, and operations performed, to reconstruct a continuous data stream.
- FIG. 15 is a process flow diagram illustrating an embodiment method for
- FIG. 16 illustrates additional example communications pathways established, and additional operations performed, to reconstruct a continuous data stream.
- FIG. 17 is a component block diagram of an example wireless communication circuit suitable for use with the various embodiments.
- FIG. 18 is a component block diagram of a second example wireless communication circuit suitable for use with the various embodiments.
- FIG. 19 is a component diagram of an example mobile device suitable for use with the various embodiments.
- FIG. 20 is a component diagram of another example mobile device suitable for use with the various embodiments.
- FIG. 21 is a component diagram of an example server suitable for use with the various embodiments DETAILED DESCRIPTION
- wireless device is used interchangeably herein to refer to any one or all of cellular telephones, smart phones, personal or mobile multi-media players, personal data assistants (PDA's), laptop computers, tablet computers, smart books, palm-top computers, wireless electronic mail receivers, multimedia Internet enabled cellular telephones, wireless gaming controllers, and similar personal electronic devices that include a programmable processor and memory and circuitry for establishing wireless communication pathways and transmitting/receiving data via wireless communication pathways.
- PDA's personal data assistants
- laptop computers tablet computers
- smart books smart books
- palm-top computers wireless electronic mail receivers
- multimedia Internet enabled cellular telephones wireless gaming controllers
- wireless gaming controllers and similar personal electronic devices that include a programmable processor and memory and circuitry for establishing wireless communication pathways and transmitting/receiving data via wireless communication pathways.
- the various embodiments use a wireless device's capability to transmit and/or receive data over multiple communication pathways to improve data transmission quality.
- the same continuous data stream may be transmitted and/or received via different communication pathways.
- different communication pathways may be transmitted and/or received via different communication pathways.
- the continuous data stream may be transmitted and/or received via different communication pathways in a manner that enables the continuous data stream to be reconstructed from one or more of the different communication pathways.
- additional communication pathways may be established based on user input indicating a voice call is high priority and/or approving the expenditure of additional resources.
- the continuous data stream may be transmitted and/or received as a series of indexed packets.
- the various embodiments leverage the ability of modern wireless devices to establish multiple communication pathways to maintain call quality in a wireless communication system. By establishing redundant communication pathways between devices in a wireless communication system connection reliability may be increased and the user experience may be enhanced.
- a first and a second communication pathway may be established between two wireless devices in a wireless communication system.
- the same data may be transmitted on both the first and second communication pathway, and packet indexes may be used to recover a more complete set of transmitted data packets.
- the second communication pathway may be established in response to a trigger event, such as a user indication of a high priority call or an prediction that a wireless device may enter a low call quality zone (i.e., dead zone).
- one mobile device may send a dual communication pathway request from the server to the second wireless device requesting the second wireless device to establish a dual communication pathway with the server, and the second wireless device may receive the request to establish a dual communication pathway, which may be accepted or rejected by a user based on user input, call pricing, power usage, battery level, or call priority.
- wireless devices that are in a wireless communication system may be enabled to establish multiple communication pathways.
- a wireless device may have two antennas, one antenna for use in a 3G cellular network and a second antenna for use in a 4G cellular network.
- a wireless device may have the ability to communicate over two channels at the same time on one antenna.
- a wireless device may utilize two antennas and two wireless communication protocols to avoid a dead zone, or limited coverage area.
- the wireless device may be placing a call on a 3G network and traveling in a given direction.
- a normal handoff between two 3G cellular towers may occur.
- the location of wireless dead zones may be established based on past user history and/or database records of the network.
- the wireless device may use its 4G antenna to establish a separate and redundant call over an available 4G network.
- the separate call over the 4G network may transfer the same information as the original 3G call.
- the wireless device may enter the 3G dead zone and the 3G call may be dropped.
- the 4G call is also streaming the data from the wireless device, the end users may never realize that the 3G call was dropped because the call was maintained on the 4G network.
- the 3G dead zone may be exited and the 3G call may be reestablished while the 4G call is still active.
- a location query such as a GPS query, may indicate there are no further dead zones on the route being traveled and the wireless device may end the 4G call. In this manner, though the wireless device passed through a 3G dead zone, no service interruption may be experienced by the end user of the wireless device.
- a first wireless device may establish two communication pathways with a second device, such as a server.
- the first communication pathway may be a 3G connection and the second communication pathway may be an LTE connection.
- the two communication pathways may be established in response to a prediction by either wireless device (or a server involved in the communication) that the first wireless device may enter a network dead zone and/or may be established because a user of the first wireless device indicated a call is of high priority.
- the first wireless device may transmit the same data to the second device via both communication pathways.
- the data transmitted may be a series of indexed packets.
- the second device may receive the two copies of the transmitted data and may discard redundant data portions.
- Missing data portions from one data set may be filled with data from the other data set to form a combined data set.
- the second device may establish a third communication pathway with a second wireless device, and may transmit the combined data set to the second wireless device.
- both data streams may be forwarded by the second device as received for recombination at the second wireless device.
- the first wireless device may establish a link with another wireless device associated with the user of the first wireless device.
- the connection may be a Blue Tooth® connection.
- the linked wireless device may use the same type of connection as the first wireless device, such as a 3G connection.
- the first wireless device may direct the linked wireless device to establish the second communication pathway with the second device, and the first wireless device may transmit the same data sent via the first communication pathway to the linked wireless device.
- the linked wireless device may then forward on the data via the second communication pathway to the second device.
- a user's wireless device may receive a dual communication pathway request from another device, such as a communication system server.
- the dual communication pathway request may be accepted or rejected. If the dual communication pathway request is accepted, dual communication pathways may be established between the user's wireless device and another device in the communication system. The same data may then be transmitted on the established dual communication pathways.
- the determination to accept or reject the dual communication pathway request may be based on one or more of a user input, call pricing (cost to establish the dual communication pathways), power usage, device battery level, and call priority.
- audio capture may include receiving audio inputs via a microphone of the wireless device and preparing the audio inputs for transmission as well as converting received data to audio outputs via a speaker of the wireless device.
- calls may include continuous streams of audio data exchanged between wireless devices and/or servers. While example embodiments are discussed in terms of operations performed to transmit and receive streams of data during audio calls (i.e., voice calls), the various embodiment methods may also be implemented to transmit and receive video calls (i.e., audio and video calls or video only calls).
- additional communication pathways such as three, four, or more communication pathways, may be established between the various devices to provide for transmitting/receiving two or more redundant continuous streams of data.
- FIG. 1 illustrates a wireless communication system 100 suitable for use with the various embodiments.
- the wireless communication system 100 may include a wireless device 102 in communication with a server 120 via wireless networks 112, 114, 118.
- the wireless device 102 may be configured to establish a wireless connection 104 to
- a cellular data network 112 e.g., CDMA, TDMA, GSM, PCS, 3G, 4G, LTE, or any other type of cellular data network
- a wireless communication pathway between the wireless device 102 and the server 120 may be established and data (e.g., voice calls, text messages, sensor data streams, e-mails, etc) may be exchanged between the wireless device 102 and the server 120.
- the wireless device 102 may be configured to establish a wireless connection 106 with a cellular data network 114 (e.g., CDMA, TDMA, GSM, PCS, 3G, 4G, LTE, or any other type of cellular data network different from cellular data network 112) that may be in communication with the server 120.
- a wireless communication pathway between the wireless device 102 and the server 120 may be established and data (e.g., voice calls, text messages, sensor data streams, e-mails, etc) may be exchanged between the wireless device 102 and the server 120.
- the wireless device 102 may be configured to establish a wireless connection 110, such as a Wi-Fi connection established with a wireless access point 118, such as a Wi-Fi access point.
- the wireless access point 118 may connect to the Internet 122, and the server 120 may be connected to the Internet 122. In this manner, a wireless communication pathway between the wireless device 102 and the server 120 may be established and data (e.g., voice calls, text messages, sensor data streams, e-mails, etc) may be exchanged between the wireless device 102 and the server 120.
- data e.g., voice calls, text messages, sensor data streams, e-mails, etc
- the wireless device 102 may also be in communication with an additional wireless device 116 via a local connection 108, such as a Blue Tooth® connection.
- the additional wireless device 138 may be configured to establish a wireless connection 122 with the cellular data network 114 and/or a wireless connection 148, such as a Wi-Fi connection, with the wireless access point 118.
- a wireless communication pathway between the wireless device 102 and the server 120 may be established across the additional wireless device 116 and data (e.g., voice calls, text messages, sensor data streams, e-mails, etc) may be exchanged between the wireless device 102 and the server 120 across the additional wireless device 116.
- the wireless communication system 100 may include a wireless device 144 in communication with the server 120 via wireless networks 126, 128, 142.
- the wireless device 102 may be configured to establish a wireless connection 130 to communicate with a cellular data network 126 (e.g., CDMA, TDMA, GSM, PCS, 3G, 4G, LTE, or any other type of cellular data network) that may be in communication with the server 120.
- a cellular data network 126 e.g., CDMA, TDMA, GSM, PCS, 3G, 4G, LTE, or any other type of cellular data network
- data e.g., voice calls, text messages, sensor data streams, e-mails, etc
- the wireless device 144 may be configured to establish a wireless connection 132 with a cellular data network 128 (e.g., CDMA, TDMA, GSM, PCS, 3G, 4G, LTE, or any other type of cellular data network different from cellular data network 126) that may be in communication with the server 120.
- a wireless communication pathway between the wireless device 144 and the server 120 may be established and data (e.g., voice calls, text messages, sensor data streams, e-mails, etc) may be exchanged between the wireless device 144 and the server 120.
- the wireless device 144 may be configured to establish a wireless connection 140, such as a Wi-Fi connection established with a wireless access point 142, such as a Wi-Fi access point.
- the wireless access point 142 may connect to the Internet 122, and the server 120 may be connected to the Internet 122. In this manner, a wireless communication pathway between the wireless device 144 and the server 120 may be established and data (e.g., voice calls, text messages, sensor data streams, e-mails, etc) may be exchanged between the wireless device 144 and the server 120.
- data e.g., voice calls, text messages, sensor data streams, e-mails, etc
- the wireless device 144 may also be in communication with an additional wireless device 138 via a local connection 136, such as a Bluetooth® connection.
- the additional wireless device 138 may be configured to establish a wireless connection 134 with the cellular data network 114 and/or a wireless connection 146, such as a Wi-Fi connection, with the wireless access point 142.
- a wireless communication pathway between the wireless device 144 and the server 120 may be established across the additional wireless device 138 and data (e.g., voice calls, text messages, sensor data streams, e-mails, etc) may be exchanged between the wireless device 144 and the server 120 across the additional wireless device 138.
- wireless networks 112 and 126 may be a single wireless network
- wireless networks 114 and 128 may be a single wireless network
- wireless networks 118 and 142 may be a single wireless network.
- FIG. 2 illustrates an embodiment method 200 for transmitting/receiving dual pathway communications at a wireless device.
- the operations of method 200 may be implemented by the processor of a wireless device.
- the wireless device processor may initiate a call.
- a call may be initiated by a wireless device user dialing a destination phone number.
- the wireless device processor may establish a first wireless communication pathway.
- a wireless communication pathway may be established between the wireless device and a server.
- the wireless communication pathway may be established between the wireless device and the server over a 3G wireless network.
- a wireless communication pathway may be established between the wireless device and a second wireless device.
- the wireless device processor may capture audio data.
- capturing audio data may include receiving audio input from a microphone of the wireless device and preparing the audio data for transmission, as well as converting received data to audio output and sending the audio output to a speaker of the wireless device for output to a user.
- the wireless device processor may transmit/receive a continuous stream of audio data over the first wireless communication pathway.
- the continuous stream of audio data may be the phone conversation occurring between two or more users.
- the wireless device processor may determine whether a trigger event has occurred.
- a trigger event may be an event associated with establishing dual pathway communications.
- a trigger event may be a prediction that the wireless device may soon enter or is approaching a limited cellular coverage area or low call quality zone (i.e., dead zone).
- the wireless device processor may be configured with a dual pathway communication client application to leverage location and velocity vector information received from various sensors, such as GPS sensors and accelerometers, to determine a likely path of travel for the wireless device.
- the wireless device processor may compare the likely path of travel to a cellular coverage map to predict whether the wireless device will enter or is approaching a limited cellular coverage area, or dead zone, and the prediction that the wireless device is approaching a limited cellular coverage area, or dead zone may be a trigger event.
- a user of the wireless device may have previously designated a specific area as a poor quality area.
- a prediction based on the likely path of travel that the wireless device is approaching the poor quality area may be a trigger event.
- a trigger event may be a user indication that a call is a high priority call, such as a button push and/or high priority call icon selection.
- a trigger event may be a backward looking detection of bad call quality.
- the wireless device processor may monitor call quality and determine whether call quality has fallen below a threshold value.
- the determination that the call quality is below the threshold may be a trigger event.
- trigger events may be based on user and/or device settings, such as caller IDs, call quality information, time of day, day of the week, cost determinations (e.g., data pricing
- the wireless device processor may establish a second wireless communication pathway.
- the second wireless communication pathway may be a wireless communication pathway different from the first wireless communication pathway.
- the wireless device processor may be configured to establish more than one call at a time, and second wireless communication pathway may be established as a second call between the wireless device and another device (i.e., server and/or a second wireless device).
- the wireless device processor may be configured to establish the first and second wireless communication pathways using the same and/or different antennas.
- the wireless device processor may be configured to establish the first and second wireless communication pathways using different wireless protocols.
- the first wireless communication pathway is a 3G call
- the communication pathway may be established using the Voice Over Internet Protocol and the second wireless communication pathway may be established using the Real-Time Transport Protocol.
- the first and second wireless communication pathways may be established over entirely different wireless networks.
- the first wireless communication pathway may be established over a 3G network, and the second wireless communication pathway may be established over a Wi-Fi network.
- the first wireless communication pathway may be established over a 3G network, and the second wireless communication pathway may be established over an LTE network.
- the wireless device processor may continue capturing audio data in the manner discussed above with reference to block 206.
- the wireless device processor may transmit/receive the continuous stream of the same audio data over the first wireless communication pathway and transmit/receive the continuous stream of the same audio data over the second wireless communication pathway.
- the same audio data may be transmitted and/or received over two wireless communication pathways.
- the first and second wireless communication pathways may be different (e.g., different protocols, different networks, different antennas, etc).
- the audio data itself transmitted and/or received via the first and second wireless may be the same.
- the captured audio data may be the voice call, and the same voice call may be transmitted/received over both the first and second wireless communication pathway.
- the transmission of the same data set over dual communication pathways may increase call reliability/quality because the chance for lost data may be reduced.
- the wireless device processor may reconstruct the continuous stream of audio data using the continuous streams of audio data received from either or both of the first and second communication pathways.
- two audio data streams may be received over the two wireless communications pathways.
- the two audio data streams may have been generated from the same original audio data stream.
- the complete original audio data stream may not be received over both the first and second wireless communication pathways.
- the wireless device processor may use portions of the original audio data stream received over either or both of the first and second communication pathways to reconstruct the original audio data stream.
- reconstructing the continuous stream of audio data using the continuous streams of audio data received from either or both of the first and second communication pathways may include comparing the two continuous streams of audio data to determine missing segments in one continuous stream of audio data. Based on the missing portions, the portions to be filed from the other continuous stream of audio data may be determined and/or repeat segments may be discarded.
- the wireless device processor may determine whether an end trigger has occurred.
- An end trigger may be an event associated with terminating dual pathway communications.
- an end trigger may be an indication that the wireless device has exited a limited cellular coverage area, or dead zone.
- the wireless device processor may be configured with a dual pathway communication client application to leverage location information received from various sensors, such as GPS sensors. The wireless device processor may compare the wireless device's current location to a cellular coverage map to determine whether the wireless device is outside a limited cellular coverage area, or dead zone, and the determination the wireless device is outside a limited cellular coverage area, or dead zone, may be an end trigger.
- an end trigger may be a user indication to stop dual pathway communications, such as a button push and/or high priority call de-selection.
- end triggers may be based on user and/or device settings, such as caller IDs, call quality information, time of day, day of the week, cost determinations (e.g., data pricing information), power usage, device battery level information, data usage, call type (e.g., direct dialed call, transferred call, conference call), etc.
- end triggers may be user created and/or modifiable.
- more than one end trigger may be stored in a memory of the wireless device, such as in a lookup table. In this manner, end triggers may be associated with multiple different criteria.
- the wireless device processor may continue to capture audio data, in blocks 216 and 218 the wireless device processor may continue to transmit/receive the continuous stream of the same audio data over the first and second wireless communication pathways, and in block 220 the wireless device processor may continue to reconstruct the continuous stream of audio data using the continuous streams of audio data received from either or both of the first and second communication pathways.
- the wireless device processor may terminate the second wireless communication pathway.
- the wireless device processor may terminate the connections necessary to maintain the second wireless communication pathway and may stop transmitting/receiving via the second wireless communication pathway. In this manner, the second wireless communication pathway may be established for only a portion of the time that the first wireless communication pathway is established.
- the first wireless communication may be terminated and the second wireless communication pathway may be substituted for the first wireless communication pathway.
- the wireless device processor may capture audio data, and in block 208 may transmit/receive the continuous stream of audio data over the first wireless communication pathway.
- the operations of method 300 may be implemented by the processor of a wireless device. In another embodiment, the operations of method 300 may be performed by a processor of a server.
- the server/wireless device processor may receive an indication of a high priority call.
- the indication of a high priority call may be information included in the information sent from an initiating device to establish a call and/or wireless communication pathway, such as header information of a call request.
- an indication of a high priority call may be an additional message received by server/wireless device processor from the initiating device.
- an indication of a high priority call may be received after a call is already established over a first wireless communication pathway.
- the server/wireless device processor may establish a first wireless communication pathway.
- a wireless communication pathway may be established between the server/wireless device and an initiating wireless device.
- the wireless communication pathway may be established between the
- the server/wireless device processor may establish a second wireless communication pathway.
- the second wireless communication pathway may be a wireless communication pathway different from the first wireless communication pathway.
- the server/wireless device processor may be configured to establish more than one call at a time, and second wireless communication pathway may be established as a second call between the initiating wireless device and the server/wireless device.
- the first wireless communication pathway is a 3G call
- the second wireless communication pathway may be a separate 3G call.
- the server/wireless device processor may be configured to establish the first and second wireless communication pathways using different wireless protocols.
- the first wireless communication pathway may be established using the Voice Over Internet Protocol and the second wireless communication pathway may be established using the Real-Time Transport Protocol.
- the first and second wireless communication pathways may be established over entirely different wireless networks.
- the first wireless communication pathway may be established over a 3G network, and the second wireless communication pathway may be established over a Wi-Fi network.
- the first wireless communication pathway may be established over a 3G network, and the second wireless communication pathway may be established over an LTE network.
- the server/wireless device processor may transmit/receive the continuous stream of the same audio data over the first wireless communication pathway and transmit/receive the continuous stream of the same audio data over the second wireless communication pathway.
- the same audio data may be transmitted and/or received over two wireless communication pathways.
- the first and second wireless communication pathways may be different (e.g., different protocols, different networks, different antennas, etc).
- the audio data itself transmitted and/or received via the first and second wireless may be the same.
- the same voice call may be transmitted/received over both the first and second wireless communication pathway. In this manner, the transmission of the same data set over dual communication pathways may increase call reliability/quality because the chance for lost data may be reduced.
- the server/wireless device processor may reconstruct the continuous stream of audio data using the continuous streams of audio data received from either or both of the first and second communication pathways.
- two audio data streams may be received over the two wireless communications pathways.
- the two audio data streams may have been generated from the same original audio data stream.
- the complete original audio data stream may not be received over both the first and second wireless communication pathways.
- the server/wireless device processor may use portions of the original audio data stream received over either or both of the first and second communication pathways to reconstruct the original audio data stream.
- reconstructing the continuous stream of audio data using the continuous streams of audio data received from either or both of the first and second communication pathways may include comparing the two continuous streams of audio data to determine missing segments in one continuous stream of audio data. Based on the missing portions, the portions to be filed from the other continuous stream of audio data may be determined and/or repeat segments may be discarded.
- the method 300 may return to blocks 308 and 310 and continue to
- the server/wireless device processor may continually transmit/receive the same audio data using dual communication pathways.
- FIG. 4 illustrates an embodiment method 400 for managing the transmission/reception of data between two communication devices over multiple different communication pathways.
- the operations of method 400 may be implemented by the processor of a server.
- the server processor may receive an indication of a high priority call.
- the indication of a high priority call may be information included in the information sent from an initiating device to establish a call and/or wireless communication pathway, such as header information of a call request.
- an indication of a high priority call may be an additional message received by server processor from the initiating device.
- the server processor may establish the first wireless communication pathway.
- the first wireless communication pathway may be established between the server and the initiating wireless device (i.e., first device) over a 3G wireless network.
- Block 404 may be optional, because in an embodiment, an indication of a high priority call may be received after a call is already established over the first wireless communication pathway.
- the server processor may establish a second wireless communication pathway.
- the second wireless communication pathway may be a wireless communication pathway different from the first wireless communication pathway.
- the server processor may be configured to establish the first and second wireless communication pathways using different wireless protocols.
- the first wireless communication pathway may be established using the Voice Over Internet Protocol and the second wireless communication pathway may be established using the Real-Time Transport Protocol.
- the first and second wireless communication pathways may be established over entirely different wireless networks.
- the first wireless communication pathway may be established over a 3G network, and the second wireless communication pathway may be established over a Wi-Fi network.
- the first wireless communication pathway may be established over a 3G network
- the second wireless communication pathway may be established over an LTE network.
- the first and second wireless communication pathways may establish two separate communication pathways between the server and the initiating wireless device (i.e., first wireless device).
- the server processor may establish a third communication pathway.
- the third communication pathway may be a communication pathway established between the server and the destination device (i.e., second device), such as the wired/wireless device originally dialed by the initiating wireless device (i.e., first device).
- the third communication pathway may be established between the server and the destination device (i.e., second device) over a 3G wireless network and/or a public switched telephone network.
- the communication pathway may be of the same type (e.g., network, protocol, etc) as the first and/or second wireless
- Block 408 may be optional, because in an embodiment, an indication of a high priority call may be received after a call is already established between the initiating device (i.e., first device), the server, and the destination device(i.e., second device), and data is already being exchanged between the server and the destination device (i.e., second device).
- the server processor may transmit/receive the continuous stream of the same audio data over the first wireless communication pathway, transmit/receive the continuous stream of the same audio data over the second wireless communication pathway, and transmit/receive the continuous stream of the same audio data over the third communication pathway.
- the same audio data may be transmitted and/or received over two wireless communication pathways with the first device.
- the first and second wireless communication pathways may be different (e.g., different protocols, different networks, different antennas, etc).
- the audio data itself transmitted and/or received via the first and second wireless may be the same.
- the same voice call may be transmitted/received over both the first and second wireless communication pathway.
- the server processor may reconstruct the continuous stream of audio data using the continuous streams of audio data received from either or both of the first and second communication pathways.
- two audio data streams may be received over the two wireless communications pathways.
- the two audio data streams may have been generated from the same original audio data stream.
- the complete original audio data stream may not be received over both the first and second wireless communication pathways.
- the server processor may use portions of the original audio data stream received over either or both of the first and second communication pathways to reconstruct the original audio data stream.
- reconstructing the continuous stream of audio data using the continuous streams of audio data received from either or both of the first and second communication pathways may include comparing the two continuous streams of audio data to determine missing segments in one continuous stream of audio data. Based on the missing portions, the portions to be filed from the other continuous stream of audio data may be determined and/or repeat segments may be discarded.
- the reconstructed continuous stream of audio data may be transmitted from the server to the second device via the third communication pathway in block 416.
- a continuous stream of audio data from the second device may also be received in block 416 and transmitted to the first device via the first and second wireless communication pathways in blocks 410 and 412.
- the first device may be continually transmitting and receiving data with the server via the first and second communications pathways in blocks 410 and 412. Data received at the server from the first device may be reconstructed in block 414 and transmitted to the second device via the third communication pathway in block 416. In an embodiment, data received at the server from the second device may be transmitted from the server to the first device via both the first and second wireless communication pathways. In this manner, two copies of the same data received from the second device may be sent from the server to the first device. The dual communication pathways established between the first device and the server may improve call quality/reliability.
- FIG. 5 illustrates an embodiment method 500 for managing the transmission/reception of data between two communication devices over different communication pathways.
- method 500 may be used in conjunction with method 400 to establish additional wireless communication pathways between the server and the second wireless device.
- the operations of method 500 may be implemented by the processor of a server.
- the server processor may transmit/receive a continuous stream of audio data over a third wireless communication pathway.
- the third wireless communication pathway may be established between the server and the second wireless device over a 3G wireless network in a manner similar to that of block 416 discussed above with reference to FIG. 4.
- the server processor may send a dual communication pathway request to the second wireless device.
- a dual communication pathway request may be a request sent from the server to the second wireless device to indicate that more than one wireless communication pathway may be established and to present the opportunity to accept or prevent the establishment of dual pathway communications with the server.
- a dual communication pathway request may be sent upon a determination by the server processor that the current call is designated a high priority call.
- a dual communication pathway request may be sent automatically by the server processor based on a prediction that the second wireless device is approaching a limited cellular coverage area, or dead zone.
- the server processor may use location and velocity vector information received from the second wireless device to determine a likely path of travel for the second wireless device.
- the server processor may compare the likely path of travel to a cellular coverage map to predict whether the second wireless device will enter or is approaching a limited cellular coverage area, or dead zone. Upon the prediction that the second wireless device is approaching a limited cellular coverage area, or dead zone, the dual communication pathway request may be sent.
- dual communication pathway requests may be sent based on user, server, and/or device settings, caller IDs, call quality information, time of day, day of the week, network usage levels, cost determinations (e.g., data pricing information), power usage, device battery level information, data usage, call type (e.g., direct dialed call, transferred call, conference call), etc.
- the dual communication pathway request may be sent via the third wireless communication pathway.
- the dual communication pathway request may be sent outside the third wireless communication pathway.
- the server processor may determine whether the dual communication pathway request was accepted. In an embodiment, the server processor may determine whether a dual communication pathway request was accepted based on a message received from the second wireless device, such as message containing a dual communication pathway acceptance indication or a message containing a dual communication pathway denial indication. If a dual communication pathway request is not accepted (i.e.,
- the server may send a dual communication pathway denial indication to the first wireless device.
- the server may establish a fourth wireless communication pathway between the server and the second wireless device.
- the fourth wireless communication pathway may be a wireless communication pathway different from the third wireless communication pathway.
- the server processor may be configured to establish the third and fourth wireless communication pathways using different wireless protocols.
- the third wireless communication pathway may be established using the Voice Over Internet Protocol and the fourth wireless communication pathway may be established using the Real- Time Transport Protocol.
- the third and fourth wireless communication pathways may be established over entirely different wireless networks.
- the third wireless communication pathway may be established over a 3G network, and the fourth wireless communication pathway may be established over a Wi-Fi network.
- the third wireless communication pathway may be established over a 3G network, and the fourth wireless communication pathway may be established over an LTE network.
- the server processor may
- the same audio data may be transmitted and/or received over two wireless communication pathways.
- the third and fourth wireless communication pathways may be different (e.g., different protocols, different networks, etc).
- the audio data itself transmitted and/or received via the third and fourth wireless communication pathways may be the same.
- the same voice call may be transmitted/received over both the third and fourth wireless communication pathway. In this manner, the transmission of the same data set over dual communication pathways may increase call reliability/quality because the chance for lost data may be reduced.
- the server processor may reconstruct the continuous stream of audio data using the continuous streams of audio data received from either or both of the third and fourth communication pathways.
- the server processor may use portions of the original audio data stream received over either or both of the third and fourth communication pathways to reconstruct the original audio data stream. In this manner, though one or both of the wireless communication pathways may not achieve complete transmission of the original audio data stream, the server processor may be able to reconstruct the original audio data stream with the portions actually received.
- reconstructing the continuous stream of audio data using the continuous streams of audio data received from either or both of the third and fourth communication pathways may include comparing the two continuous streams of audio data to determine missing segments in one continuous stream of audio data. Based on the missing portions, the portions to be filed from the other continuous stream of audio data may be determined and/or repeat segments may be discarded.
- the operations of like numbered blocks 410, 412, and 414 of method 400 described above with reference to FIG. 4 may be performed by the server processor to transmit/receive data to/from the first wireless device via the first wireless communication pathway and the second wireless communication pathway.
- the same audio data may be continually transmitted and received between the first wireless device and the second wireless device across the server via dual communications pathways established between both devices and the server.
- the additional wireless communications pathways between both devices and the server may improve call quality/reliability.
- FIG. 6 illustrates an embodiment method 600 for transmitting/receiving dual pathway communications in a wireless device.
- the operations of method 600 may be performed by a processor of a wireless device.
- the wireless device processor may establish a third wireless communication pathway.
- the third wireless communication pathway may be established between the wireless device and a server.
- the wireless communication pathway may be established between the wireless device and the server over a 3G wireless network.
- the third wireless communication pathway may be established in response to a call received via the server from another wireless device.
- the wireless device processor may capture audio data.
- capturing audio data may include receiving audio input from a microphone of the wireless device and preparing the audio data for transmission, as well as converting received data to audio output and sending the audio output to a speaker of the wireless device for output to a user.
- the wireless device processor may transmit/receive a continuous stream of audio data over the third wireless communication pathway.
- the continuous stream of audio data may be the phone conversation occurring between two or more users.
- a dual communication pathway request may be a request sent from a server to the wireless device to indicate that more than one wireless communication pathway may be established, and to present the wireless device with the opportunity to accept or prevent the establishment of dual pathway communications with the server.
- the wireless device processor may cause a display of the wireless device to display the dual communication pathway request.
- the communication pathway request may include information, such as information related to user, server, and/or device settings, caller IDs, call quality, time of day, day of the week, network usage levels, cost determinations (e.g., data pricing information), power usage, device battery levels, data usage, call type (e.g., direct dialed call, transferred call, conference call), etc.
- the dual communication pathway request displayed by the wireless device may include at least a portion of the information included in the dual communication pathway request. In this manner, the user of the wireless device may be provided with information about the costs and benefits associated with enabling dual pathway communications.
- the wireless device processor may determine whether a user acceptance indication may be received.
- the dual communication pathway acceptance indication may be a message sent from the wireless device to the server indicating an additional wireless communication pathway may be established.
- the wireless device processor may establish a fourth wireless communication pathway.
- the fourth wireless communication pathway may be a wireless communication pathway different from the third wireless communication pathway.
- the wireless device processor may be configured to establish more than one call at a time, and the fourth wireless communication pathway may be established as a second call between the wireless device and the server.
- the wireless device processor may be configured to establish the third and fourth wireless communication pathways using the same and/or different antennas.
- the wireless device processor may be configured to establish the third and fourth wireless communication pathways using different wireless protocols.
- the third wireless communication pathway may be established using the Voice Over Internet Protocol and the fourth wireless communication pathway may be established using the Real-Time Transport Protocol.
- the third and fourth wireless communication pathways may be established over entirely different wireless networks.
- the third wireless communication pathway may be established over a 3G network, and the fourth wireless communication pathway may be established over a Wi-Fi network.
- the third wireless communication pathway may be established over a 3G network, and the fourth wireless communication pathway may be established over an LTE network.
- the wireless device processor may continue capturing audio data in the manner discussed above with reference to block 602.
- the wireless device processor may transmit/receive the continuous stream of the same audio data over the third wireless communication pathway and transmit/receive the continuous stream of the same audio data over the fourth wireless communication pathway.
- the same audio data may be transmitted and/or received over two wireless communication pathways.
- the third and fourth wireless communication pathways may be different (e.g., different protocols, different networks, different antennas, etc).
- the audio data itself transmitted and/or received via the third and fourth wireless may be the same.
- the captured audio data may be the voice call, and the same voice call may be transmitted/received over both the third and fourth wireless communication pathway. In this manner, the transmission of the same data set over dual communication pathways may increase call reliability/quality because the chance for lost data may be reduced.
- the wireless device processor may reconstruct the continuous stream of audio data using the continuous streams of audio data received from either or both of the third and fourth communication pathways.
- two audio data streams may be received over the two wireless communications pathways.
- the two audio data streams may have been generated from the same original audio data stream.
- the complete original audio data stream may not be received over both the third and fourth wireless communication pathways.
- the wireless device processor may use portions of the original audio data stream received over either or both of the third and fourth communication pathways to reconstruct the original audio data stream.
- reconstructing the continuous stream of audio data using the continuous streams of audio data received from either or both of the third and fourth communication pathways may include comparing the two continuous streams of audio data to determine missing segments in one continuous stream of audio data. Based on the missing portions, the portions to be filed from the other continuous stream of audio data may be determined and/or repeat segments may be discarded.
- the method 600 may proceed to block 616, and in this manner may continually capture, transmit/receive, and reconstruct audio data.
- FIG. 7 illustrates example wireless communication pathways established according to the embodiment methods 200, 300, 400, 500, and/or 600 using the same type wireless network within each wireless communication pathway.
- a first wireless device 702 may establish a first wireless communication pathway with the server 710.
- the first wireless communication pathway may include a wireless connection 704, such as a 3G connection, between the first wireless device 702 and a wireless network 708, such as a 3G network.
- the wireless network 708 may be in communication with the server 710.
- the first wireless device 702 may also establish a second wireless communication pathway with the server 710.
- the second wireless communication pathway may include a wireless connection 706, such as a 3G connection, between the first wireless device 702 and the wireless network 708, such as a 3G network.
- the server 710 may establish a third wireless communication pathway with a second wireless device 718.
- the server 710 may be in communication with a wireless network 712, such as a 3G network.
- the wireless networks 708 and 712 may be the same wireless network, or may be the same type wireless networks run by different carriers/operators.
- the third wireless communication pathway may include a wireless connection 714, such as a 3G connection, between the wireless network 712 and the second wireless device 718.
- the server 710 may establish a fourth wireless communication pathway with the second wireless device 718.
- the fourth wireless communication pathway may include a wireless connection 716, such as a 3G connection, between the wireless network 712 and the second wireless device 718.
- Example operations that may be performed by the first wireless device 702, server 710, and the second wireless device 718 to establish dual communications may include the first wireless device 702 connecting to the server via wireless connection 704 and the wireless network 708 to establish the first wireless pathway.
- the first wireless device 702 may initiate a voice call intended for the second wireless device, may indicate the call is a high priority call, and establish the first wireless communication pathway.
- the server 710 may connect the call to the second wireless device 718 via the wireless network 712 and the wireless connection 714 to establish the third wireless pathway. Audio data may be captured at both the first wireless device 702 and the second wireless device 718.
- the captured audio data may be transmitted/received between the first wireless device 702 and second wireless device 718 via the server 710.
- a trigger event such as the user indicating the call may be high priority
- the first wireless device 702 may establish the second wireless communication pathway to the server 710 via the wireless connection 706 and the wireless network 708.
- the first wireless device 702 may then transmit and receive the same data via the first and second wireless communication pathways.
- the server 710 may identify the call is a high priority call and may send a dual communication pathway request to the second wireless device 718.
- the server 710 may establish the fourth wireless communication pathway to the server 710 via the wireless connection 716 and the wireless network 712.
- the second wireless device 718 may then transmit and receive the same data via the third and fourth wireless communication pathways. In this manner, while four communication pathways may be established, the same continuous audio data stream that is the audio call may be continuously transmitted and/or received across two wireless communication pathways between each of the wireless devices 702, 718 and the server 710.
- FIG. 8 illustrates example wireless communication pathways established according to the embodiment methods 200, 300, 400, 500, and/or 600 using different wireless network types within each wireless communication pathway.
- a first wireless device 802 may establish a first wireless communication pathway with the server 814.
- the first wireless communication pathway may include a wireless connection 804, such as a 3G connection, between the first wireless device 802 and a wireless network 808, such as a 3G network.
- the wireless network 808 may be in communication with the server 814.
- the first wireless device 802 may also establish a second wireless communication pathway with the server 814.
- the second wireless communication pathway may include a wireless connection 806, such as a Wi-Fi connection, between the first wireless device 802 and a wireless network 810, such as a Wi-Fi access point, connected to the Internet 816.
- the server 814 may be connected to the Internet 816, and in this manner the second wireless communication pathway between the server 814 and the first wireless device 802 may be established.
- the server 814 may establish a third wireless communication pathway with a second wireless device 824.
- the server 814 may be in communication with a wireless network 820, such as a 3G network.
- the wireless networks 808 and 820 may be the same wireless network, or may be the same type wireless networks run by different carriers/operators.
- the third wireless communication pathway may include a wireless connection 822, such as a 3G connection, between the wireless network 820 and the second wireless device 824.
- the server 814 may establish a fourth wireless communication pathway with the second wireless device 824.
- the fourth wireless communication pathway may include a wireless connection 826, such as a Wi-Fi connection, between the second wireless device 824 and a wireless network 818, such as a Wi-Fi access point, connected to the Internet 816.
- the server 814 may be connected to the Internet 816, and in this manner the second wireless communication pathway between the server 814 and the second wireless device 824 may be established.
- Example operations that may be performed by the first wireless device 802, server 814, and the second wireless device 824 to establish dual communications according to the various embodiments may be the same as those discussed above with reference to FIG. 7, except that the first, second, third, and fourth wireless communication pathways may be established using different wireless communication protocols and/or entirely different wireless networks.
- FIG. 9 illustrates example wireless communication pathways established according to the embodiment methods 200, 300, 400, 500, and/or 600 using different wireless network types within each wireless communication pathway.
- a first wireless device 902 may establish a first wireless communication pathway with the server 912.
- the first wireless communication pathway may include a wireless connection 904, such as a 3G connection, between the first wireless device 902 and a wireless network 910, such as a 3G network.
- the wireless network 910 may be in communication with the server 912.
- the first wireless device 902 may also establish a second wireless communication pathway with the server 912.
- the second wireless communication pathway may include a wireless connection 906, such as an LTE connection, between the first wireless device 902 and the wireless network 908, such as an LTE network.
- the server 912 may establish a third wireless communication pathway with a second wireless device 924.
- the server 912 may be in communication with a wireless network 918, such as a 3G network.
- the wireless networks 918 and 910 may be the same wireless network, or may be the same type wireless networks run by different carriers/operators.
- the third wireless communication pathway may include a wireless connection 920, such as a 3G connection, between the wireless network 918 and the second wireless device 924.
- the server 912 may establish a fourth wireless communication pathway with the second wireless device 924.
- the fourth wireless communication pathway may include a wireless connection 922, such as an LTE connection, between the wireless network 916, such as an LTE network, and the second wireless device 924.
- the wireless network 916 may be in communication with the server 912.
- the wireless networks 916 and 908 may be the same wireless network, or may be the same type of wireless networks run by different carriers/operators.
- Example operations that may be performed by the first wireless device 902, server 914, and the second wireless device 924 to establish dual communications according to the various embodiments may be the same as those discussed above with reference to FIG. 7, except that the first, second, third, and fourth wireless communication pathways may be established using entirely wireless networks.
- FIG. 10 illustrates an embodiment method 1000 for transmitting/receiving dual pathway communications at a wireless device, similar to method 200 described above with reference to FIG. 2, except that in method 1000 additional wireless communication pathways may be established in response to user approval.
- the user approval prompt may be an indication to the user of the wireless device that dual pathway communications may be established and/or an indication of a request for user input to indicate approval or disapproval of dual pathway communications.
- the user approval prompt may include information associated with dual pathway communications, such as information related to user, server, and/or device settings, caller IDs, call quality, time of day, day of the week, network usage levels, cost determinations (e.g., data pricing information), power usage, device battery levels, data usage, call type (e.g., direct dialed call, transferred call, conference call), etc.
- information associated with dual pathway communications such as information related to user, server, and/or device settings, caller IDs, call quality, time of day, day of the week, network usage levels, cost determinations (e.g., data pricing information), power usage, device battery levels, data usage, call type (e.g., direct dialed call, transferred call, conference call), etc.
- the user of the wireless device may be provided with information about the costs and benefits associated with enabling dual pathway
- the wireless device processor may determine whether a user approval indication is received.
- FIG. 11 illustrates an embodiment method 1100 for establishing dual pathway communications across an additional wireless device, similar to method 200 described above with reference to FIG. 2, except that in method 1100 additional wireless communication pathways are established across an additional wireless device.
- the wireless device processor may establish a local connection with the additional wireless device.
- the local connection may be a wireless connection, such as a BlueTooth® connection, near field communications connection, etc.
- the wireless device processor may establish a second wireless connection pathway across the additional wireless device using the local connection.
- the wireless device processor may interact with a dual pathway communications facilitation client on the additional wireless device to establish a second wireless communication pathway.
- the dual pathway communications facilitation client on the additional wireless device may manage the necessary interactions to communicate information to/from the wireless device over the local connection, and to/from the destination device (e.g., server and/or second wireless device).
- the wireless device processor may continue capturing audio data in the manner discussed above with reference to block 206.
- the wireless device processor may transmit/receive the continuous stream of the same audio data over the first wireless communication pathway and transmit/receive the continuous stream of the same audio data over the second wireless communication pathway established across the additional wireless device.
- the same audio data may be transmitted and/or received over two wireless communication pathways.
- the transmission of the same data set over dual communication pathways may increase call reliability/quality because the chance for lost data may be reduced.
- the wireless device processor may reconstruct the continuous stream of audio data using the continuous streams of audio data received from either or both of the first and second communication pathways.
- FIG. 12 illustrates example wireless communication pathways established according to the embodiment methods 1100.
- a first wireless device 1202 may establish a first wireless communication pathway with the server 1214.
- the first wireless communication pathway may include a wireless connection 1208, such as a 3G connection, between the first wireless device 1202 and a wireless network 1212, such as a 3G network.
- the wireless network 1212 may be in communication with the server 1214.
- the first wireless device 1202 may also establish a second wireless communication pathway with the server 1214.
- the second wireless communication pathway may include a local wireless connection 1206, such as a Blue Tooth® connection, established between the first wireless device and an additional wireless device 1204.
- the additional wireless device 1204 may establish a wireless connection 1210, such as a 3G connection, between the additional wireless device 1204 and the wireless network 1212, such as a 3G network. In this manner, a second wireless communication pathway may be established across an additional wireless device.
- a wireless connection 1210 such as a 3G connection
- the wireless network 1212 such as a 3G network
- the additional wireless device 1204 may establish a wireless connection, such as a Wi-Fi connection with the wireless network 1228, such as wireless access point 1228.
- the wireless network 1228 may connect with the Internet 1230, and the server 1214 may connect to the Internet 1230.
- a second wireless communication pathway may be established across an additional wireless device, as well as across a different network and/or using a different protocol.
- FIG. 13 illustrates an embodiment method 1300 for reconstructing continuous data streams based on data packet indexes.
- the operations of method 1300 may be implemented by the processor of a wireless device.
- the operations of method 1300 may be performed by a processor of a server.
- the server/wireless device processor may establish a first wireless communication pathway.
- a wireless communication pathway may be established between the server/wireless device and an initiating wireless device.
- the wireless communication pathway may be established between the server/wireless device and the initiating wireless device over a 3G wireless network.
- the server/wireless device processor may establish a second wireless communication pathway.
- the second wireless communication pathway may be a wireless communication pathway different from the first wireless communication pathway.
- the server/wireless device processor may be configured to establish more than one call at a time, and second wireless communication pathway may be established as a second call between the initiating wireless device and the server/wireless device.
- the first wireless communication pathway is a 3G call
- the second wireless communication pathway may be a separate 3G call.
- the server/wireless device processor may be configured to establish the first and second wireless communication pathways using different wireless protocols.
- the first wireless communication pathway may be established using the Voice Over Internet Protocol and the second wireless communication pathway may be established using the Real-Time Transport Protocol.
- the first and second wireless communication pathways may be established over entirely different wireless networks.
- the first wireless communication pathway may be established over a 3G network, and the second wireless communication pathway may be established over a Wi-Fi network.
- the first wireless communication pathway may be established over a 3G network, and the second wireless communication pathway may be established over an LTE network.
- the server/wireless device processor may transmit/receive part of the continuous stream of the same audio data as a series of indexed packets over the first wireless communication pathway and transmit/receive the continuous stream of the same audio data over the second wireless communication pathway.
- the same audio data may be transmitted and/or received over two wireless communication pathways as the same series of indexed packets.
- the first and second wireless communication pathways may be different (e.g., different protocols, different networks, different antennas, etc).
- the audio data itself transmitted and/or received via the first and second wireless may be the same series of indexed packets. In this manner, the transmission of the same data set over dual
- the server/wireless device processor may compare the received packets.
- the server/wireless device processor may compare the packet indexes for received packets to each other in order to identify missing packets and/or received redundant packets.
- the server/wireless device processor may discard received redundant packets. In this manner, redundant packets may be eliminated and the data storage needs for storing the two received data streams may be reduced.
- the server/wireless device processor may reconstruct the continuous stream of audio data using either or both received parts and the data packet indexes.
- missing packets from the part received via the first communication pathway may be replaced with packets received via the second communication pathway.
- the method 300 may then return to blocks 1306 and 1308 and continue to transmit/receive using the first and second wireless communication pathways.
- FIG. 14 illustrates example wireless communication pathways established according to the embodiment method 1300.
- a wireless device 1402 may establish a first wireless communication pathway with a server 1410 via a wireless connection 1406, such as a 3G connection, with a wireless network 1404, such as a 3G network.
- the wireless network 1404 may be in communication with the server 1410.
- the wireless device 1402 may also establish a second wireless communication pathway with the server 1410 via the wireless connection 1408, such as a 3G connection, with a wireless network 1404, such as a 3G network.
- the wireless device 1402 may transmit/receive to/from the server the same continuous stream of indexed packets via the first wireless communication pathway and the second wireless communication pathway.
- the original stream may be sent via the first and second wireless communication pathways as two identical streams of indexed packets 1, 2, 3, 4, 5, and 6. While the same continuous stream may be transmitted, due to various communication errors, different streams, Stream 1 and Stream 2, may be received.
- received Stream 1 may include indexed packets 1, 2, 4, and 6, while received Stream 2 may include indexed packets 2, 3, 5, and 6.
- the server 1410 (or alternatively the wireless device 1402 if transmitted from the server 1410 to the wireless device 1402) receiving Stream 1 and Stream 2 may compare Stream 1 to Stream 2, and discard the duplicate indexed packets 2 and 6 from Stream 1.
- the two streams, Stream 1 and Stream 2 may be combined to reconstruct the original data stream.
- the missing indexed packets from Stream 2 may be filled using the available packets from Stream 1.
- the reconstructed stream may include indexed packets 1, 2, 3, 4, 5, and 6, and may be the same as the original stream.
- FIG. 15 illustrates an embodiment method 1500 for reconstructing continuous data streams similar to method 1300 described above with reference to FIG. 13, except that in method 1500 the continuous data stream may be reconstructed based on data streams with different transmission structures.
- the operations of method 1500 may be implemented by the processor of a wireless device.
- the operations of method 1500 may be performed by a processor of a server.
- blocks 1302 and 1304 the operations of like numbered blocks of method 1300 described above with reference to FIG. 13 may be performed by the server/wireless device processor to establish a first and second wireless communication pathway.
- the server/wireless device processor may transmit/receive part of the continuous stream of the same audio data as contiguous frames in sequential packets over the first wireless communication pathway, and, in parallel, in block 1504 the server/wireless device processor may transmit/receive the continuous stream of the same audio data as interleaved frames in sequential packets over the second wireless communication pathway.
- the same audio data may be transmitted and/or received over two wireless communication pathways using different transmission structures.
- the first wireless communication pathway frames may be sent in contiguous structure in various packets, such as frames 1, 2, and 3 in a first packet and frames 4, 5, and 6 in a second packet.
- the second wireless communication pathway frames may be sent in an interleaved structure in various packets, such as odd frames, 1 , 3, and 5 in a first packet, and even frames 2, 4, and 6 in a second packet.
- the first and second wireless communication pathway frames may be sent in contiguous structure in various packets, such as frames 1, 2, and 3 in a first packet and frames 4, 5, and 6 in a second
- the communication pathways may be different (e.g., different protocols, different networks, different antennas, etc).
- the audio data itself transmitted and/or received via the first and second wireless may be the same frames. In this manner, the transmission of the same data set over dual communication pathways may increase call reliability/quality because the chance for lost data may be reduced.
- the server/wireless device processor may compare the received packets.
- the server/wireless device processor may compare the packet indexes for received packets to each other in order to identify missing packets, received redundant packets, and/or identify the frames within each received packet.
- the server/wireless device processor may discard received redundant frames. In this manner, redundant frames may be eliminated and the data storage needs for storing the two received data streams may be reduced.
- the server/wireless device processor may reconstruct the continuous stream of audio data using either or both received frames.
- missing frames from the part received via the first communication pathway may be replaced with packets received via the second communication pathway.
- the method 1500 may then return to blocks 1502 and 1508 and continue to transmit/receive using the first and second wireless communication pathways.
- FIG. 16 illustrates example wireless communication pathways established according to the embodiment method 1500.
- a wireless device 1602 may establish a first wireless communication pathway with a server 1610 via a wireless connection 1606, such as a 3G connection, with a wireless network 1604, such as a 3G network.
- the wireless network 1604 may be in communication with the server 1610.
- the wireless device 1602 may also establish a second wireless communication pathway with the server 1610 via the wireless connection 1608, such as a 3G connection, with a wireless network 1604, such as a 3G network.
- the wireless device 1602 may transmit/receive to/from the server the same continuous stream of frames via the first wireless communication pathway and the second wireless communication pathway.
- the Original Stream of frames 1, 2, 3, 4, 5, and 6 may be sent via the first and second wireless communication pathways via different transmission structures.
- Stream 1 frames 1, 2, 3, 4, 5, and 6 may be sent in a contiguous structure in two packets, Packet 1.1 and Packet 1.2, respectively.
- Frames 1, 2, and 3 may be sent in Packet 1.1, and frames 4, 5, and 6, may be sent in Packet 1.2.
- Stream 2 frames 1, 2, 3, 4, 5, and 6 may be sent in an interleaved structure in two packets, Packet 2.1 and Packet 2.2, respectively.
- Odd frames 1, 3, and 5 may be sent in Packet 2.1, and even frames 2, 4, and 6, may be sent in Packet 2.2. While the same continuous stream may be transmitted, due to various communication errors, such as both streams being blocked at the same time, different streams, Stream 1 and Stream 2, may be received. As an example, the second packet of each stream, Packet 1.2 and Packet 2.2, respectively, may be dropped due to both streams being blocked at the same time.
- the server 1610 (or alternatively the wireless device 1602 if transmitted from the server 1610 to the wireless device 1602) receiving Stream 1 and Stream 2 may compare Stream 1 to Stream 2, and discard the duplicate frames 1 and 3 from Stream 2.
- the frames remaining 1, 2, 3, and 5 from the two streams, Stream 1 and Stream 2, may be combined to reconstruct as much of the original data stream as possible.
- the reconstructed stream may include frames 1, 2, 3, and 5.
- the reconstructed stream includes frames (i.e., frame 5) which would have been lost if the both streams had used the same transmission structure. In this manner, even though both communication pathways may be blocked at the same time, the number of lost frames may be reduced.
- the various embodiments may be implemented in any of a variety of wireless communication circuits, an example of which is illustrated in FIG. 17.
- the wireless communication circuit 1700 may be part of a wireless device.
- the wireless communication circuit 1700 may include a first antenna 1702 coupled to a first transceiver 1706.
- the first transceiver 1706 may be configured to
- the wireless communication circuit 1700 may also include a second antenna 1704 coupled to a second transceiver 1708.
- the second transceiver 1708 may be configured to transmit/receive over a channel in a wireless communications network via the second antenna 1704, different from the channel of the first transceiver 1706.
- the first transceiver 1706 and second transceiver 1708 may be coupled to buffers 1710, 1712, respectively.
- the buffers 1710, 1712 may be memory locations in which portions of the data streams transmitted/received via the transceivers 1706, 1708 may be stored before/after transmission/reception.
- the buffer level in buffers 1710, 1712 may be set independent of each other and may change dynamically based on the time delay difference in data streams transmitted/received via the transceivers 1706, 1708.
- buffer 1710 may add 100 milliseconds of buffering to the first data stream to align the timelines. In this manner, the buffers 1710, 1712 may enable de-jittering of the data streams when the data streams transmitted/received by the do not align in time.
- the buffers 1710, 1712 may be coupled to a reconstructor 1716.
- the reconstructor 1716 may be a circuit which may be part of the device/modem processor 1714.
- the reconstructor 1716 may be an application executed by the device/modem processor 1714.
- the reconstructor 1716 may be coupled to a digital signal processor ("DSP") 1718 and may send/receive data streams to/from the DSP 1718.
- DSP digital signal processor
- the reconstructor 1716 may reconstruct the continuous stream of audio data using the audio data received from either or both of the first buffer 1710 and the second buffer 1712 and send the reconstructed audio data to the DSP 1718.
- the reconstructor 1716 may send the same audio data to both the first buffer 1710 and the second buffer 1712 for transmission from the first transceiver 1706 via the first antenna 1702 and the second transceiver 1708 via the second antenna 1704.
- the DSP 1718 may be coupled to a microphone 1720 and a speaker 1722. In operation the DSP 1718 may receive audio data from the reconstructor 1716 and convert the data to audio signals for output by the speaker 1722. The DSP 1718 may also receive audio signals from the microphone 1720 convert the audio signals to continuous stream of audio data sent to the reconstructor 1716.
- any additional number N antennas 1724, transceivers 1726, and buffers 1728 may be added to the communication circuit 1700 and coupled to the reconstructor 1716.
- the reconstructor 1716 may send the same data to the N buffers 1728 as to buffers 1710, 1712, and may reconstruct the continuous stream of audio data using audio data received from one or more of the first buffer 1710, second buffer 1712, or N buffers 1728. In this manner, more than two, such as three, four, five, or more, redundant streams of data may be transmitted/received to improve data transmission reliability.
- FIG. 18 illustrates a wireless communication circuit 1800 similar to wireless communication circuit 1700 described above with reference to FIG. 17, except that wireless communication circuit 1800 may use different codecs 1804, 1806 for transmission/reception of data via the first buffer 1710, transceiver 1706, and antenna 1702 and transmission/reception of data via the second buffer 1712, transceiver 1708, and antenna 1704.
- the first buffer 1710 may be coupled to the first codec 1804.
- the first codec may be a high rate codec with a high sampling rate.
- the second buffer 1712 may be coupled to the second codec 1806 which may be a low rate codec with a lower sampling rate than the first codec 1804.
- the codecs 1804, 1806 and/or reconstructor 1808 may be circuits operating as part of a DSP/device/modem processor 1802. In another embodiment, the codecs 1804, 1806 and/or reconstructor 1808 may be applications executed by a DSP/device/modem processor 1802. The codecs 1804, 1806 may be coupled to the microphone 1812 and may receive audio signals from the microphone 1812. The codecs 1804, 1806 may also be coupled to the reconstructor 1808, and the reconstructor 1808 may be coupled to the speaker 1810.
- audio signals received by the microphone 1812 may be sent to the codecs 1804, 1806 in parallel and each codec 1804, 1806 may sample the audio signals and send audio data to its respective buffer 1710, 1712 for transmission by the respective transceivers 1706, 1708 and antennas 1702, 1704.
- the codecs 1804, 1806 may receive audio data from their respective buffers 1710, 1712 and send the audio data to the reconstructor 1808 which may reconstruct the continuous stream of audio data using the audio data received from either or both of the first codec 1804 and the second codec 1806.
- the reconstructed audio data may be output as audio signals to the speaker 1810.
- the reconstructor 1808 may default to outputting the audio data from the codec 1804, 1806 with the highest sampling rate, and may only output data from the lower sampling rate codec when the output from the first codec is not available and/or below a quality threshold. In this manner, the step down to the lower sampling rate codec may enable the call to continue with a lower quality audio.
- the wireless device 1900 may include a processor 1902 coupled to internal memories 1904 and 1910.
- Internal memories 1904 and 1910 may be volatile or non-volatile memories, and may also be secure and/or encrypted memories, or unsecure and/or unencrypted memories, or any combination thereof.
- the processor 1902 may also be coupled to a touch screen display 1906, such as a resistive-sensing touch screen, capacitive- sensing touch screen infrared sensing touch screen, or the like. Additionally, the display of the wireless device 1900 need not have touch screen capability.
- the wireless device 1900 may have one or more antenna 1908 for sending and receiving electromagnetic radiation that may be connected to one or more a wireless data link and/or cellular telephone transceiver 1916 coupled to the processor 1902.
- the wireless device 1900 may also include physical buttons 1912a and 1912b for receiving user inputs.
- the wireless device 1900 may also include a power button 1918 for turning the wireless device 1900 on and off.
- the wireless device 1900 may also include a battery 1920 coupled to the processor 1902.
- the wireless device 1900 may also include a position sensor 1922, such as a GPS receiver, coupled to the processor 1902.
- a laptop computer 2010 will typically include a processor 2011 coupled to volatile memory 2012 and a large capacity nonvolatile memory, such as a disk drive 2013 of Flash memory.
- the laptop computer 2010 may also include a floppy disc drive 2014 and a compact disc (CD) drive 2015 coupled to the processor 2011.
- the laptop computer 2010 may also include a number of connector ports coupled to the processor 2011 for establishing data connections or receiving external memory devices, such as a USB or Fire Wire® connector sockets, or other network connection circuits for coupling the processor 2011 to a network.
- the computer housing includes the touchpad 2017, the keyboard 2018, and the display 2019 all coupled to the processor 2011.
- the laptop computer 2010 may also include a battery 2020 coupled to the processor 2011.
- the laptop computer 2010 may also include a position sensor 2022, such as a GPS receiver, coupled to the processor 2011.
- the laptop computer 2010 may have one or more antenna 2008 for sending and receiving electromagnetic radiation that may be connected to one or more a wireless data link and/or cellular telephone transceiver 2016 coupled to the processor 2011.
- Other configurations of the computing device may include a computer mouse or trackball coupled to the processor (e.g., via a USB input) as are well known, which may also be used in conjunction with the various embodiments.
- the various embodiments may also be implemented on any of a variety of commercially available server devices, such as the server 2100 illustrated in FIG. 21.
- a server 2100 typically includes a processor 2101 coupled to volatile memory 2102 and a large capacity nonvolatile memory, such as a disk drive 2103.
- the server 2100 may also include a floppy disc drive, compact disc (CD) or DVD disc drive 2104 coupled to the processor 2101.
- the server 2100 may also include network access ports 2106 coupled to the processor 2101 for establishing network interface connections with a network 2107, such as a local area network coupled to other broadcast system computers and servers, the Internet, the public switched telephone network, and/or a cellular data network (e.g., CDMA, TDMA, GSM, PCS, 3G, 4G, LTE, or any other type of cellular data network).
- a network 2107 such as a local area network coupled to other broadcast system computers and servers, the Internet, the public switched telephone network, and/or a cellular data network (e.g., CDMA, TDMA, GSM, PCS, 3G, 4G, LTE, or any other type of cellular data network).
- a cellular data network e.g., CDMA, TDMA, GSM, PCS, 3G, 4G, LTE, or any other type of cellular data network.
- the processors 1902, 2011, and 2101 may be any programmable microprocessor, microcomputer or multiple processor chip or chips that can be configured by software instructions (applications) to perform a variety of functions, including the functions of the various embodiments described above. In some devices, multiple processors may be provided, such as one processor dedicated to wireless communication functions and one processor dedicated to running other applications. Typically, software applications may be stored in the internal memory 1904, 1910, 2012, 2013, 2102, and 2103 before they are accessed and loaded into the processors 1902, 2011, and 2101.
- the processors 1902, 2011, and 2101 may include internal memory sufficient to store the application software instructions. In many devices the internal memory may be a volatile or nonvolatile memory, such as flash memory, or a mixture of both. For the purposes of this description, a general reference to memory refers to memory accessible by the processors 1902, 2011, and 2101 including internal memory or removable memory plugged into the device and memory within the processor 1902, 2011, and 2101 themselves.
- DSP digital signal processor
- ASIC application specific integrated circuit
- FPGA field programmable gate array
- a general-purpose processor may be a microprocessor, but, in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
- a processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
- circuitry that is specific to a given function.
- the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored as one or more instructions or code on a non-transitory processor- readable medium.
- the steps of a method or algorithm disclosed herein may be embodied in a processor-executable software module which may reside on a non-transitory computer- readable storage medium.
- Tangible, non-transitory processor-readable storage media may be any available media that may be accessed by a processor of a computer, mobile computing device or a wireless communication device.
- non-transitory processor-readable media may comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that may be used to store desired program code in the form of instructions or data structures and that may be accessed by a processor of a computing device.
- Disk and disc includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk, and blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of non-transitory processor-readable media.
- the operations of a method or algorithm may reside as one or any combination or set of codes and/or instructions on a tangible, non-transitory machine readable medium and/or non-transitory processor-readable medium, which may be incorporated into a computer program product.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Multimedia (AREA)
- General Engineering & Computer Science (AREA)
- Mobile Radio Communication Systems (AREA)
- Telephone Function (AREA)
- Telephonic Communication Services (AREA)
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP13724472.9A EP2850805A2 (en) | 2012-05-15 | 2013-05-08 | Methods, system and apparatuses for limiting failure rate by serving through multiple channels |
| KR1020147035013A KR20150013774A (ko) | 2012-05-15 | 2013-05-08 | 다수의 채널들을 통한 서빙에 의해 실패율을 제한하는 방법들, 시스템 및 장치들 |
| CN201380025091.8A CN104285425A (zh) | 2012-05-15 | 2013-05-08 | 通过经由多个信道进行服务来限制故障率的方法、系统和装置 |
| JP2015512690A JP6257597B2 (ja) | 2012-05-15 | 2013-05-08 | 複数のチャネルを通してサービスすることによる故障率の制限 |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/472,307 US9930712B2 (en) | 2012-05-15 | 2012-05-15 | Limiting failure rate by serving through multiple channels |
| US13/472,307 | 2012-05-15 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| WO2013173141A2 true WO2013173141A2 (en) | 2013-11-21 |
| WO2013173141A3 WO2013173141A3 (en) | 2014-01-30 |
Family
ID=48471120
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2013/040151 Ceased WO2013173141A2 (en) | 2012-05-15 | 2013-05-08 | Limiting failure rate by serving through multiple channels |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US9930712B2 (enExample) |
| EP (1) | EP2850805A2 (enExample) |
| JP (1) | JP6257597B2 (enExample) |
| KR (1) | KR20150013774A (enExample) |
| CN (1) | CN104285425A (enExample) |
| WO (1) | WO2013173141A2 (enExample) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2016171497A (ja) * | 2015-03-13 | 2016-09-23 | Necエンジニアリング株式会社 | 通信冗長化端末、通信冗長化システム、通信冗長化方法及び通信冗長化プログラム |
Families Citing this family (37)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7646710B2 (en) | 2003-07-28 | 2010-01-12 | Nortel Networks Limited | Mobility in a multi-access communication network |
| US9723520B1 (en) | 2005-12-20 | 2017-08-01 | Microsoft Technology Licensing, Llc | Location based mode switching for dual mode mobile terminals |
| GB201211565D0 (en) | 2012-06-29 | 2012-08-15 | Microsoft Corp | Determining availability of an acess network |
| GB201211568D0 (en) * | 2012-06-29 | 2012-08-15 | Microsoft Corp | Determining network availability based on geographical location |
| GB201211580D0 (en) | 2012-06-29 | 2012-08-15 | Microsoft Corp | Determining suitablity of an access network |
| JP2014030100A (ja) * | 2012-07-31 | 2014-02-13 | Sony Corp | 情報処理装置、通信システム、情報処理方法およびプログラム |
| JP6056417B2 (ja) * | 2012-11-27 | 2017-01-11 | 富士通株式会社 | 制御システム、制御システムの異常診断方法及び制御システムの異常診断プログラム |
| US9432961B2 (en) | 2013-01-16 | 2016-08-30 | Apple Inc. | Location-assisted service capability monitoring |
| US9596670B2 (en) * | 2013-01-16 | 2017-03-14 | Apple Inc. | Location assisted service capability monitoring |
| US9699130B2 (en) * | 2013-01-24 | 2017-07-04 | International Business Machines Corporation | User interface with recipient status indication |
| US9521083B2 (en) * | 2014-01-27 | 2016-12-13 | Anue Systems, Inc. | Traffic differentiator systems for network devices and related methods |
| US9832084B2 (en) | 2014-01-27 | 2017-11-28 | Keysight Technologies Singapore (Holdings) Pte Ltd | Traffic differentiator systems for network devices and related methods including automatic port order determination |
| US9993723B2 (en) * | 2014-09-25 | 2018-06-12 | Intel Corporation | Techniques for low power monitoring of sports game play |
| EP3051748B1 (en) | 2015-01-29 | 2019-07-31 | Deutsche Telekom AG | Online charging in hybrid access networks |
| US10341904B2 (en) * | 2015-03-27 | 2019-07-02 | Intel Corporation | Communication terminal and method for switching a call between radio access technologies |
| US9549355B2 (en) * | 2015-05-08 | 2017-01-17 | Bandwidth.Com, Inc. | Optimal use of multiple concurrent internet protocol (IP) data streams for voice communications |
| US9300715B2 (en) * | 2015-05-08 | 2016-03-29 | Bandwidth.Com, Inc. | Optimal use of multiple concurrent internet protocol (IP) data streams for voice communications |
| CN106559806B (zh) * | 2015-09-25 | 2020-08-21 | 努比亚技术有限公司 | 双通道数据传输方法、装置、网络节点及移动终端 |
| US9948494B2 (en) * | 2015-09-29 | 2018-04-17 | International Business Machines Corporation | Method to save data usage in mobile devices based on prior history |
| CN106254238B (zh) * | 2016-09-29 | 2018-12-28 | 胡汉强 | 一种数据传输方法、集中控制器和通信装置 |
| US10547491B2 (en) * | 2017-08-28 | 2020-01-28 | Genband Us Llc | Transcoding with a vector processing unit |
| CN108809549B (zh) * | 2018-04-23 | 2021-08-10 | 维沃移动通信有限公司 | 一种传输数据的方法及设备 |
| US10602551B2 (en) | 2018-06-27 | 2020-03-24 | Charter Communications Operating, Llc | Methods and apparatus for testing alternative wireless connections and selecting a wireless connection |
| US11019545B2 (en) | 2018-06-27 | 2021-05-25 | Charter Communications Operating, Llc | Handover methods and apparatus |
| US10856348B2 (en) * | 2018-06-27 | 2020-12-01 | Charter Communications Operating, Llc | Methods and apparatus for determining a number of connections to use at a given time and/or the level of error correcting coding to use based on connection scores |
| US10635627B2 (en) | 2018-08-29 | 2020-04-28 | Toshiba International Corporation | Redundant communication system to increase operational reliability |
| CN110912669A (zh) * | 2019-11-15 | 2020-03-24 | 珠海市新德汇信息技术有限公司 | 一种基于文件流和数据流的双通道数据传输方法 |
| CN115549868A (zh) * | 2021-06-29 | 2022-12-30 | 华为技术有限公司 | 一种发送多路信令的方法及装置 |
| US12004046B2 (en) | 2021-09-13 | 2024-06-04 | Motorola Mobility Llc | Object tracking based on UWB tags |
| US12152902B2 (en) | 2021-09-13 | 2024-11-26 | Motorola Mobility Llc | Environment mapping based on UWB tags |
| CN115915481B (zh) * | 2021-09-30 | 2025-12-09 | 华为技术有限公司 | 数据传输方法、装置、电子设备和可读存储介质 |
| US12069120B2 (en) | 2021-11-29 | 2024-08-20 | Motorola Mobility Llc | Digital media playback based on UWB radios |
| US11990012B2 (en) | 2021-11-29 | 2024-05-21 | Motorola Mobility Llc | Object contextual control based on UWB radios |
| US12200572B2 (en) * | 2021-12-30 | 2025-01-14 | Motorola Mobility Llc | Environment dead zone determination based on UWB ranging |
| US12445803B2 (en) | 2021-12-30 | 2025-10-14 | Motorola Mobility Llc | Uwb automation experiences controller |
| US12063059B2 (en) | 2022-01-20 | 2024-08-13 | Motorola Mobility Llc | UWB accessory for a wireless device |
| JP7389294B1 (ja) | 2023-03-31 | 2023-11-29 | Kddi株式会社 | サーバ装置、制御方法及びプログラム |
Family Cites Families (35)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5950135A (en) | 1993-07-30 | 1999-09-07 | British Telecommunications Public Limited Company | Communication system with traffic distribution over multiple paths |
| US6269149B1 (en) | 1996-12-30 | 2001-07-31 | Paradyne Corporation | System and method for enhancing a communication link |
| US6356622B1 (en) * | 1997-05-02 | 2002-03-12 | Paradyne Corporation | System and apparatus for enhancing a network link |
| CN1323479A (zh) | 1998-08-12 | 2001-11-21 | 艾姆迪沃西蒂公司 | 通信网络中的网络控制方法和设备 |
| GB2341047B (en) | 1998-08-19 | 2003-09-10 | Motorola Ltd | Method and apparatus for streamlining in a communication system |
| JP3405928B2 (ja) | 1998-09-02 | 2003-05-12 | 日本電信電話株式会社 | ハンドオーバ方法 |
| US7072336B2 (en) * | 2000-05-26 | 2006-07-04 | Nortel Networks Limited | Communications using adaptive multi-rate codecs |
| WO2004034715A1 (en) | 2002-10-08 | 2004-04-22 | Nokia Corporation | Method for optimizing resources in radio system, and radio system |
| US7343160B2 (en) | 2003-09-29 | 2008-03-11 | Broadcom Corporation | System and method for servicing communications using both fixed and mobile wireless networks |
| US8145219B2 (en) * | 2004-07-28 | 2012-03-27 | Broadcom Corporation | Handoff of a multimedia call session using background network scanning |
| US8190161B2 (en) | 2004-08-13 | 2012-05-29 | Broadcom Corporation | Multi-transceiver multi-path communication handoff |
| US8295838B2 (en) * | 2004-11-19 | 2012-10-23 | Research In Motion Limited | Method and system for predicting service drop in a wireless network |
| JP2006345158A (ja) | 2005-06-08 | 2006-12-21 | Nec Infrontia Corp | 無線lan端末装置、無線lanシステム及びプログラム |
| US8587630B1 (en) * | 2005-09-15 | 2013-11-19 | At&T Mobility Ii Llc | Assessing performance and quality of a mobile communication service |
| TWI301369B (en) * | 2005-09-16 | 2008-09-21 | Hon Hai Prec Ind Co Ltd | A system and method for handing incoming call in dual mode phone |
| US8274970B2 (en) | 2005-11-14 | 2012-09-25 | Broadcom Corporation | Voice communication device with PSTN and internet pathway analysis, selection and handoff |
| JP2007300369A (ja) | 2006-04-28 | 2007-11-15 | Toshiba Corp | 情報処理装置および接続制御方法 |
| JP4585497B2 (ja) | 2006-08-29 | 2010-11-24 | 富士通株式会社 | 通信端末装置および通信プログラム |
| JP5011962B2 (ja) | 2006-11-06 | 2012-08-29 | 日本電気株式会社 | 通信サービス継続システム、通信サービス継続方法、およびそのプログラム |
| US7889686B1 (en) * | 2006-11-21 | 2011-02-15 | Picomobile Networks, Inc. | Seamless switching of media streams between different networks |
| WO2008088243A1 (en) | 2007-01-15 | 2008-07-24 | Telefonaktiebolaget Lm Ericsson (Publ). | Changing communication paths |
| US20080207253A1 (en) | 2007-02-27 | 2008-08-28 | Nokia Corporation | Multiradio management through quality level control |
| WO2009036461A2 (en) * | 2007-09-13 | 2009-03-19 | Lightspeed Audio Labs, Inc. | System and method for streamed-media distribution using a multicast, peer-to-peer network |
| EP3537845B1 (en) | 2007-09-27 | 2025-02-12 | Sun Patent Trust | System and method for selecting a trusted access network |
| US20090143078A1 (en) * | 2007-11-30 | 2009-06-04 | Palm, Inc. | Techniques to manage a radio based on location information |
| US8300792B2 (en) * | 2008-05-14 | 2012-10-30 | At&T Mobility Ii Llc | Changing assigned priority of active voice or data session |
| US20100272049A1 (en) * | 2009-04-28 | 2010-10-28 | Murata Manufacturing Co., Ltd. | Mobile communication device and communication method |
| US8290525B2 (en) * | 2010-01-15 | 2012-10-16 | Comcast Cable Communications, Llc | Text alternative to established voice call session |
| JP5293618B2 (ja) | 2010-01-15 | 2013-09-18 | 富士通モバイルコミュニケーションズ株式会社 | 無線通信装置 |
| US20110177780A1 (en) | 2010-01-15 | 2011-07-21 | Kabushiki Kaisha Toshiba | Wireless communication apparatus |
| GB201006726D0 (en) * | 2010-04-22 | 2010-06-09 | Skype Ltd | Establishing a call between a first user and a second user |
| US8340730B2 (en) * | 2010-05-11 | 2012-12-25 | George Allen Pallotta | System and method for safely blocking mobile communications usages |
| CA2803976A1 (en) * | 2010-06-28 | 2012-01-05 | Research In Motion Limited | Method and system for radio access technology selection |
| US8761095B1 (en) * | 2010-08-18 | 2014-06-24 | Tellabs, Inc. | Method and apparatus for dynamically adjusting traffic QOS in accordance with on-demand request |
| US9014085B2 (en) * | 2011-11-28 | 2015-04-21 | At&T Intellectual Property I, L.P. | Internet protocol session persistence for mobile communications |
-
2012
- 2012-05-15 US US13/472,307 patent/US9930712B2/en not_active Expired - Fee Related
-
2013
- 2013-05-08 EP EP13724472.9A patent/EP2850805A2/en not_active Withdrawn
- 2013-05-08 CN CN201380025091.8A patent/CN104285425A/zh active Pending
- 2013-05-08 KR KR1020147035013A patent/KR20150013774A/ko not_active Withdrawn
- 2013-05-08 JP JP2015512690A patent/JP6257597B2/ja not_active Expired - Fee Related
- 2013-05-08 WO PCT/US2013/040151 patent/WO2013173141A2/en not_active Ceased
Non-Patent Citations (1)
| Title |
|---|
| None |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2016171497A (ja) * | 2015-03-13 | 2016-09-23 | Necエンジニアリング株式会社 | 通信冗長化端末、通信冗長化システム、通信冗長化方法及び通信冗長化プログラム |
Also Published As
| Publication number | Publication date |
|---|---|
| US20130310055A1 (en) | 2013-11-21 |
| US9930712B2 (en) | 2018-03-27 |
| EP2850805A2 (en) | 2015-03-25 |
| WO2013173141A3 (en) | 2014-01-30 |
| CN104285425A (zh) | 2015-01-14 |
| KR20150013774A (ko) | 2015-02-05 |
| JP6257597B2 (ja) | 2018-01-10 |
| JP2015519017A (ja) | 2015-07-06 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9930712B2 (en) | Limiting failure rate by serving through multiple channels | |
| US11144171B2 (en) | Reduced latency server-mediated audio-video communication | |
| US9306992B2 (en) | Method and system for using Wi-Fi display transport mechanisms to accomplish voice and data communications | |
| US8832193B1 (en) | Adjusting a media stream in a video communication system | |
| US20130283401A1 (en) | Information content validation for electronic devices | |
| US20180077639A1 (en) | Switching between networks based on quality of available networks | |
| US10813153B2 (en) | Method and apparatus for distributing services and data | |
| US20070285503A1 (en) | Versatile conference adapter and method employing same | |
| KR20140044923A (ko) | 적응성 비디오 통신을 위한 시스템 및 방법 | |
| CN111147606B (zh) | 数据传输的方法、装置、终端及存储介质 | |
| EP3097657A1 (en) | Efficiently mixing voip data | |
| US11190734B2 (en) | Multiway audio-video conferencing with multiple communication channels per device | |
| US9380267B2 (en) | Bandwidth modulation system and method | |
| WO2024056032A1 (zh) | 解码、数据传输方法、装置、终端及服务器 | |
| CN103916331A (zh) | 对数据封包进行分析以选择连线路径的连线方法 | |
| TWI523461B (zh) | 通訊系統和方法 | |
| US20120124228A1 (en) | Multimedia session transfer control system and method | |
| US8964736B1 (en) | RTP streaming with dynamic packet format modification | |
| WO2011099840A2 (en) | A centralized network system with codec selection scheme |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| WWE | Wipo information: entry into national phase |
Ref document number: 2013724472 Country of ref document: EP |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13724472 Country of ref document: EP Kind code of ref document: A2 |
|
| DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13724472 Country of ref document: EP Kind code of ref document: A2 |
|
| ENP | Entry into the national phase |
Ref document number: 2015512690 Country of ref document: JP Kind code of ref document: A |
|
| ENP | Entry into the national phase |
Ref document number: 20147035013 Country of ref document: KR Kind code of ref document: A |