WO2013172651A1 - 브라인 순환을 이용한 축냉장치 - Google Patents
브라인 순환을 이용한 축냉장치 Download PDFInfo
- Publication number
- WO2013172651A1 WO2013172651A1 PCT/KR2013/004300 KR2013004300W WO2013172651A1 WO 2013172651 A1 WO2013172651 A1 WO 2013172651A1 KR 2013004300 W KR2013004300 W KR 2013004300W WO 2013172651 A1 WO2013172651 A1 WO 2013172651A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- brine
- cold storage
- storage tank
- air
- circulation
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D11/00—Self-contained movable devices, e.g. domestic refrigerators
- F25D11/006—Self-contained movable devices, e.g. domestic refrigerators with cold storage accumulators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D20/00—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
- F28D20/02—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/14—Thermal energy storage
Definitions
- the present invention relates to a cold storage device, and more particularly, to a cold storage device using a brine circulation having a high defrosting efficiency while significantly improving the refrigeration efficiency by increasing the heat transfer area of air.
- a refrigerated refrigerator vehicle uses a main engine or a sub engine cooler driven by using oil to generate and maintain a low temperature in a loading box (freezing space).
- engine-driven coolers are using power or oil obtained when driving a vehicle to increase vehicle maintenance costs.
- the engines are stopped when the vehicle is stopped and the temperature in the storage box rises rapidly, resulting in deterioration of the quality of the stored products and various bacteria.
- There is a safety problem such as the risk of breeding, and the low temperature storage room and low temperature showcase are operated continuously for more than 18 hours a day regardless of day or night using AC cooler to maintain proper temperature in the storage room during the summer. It is a cause of power supply and demand imbalance at the peak time, there is a lot of electricity consumption and electricity bills, and there is a problem such as shortening the life of the compressor which is a major component of the cooler.
- the conventional refrigerated refrigeration truck using a conventional refrigeration device is stored in the latent heat heat storage material (Phase change material) in the cold storage module and formed in multiple parallel storage plate by attaching to the ceiling of the loading box Afterwards, the AC cooler installed in the lower part of the vehicle is operated for about 8-10 hours using late night power and general power to freeze the phase change material stored in the cold storage plate attached to the upper part of the vehicle loading box, and then naturally cool it. By lowering the temperature inside the loading compartment, the refrigeration tower can run for about 8 hours without operating the cooler.
- the latent heat heat storage material Phase change material
- condensation occurs in the cold storage plate in which the low temperature latent heat PCM module is attached to the ceiling in parallel, resulting in damage to the load, and also, the center of gravity of the storage box according to the weight of the cold storage plate during operation is upper. As you move to, the risk of rollover increases on curved roads.
- Patent Document 1 Korean Registered Utility Model No. 20-0231247
- electric power is used to cool the latent heat storage material in advance by operating the cooling means through the low-cost electric power, and when the refrigeration truck arrives at the warehouse, the low temperature heat energy is transferred from the storage means to the cold storage means installed in the loading compartment.
- the inside of the load compartment is refrigerated by natural convection through heat exchange.
- [Patent Document 1] refrigerated the inside of the loading box by a simple natural convection method, so that the frozen phase change material (hereinafter referred to as low temperature latent heat PCM) is continuously loaded even when the refrigeration freezer does not operate.
- low temperature latent heat PCM the frozen phase change material
- exhaustion of unnecessary low-temperature heat energy occurs, and thus the operating time of the refrigerated refrigeration tower is reduced.
- the cold storage plate is attached to the ceiling of the storage box, when condensation occurs on the surface of the cold storage plate, it falls on the logistics products stored in the storage box, causing a problem of deterioration due to product damage.
- Patent Document 2 Patent Document 2
- Patent Document 2 is configured to forcibly circulate the outside air into the inside of the cold storage tank filled with the low-temperature latent heat PCM to operate the refrigerated refrigeration tower for a long time or to operate the cold storage without unnecessary low-temperature heat energy loss.
- the low temperature latent heat PCM in the cold storage tank and the air inside the loading box exchange heat with each other, so that the air inlet and the air outlet are connected to the inside of the cold storage tank so that the air in the loading compartment can be cooled, and the air
- a heat exchanger composed of heat transfer fins is attached so that the air cooled through the primary heat exchange passes through the air circulation heat exchanger tube passing through the PCM storage tank.
- it is configured to cool the temperature inside the loading box by forcibly blowing the cooled air through the air outlet by attaching a blower to the upper part of the cold storage tank so as to be discharged into the loading box.
- Patent Literature 2 has a disadvantage of low utility in various conditions that require the use of a DC power source by using only an AC cooler, and also a low temperature filled in the storage tank as an air circulation heat exchanger tube is installed inside the storage tank. Due to the liquid phase pressure of the latent heat PCM, the central side of the air circulation heat exchange tube is pressurized, causing resistance during air circulation and slowing the temperature recovery, thereby preventing the freezing circulation cycle from operating smoothly.
- Patent Document 2 has a condensation phenomenon occurs in the heat exchanger on the air inlet side, due to this condensation has a disadvantage that the cooling fin of the freezing space is not smoothly blocked.
- Patent Document 2 is a structure for stirring the low temperature latent heat PCM in the cold storage tank, the suction pipe is disposed in the upper portion of the cold storage tank, when the discharge tube is disposed in the lower portion of the cold storage tank, the vehicle shakes, The low temperature latent PCM was not properly sucked at the suction tube, so the low temperature latent PCM was not smoothly stirred.
- Patent Document 2 has a disadvantage in that the dead zone of the cooling occurs in the freezing space side of the loading box as the air suction port is installed only in the lower center portion of the cold storage tank, thereby lowering the freezing efficiency of the freezing space.
- the present invention has been made in view of the above, by using a combination of the AC cooler and the DC cooler in combination, AC power and DC power can be selectively used in various conditions, and at the same time can extend the travel distance Due to the stability of the cold storage tank, the freshness of the food can be kept constant, and the freezing efficiency can be greatly improved by improving the air circulation efficiency, and the defrosting efficiency can be increased in the heat exchanger on the air intake side,
- the purpose of the present invention is to provide a cold storage device using a brine circulation to smoothly stir the low temperature latent heat PCM and to prevent the occurrence of dead zones in the freezing space such as a loading box, thereby improving the freezing efficiency. .
- a cold storage tank for storing the low temperature latent heat PCM
- Each supply line and a recovery line of an AC cooler using AC power and a DC cooler using DC power are connected in parallel to the refrigerant circulation line, and the refrigerant circulation line is an input side distribution pipe and an output side header disposed in the storage cooling tank.
- a cooler comprising a plurality of branch pipes connected between the pipe, the input distribution pipe, and the output head pipe, the coolant circulation line being configured to cool the low temperature latent heat PCM in the storage tank and pass through the storage tank;
- a plurality of air inlet is formed in the lower portion so that the first air inlet is located in the lower center side of the outer case, the second air inlet and the third air inlet lower right of the outer case And it is located symmetrically on the left side, and an upper case formed with an air discharge port on the top;
- a brine circulation unit having a suction side heat exchanger disposed at an air inlet side of the outer case
- a stirring unit for stirring the low temperature latent heat PCM in the storage tank
- the stirring unit has a stirring line disposed to pass through the storage tank, the stirring line is provided with a circulation pump, a suction pipe, a discharge pipe,
- the suction pipe of the stirring line is located below the storage cooling tank, and the discharge pipe of the stirring line is characterized in that located above the storage cooling tank.
- a first expansion valve is installed on the supply line side of the AC cooler, a first backflow check valve is installed on the recovery line side of the AC cooler, and a second expansion valve is installed on the supply line side of the DC cooler.
- a second backflow prevention check valve is installed on the recovery line side of the DC cooler.
- the air passing through the air circulation heat exchange passage is divided into a plurality of passages.
- the brine circulation unit is installed so that a portion thereof passes through the inside of the cold storage tank, and includes a suction side heat exchanger disposed at an air inlet side of the outer case.
- the suction side heat exchanger includes a first suction side heat exchanger, a second suction side heat exchanger, and a third suction side heat exchanger, and the first suction side heat exchanger is installed adjacent to the first air suction port of the outer case.
- the second suction side heat exchanger is installed adjacent to the second air suction opening of the outer case, and the third suction side heat exchanger is installed adjacent to the third air suction opening of the outer case.
- One side of the brine circulation unit is provided with a brine circulation pump for circulating the brine
- the upstream side of the brine circulation pump is composed of an inner brine cooling coil installed in the cold storage tank, a brine supply line connected to a downstream side of the brine circulation pump, and a brine recovery line connected between the suction side heat exchanger and the inner brine cooling coil.
- the plurality of suction side heat exchangers are installed in the middle of the brine supply line.
- One side of the brine supply line is provided with a brine expansion and replenishment tank for preventing expansion of brine and for replenishment of brine,
- One side of the brine recovery line is characterized in that the air vent for discharging the remaining air in the brine is installed outside.
- a bypass pipe is connected to one side of the brine recovery line from one side of the brine supply line, and a bypass valve is installed on one side of the bypass pipe.
- One side of the brine supply line is connected to the defrost hot water supply line receiving the defrost hot water from the radiator of the engine room, one side of the brine recovery line to recover the defrost hot water to the writer side of the engine room Commercial hot water recovery line is connected,
- a first defrost valve is installed at a portion where the defrost hot water supply line and the brine supply line are connected, and a second defrost valve is installed at a portion where the defrost hot water recovery line and the brine recovery line are connected. do.
- the suction side heat exchanger is configured such that the brine supply line passes through the plurality of heat transfer fins, and a defrost electric heater is installed on the heat transfer fin side of the suction side heat exchanger.
- the lower end of the cold storage tank is characterized in that the dustproof frame is installed symmetrically.
- the air sucked through the plurality of suction side heat exchangers disposed on the plurality of air inlet sides is cooled by primary heat exchange, and the air cooled by the primary heat exchange is an air circulation between the storage tank and the outer case.
- the heat exchange passage it is cooled by the second heat exchange with the low temperature latent heat PCM of the cold storage tank, and this multi-stage cooling air is forcibly discharged to the freezing space through the air discharge port, thereby greatly improving the freezing / refrigerating efficiency of the freezing space.
- it saves and transports freshly stored logistics products for refrigerated and frozen storage without operating the cooler in separate oil and weekly peak hours, and reduces the oil and CO 2 consumed to operate the separate cooler.
- the cooler is composed of an AC cooler using AC power and a DC cooler using DC power
- AC power and DC power can be selectively used to extend the convenience of use and the driving distance of the vehicle.
- the freshness of food can be kept constant due to the stability of the cold storage tank, and through this, it is possible to effectively implement the low temperature latent heat PCM storage cooling of the cold storage tank by easily coping with various site conditions.
- the suction tube of the stirring unit is located on the lower side of the cold storage tank, and the discharge tube of the stirring unit is configured to be located on the upper side of the cold storage tank.
- the suction area of air to the freezing space is increased to prevent the occurrence of dead zone of freezing in the freezing space. In this way, it is possible to load a wide range of the entire frozen storage without refrigeration of refrigeration / refrigerated goods in the freezing space can increase the space utilization of the freezing space and improve the freezing / refrigeration efficiency.
- the present invention is to install the bypass pipe and the bypass valve between the brine recovery line and the brine supply line, the brine heat exchanged with the low-temperature latent heat PCM of the cold storage tank is the suction side when only the cold storage proceeds by the operation of the bypass valve Since it does not circulate to the heat exchanger side, there is an advantage to prevent the cold storage energy of the latent latent heat PCM.
- the present invention has the advantage of effectively defrosting the dew condensation generated in the plurality of suction side heat exchanger side by supplying the high temperature water in the engine room to the plurality of suction side heat exchanger side or the like.
- the present invention is a dustproof support frame is installed symmetrically at the lower end of the cold storage tank, the plurality of suction side heat exchanger is made of a structure that is uniformly distributed in the lower side of the cold storage tank, the dust-proof support of the cold storage tank by the dustproof support frame Since it can be implemented more effectively, there is an advantage to prevent damage and damage of the heat exchanger in advance.
- FIG. 1 is a block diagram showing a cold storage device using a brine circulation according to an embodiment of the present invention.
- FIG. 2 is a block diagram showing the extraction of the refrigerant circulation line in the heat storage device according to the present invention.
- FIG. 3 is a block diagram showing the extraction of the brine circulation unit in the cold storage device according to the present invention.
- FIG. 4 is a view showing the brine flow during the cold storage operation of the brine circulation unit in the cold storage device according to the present invention.
- FIG. 5 is a view showing the flow of brine during the simultaneous cooling and cooling of the brine circulation unit in the cold storage device according to the present invention.
- FIG. 6 is a plan sectional view taken along the line A-A of FIG.
- FIG. 7 is a block diagram showing a stirring unit of the heat storage device according to the present invention.
- FIG. 8 is a front view showing an outer case of the heat storage device according to the present invention.
- FIG. 9 is a plan view conceptually showing the relationship between the outer case and the freezing space of the heat storage device according to the present invention.
- the cold storage device using the brine circulation according to the present invention is installed in a loading box, a freezing container, a low temperature storage room, a low temperature showcase, a freezer storage, etc. It is configured to freeze / refrigerate by maintaining.
- the cold storage device is installed on at least one side wall of the sealed freezing space, and the air in the freezing space is sucked and heat-exchanged in multiple stages, and then discharged back into the freezing space to effectively store the frozen / cold food loaded in the freezing space.
- 1 to 9 is a view showing a cold storage device using a brine circulation according to an embodiment of the present invention.
- the cold storage device using the brine circulation is a cold storage tank 10, the cold storage 20, the cold storage tank 10 to cool the low temperature latent heat PCM stored in the low temperature latent heat PCM.
- a brine circulation unit 40 having a suction side heat exchanger 41a, 41b, 41c disposed at an air inlet 31a, 31b, 31c of the outer case 30, the outer case 30, which is installed to enclose, and a cold storage tank
- the stirring unit 50 for stirring the low temperature latent heat PCM in the 10, and the air circulation heat exchange passage 60 disposed between the outer surface of the cold storage tank 10 and the inner surface of the outer case 30.
- the low-temperature latent heat PCM is stored in a storage space therein, and the low-temperature latent heat PCM is cooled by the cooler 20 to freeze from a liquid state to a solid state. It is a storage tank which accumulates predetermined storage energy as it becomes.
- the low temperature latent heat PCM is in a liquid state before cooling by the cooler 20, and the liquid low temperature latent heat PCM is properly stirred or circulated by the stirring unit 50, thereby degrading the function of the cold storage device due to precipitation of the low temperature latent heat PCM.
- the stirring unit 50 thereby degrading the function of the cold storage device due to precipitation of the low temperature latent heat PCM.
- the stirring unit 50 has a stirring line 51 disposed to pass through the inside of the cold storage tank 10, and the stirring line 51 has a circulation pump 52 and a suction pipe 53.
- the discharge tube 54 is installed, and the low temperature latent heat PCM is sucked through the suction tube 53 by the driving of the circulation pump 52 and then circulated and discharged to the discharge tube 54 side. Agitate smoothly along.
- the suction pipe 53 is formed in a plurality of branches structured on the upper side of the stirring line 51 is located on the lower side of the cold storage tank 10, the discharge pipe 54 is stirred It is formed in the structure branched into several below the line 51, and is located in the upper side of the storage refrigeration tank 10.
- the present invention when the present invention is applied to the side of the refrigeration vehicle, even if the refrigeration vehicle is shaken by vibration and external impact when passing through the hill or uneven portion, the air pipe is formed as the suction tube 53 is disposed under the cold storage tank 10. Since the low temperature latent PCM is smoothly sucked and the discharge tube 54 is discharged from the upper portion of the cold storage tank 10, the low temperature latent PCM has an advantage of circulating or stirring very efficiently.
- the cooler 20 is configured to cool the low temperature latent heat PCM in the storage cooling tank 10 while the cooled coolant passes through the coolant circulation line 21 after cooling the coolant.
- the refrigerant circulation line 21 is arranged to pass through the interior of the storage cold storage tank 10, whereby the refrigerant of the cooler 20 circulates inside the storage cold storage tank 10 while lowering the low temperature latent heat PCM in the storage cooling tank 10. Cool to state.
- the cooler 20 is a cooler 22 for AC using an AC power source and a DC cooler 23 using a DC power source refrigerant circulation line (21) side is connected in parallel, and accordingly, AC power and DC power can be selectively used as needed, so that the travel distance can be extended and the stability of the cold storage tank is abundant, so that the freshness of food can be kept constant.
- AC power and DC power can be selectively used as needed, so that the travel distance can be extended and the stability of the cold storage tank is abundant, so that the freshness of food can be kept constant.
- the low-temperature latent heat PCM storage of the cold storage tank 10 can be effectively implemented in response to various site conditions.
- the supply line 22a and the recovery line 22b of the AC cooler 22 are connected to the refrigerant circulation line 21 side, and the first expansion valve 22c is provided to the supply line 22a side of the AC cooler 22. Is provided, and the first backflow prevention check valve 22d is provided on the recovery line 22b side of the AC cooler 22.
- the refrigerant After the refrigerant is properly inflated by the first expansion valve 22c, the refrigerant is supplied to the refrigerant circulation line 21 through the supply line 22a and through the recovery line 22b by the first non-return check valve 22d. Reverse flow of the recovered refrigerant is prevented.
- the supply line 23a and the recovery line 23b of the DC cooler 23 are connected to the refrigerant circulation line 21 side, and the second expansion valve 23c is provided on the supply line 23a side of the DC cooler 23. Is provided, and a second backflow prevention check valve 23d is provided on the recovery line 23b side of the DC cooler 23.
- the refrigerant After the refrigerant is properly inflated by the second expansion valve 23c, the refrigerant is supplied to the refrigerant circulation line 21 through the supply line 23a and through the recovery line 23b by the second backflow prevention check valve 23d. Reverse flow of the recovered refrigerant is prevented.
- the refrigerant circulation line 21 includes a plurality of branch pipes connected between the input side distribution pipe 21a and the output side header pipe 21b, the input side distribution pipe 21a, and the output side header pipe 21b disposed in the heat storage cooling tank 10 ( 21c), and the coolant supplied from the cooler 20 side circulates through the input side distribution pipe 21a to the plurality of branch pipes 21c, and then joins through the output side header pipe 21b to cool the cooler 20. It is configured to recover to the side.
- the outer case 30 seals the outside of the storage cooling tank 10 as a plurality of insulating panels are assembled to cover the storage cooling tank 10.
- a plurality of air inlets 31a, 31b, and 31c are formed below the outer case 30, and an air discharge port 32 is disposed above the outer case 30. ) Is formed.
- the plurality of air inlets 31a, 31b, and 31c may be disposed at the lower center side of the outer case 30, and the first air inlets 31a and the outer side thereof.
- the second air suction port 31b and the third air suction port 31c symmetrically disposed on the lower right side and the left side of the case 30 are provided.
- the plurality of air inlets 31a, 31b, and 31c are uniformly distributed in the lower portion of the outer case 30, and thus the freezing space in the freezing space 35 is increased by increasing the suction area of the air to the freezing space 35. It is possible to prevent the generation of a dead zone, thereby allowing a large amount to be loaded over the entire surface without dispersing the plurality of frozen / frozen foods in the freezing space 35 (see FIG. 38 in FIG. 9), and freezing space ( It can improve the space utilization and freezing / refrigeration efficiency of 35).
- an air circulation heat exchange passage 60 through which air circulates is formed between the inner surface of the outer case 30 and the outer surface of the heat storage tank 10.
- the air circulation heat exchange passage 60 is formed between the outer surface of the cold storage tank 10 and the inner surface of the outer case 30, the air circulation heat exchange passage 60 is formed by the pressure of the liquid low temperature latent heat PCM.
- the circulation of air is very smooth, and the freezing / refrigeration efficiency of the freezing space can be greatly improved.
- the air passing through the air circulation heat exchange passage 60 is a plurality of The heat transfer area with the outer surface of the cold storage tank 10 can be greatly increased, and the strength of the cold storage tank 10 and the outer case 30 by the reinforcing members 65 can be increased. It can be reinforced and has the advantage of forming strength and circulation without additional material input.
- the air circulation heat exchange passage 60 is formed in communication with the air inlets 31a, 31b and 31c and the air outlet 32 of the outer case 30, and the air sucked through the air inlets 31a, 31b and 31c. After passing through the air circulation heat exchange passage 60 is discharged from the air discharge port (32) side.
- a blower (not shown) is installed at the air discharge port 32 side, and is configured to forcibly blow air cooled at the air discharge port 32 side.
- the reinforcement 65 may be composed of a structure in which a plurality of pipes having a rectangular, circular, triangular cross section, etc. are arranged at regular intervals, or a bent deck plate structure. Can be.
- the brine circulation unit 40 is installed so that a portion thereof passes through the inside of the cold storage tank 10, as shown in Figure 3, the brine circulation unit 40 is the air inlet 31a, 31b, And suction side heat exchangers 41a, 41b, 41c disposed on the side of 31c).
- the brine circulating through the brine circulation unit 40 is cooled by heat exchange with the low temperature latent heat PCM in the cold storage tank 10, and the cooled brine is air sucked from the suction side heat exchanger (41a, 41b, 41c) side. Is configured to cool primarily.
- the suction side heat exchanger 41a, 41b, 41c is comprised by the 1st suction side heat exchanger 41a, the 2nd suction side heat exchanger 41b, and the 3rd suction side heat exchanger 41c, and the 1st suction side heat exchanger
- the air 41a is installed adjacent to the first air inlet 31a of the outer case 30, and the second suction side heat exchanger 41b is adjacent to the second air inlet 31b of the outer case 30.
- the third suction side heat exchanger 41c is provided adjacent to the third air suction port 31c of the outer case 30.
- a brine circulation pump 42 for circulating the brine is installed at one side of the brine circulation unit 40, and the brine circulation unit 40 is installed inside the cold storage tank 10 upstream of the brine circulation pump 42.
- the brine supply line 44 connected to the downstream of the brine circulation pump 42, the third suction side heat exchanger 41c and the inner brine cooling coil 43. Is done.
- a plurality of suction side heat exchangers 41a, 41b, and 41c are provided.
- the brine circulation pump 42 As the brine passes through the inner brine cooling coil 43 by the operation of the brine circulation pump 42, the brine is cooled by heat exchange with the low temperature latent heat PCM in the cold storage tank 10, and the cooled brine is supplied to the brine supply line After passing through the plurality of suction-side heat exchangers (41a, 41b, 41c) sequentially through the 44 to exchange the air sucked in to cool the air primarily, the brine circulation pump 42 through the brine recovery line 45 It is recovered to the side.
- Each suction side heat exchanger (41a, 41b, 41c) is configured such that the brine supply line 44 passes through a plurality of heat transfer fins, and thus the heat transfer area with the air sucked into each air suction port (31a, 31b, 31c) side. It can widen and raise the heat exchange efficiency.
- the supercooling may occur due to the freezing, and thus a minute vibration or current is applied to the cold latent PCM side of the cold storage tank 10. If applied, supercooling can be eliminated.
- the present invention by installing the inner brine cooling coil 43 of the brine circulation unit 40 adjacent to the refrigerant circulation line 21 side to the minute vibration generated by the brine flowing inside the inner brine cooling coil 43 thereby, there is an advantage that can eliminate the supercooling of the latent latent heat PCM.
- One side of the brine supply line 44 may be provided with a brine expansion and supplement tank 46 for preventing brine expansion and supplementing brine.
- One side of the brine recovery line 45 may be provided with an air vent 47 for discharging the remaining air in the brine to the outside.
- the vise pipe 48 is connected to one side of the brine recovery line 45 from one side of the brine supply line 44, and the bypass valve 49 is installed on one side of the bypass pipe 48, and the bypass
- the valve 49 may be configured as a three-way valve structure having an inlet port 49a, a first outlet port 49b, and a second outlet port 49c.
- the three-way valve may be operated electronically.
- the first outlet port 49b of the bypass valve 49 is opened and the second outlet port 49c is closed.
- the brine passes through the brine supply line 44 and sequentially passes through the plurality of suction side heat exchangers 41b, 41a and 41c, the brine is circulated with the air sucked into the air inlets 31b, 31a and 31c, and then the brine circulation pump Recovered to (42).
- the brine circulates normally to the plurality of suction side heat exchangers 41a, 41b, and 41c.
- the first outlet port of the bypass valve 49 is shown in FIG. 5. 49b) is closed and at the same time the second outlet port 49c is opened, so that the brine passes through the inner brine cooling coil 43 after passing through the bypass pipe 48 and is recovered to the brine circulation pump 42 side. It does not circulate to the suction side heat exchanger (41a, 41b, 41c) side, whereby the low temperature latent heat PCM can prevent the consumption of the cold storage energy.
- this defrost structure is a defrost hot water supply line 71 and defrosting It consists of a hot water recovery line 72.
- a defrost hot water supply line 71 is connected to one side of the brine supply line 44 adjacent to the second suction side heat exchanger 41b and a defrost hot water supply line.
- Receiving hot water is supplied from the radiator of the engine room through the 71, one side of the brine recovery line 45 adjacent to the third suction side heat exchanger (41c) is connected to the defrost hot water recovery line 72, The defrost hot water recovery line 72 recovers the defrost hot water to the writer side of the engine room.
- a first defrost valve 73 is installed at a portion where the defrost hot water supply line 71 and the brine supply line 44 are connected, and the first defrost valve 73 is an inlet port 73a and a first outlet port. 73b, the three-way valve structure having the second outlet port 73c.
- the first defrost valve 73 can be operated electronically.
- a second defrost valve 74 is installed at a portion where the defrost hot water recovery line 72 and the brine recovery line 45 are connected, and the second defrost valve 74 has an inlet port 74a and a first outlet port. 74b, it may be configured as a three-way valve structure having a second outlet port 7c. The second defrost valve 74 may be operated electronically.
- the first outlet port 73b of the first defrost valve 73 and the first outlet port 74b of the second defrost valve 74 are closed and the second of the first defrost valve 73 is closed.
- the hot water for defrosting is stopped in a state where the brine flow to the brine supply line 44 and the brine recovery line 45 is stopped.
- Defrost operation is performed on the heat transfer fins of each suction side heat exchanger (41a, 41b, 41c) while sequentially passing the plurality of suction side heat exchangers (41a, 41b, 41c) through the defrost hot water supply line (71). After it can be recovered through the defrost hot water recovery line 72.
- the first outlet port 73b of the first defrost valve 73 and the first outlet port 74b of the second defrost valve 74 are opened, and the first defrost valve 73 is opened.
- the brine flow to the brine supply line 44 and the brine recovery line 45 may be performed.
- the first outlet ports 73b and 74b of the first and second on-off valves 73 and 74 are closed by the defrosting structures 71, 72, 73 and 74 described above.
- the outlet ports 73c and 74c are opened, the circulation of brine is stopped, and the hot water generated at the engine room side in the circulation stop state of the brine is supplied to the plurality of suction side heat exchangers 41a through the defrost hot water supply line 71.
- the engine may be recovered through the defrost hot water recovery line 72.
- At least one defrost electric heater (not shown) is installed at the heat transfer fin side of each suction side heat exchanger (41a, 41b, 41c), causing icing at the heat transfer fin of each suction side heat exchanger (41a, 41b, 41c). You can also defrost effectively.
- a dustproof support frame 18 is symmetrically installed at the lower end of the storage cooling tank 10, and in particular, in the present invention, a plurality of suction side heat exchangers 41a, 41b, 41c are provided at the lower side of the storage cooling tank 10. As the structure is uniformly distributed, it is possible to more effectively realize the dustproof support of the cold storage tank 10 by the dustproof frame 18.
- the vibration support frame 18 When the cold storage device of the present invention is applied to a refrigeration vehicle, the vibration support frame 18 is properly applied to the cold storage tank 10 when the vibration generated when the refrigeration vehicle passes through the hill or the uneven portion while driving the road is transferred to the cold storage tank 10 side.
- the dust-proof support has an advantage of minimizing fatigue and stress on the cold storage tank 10 side.
- the air sucked through the plurality of suction side heat exchangers (41a, 41b, 41c) disposed separately on the side of the plurality of air suction ports (31a, 31b, 31c) is cooled by primary heat exchange.
- the air cooled by the primary heat exchanger is cooled by secondary heat exchange with the low temperature latent heat PCM of the cold storage tank 10 while passing through the air circulation heat exchange passage 60 between the cold storage tank 10 and the outer case 30.
- Air cooled in multiple stages is forcibly discharged into the freezing space through the air discharge port (32) can significantly improve the freezing / refrigeration efficiency for the freezing space, refrigeration freezing without operation of the cooler for a separate oil and weekly peak time logistics products for storage and freshly storage and transport, to reduce fuel consumption and CO 2 in order to operate a separate cooler can be pre-global warming, environmental pollution and improve the affordability of energy costs There is an advantage.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
Abstract
본 발명은 공기의 전열면적 증대를 통해 냉동효율을 대폭 향상시킴과 더불어 제상효율이 높은 브라인 순환을 이용한 축냉장치에 관한 것이다. 본 발명에 의한 브라인 순환을 이용한 축냉장치는 저온잠열PCM이 저장된 축냉조와; AC전원을 이용하는 AC용 냉각기 및 DC전원을 이용한 DC용 냉각기의 각 공급라인 및 회수라인은 냉매순환라인 측에 병렬로 접속되고, 상기 냉매순환라인은 상기 축냉조 내에 배치된 입력측 분배관 및 출력측 헤더관, 상기 입력측 분배관 및 출력측 헤드관 사이에 연결된 복수의 분기관으로 이루어지며, 상기 축냉조 내의 저온잠열PCM을 냉각하고, 상기 축냉조 내를 통과하도록 배치되는 냉매순환라인을 가진 냉각기와; 상기 축냉조를 감싸도록 설치되고, 하부에 복수의 공기흡입구가 형성되어 제1공기흡입구는 상기 외측케이스의 하부 중앙측에 위치되고, 제2공기흡입구 및 제3공기흡입구는 상기 외측케이스의 하부 우측 및 좌측에 대칭적으로 위치한 것이며, 상부에는 공기토출구가 형성된 외측케이스와; 상기 외측케이스의 공기흡입구 측에 배치된 흡입측 열교환기를 가진 브라인 순환유닛과; 상기 축냉조 내의 저온잠열PCM을 교반하는 교반유닛; 및 상기 축냉조의 외측면과 상기 외측케이스의 내측면 사이에 배치된 공기순환 열교환통로;를 포함하는 것을 특징으로 한다.
Description
본 발명은 축냉장치에 관한 것으로, 보다 상세하게는 공기의 전열면적이 증대됨을 통해 냉동효율을 대폭 향상시킴과 더불어 제상효율이 높은 브라인 순환을 이용한 축냉장치에 관한 것이다.
일반적으로 냉장냉동차는 적재함(냉동공간) 내에 저온을 생성, 유지시키기 위하여 유류를 사용하여 구동되는 메인엔진(Main engine) 또는 서브엔진(Sub engine)냉각기를 사용하고 있다. 그러나, 이러한 엔진구동형 냉각기는 운송수단의 주행시 얻어지는 동력 또는 유류를 이용하고 있어 차량 유지비가 상승되고 있으며, 주정차 시 엔진가동을 정지되어 적재함 내의 온도가 급격히 상승하여 보관중인 제품의 품질 저하 및 각종 세균번식의 위험이 발생하게 되는 등 안전상의 문제가 있고, 저온 저장고 및 저온 쇼케이스는 AC용 냉각기를 사용하여 주,야간 구분없이 하루 18시간 이상 계속적으로 가동하여 저장고 내의 적정 온도를 유지하는 방식으로 하절기 주간 피크타임에 전력 수급 불균형의 원인이 되고 있으며, 많은 전기 소모와 전기요금이 발생하고, 냉각기의 주요 구성품인 압축기 수명을 단축시키는 등의 문제가 있다.
또한, 통상적인 축냉장치를 이용한 축냉식 냉장냉동탑차는 상변환물질(Phase change material)인 잠열(Latent heat) 축열재를 축냉모듈에 저장한 후 병렬방식으로 여러개로 축냉판을 형성하여 적재함 천장에 부착한 후 차량 하부에 설치된 AC용 냉각기를 심야전력 및 일반전력을 사용하여 약 8-10시간 가동하여 차량 적재함 상부에 부착된 축냉판에 저장된 상변화물질(Phase change material)을 동결시킨 후, 자연 냉방시켜 적재함 내부의 온도를 낮추는 방식으로 냉각기 가동없이 냉장냉동탑차를 약 8시간 운행할 수 있다.
하지만, 이러한 방식은 저온 잠열PCM 모듈이 병렬로 천장에 부착된 축냉판에서 결로현상이 발생하여 적재물 훼손 등의 문제점이 발생하고 있으며, 또한, 운행 중 축냉판의 무게에 따른 적재함의 무게 중심이 상부로 이동함에 따라, 굽은 길에서 전복의 위험성이 높아 지게 된다.
축냉장치를 냉장냉동탑차에 적용한 것으로 대표적인 것으로 한국등록실용신안 20-0231247호(특허문헌 1)을 예로 들 수 있다.
이를 간략하게 살펴보면 전기료가 저렴한 심야전력을 통해 냉각수단을 가동하여 잠열 축열재를 미리 축냉하고 있다가 냉장냉동탑차가 물류창고 등에 도착하면 저장수단에서 적재함에 설치된 축냉 수단으로 저온 열에너지를 이송시켜 대기와의 열교환을 통한 자연 대류방식으로 상기 적재함의 내부를 냉장냉동 하고 있다.
그러나, 상기 [특허문헌 1]은 단순한 자연대류방식으로 적재함의 내부를 냉장냉동하고 있어 냉장냉동탑차를 운행하지 않을 때에도 동결된 상변화물질(이하, 저온잠열PCM이라 함)이 적재함 내부 대기와 지속적으로 열교환을 함으로서 불필요한 저온 열에너지의 소진이 발생하여, 냉장냉동탑차 운행가능시간이 감소하는 단점이 있다. 또한, 축냉판을 적재함 천장에 부착함에 따라 축냉판 표면에 결로 발생 시 적재함에 보관중인 물류제품 위로 떨어져 제품 손상에 따른 품질저하의 문제점이 발생하고 있으며, 또한 기존 축냉판에 저장된 저온잠열PCM의 경우 저온잠열기능이 시간이 지남에 따라 저온잠열PCM의 침전이 발생하여 처음 설치되었을 때의 기능이 발휘되지 않는 문제점 등이 발생하여 냉장냉각기능의 저하에 따른 저장 물품의 신선도 유지에 악영향을 미치고 있다.
이에 따라 본 출원인은 단순 자연대류방식에 대한 문제를 해결하고, 축냉판과 외부와의 지속적인 열교환을 통한 열손실 문제 및 축냉판에 결로가 발생하여 제품 손상에 따른 품질 저하의 문제점을 해결하고, 시간이 지남에 따라 차상 축냉판 내에 저장된 저온 잠열PCM의 성능 저하 문제점을 해결하기 위한 등록특허 10-1102333호(특허문헌 2)를 선등록 받은 바 있다.
한편, [특허문헌 2]는 저온 잠열PCM이 충전된 축냉조의 내부로 외부 공기를 강제 순환시켜 불필요한 저온 열에너지 손실 없이 장시간 냉장냉동탑차를 운행 또는 저온 저장고 등을 가동할 수 있도록 구성된다.
특히, 축냉조 내부의 저온 잠열PCM과 적재함 내부의 공기가 서로 열교환을 하여 적내함 내부의 공기가 냉각될 수 있도록 축냉조 내부에 공기 흡입구와 공기 배출구가 연결되게 공기순환 열교환관을 설치하고, 공기흡입구에 적재함 내부의 공기와 PCM에 저장된 저온 열에너지의 열교환 면적을 증대시키기 위해 전열핀으로 구성된 열교환기를 부착하여 1차 열교환을 통해 냉각된 공기가 PCM 축냉조 내부를 관통하는 공기순환 열교환관을 통과하며 2차 열교환을 마친 후, 적재함 내부로 배출될 수 있도록 축냉조 상부에 송풍기를 부착하여 가동함으로써 강제적으로 공기 배출구를 통해 냉각된 공기를 송풍하는 방식을 사용하여 적재함 내부의 온도를 냉각시키도록 구성되어 있다.
하지만, [특허문헌 2]는 AC용 냉각기만을 사용함에 따라 DC전원을 이용해야할 다양한 여건에서 활용성이 낮은 단점이 있었고, 또한 공기순환 열교환관이 축냉조 내부에 설치됨에 따라 축냉조 내에 충전된 저온 잠열PCM의 액상상태 압력에 의해, 공기순환 열교환관의 중앙부 측이 가압됨으로써 공기순환 시에 저항이 발생하여 온도복원이 느려져 냉동순환사이클이 원활하게 작동하지 못하는 단점이 있었다.
또한, [특허문헌 2]는 공기흡입구 측의 열교환기에서 결로현상이 발생하고, 이러한 결로현상으로 인해 열교환기의 전열핀이 막혀 냉동공간의 냉방이 원활하게 이루어지지 못하는 단점이 있었다.
그리고, [특허문헌 2]는 축냉조 내에서 저온잠열PCM를 교반하기 위한 구조에서 흡입관이 축냉조의 상부에 배치되고, 토출관이 축냉조의 하부에 배치됨에 따라 차량이 흔들릴 경우, 축냉조 내에서 흡입관 측에서 저온잠열PCM의 흡입이 제대로 이루어지지 못하여 저온잠열PCM의 교반이 원활하지 못한 단점이 있었다.
[특허문헌 2]는 공기흡입구가 축냉조의 하측 중앙부에만 설치됨에 따라 적재함의 냉동공간 측에서 냉방의 사영역(dead zone)이 발생하고, 이로 인해 냉동공간의 냉동효율이 저하되는 단점이 있었다.
본 발명은 상기와 같은 점을 감안하여 안출한 것으로, AC용 냉각기 및 DC용 냉각기를 겸용으로 적용함으로써 다양한 여건에서의 AC전원 및 DC전원을 선택적으로 이용할 수 있어 운행거리를 연장할 수 있음과 동시에 축냉조의 안정성이 풍부하여 식품의 신선도를 일정하게 유지할 수 있고, 공기순환 효율을 향상시킴으로써 냉동효율을 대폭 향상시킬 수 있으며, 공기흡입구 측의 열교환기에서 제상효율을 높일 수 있으며, 축냉조 내에서 저온잠열PCM의 교반을 원활하게 하며, 적재함 등과 같은 냉동공간 내에서의 사(死)영역(領域) 발생을 방지하여 냉동효율을 높일 수 있는 브라인 순환을 이용한 축냉장치를 제공하는 데 그 목적이 있다.
상기와 같은 목적을 달성하기 위한 본 발명에 의한 브라인 순환을 이용한 축냉장치는,
저온잠열PCM이 저장된 축냉조와;
AC전원을 이용하는 AC용 냉각기 및 DC전원을 이용한 DC용 냉각기의 각 공급라인 및 회수라인은 냉매순환라인 측에 병렬로 접속되고, 상기 냉매순환라인은 상기 축냉조 내에 배치된 입력측 분배관 및 출력측 헤더관, 상기 입력측 분배관 및 출력측 헤드관 사이에 연결된 복수의 분기관으로 이루어지며, 상기 축냉조 내의 저온잠열PCM을 냉각하고, 상기 축냉조 내를 통과하도록 배치되는 냉매순환라인을 가진 냉각기와;
상기 축냉조를 감싸도록 설치되고, 하부에 복수의 공기흡입구가 형성되어 제1공기흡입구는 상기 외측케이스의 하부 중앙측에 위치되고, 제2공기흡입구 및 제3공기흡입구는 상기 외측케이스의 하부 우측 및 좌측에 대칭적으로 위치한 것이며, 상부에는 공기토출구가 형성된 외측케이스와;
상기 외측케이스의 공기흡입구 측에 배치된 흡입측 열교환기를 가진 브라인 순환유닛과;
상기 축냉조 내의 저온잠열PCM을 교반하는 교반유닛; 및
상기 축냉조의 외측면과 상기 외측케이스의 내측면 사이에 배치된 공기순환 열교환통로;를 포함하는 것을 특징으로 한다.
상기 교반유닛은 상기 축냉조 내부를 통과하도록 배치된 교반라인을 가지고, 상기 교반라인에는 순환펌프, 흡입관, 토출관이 설치되며,
상기 교반라인의 흡입관은 상기 축냉조의 하측에 위치하고, 상기 교반라인의 토출관은 축냉조의 상측에 위치하는 것을 특징으로 한다.
상기 AC용 냉각기의 공급라인 측에는 제1팽창밸브가 설치되며, 상기 AC용 냉각기의 회수라인 측에는 제1역류방지 체크밸브가 설치되고, 상기 DC용 냉각기의 공급라인 측에는 제2팽창밸브가 설치되고, 상기 DC용 냉각기의 회수라인 측에는 제2역류방지 체크밸브가 설치되는 것을 특징으로 한다.
상기 축냉조의 외측면과 외측케이스의 내측면 사이에는 복수의 보강재가 일정간격으로 이격되어 배치됨에 따라 공기순환 열교환통로를 통과하는 공기는 복수의 통로로 분할되게 형성되는 것을 특징으로 한다.
상기 브라인 순환유닛은 그 일부가 상기 축냉조 내부를 통과하도록 설치되고, 외측케이스의 공기흡입구 측에 배치된 흡입측 열교환기를 포함하며,
상기 흡입측 열교환기는 제1흡입측 열교환기, 제2흡입측 열교환기, 제3흡입측 열교환기로 구성되고, 상기 제1흡입측 열교환기는 상기 외측케이스의 제1공기흡입구에 인접하여 설치되며, 상기 제2흡입측 열교환기는 상기 외측케이스의 제2공기흡입구에 인접하여 설치되고, 상기 제3흡입측 열교환기는 상기 외측케이스의 제3공기흡입구에 인접하여 설치되는 것을 특징으로 한다.
상기 브라인 순환유닛의 일측에는 브라인을 순환구동시키는 브라인 순환펌프가 설치되고,
브라인 순환펌프의 상류측에는 축냉조 내에 설치된 내측 브라인냉각코일, 브라인 순환펌프의 하류측에 연결된 브라인공급라인, 및 상기 흡입측 열교환기와 내측 브라인냉각코일 사이에 연결된 브라인회수라인으로 이루어지고,
상기 브라인공급라인의 도중에는 상기 복수의 흡입측 열교환기가 설치되는 것을 특징으로 한다.
상기 브라인공급라인의 일측에는 브라인의 팽창 방지 및 브라인의 보충을 위한 브라인 팽창 및 보충탱크가 설치되고,
상기 브라인회수라인의 일측에는 브라인 내의 잔여공기를 외부로 배출하는 에어벤트가 설치되는 것을 특징으로 한다.
상기 브라인공급라인의 일측에서 상기 브라인회수라인의 일측으로 바이패스배관이 연결되고, 상기 바이패스배관의 일측에는 바이패스밸브가 설치되는 것을 특징으로 한다.
상기 브라인 공급라인의 일측에는 엔진룸의 라디에이터로부터 제상용 고온수를 공급받는 제상용 고온수 공급라인이 연결되고, 상기 브라인 회수라인의 일측에는 엔진룸의 라이에이터 측으로 제상용 고온수를 회수시키는 제상용 고온수 회수라인이 연결되며,
상기 제상용 고온수 공급라인과 상기 브라인 공급라인이 연결되는 부분에는 제1제상밸브가 설치되고, 제상용 고온수 회수라인과 브라인 회수라인이 연결되는 부분에는 제2제상밸브가 설치되는 것을 특징으로 한다.
복수의 흡입측 열교환기는 상기 브라인공급라인이 복수의 전열핀을 관통하도록 구성되고, 상기 흡입측 열교환기의 전열핀 측에는 제상용 전기히터가 설치되는 것을 특징으로 한다.
상기 축냉조의 하단에는 방진받침틀이 좌우 대칭적으로 설치되는 것을 특징으로 한다.
본 발명에 의하면, 복수의 공기흡입구 측에 배치된 복수의 흡입측 열교환기를 통해 흡입되는 공기가 1차 열교환하여 냉각되고, 이렇게 1차 열교환에 의해 냉각된 공기는 축냉조와 외측케이스 사이의 공기순환 열교환통로를 거치면서 축냉조의 저온잠열PCM과의 2차 열교환하여 냉각되며, 이러한 다단 냉각공기는 공기토출구를 통해 강제로 냉동공간으로 토출됨으로써 냉동공간에 대한 냉동/냉장효율을 대폭 향상시킬 수 있으며, 별도의 유류 및 주간피크시간 대에 냉각기의 가동 없이 냉장냉동보관용 물류제품을 신선하게 보관 및 운반하고, 별도의 냉각기를 작동시키기 위해 소비되는 유류 및 CO2를 절감시켜 환경오염으로 지구온난화를 사전방지하고, 에너지비용 등의 경제성을 향상시킬 수 있는 장점이 있다.
또한, 본 발명에 의하면, 냉각기가 AC전원을 이용하는 AC용 냉각기 및 DC전원을 이용한 DC용 냉각기로 구성됨에 따라 AC전원 및 DC전원을 선택적으로 이용할 수 있어 사용의 편리함과 차량의 운행거리를 연장할 수 있음과 동시에 축냉조의 안정성 풍부로 식품의 신선도를 일정하게 유지할 수 있고, 이를 통해 다양한 현장 여건에 용이하게 대응하여 축냉조의 저온잠열PCM 축냉을 효과적으로 구현할 수 있다.
또한, 본 발명은 교반유닛의 흡입관이 축냉조의 하부 측에 위치하고, 교반유닛의 토출관은 축냉조의 상측에 위치한 구조로 구성됨에 따라 축냉조 내에서 저온잠열PCM의 순환 내지 교반이 매우 효율적으로 이루어지는 장점이 있다.
그리고, 본 발명은 외측케이스의 하측에 복수의 공기흡입구가 중앙측, 좌측, 우측으로 균등하게 분산 구성됨에 따라 냉동공간에 대한 공기의 흡입면적이 증가되어 냉동공간 내에서 냉동의 사영역 발생을 방지할 수 있고, 이를 통해 냉동공간 내에서 복수의 냉동/냉장 물품을 분산시키지 않고 전면적으로 넓게 적재할 수 있어 냉동공간의 공간활용도 증가 및 냉동/냉장효율을 향상할 수 있다.
또한, 본 발명은 브라인 회수라인과 브라인 공급라인 사이에 바이패스배관 및 바이패스밸브를 설치하고, 바이패스밸브의 조작에 의해 축냉만이 진행될 경우 축냉조의 저온잠열PCM과 열교환된 브라인이 흡입측 열교환기 측으로 순환하지 않으므로 저온잠열PCM의 축냉에너지가 소모됨을 방지할 수 있는 장점이 있다.
그리고, 본 발명은 엔진룸의 고온수를 복수의 흡입측 열교환기 측으로 공급하거나 전기히터 등을 통해 복수의 흡입측 열교환기 측에 발생하는 결로를 효과적으로 제상 가능한 장점이 있다.
또한, 본 발명은 축냉조의 하단에는 방진받침틀이 좌우 대칭적으로 설치되고, 복수의 흡입측 열교환기가 축냉조의 하부측에 균일하게 분산된 구조로 이루어짐에 따라 방진받침틀에 의한 축냉조의 방진지지를 보다 효과적으로 구현할 수 있어 열교환기의 손상과 훼손을 사전방지하는 장점이 있다.
도 1은 본 발명의 일 실시예에 따른 브라인 순환을 이용한 축냉장치를 도시한 구성도이다.
도 2는 본 발명에 의한 축냉장치에서 냉매순환라인을 추출하여 도시한 구성도이다.
도 3은 본 발명에 의한 축냉장치에서 브라인 순환유닛을 추출하여 도시한 구성도이다.
도 4는 본 발명에 의한 축냉장치에서 브라인 순환유닛의 축냉작동 시에 브라인 흐름을 나타낸 도면이다.
도 5는 본 발명에 의한 축냉장치에서 브라인 순환유닛의 축냉 및 방냉 동시 작동 시에 브라인의 흐름을 나타낸 도면이다.
도 6은 도 1의 A-A선을 따라 도시한 평단면도이다.
도 7은 본 발명에 의한 축냉장치의 교반유닛을 도시한 구성도이다.
도 8은 본 발명에 의한 축냉장치의 외측케이스를 도시한 정면도이다.
도 9는 본 발명에 의한 축냉장치의 외측케이스와 냉동공간 사이의 관계를 개념적으로 도시한 평면도이다.
이하, 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 상세히 설명한다. 참고로, 본 발명을 설명하는 데 참조하는 도면에 도시된 구성요소의 크기, 선의 두께 등은 이해의 편의상 다소 과장되게 표현되어 있을 수 있다. 또, 본 발명의 설명에 사용되는 용어들은 본 발명에서의 기능을 고려하여 정의한 것이므로 사용자, 운용자 의도, 관례 등에 따라 달라질 수 있다. 따라서, 이 용어에 대한 정의는 본 명세서의 전반에 걸친 내용을 토대로 내리는 것이 마땅하겠다.
본 발명에 의한 브라인 순환을 이용한 축냉장치는 내부에 밀폐된 냉동공간을 가지는 냉동차량의 적재함, 냉동컨테이너, 저온 저장고, 저온 쇼케이스, 냉동창고 등에 설치되어 냉동공간에 적재되는 냉동/냉장 식품을 저온상태로 유지하여 냉동/냉장하도록 구성된다.
특히, 본 발명에 의한 축냉장치는 밀폐된 냉동공간의 적어도 일측벽에 설치되고, 냉동공간 내의 공기를 흡입하여 다단으로 열교환시킨 후에 냉동공간으로 다시 토출시킴으로써 냉동공간 내에 적재되는 냉동/냉장 식품을 효과적으로 냉동/냉장시키도록 구성된다.
도 1 내지 도 9는 본 발명의 일 실시예에 따른 브라인 순환을 이용한 축냉장치를 도시한 도면이다.
도시된 바와 같이, 본 발명에 의한 브라인 순환을 이용한 축냉장치는 저온잠열PCM이 저장된 축냉조(10), 축냉조(10) 내의 저온잠열PCM을 냉각하는 냉각기(20), 축냉조(10)를 감싸도록 설치된 외측케이스(30), 외측케이스(30)의 공기흡입구(31a, 31b, 31c) 측에 배치된 흡입측 열교환기(41a, 41b, 41c)를 가진 브라인 순환유닛(40), 축냉조(10) 내의 저온잠열PCM을 교반하는 교반유닛(50), 축냉조(10)의 외측면과 외측케이스(30)의 내측면 사이에 배치된 공기순환 열교환통로(60)를 포함한다.
축냉조(10)는 도 1 및 도 2에 도시된 바와 같이, 그 내부의 저장공간에 저온잠열PCM이 저장되고, 저온잠열PCM은 냉각기(20)에 의해 냉각됨에 따라 액체상태에서 고체상태로 동결됨에 따라 소정의 축냉에너지를 축적하는 저장조이다.
한편, 저온잠열PCM은 냉각기(20)에 의해 냉각 전에는 액체상태이고, 이러한 액상의 저온잠열PCM은 교반유닛(50)에 의해 적절히 교반 내지 순환됨에 따라 저온잠열PCM의 침전에 따른 축냉기의 기능 저하를 방지할 수 있으며, 이를 통해 저온잠열PCM의 동결 시에 빠른 열전달 기능을 구현하여 축냉시간을 대폭 단축할 수 있다.
교반유닛(50)은 도 7에 도시된 바와 같이, 축냉조(10) 내부를 통과하도록 배치된 교반라인(51)을 가지고 있고, 교반라인(51)에는 순환펌프(52), 흡입관(53), 토출관(54)가 설치되며, 이 순환펌프(52)의 구동에 의해 축냉조(10) 내에서 저온잠열PCM이 흡입관(53)을 통해 흡입된 후에 순환하여 토출관(54)측으로 토출됨에 따라 원활하게 교반 된다.
특히, 본 발명의 실시예에 따르면, 흡입관(53)은 교반라인(51)의 상측에 복수개로 분기된 구조로 형성되어 축냉조(10)의 하부 측에 위치되고, 토출관(54)은 교반라인(51)의 하측에 복수개로 분기된 구조로 형성되어 축냉조(10)의 상측에 위치한다.
이에 본 발명이 냉동차량 측에 적용될 경우, 냉동차량이 언덕 또는 요철부 등을 통과할 때 진동과 외부충격에 의하여 흔들릴지라도 흡입관(53)이 축냉조(10)의 하측에 배치됨에 따라 공기층이 형성되지 않아 저온잠열PCM의 흡입이 원활하게 이루어짐과 더불어 토출관(54)이 축냉조(10)의 상부에서 토출됨에 따라 저온잠열PCM의 순환 내지 교반이 매우 효율적으로 이루어지는 장점이 있다.
냉각기(20)는 냉매를 냉각시킨 후에 냉각된 냉매가 냉매순환라인(21)을 통과하면서 축냉조(10) 내의 저온잠열PCM을 냉각시키도록 구성된다.
특히, 냉매순환라인(21)은 축냉조(10)의 내부를 통과하도록 배치되고, 이에 냉각기(20)의 냉매가 축냉조(10) 내부를 순환하면서 축냉조(10) 내의 저온잠열PCM을 저온상태로 냉각시킨다.
특히, 본 발명의 실시예에 따르면, 도 1 및 도 2에 도시된 바와 같이 냉각기(20)는 AC전원을 이용하는 AC용 냉각기(22) 및 DC전원을 이용한 DC용 냉각기(23)가 냉매순환라인(21) 측에 병렬로 접속되고, 이에 필요에 따라 AC전원 및 DC전원을 선택적으로 이용할 수 있어 운행거리를 연장할 수 있음과 동시에 축냉조의 안정성이 풍부하여 식품의 신선도를 일정하게 유지할 수 있고, 이를 통해 다양한 현장여건에 용이하게 대응하여 축냉조(10)의 저온잠열PCM 축냉을 효과적으로 구현할 수 있다.
AC용 냉각기(22)의 공급라인(22a) 및 회수라인(22b)는 냉매순환라인(21) 측에 연결되고, AC용 냉각기(22)의 공급라인(22a) 측에는 제1팽창밸브(22c)가 설치되고, AC용 냉각기(22)의 회수라인(22b) 측에는 제1역류방지 체크밸브(22d)가 설치된다.
냉매는 제1팽창밸브(22c)에 의해 적절히 팽창된 후에 공급라인(22a)을 통해 냉매순환라인(21) 측으로 공급되고, 제1역류방지 체크밸브(22d)에 의해 회수라인(22b)을 통해 회수되는 냉매의 역류가 방지된다.
DC용 냉각기(23)의 공급라인(23a) 및 회수라인(23b)는 냉매순환라인(21) 측에 연결되고, DC용 냉각기(23)의 공급라인(23a) 측에는 제2팽창밸브(23c)가 설치되고, DC용 냉각기(23)의 회수라인(23b) 측에는 제2역류방지 체크밸브(23d)가 설치된다.
냉매는 제2팽창밸브(23c)에 의해 적절히 팽창된 후에 공급라인(23a)을 통해 냉매순환라인(21) 측으로 공급되고, 제2역류방지 체크밸브(23d)에 의해 회수라인(23b)을 통해 회수되는 냉매의 역류가 방지된다.
냉매순환라인(21)은 축냉조(10) 내에 배치된 입력측 분배관(21a) 및 출력측 헤더관(21b), 입력측 분배관(21a) 및 출력측 헤더관(21b) 사이에 연결된 복수의 분기관(21c)으로 이루어지고, 이에 냉각기(20) 측에서 공급된 냉매가 입력측 분배관(21a)을 거쳐 복수의 분기관(21c)으로 순환한 후에 출력측 헤더관(21b)을 통해 합류되어 냉각기(20) 측으로 회수되도록 구성된다.
외측케이스(30)는 도 6에 도시된 바와 같이 복수의 단열패널이 조립되어 축냉조(10)를 감싸도록 설치됨에 따라 축냉조(10)의 외부를 밀폐한다.
그리고, 외측케이스(30)의 하측에는 도 1, 도 8 및 도 9에 도시된 바와 같이 복수의 공기흡입구(31a, 31b, 31c)가 형성되고, 외측케이스(30)의 상측에는 공기토출구(32)가 형성된다.
본 발명의 실시예에 따르면, 도 8 및 도 9에 도시된 바와 같이 복수의 공기흡입구(31a, 31b, 31c)는 외측케이스(30)의 하부 중앙측에 위치한 제1공기흡입구(31a), 외측케이스(30)의 하부 우측 및 좌측에 대칭적으로 위치한 제2공기흡입구(31b) 및 제3공기흡입구(31c)로 이루어진다.
이에 복수의 공기흡입구(31a, 31b, 31c)은 외측케이스(30)의 하부에 균등하게 분산 배치됨에 따라 냉동공간(35)에 대한 공기의 흡입면적 증가로 냉동공간(35) 내에서 냉동의 사영역(dead zone) 발생을 방지할 수 있고, 이를 통해 냉동공간(35) 내에서 복수의 냉동/냉장 식품을 분산시키지 않고 전면적으로 넓게 적재할 수 있으며(도 9의 도번 38 참조), 냉동공간(35)의 공간활용도 및 냉동/냉장효율을 높일 수 있다.
그리고, 도 6에 도시된 바와 같이 외측케이스(30)의 내측면과 축냉조(10)의 외측면 사이에는 공기가 순환하는 공기순환 열교환통로(60)가 형성된다.
즉, 본 발명은 축냉조(10)의 외측면과 외측케이스(30)의 내측면 사이에 공기순환 열교환통로(60)가 형성됨에 따라 액상의 저온잠열PCM의 압력에 의해 공기순환 열교환통로(60)가 가압되어 변형될 우려가 거의 없으므로 공기의 순환이 매우 원활하게 이루어져 냉동공간에 대한 냉동/냉장 효율이 대폭 향상될 수 있는 장점이 있다.
특히, 축냉조(10)의 외측면과 외측케이스(30)의 내측면 사이에는 복수의 보강재(65)가 일정간격으로 이격되어 배치됨에 따라 공기순환 열교환통로(60)을 통과하는 공기는 복수의 통로로 분할되어 순환할 수 있어, 이에 축냉조(10)의 외측면과의 전열면적이 대폭 증대되며, 또한 보강재(65)들에 의해 축냉조(10) 및 외측케이스(30)에 대한 강도를 보강할 수 있고,부가적인 재료 투입없이도 강도와 순환로를 형성하는 장점이 있다.
공기순환 열교환통로(60)는 외측케이스(30)의 공기흡입구(31a, 31b, 31c) 및 공기토출구(32)와 소통되게 형성되고, 이에 공기흡입구(31a, 31b, 31c)를 통해 흡입된 공기는 공기순환 열교환통로(60)를 통과한 후에 공기토출구(32) 측에서 토출된다. 공기토출구(32) 측에 송풍기(미도시)가 설치되어 공기토출구(32) 측에서 냉각된 공기를 강제로 송풍하도록 구성된다.
보강재(65)는 각형, 원형, 삼각형 단면 등으로 이루어진 복수의 파이프가 일정간격 이격되게 배치된 구조 또는 절곡된 데크플레이트 구조로 구성될 수도 있으며, 필요에 의하여 당업자가 단순한 설계변경도 가능한 구조로 할 수 있다.
브라인 순환유닛(40)은 도 3에 도시된 바와 같이 그 일부가 축냉조(10)의 내부를 통과하도록 설치되고, 브라인 순환유닛(40)은 외측케이스(30)의 공기흡입구(31a, 31b, 31c) 측에 배치된 흡입측 열교환기(41a, 41b, 41c)를 포함한다.
브라인 순환유닛(40)을 통해 순환하는 브라인은 축냉조(10) 내의 저온잠열PCM과의 열교환을 통해 냉각되고, 이렇게 냉각된 브라인은 흡입측 열교환기(41a, 41b, 41c) 측에서 흡입되는 공기를 1차로 냉각시키도록 구성된다.
흡입측 열교환기(41a, 41b, 41c)는 제1흡입측 열교환기(41a), 제2흡입측 열교환기(41b), 제3흡입측 열교환기(41c)로 구성되고, 제1흡입측 열교환기(41a)는 외측케이스(30)의 제1공기흡입구(31a)에 인접하여 설치되며, 제2흡입측 열교환기(41b)는 외측케이스(30)의 제2공기흡입구(31b)에 인접하여 설치되고, 제3흡입측 열교환기(41c)는 외측케이스(30)의 제3공기흡입구(31c)에 인접하여 설치된다.
브라인 순환유닛(40)의 일측에는 브라인을 순환구동시키는 브라인 순환펌프(42)가 설치되고, 브라인 순환유닛(40)은 브라인 순환펌프(42)의 상류측에는 축냉조(10) 내에 설치된 내측 브라인냉각코일(43), 브라인 순환펌프(42)의 하류측에 연결된 브라인공급라인(44), 제3흡입측 열교환기(41c)와 내측 브라인냉각코일(43) 사이에 연결된 브라인회수라인(45)으로 이루어진다.
그리고, 브라인공급라인(44)의 도중에는 복수의 흡입측 열교환기(41a, 41b, 41c)가 설치된다.
이에, 브라인 순환펌프(42)의 구동에 의해 브라인이 내측 브라인냉각코일(43)을 통과함에 따라 브라인은 축냉조(10) 내의 저온잠열PCM과 열교환하여 냉각되고, 이렇게 냉각된 브라인은 브라인공급라인(44)을 통해 복수의 흡입측 열교환기(41a, 41b, 41c)를 순차적으로 통과하면서 흡입되는 공기와 열교환하여 공기를 1차로 냉각한 후에 브라인회수라인(45)을 통해 브라인 순환펌프(42) 측으로 회수된다.
각 흡입측 열교환기(41a, 41b, 41c)는 브라인공급라인(44)이 복수의 전열핀을 관통하도록 구성되고, 이에 각 공기흡입구(31a, 31b, 31c) 측으로 흡입되는 공기와의 전열면적을 넓혀 그 열교환효율을 높일 수 있다.
한편, 축냉조(10)의 저온잠열PCM이 냉매순환라인(21)에 의해 축냉될 때 그 동결로 인하여 과냉각이 발생할 수 있고, 이에 축냉조(10)의 저온잠열PCM 측에 미세한 진동 또는 전류를 인가할 경우 과냉각을 해소할 수 있다.
이에 본 발명은, 브라인 순환유닛(40)의 내측 브라인냉각코일(43)을 냉매순환라인(21) 측에 인접하여 설치함에 따라 브라인이 내측 브라인냉각코일(43) 내를 흐르면서 발생하는 미세한 진동에 의해 저온잠열PCM의 과냉각을 해소할 수 있는 장점이 있다.
또한, 냉매순환라인(21)의 분기관(21c)들 사이의 간격이 10cm정도로 이격될 경우 저온잠열PCM을 고체화(동결)시킬 때 많은 축냉시간이 소요될 뿐만 아니라 축냉조 내에서 저온잠열PCM 전체의 고체화(동결) 시에 사각(死角)지대가 발생할 수 있지만, 본 발명은 내측 브라인냉각코일(43)이 냉매순환라인(21)의 분기관(21c)들 사이에 배치시킴에 따라 축냉시간을 대폭 단축함과 더불어 저온잠열PCM의 고체화 시에 사각지대의 발생을 방지할 수 있는 장점이 있다.
브라인공급라인(44)의 일측에는 브라인의 팽창을 방지함과 더불어 브라인 보충을 위한 브라인 팽창 및 보충탱크(46)가 설치될 수 있다.
브라인회수라인(45)의 일측에는 브라인 내의 잔여공기를 외부로 배출할 수 있는 에어벤트(47)가 설치될 수 있다.
그리고, 브라인공급라인(44)의 일측에서 브라인회수라인(45)의 일측으로 바이스배관(48)이 연결되고, 바이패스배관(48)의 일측에는 바이패스밸브(49)가 설치되며, 바이패스밸브(49)는 입구포트(49a), 제1출구포트(49b), 제2출구포트(49c)를 가진 삼방밸브 구조로 구성될 수 있다. 상기 삼방밸브는 전자식으로 가동할 수도 있다.
저온잠열PCM의 축냉 및 방냉이 동시에 작동할 경우, 도 4에 도시된 바와 같이 바이패스밸브(49)의 제1출구포트(49b)는 개방됨과 동시에 제2출구포트(49c)가 폐쇄되고, 이에 브라인은 브라인 공급라인(44)을 통과한 후에 복수의 흡입측 열교환기(41b, 41a, 41c)를 순차적으로 거치면서 공기흡입구(31b, 31a, 31c)로 흡입되는 공기와 열교환된 후에 브라인 순환펌프(42)로 회수된다.
즉, 저온잠열PCM의 축냉과 방냉이 동시에 이루어질 경우에는 브라인은 복수의 흡입측 열교환기(41a, 41b, 41c)측으로 정상적으로 순환한다.
그리고, 저온잠열PCM이 냉각기(20)의 냉매와 열교환을 통해 축냉만이 진행될 때 즉, 저온잠열PCM의 축냉 작동 시에는 도 5에 도시된 바와 같이 바이패스밸브(49)의 제1출구포트(49b)는 폐쇄됨과 동시에 제2출구포트(49c)가 개방되고, 이에 브라인은 바이패스배관(48)을 거친 후에 내측 브라인냉각코일(43)을 통과하여 브라인 순환펌프(42) 측으로 회수됨으로써 브라인은 흡입측 열교환기(41a, 41b, 41c) 측으로 순환하지 않으며, 이에 저온잠열PCM은 그 축냉에너지의 소모가 방지될 수 있다.
이와 같이, 본 발명은 바이패스밸브(49)의 조작에 의해 축냉만이 진행될 경우 축냉조(10)의 저온잠열PCM과 열교환된 브라인이 흡입측 열교환기(41a, 41b, 41c) 측으로 순환하여 저온잠열PCM의 축냉에너지가 소모됨을 방지할 수 있는 장점이 있다.
한편, 복수의 흡입측 열교환기(41a, 41b, 41c) 측에서 결로현상이 발생할 경우 그 결로를 제상하기 위한 제상구조가 설치되고, 이러한 제상구조는 제상용 고온수 공급라인(71) 및 제상용 고온수 회수라인(72)으로 이루어진다.
도 3 내지 도 5에 도시된 바와 같이, 제2흡입측 열교환기(41b)에 인접한 브라인 공급라인(44)의 일측에는 제상용 고온수 공급라인(71)이 연결되고, 제상용 고온수 공급라인(71)을 통해 엔진룸의 라디에이터로부터 제상용 고온수를 공급받으며, 제3흡입측 열교환기(41c)에 인접한 브라인 회수라인(45)의 일측에는 제상용 고온수 회수라인(72)이 연결되고, 제상용 고온수 회수라인(72)을 통해 엔진룸의 라이에이터 측으로 제상용 고온수를 회수한다.
제상용 고온수 공급라인(71)과 브라인 공급라인(44)이 연결되는 부분에는 제1제상밸브(73)가 설치되고, 제1제상밸브(73)는 입구포트(73a), 제1출구포트(73b), 제2출구포트(73c)를 가진 삼방밸브 구조로 구성될 수 있다. 제1제상밸브(73)는 전자식으로 가동될 수 있다.
제상용 고온수 회수라인(72)과 브라인 회수라인(45)이 연결되는 부분에는 제2제상밸브(74)가 설치되고, 제2제상밸브(74)는 입구포트(74a), 제1출구포트(74b), 제2출구포트(7c)를 가진 삼방밸브 구조로 구성될 수 있다. 제2제상밸브(74)는 전자식으로 가동될 수 있다.
제상작동 시에 제1제상밸브(73)의 제1출구포트(73b) 및 제2제상밸브(74)의 제1출구포트(74b)를 폐쇄함과 동시에 제1제상밸브(73)의 제2출구포트(73c) 및 제2제상밸브(74)의 제2출구포트(74c)를 개방함으로써 브라인 공급라인(44) 및 브라인 회수라인(45) 측으로의 브라인 흐름이 정지된 상태에서 제상용 고온수가 제상용 고온수 공급라인(71)를 거쳐 복수의 흡입측 열교환기(41a, 41b, 41c)를 순차적으로 통과하면서 각 흡입측 열교환기(41a, 41b, 41c)의 전열핀에 대한 제상 작동을 수행한 후에 제상용 고온수 회수라인(72)을 통해 회수될 수 있다.
그리고, 제상이 완료된 후에는 제1제상밸브(73)의 제1출구포트(73b) 및 제2제상밸브(74)의 제1출구포트(74b)를 개방함과 동시에 제1제상밸브(73)의 제2출구포트(73c) 및 제2제상밸브(74)의 제2출구포트(74c)를 폐쇄함으로써 브라인 공급라인(44) 및 브라인 회수라인(45) 측으로의 브라인 흐름이 이루어질 수 있다.
이와 같이, 본 발명은 상술한 제상구조(71, 72, 73, 74)에 의해, 제1 및 제2 개폐밸브(73, 74)의 제1출구포트(73b, 74b)가 폐쇄됨과 동시에 제2출구포트(73c, 74c)가 개방되면 브라인의 순환이 정지되고, 이러한 브라인의 순환 정지상태에서 엔진룸 측에서 발생한 고온수가 제상용 고온수 공급라인(71)을 통해 복수의 흡입측 열교환기(41a, 41b, 41c)을 통과하여 각 흡입측 열교환기(41a, 41b, 41c)의 전열핀에 생성된 결빙을 제상한 후에 제상용 고온수 회수라인(72)을 통해 엔진룸 측으로 회수될 수 있다.
또한, 각 흡입측 열교환기(41a, 41b, 41c)의 전열핀 측에는 하나 이상의 제상용 전기히터(미도시)가 설치됨으로써 각 흡입측 열교환기(41a, 41b, 41c)의 전열핀에서 발생하는 결빙을 효과적으로 제상할 수도 있다.
그리고, 축냉조(10)의 하단에는 방진받침틀(18)이 좌우 대칭적으로 설치되고, 특히 본 발명은 복수의 흡입측 열교환기(41a, 41b, 41c)가 축냉조(10)의 하부측에 균일하게 분산된 구조로 이루어짐에 따라 방진받침틀(18)에 의한 축냉조(10)의 방진지지를 보다 효과적으로 구현할 수 있다.
본 발명의 축냉장치가 냉동차량에 적용될 경우 냉동차량이 도로 주행 중에 언덕이나 요철부분 통과시에 발생하는 진동이 축냉조(10) 측으로 전달될 경우 방진받침틀(18)이 축냉조(10)를 적절히 방진지지함으로써 축냉조(10) 측에 걸리는 피로와 스트레스 등을 최소화할 수 있는 장점이 있다.
본 발명에 의하면, 복수의 공기흡입구(31a, 31b, 31c) 측에 개별적으로 배치된 복수의 흡입측 열교환기(41a, 41b, 41c)를 통해 흡입되는 공기가 1차 열교환하여 냉각되고, 이렇게 1차 열교환에 의해 냉각된 공기는 축냉조(10)와 외측케이스(30) 사이의 공기순환 열교환통로(60)를 거치면서 축냉조(10)의 저온잠열PCM과의 2차 열교환하여 냉각되며, 이러한 다단으로 냉각된 공기는 공기토출구(32)를 통해 강제로 냉동공간으로 토출됨으로써 냉동공간에 대한 냉동/냉장효율을 대폭 향상시킬 수 있으며, 별도의 유류 및 주간피크시간 대에 냉각기의 가동 없이 냉장냉동보관용 물류제품을 신선하게 보관 및 운반하고, 별도의 냉각기를 작동시키기 위해 소비되는 유류 및 CO2를 절감시켜 환경오염으로 지구온난화를 사전방지하고, 에너지비용 등의 경제성을 향상시킬 수 있는 장점이 있다.
이상, 본 발명의 구체적인 실시예를 설명하였으나, 본 발명은 이 명세서에 개시된 실시예 및 첨부된 도면에 의하여 한정되지 않으며 본 발명의 기술적 사상을 벗어나지 않는 범위 이내에서 당업자에 의하여 다양하게 변형될 수 있다.
Claims (11)
- 저온잠열PCM이 저장된 축냉조와;AC전원을 이용하는 AC용 냉각기 및 DC전원을 이용한 DC용 냉각기의 각 공급라인 및 회수라인은 냉매순환라인 측에 병렬로 접속되고, 상기 냉매순환라인은 상기 축냉조 내에 배치된 입력측 분배관 및 출력측 헤더관, 상기 입력측 분배관 및 출력측 헤드관 사이에 연결된 복수의 분기관으로 이루어지며, 상기 축냉조 내의 저온잠열PCM을 냉각하고, 상기 축냉조 내를 통과하도록 배치되는 냉매순환라인을 가진 냉각기와;상기 축냉조를 감싸도록 설치되고, 상부에는 공기토출구가 형성된 외측케이스와;상기 외측케이스의 하부에 복수의 공기흡입구가 형성되고, 제1공기흡입구는 상기 외측케이스의 하부 중앙측에 위치되고, 제2공기흡입구 및 제3공기흡입구는 상기 외측케이스의 하부 우측 및 좌측에 대칭적으로 위치한 것이며,상기 외측케이스의 공기흡입구 측에 배치된 흡입측 열교환기를 가진 브라인 순환유닛과;상기 축냉조 내의 저온잠열PCM을 교반하는 교반유닛; 및상기 축냉조의 외측면과 상기 외측케이스의 내측면 사이에 배치된 공기순환 열교환통로;를 포함하는 것을 특징으로 하는 브라인 순환을 이용한 축냉장치.
- 청구항 1에 있어서,상기 교반유닛은 상기 축냉조 내부를 통과하도록 배치된 교반라인을 가지고, 상기 교반라인에는 순환펌프, 흡입관, 토출관이 설치되며,상기 교반라인의 흡입관은 상기 축냉조의 하측에 위치하고, 상기 교반라인의 토출관은 축냉조의 상측에 위치하는 것을 특징으로 하는 브라인 순환을 이용한 축냉장치.
- 청구항 1에 있어서,상기 AC용 냉각기의 공급라인 측에는 제1팽창밸브가 설치되며, 상기 AC용 냉각기의 회수라인 측에는 제1역류방지 체크밸브가 설치되고, 상기 DC용 냉각기의 공급라인 측에는 제2팽창밸브가 설치되고, 상기 DC용 냉각기의 회수라인 측에는 제2역류방지 체크밸브가 설치되는 것을 특징으로 하는 브라인 순환을 이용한 축냉장치.
- 청구항 1에 있어서,상기 축냉조의 외측면과 외측케이스의 내측면 사이에는 복수의 보강재가 일정간격으로 이격되어 배치됨에 따라 공기순환 열교환통로를 통과하는 공기는 복수의 통로로 분할되게 형성되는 것을 특징으로 하는 브라인 순환을 이용한 축냉장치.
- 청구항 1에 있어서,상기 브라인 순환유닛은 그 일부가 상기 축냉조 내부를 통과하도록 설치되고, 외측케이스의 공기흡입구 측에 배치된 흡입측 열교환기를 포함하며,상기 흡입측 열교환기는 제1흡입측 열교환기, 제2흡입측 열교환기, 제3흡입측 열교환기로 구성되고, 상기 제1흡입측 열교환기는 상기 외측케이스의 제1공기흡입구에 인접하여 설치되며, 상기 제2흡입측 열교환기는 상기 외측케이스의 제2공기흡입구에 인접하여 설치되고, 상기 제3흡입측 열교환기는 상기 외측케이스의 제3공기흡입구에 인접하여 설치되는 것을 특징으로 하는 브라인 순환을 이용한 축냉장치.
- 청구항 5에 있어서,상기 브라인 순환유닛의 일측에는 브라인을 순환구동시키는 브라인 순환펌프가 설치되고,브라인 순환펌프의 상류측에는 축냉조 내에 설치된 내측 브라인냉각코일, 브라인 순환펌프의 하류측에 연결된 브라인공급라인, 및 상기 흡입측 열교환기와 내측 브라인냉각코일 사이에 연결된 브라인회수라인으로 이루어지고,상기 브라인공급라인의 도중에는 상기 복수의 흡입측 열교환기가 설치되는 것을 특징으로 하는 브라인 순환을 이용한 축냉장치.
- 청구항 6에 있어서,상기 브라인공급라인의 일측에는 브라인의 팽창 방지 및 브라인의 보충을 위한 브라인 팽창 및 보충탱크가 설치되고,상기 브라인회수라인의 일측에는 브라인 내의 잔여공기를 외부로 배출하는 에어벤트가 설치되는 것을 특징으로 하는 브라인 순환을 이용한 축냉장치.
- 청구항 6에 있어서,상기 브라인공급라인의 일측에서 상기 브라인회수라인의 일측으로 바이패스배관이 연결되고, 상기 바이패스배관의 일측에는 바이패스밸브가 설치되는 것을 특징으로 하는 브라인 순환을 이용한 축냉장치.
- 청구항 6에 있어서,상기 브라인공급라인의 일측에는 엔진룸의 라디에이터로부터 제상용 고온수를 공급받는 제상용 고온수 공급라인이 연결되고, 상기 브라인 회수라인의 일측에는 엔진룸의 라이에이터 측으로 제상용 고온수를 회수시키는 제상용 고온수 회수라인이 연결되며,상기 제상용 고온수 공급라인과 상기 브라인 공급라인이 연결되는 부분에는 제1제상밸브가 설치되고, 제상용 고온수 회수라인과 브라인 회수라인이 연결되는 부분에는 제2제상밸브가 설치되는 것을 특징으로 하는 브라인 순환을 이용한 축냉장치.
- 청구항 6에 있어서,복수의 흡입측 열교환기는 상기 브라인공급라인이 복수의 전열핀을 관통하도록 구성되고, 상기 흡입측 열교환기의 전열핀 측에는 제상용 전기히터가 설치되는 것을 특징으로 하는 브라인 순환을 이용한 축냉장치.
- 청구항 1에 있어서,상기 축냉조의 하단에는 방진받침틀이 좌우 대칭적으로 설치되는 것을 특징으로 하는 브라인 순환을 이용한 축냉장치.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2012-0051450 | 2012-05-15 | ||
KR1020120051450A KR101226897B1 (ko) | 2012-05-15 | 2012-05-15 | 브라인 순환을 이용한 축냉장치 |
KR1020120086547A KR101266786B1 (ko) | 2012-08-08 | 2012-08-08 | 브라인 순환을 이용한 축냉장치 |
KR10-2012-0086547 | 2012-08-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013172651A1 true WO2013172651A1 (ko) | 2013-11-21 |
Family
ID=49583995
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2013/004300 WO2013172651A1 (ko) | 2012-05-15 | 2013-05-15 | 브라인 순환을 이용한 축냉장치 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2013172651A1 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103629870A (zh) * | 2013-12-03 | 2014-03-12 | 孙厚永 | 空气源热泵热水器快速化霜装置 |
CN108696040A (zh) * | 2018-06-04 | 2018-10-23 | 珠海英搏尔电气股份有限公司 | 一种水冷电机壳及电机 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0999731A (ja) * | 1995-10-05 | 1997-04-15 | Denso Corp | 吸着式空気調和装置 |
KR20110103514A (ko) * | 2010-03-15 | 2011-09-21 | 성 준 박 | 전기에너지를 이용한 완전동결형 축냉식 냉장·냉동차 |
KR101102333B1 (ko) * | 2011-03-02 | 2012-01-04 | 케이디피시엠 주식회사 | 멀티 냉각방식 p.c.m 축냉 시스템 |
-
2013
- 2013-05-15 WO PCT/KR2013/004300 patent/WO2013172651A1/ko active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0999731A (ja) * | 1995-10-05 | 1997-04-15 | Denso Corp | 吸着式空気調和装置 |
KR20110103514A (ko) * | 2010-03-15 | 2011-09-21 | 성 준 박 | 전기에너지를 이용한 완전동결형 축냉식 냉장·냉동차 |
KR101102333B1 (ko) * | 2011-03-02 | 2012-01-04 | 케이디피시엠 주식회사 | 멀티 냉각방식 p.c.m 축냉 시스템 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103629870A (zh) * | 2013-12-03 | 2014-03-12 | 孙厚永 | 空气源热泵热水器快速化霜装置 |
CN103629870B (zh) * | 2013-12-03 | 2016-06-01 | 孙厚永 | 空气源热泵热水器快速化霜装置 |
CN108696040A (zh) * | 2018-06-04 | 2018-10-23 | 珠海英搏尔电气股份有限公司 | 一种水冷电机壳及电机 |
CN108696040B (zh) * | 2018-06-04 | 2024-01-30 | 珠海英搏尔电气股份有限公司 | 一种水冷电机壳及电机 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013172649A1 (ko) | 브라인 순환을 이용한 축냉장치 | |
KR101102333B1 (ko) | 멀티 냉각방식 p.c.m 축냉 시스템 | |
CN104613577B (zh) | 内融冰冰蓄冷空调系统及其运行方法 | |
CN201240316Y (zh) | 太阳能半导体果蔬冷藏运输车 | |
CN212353530U (zh) | 一种车载式蓄冷箱 | |
KR101285199B1 (ko) | 브라인(brine)순환 멀티 냉각방식 P.C.M 축냉 시스템 | |
CN207631086U (zh) | 半导体制冷的冷藏车 | |
KR20120037115A (ko) | 심야전력을 이용한 완전동결형 축냉식 냉장?냉동차 | |
KR20130011288A (ko) | 열에너지 이송 방식 공기순환 멀티 냉각 p.c.m 축냉 트럭 | |
KR101371362B1 (ko) | 멀티냉각방식 열교환기 일체형 p.c.m 축냉조 | |
CN102506528B (zh) | 一种新型冷库融霜系统 | |
CN109509937A (zh) | 集装箱空调冷却系统及集装箱 | |
WO2013172651A1 (ko) | 브라인 순환을 이용한 축냉장치 | |
CN206059580U (zh) | 动力电池冷却系统、冷却系统及具有该冷却系统的车辆 | |
WO2013172650A1 (ko) | 브라인 순환을 이용한 축냉장치 | |
KR20100084764A (ko) | 냉동차량용 축냉탑 | |
CN207945858U (zh) | 冷藏系统 | |
WO2013172666A1 (ko) | 축냉시스템을 가진 냉동쇼케이스 | |
WO2022253278A1 (zh) | 移动式保鲜箱及具有其的冷链运载工具 | |
KR101339125B1 (ko) | 다수의 브라인(brine)순환 열교환(Heat Exchange) 코일(Coil)을 활용한 공기순환 냉각방식 P.C.M 축냉 시스템 | |
KR101266785B1 (ko) | 브라인 순환을 이용한 축냉장치 | |
KR101266786B1 (ko) | 브라인 순환을 이용한 축냉장치 | |
CN107031490A (zh) | 冷藏运输车及制冷方法 | |
CN210425382U (zh) | 一种带余热回收及自然冷源利用的室外机 | |
CN210267596U (zh) | 一种载冷剂冷冻蓄冰储能与空气融冰空调装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13791259 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13791259 Country of ref document: EP Kind code of ref document: A1 |