WO2013172276A1 - ハイブリッド式建設機械 - Google Patents

ハイブリッド式建設機械 Download PDF

Info

Publication number
WO2013172276A1
WO2013172276A1 PCT/JP2013/063199 JP2013063199W WO2013172276A1 WO 2013172276 A1 WO2013172276 A1 WO 2013172276A1 JP 2013063199 W JP2013063199 W JP 2013063199W WO 2013172276 A1 WO2013172276 A1 WO 2013172276A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
engine
pump
soc
target
Prior art date
Application number
PCT/JP2013/063199
Other languages
English (en)
French (fr)
Inventor
新士 石原
星野 雅俊
坂本 博史
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to JP2014515600A priority Critical patent/JP5952901B2/ja
Priority to US14/400,947 priority patent/US9487932B2/en
Priority to EP13790109.6A priority patent/EP2851475B1/en
Priority to CN201380025106.0A priority patent/CN104302847B/zh
Priority to KR1020147030391A priority patent/KR101716943B1/ko
Publication of WO2013172276A1 publication Critical patent/WO2013172276A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2062Control of propulsion units
    • E02F9/2075Control of propulsion units of the hybrid type
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2246Control of prime movers, e.g. depending on the hydraulic load of work tools
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/04Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/12Emission reduction of exhaust
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/08Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
    • H02H7/0833Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors for electric motors with control arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/93Conjoint control of different elements

Definitions

  • the present invention relates to a hybrid construction machine such as a hydraulic shovel or a wheel loader provided with an engine and an electric motor / generator as a power source.
  • Construction machines (hydraulic shovels, wheel loaders, etc.) aimed at energy saving (low fuel consumption) and emission reduction of exhaust gases (carbon dioxide, nitrogen oxides, particulate matter, etc.) discharged from the engine and causing environmental load
  • a so-called hybrid construction machine equipped with a motor / generator as a power source in addition to an engine.
  • Japanese Patent No. 4633813 As a technology of a hybrid construction machine, a technology for avoiding the decrease in engine combustion efficiency and preventing the generation of black smoke (exhaust gas) is disclosed in Japanese Patent No. 4633813. According to this technology, the engine upper limit value is increased according to a certain increase rate to prevent the engine from sharply increasing the power to suppress the exhaust gas.
  • Japanese Patent No. 4512283 prevents excessive supply of the total power of the engine and the motor / generator by adjusting the excess / shortage of the supply power of the engine to the required power of the hydraulic pump through charge / discharge operation by the motor / generator. There is disclosed a technology for improving fuel efficiency and preventing engine stall caused by insufficient power supply to a hydraulic pump.
  • Patent No. 4633813 Patent No. 4512283 JP 2003-9308 A
  • the power change speed of the engine is limited by increasing the output upper limit value of the engine at a predetermined increase rate, but when the required power of the pump exceeds the output upper limit of the engine , The difference is compensated by the power of the motor. Therefore, for example, during the work where the necessary power rapidly increases such as the excavating operation of a shovel, the power that can be supplied to the pump is insufficient when the storage capacity is small and sufficient power assistance can not be performed from the motor. Therefore, it is inevitable that the operation of the shovel will be slow. Furthermore, in such a situation, if the power that can be supplied from the engine and the motor / generator is much lower than the required pump power, the engine may be stalled.
  • the present invention has been made in view of the above problems, and it is an object of the present invention to provide a hybrid construction machine capable of maintaining an operator's operation feeling well while reducing fuel consumption and exhaust gas. To aim.
  • the present invention provides an engine, a motor / generator for transmitting torque between the engine, and a hydraulic pump driven by at least one of the engine and the motor / generator.
  • a hydraulic actuator driven by pressure oil discharged from the hydraulic pump, a power storage device for supplying electric power to the motor / generator, and the engine and the electric motor so as to satisfy the required power of the hydraulic pump
  • control means for setting a target power of the generator, wherein the control means monotonously increases the limit value of the target power of the engine according to a decrease in the remaining amount of charge of the power storage device.
  • the motor / generator with high responsiveness preferentially outputs the pump request power when the storage residual amount is relatively large, and depends on the storage residual amount when the storage residual amount is relatively small. Since the non-performing engine preferentially outputs the pump request power, it is possible to secure a good operation feeling regardless of the remaining amount of stored power and to reduce the fuel consumption and the exhaust gas.
  • FIG. 7 is a schematic configuration diagram of a controller according to a second embodiment of the present invention.
  • requirement motive power, engine target motive power, and assist target motive power in case SOC is large.
  • requirement motive power, engine target motive power, and assist target motive power in case SOC is small.
  • the simple explanatory view about how to decide the engine target motive power in case SOC is low.
  • FIG. 1 is a schematic configuration diagram of a hydraulic drive control device in a hybrid hydraulic shovel according to an embodiment of the present invention.
  • the hydraulic drive control device shown in this figure includes an engine 1, a governor 7 for adjusting the fuel injection amount of the engine 1, a rotation number sensor (actual rotation number detection means) 6 for detecting an actual rotation number of the engine 1, and an engine A motor / generator 2 mechanically connected to the output shaft of 1 and transmitting torque with the engine 1, and mechanically connected to the output shafts of the engine 1 and the motor / generator 2 Driven by pressure oil discharged from the variable displacement hydraulic pump 3 (hereinafter may be simply referred to as "hydraulic pump 3") and pilot pump 32 driven by at least one of the motor / generator 2 and the hydraulic pump 3 And a control lever for controlling the hydraulic actuator 5 by reducing the pressure oil discharged from the pilot pump 32 and outputting the pressure oil to the valve device 4 (operation 16), a storage device (storage means) 10 for storing electric power
  • the hydraulic drive control device shown in FIG. 1 first supplies the pressure oil discharged by the hydraulic pump 3 to the valve device 4 provided with a plurality of control valves, and the valve device 4 appropriately changes the flow rate, direction, and pressure of the pressure oil.
  • the drive of each hydraulic actuator 5 is controlled by supplying each hydraulic actuator 5 later.
  • the control valve in the valve device 4 is controlled by pressure oil discharged from the pilot pump 32 and reduced in pressure according to the amount of operation of the control lever 16.
  • the operation amount of the operation lever 16 can be detected by detecting the pressure of the pressure oil output from the pilot pump 32 to the valve device 4 (control valve) by pressure detection means such as the pressure sensors 18a and 18b (see FIG. 1). .
  • a hydraulic cylinder (a boom cylinder, an arm cylinder, and a bucket for driving an articulated working device attached to the front of the upper swing body)
  • a hydraulic motor for swinging the upper swing body
  • a hydraulic motor for running the lower traveling body attached to the lower portion of the upper swing body
  • the engine 1 is controlled by controlling the fuel injection amount by the governor 7.
  • the pressure pump 19 measures pressure of the pressure oil discharged from the hydraulic pump 3 as a means (pump information detecting means) for detecting information necessary to calculate the load of the hydraulic pump 3 (a pressure sensor 19 A detection means), a flow rate sensor (flow rate detection means) (not shown) for measuring the flow rate of the pressure oil, and an angle sensor (angle detection means) (not shown) for measuring the tilt angle of the hydraulic pump 3;
  • the pressure sensor 19, the flow rate sensor and the angle sensor output the detected sensor values to the controller 8.
  • the regulator 14 and the solenoid proportional valve 15 are pump displacement adjusting devices that adjust the displacement of the hydraulic pump 3 based on an operation signal output from the controller 8.
  • the regulator 14 is provided to the hydraulic pump 3, and when the tilt angle of the swash plate or the oblique shaft of the hydraulic pump 3 is operated by the regulator 14, the displacement (displacement volume) of the hydraulic pump 3 is changed to absorb the hydraulic pump 3. Torque (input torque) can be controlled (pump absorption torque control).
  • the hydraulic proportional valve 15 is supplied with pressure oil through a pipe (not shown) connected to the pilot pump 32.
  • the regulator 14 in the present embodiment is controlled by the control pressure generated by the solenoid proportional valve 15.
  • the solenoid proportional valve 15 operates based on the command value output from the controller 8.
  • the regulator 14 controls, for example, the displacement of the hydraulic pump 3 in accordance with the control characteristic diagram shown in FIG. FIG. 2 is a control characteristic diagram of pump absorption torque by the regulator 14 according to the embodiment of the present invention.
  • the broken line 31A shown in this figure shows the characteristic of the capacity of the hydraulic pump 3 set with respect to the discharge pressure of the hydraulic pump 3, and the maximum value of the total output of the engine 1 and the motor / generator 2 (in FIG.
  • the torque (product of the pump displacement and the pump discharge pressure) of the hydraulic pump 3 is set to be substantially constant within a range not exceeding the hyperbola (constant torque diagram) indicated by the broken line in FIG.
  • the torque of hydraulic pump 3 is controlled so as not to exceed the maximum output by engine 1 and motor / generator 2 it can.
  • the pump discharge pressure is P1 or less
  • the pump absorption torque control is not performed, and the pump displacement is determined by the operation amount of the operation lever for operating each control valve of the valve device 4 (for example, any operation lever Becomes q1 when the operation amount of is the maximum).
  • the pump discharge pressure becomes P1 to P2
  • the pump absorption torque control by the regulator 14 is executed, and the pump displacement angle by the regulator 14 decreases the pump displacement along the broken line 31A with the increase of the pump discharge pressure. Is operated.
  • the pump absorption torque is controlled to be equal to or less than the torque specified by the broken line 31A.
  • P2 is the maximum value of the pump discharge pressure, which is equal to the set pressure of the relief valve connected to the circuit on the hydraulic pump 3 side in the valve device 4, and the pump discharge pressure does not rise above this value.
  • a broken line 31A in which two straight lines are combined is used as a control characteristic diagram of absorption torque of the hydraulic pump, but if it is set in a range not exceeding the constant torque diagram (hyperbola) in FIG.
  • a control characteristic chart may be used.
  • the controller 8 outputs an operation signal (electric signal) generated based on the absorption torque of the hydraulic pump 3 to the solenoid proportional valve 15, and the solenoid proportional valve 15 generates the control pressure according to the operation signal, thereby regulating the regulator 14. Drive.
  • the capacity of the hydraulic pump 3 is changed by the regulator 14, and the absorption torque of the hydraulic pump 3 is adjusted to a range where engine stall does not occur.
  • the power storage device 10 configured of a battery, a capacitor, or the like includes a current sensor 11, a voltage sensor 12, and a temperature sensor as means (power storage information detection means) for detecting information required to calculate the storage amount of the power storage device 10. 13 is attached.
  • the controller 8 calculates the remaining charge amount of the power storage device 10 in the remaining charge amount calculation unit 21 (described later) based on the information such as the current, voltage and temperature detected by the sensors 11, 12, 13 Control the storage capacity of
  • FIG. 3 is a schematic block diagram of the controller 8 according to the first embodiment of the present invention.
  • the same reference numerals are given to the same parts as the parts shown in the previous figures, and the description may be omitted as appropriate (the same applies to the latter figures).
  • the controller 8 shown in this figure mainly executes processing for setting the target power of the engine 1 and the motor / generator 2 so as to satisfy the required power of the hydraulic pump 3.
  • the engine target power calculation unit 23, the pump power calculation unit 22, the motor / generator target power calculation unit 34, the assist power control unit 28, the engine target rotation speed calculation unit 35, and the engine target rotation speed control unit 36 Have.
  • the controller 8 has, as a hardware configuration, an arithmetic processing unit (for example, a CPU) for executing various processing programs according to the present invention, and a storage unit (for example, a ROM) for storing various data including the control program. , RAM) etc. (all not shown).
  • arithmetic processing unit for example, a CPU
  • a storage unit for example, a ROM
  • control is implemented by the controller 8 also regarding a hydraulic system, various electrical components, etc., detailed description is abbreviate
  • a storage residual amount calculation unit (storage residual amount calculation means) 21 calculates the storage residual amount (SOC: State Of Charge (hereinafter sometimes referred to as SOC)) of the storage device 10 and outputs the storage residual amount. It is a part that performs processing.
  • SOC State Of Charge
  • a known method may be used as a method of calculating the remaining charge amount, for example, based on information such as current, voltage and temperature detected by the current sensor 11, the voltage sensor 12 and the temperature sensor 13. There are some that calculate the remaining amount.
  • the engine target power calculation unit (engine target power calculation means) 23 is a part that executes processing to calculate the target power (engine target power) of the engine 1 based on the SOC output from the stored power amount calculation unit 21. .
  • the engine target power is set by the engine target power calculation unit 23 so as to monotonously increase as the SOC decreases.
  • “monotonically increasing” includes not only “(1) monotonous increase in a narrow sense that engine target power always increases with decrease in SOC, but (2) engine target power is specified with decrease in SOC
  • the term “monotonic increase in a broad sense” which increases stepwise (discretely) while being held constant in the SOC section of the term is also included (Note that “monotonic increase in a broad sense” is an engine target along with a decrease in SOC). It is sometimes called “monotonous non-decreasing" because the power increases without decreasing.
  • the engine target power calculation unit 23 in the present embodiment uses a power calculation table shown in FIG. 4 when calculating the engine target power based on the SOC.
  • FIG. 4 is a diagram showing a power calculation table according to the first embodiment of the present invention.
  • the horizontal axis represents SOC, which is an input from the remaining charge amount calculation unit 21, and the target power, which is the output of the engine target power calculation unit 23, is vertical axis.
  • the engine target power is set to increase stepwise (in a broad sense, monotonically increases) according to the decrease in SOC, and the entire table is viewed The engine target power is increasing with the left shoulder rising, and there is no part of the left shoulder falling.
  • the engine target power is set low, and the fuel consumption is reduced by lowering the target power of the engine 1
  • the engine target power is set to be large. That is, when the SOC is low, the frequency of using the motor / generator 2 as a generator is increased to avoid the situation where the power storage device 10 is overdischarged.
  • the engine target power is set to the maximum power of the engine 1, and the SOC is S2 (second set value
  • the engine target power is set to a value smaller than the minimum power of the hydraulic pump 3. That is, when the SOC is equal to or greater than S2, the motor / generator 2 operates as a motor.
  • a table in which the engine target power monotonously increases in a step-like manner (monotonous increase in a broad sense) with SOC decrease is used. It was. Setting the table in this manner is also advantageous in that the used capacity of the storage device can be further suppressed and that the calculation speed of the arithmetic processing unit can be improved. Also, the design method of the table is not limited to this, and for example, as described later, the engine target power always increases (monotonously increases in a narrow sense) according to the decrease of SOC (for example, a curved graph) You may use
  • the pump power calculation unit (pump power calculation means) 22 is a part that calculates a required power (pump required power) of the hydraulic pump 3 and executes a process of outputting the pump required power.
  • a method of calculating the required power of the hydraulic pump 3 for example, there is a method of inputting the operation amount (lever operation amount) of the operation lever 16 and calculating the required power based on the magnitude of the operation amount.
  • a method of obtaining the operation amount of the operation lever 16 there is a method using detection values of the pressure sensors 18a and 18b.
  • the actual pump power output from the hydraulic pump 3 may be regarded as the pump request power.
  • a method of calculating the actual pump power for example, there is a method of multiplying the pump discharge pressure detected through the pressure sensor 19 and the pump discharge flow rate detected through the flow sensor.
  • the motor / generator target power calculation unit (motor / generator target power calculation means) 34 executes processing for calculating the target power (assist target power) of the motor / generator 2 based on the engine target power and the pump required power.
  • the assist target power calculated here is converted into an assist power command and is output to the assist power control unit 28.
  • the motor / generator 2 When the assist target power is a positive value (that is, in the case of “pump required power> engine target power”), the motor / generator 2 operates as a motor using the power of the charging device 10, and is a negative value. (That is, in the case of "pump required power ⁇ engine target power”) is driven by the engine 1 and operates as a generator.
  • the assist power control unit (assist power control means) 28 controls the motor / generator 2 based on the assist power command, and corresponds to the inverter 9 in FIG.
  • the engine target rotation speed calculation unit (target rotation speed calculation means) 35 is a part that executes processing for calculating the target rotation speed of the engine 1 based on the engine target power output from the engine target power calculation unit 23.
  • a method of calculating the target rotational speed for example, a combination that achieves the desired fuel efficiency is selected from among a plurality of combinations of rotational speed and torque that can achieve the engine target power input from the engine target power calculation unit 23 In some cases, the number of revolutions related to the combination is set as the target number of revolutions.
  • the engine target rotation speed calculated here is converted into a target rotation speed command and output to the engine target rotation speed control unit 36.
  • the engine target speed control unit (engine control means) 36 is a part that controls the engine 1 based on the target speed command, and corresponds to the governor 7 in FIG. 1.
  • FIG. 5 shows that the SOC, the pump required power, the engine target power, and the assist target power are the motor and generator targets when the SOC is S2 or more and is sufficiently large (for example, at the start of work the day after the night charge).
  • FIG. 6 is a diagram showing a change in the aforementioned assist power command converted by the power calculation unit 34.
  • the SOC is equal to or greater than S2
  • the engine target power starts from the minimum value.
  • the SOC is equal to or greater than S2
  • the minimum value of the engine target power is set to be equal to or less than the minimum power of the hydraulic pump 3.
  • the motor / generator 2 is not operated as a generator, and only operates or stops operation as a motor.
  • the SOC gradually decreases as shown in FIG. 5 (a).
  • the engine target power is kept constant (minimum value).
  • the assist power command (assist target power) to the motor / generator 2 shown in FIG. 5C works on the assisting side (assist side), so the pump can be operated even if the actual power of the engine 1 is kept substantially constant. It is possible to easily follow changes in required power.
  • the motor generator 2 is more responsive than the engine 1, the operator's operation feeling can be well maintained.
  • the fuel consumption by the engine 1 can be suppressed, the fuel consumption and the exhaust gas can be reduced.
  • FIG. 5 shows the operation when the SOC decreases to a value larger than S1 and smaller than S2
  • FIG. 6 shows the SOC, the pump required power, the engine target power and the assist target power (ie, the assist power) when the SOC is greater than S1 and less than S2 (more specifically, greater than Sa in FIG. 4 and less than Sb). Is a diagram showing a change of command).
  • the engine target power calculated by the engine target power calculation unit 23 in accordance with the decrease in the SOC is a higher value than in the case of FIG. Therefore, while the engine target power is held constant, the assist power command of the motor / generator 2 calculated by "pump required power-engine target power" repeats charging and discharging as shown in FIG. 6 (c). .
  • the engine target power is adjusted to be approximately the median (for example, moving average value) of the pump required power or a value slightly higher than the median. It is preferable to keep it.
  • the adjustment of the engine target power may be performed by predicting the pump required power from the operation amount of the operation lever 16 and sequentially rewriting the operation table, or in the case where the work content of the hydraulic shovel is known in advance You may do according to the work content.
  • the engine target power takes the median value of the pump required power, so the assist power command of the motor / generator 2 repeats charging and discharging as shown in FIG.
  • the SOC is maintained at a constant level while suppressing a sharp change in the power of the engine 1.
  • FIG. 7 is a diagram showing changes in the SOC, the pump required power, the engine target power, and the assist target power (that is, the assist power command) when the SOC is less than S1.
  • the engine target power calculated by the engine target power calculation unit 23 is set to the maximum value of the engine power. Therefore, the motor / generator 2 is not operated as a motor, and only operates or stops operation as a generator. Therefore, as shown in FIG. 7A, the SOC tends to increase with the passage of time.
  • the engine target power when the SOC is low, the engine that does not depend on the magnitude of the SOC preferentially outputs the pump request power, so that the operator's operation feeling can be well maintained. Further, at that time, since the engine 1 is operated at the rated output point (maximum power), the combustion state of the engine 1 is stabilized and the content of the substance included in the exhaust gas that gives environmental load is suppressed. Further, when the pump required power is small, power is generated at a high output point where the efficiency of the engine 1 is good, so improvement in fuel consumption can also be expected. Furthermore, if the engine 1 capable of outputting power equal to or greater than the maximum value of the pump required power is used, power shortage for the pump required power does not occur, so that the operator's operation feeling can always be maintained well.
  • S1 (refer FIG. 4) of SOC based on the change profile of the pump motive power which concerns on the construction machine to which this invention is applied.
  • the pump required power may be instantaneously increased mainly at the time of excavating operation, but even in such a case, assist power capable of suppressing a rapid change in engine power.
  • S1 so as to secure the power enough to generate the S1 is preferably designed with some margin for this minimum power.
  • the power required by the motor / generator 2 (assist power) mainly bears the required pump power, so the engine 1 In this case, transient fuel injection is suppressed and the content of substances having environmental burden in exhaust gas is suppressed. Further, when the SOC decreases, the load by the engine 1 is increased. Therefore, even when sufficient assist power can not be output because the SOC is small, the pump required power can be secured by the engine 1. That is, in all the states of FIGS. 5 to 7, it can be confirmed that the required power of the hydraulic pump 3 can be secured by the sum of the power of the engine 1 and the motor / generator 2. Therefore, according to the present embodiment, hydraulic actuator 5 can be operated at a speed equivalent to that of a conventional construction machine regardless of the remaining charge amount of power storage device 10, that is, the operator's operation feeling is favorable. Can be held.
  • the required power of the hydraulic pump 3 periodically repeats the same waveform in an operation that repeats a certain work such as the digging operation in the hybrid type shovel, so the motor / generator It is easy to balance charging and discharging by 2. Therefore, it is possible that the SOC falls within a certain range and stable operation can be performed.
  • FIG. 8 is a schematic block diagram of a controller according to the second embodiment of the present invention.
  • the controller shown in this figure is provided with an engine target power calculation unit 23A different from that of the first embodiment.
  • the engine target power calculation unit 23A differs from that of the previous embodiment in that it considers how much the change speed of the engine target power follows the change speed of the pump required power.
  • the target power calculation unit 23A executes a calculation to increase the change speed of the engine target power as the SOC of the power storage device 10 decreases (close to the change speed of the pump required power).
  • the engine target power calculation unit 23A executes a process of calculating a reference value of the target power of the engine 1 based on the SOC, and a fluctuation range or fluctuation of the target power of the engine 1 and a reference power calculation unit 24.
  • a power speed calculation unit (power speed calculation means) 25 is provided which executes a process of calculating the speed based on the SOC.
  • the power speed calculation unit 25 uses a change speed calculation unit (change speed calculation means) 26 that defines the change speed (time constant T) of the engine target power according to the SOC, and the reference value calculated by the reference power calculation unit 24.
  • a leveling power calculation unit (leveling power calculation means) 27 is provided which defines the amount of change in power of the motor according to the pump request power.
  • the target power calculation unit 23A the sum of the calculation results of the reference power calculation unit 24 and the power speed calculation unit 25 is used as the engine target power, and the engine target power is calculated as the engine target speed calculation unit 35 and the motor / generator target power calculation unit. Output to 34. Similar to the first embodiment, the engine target rotation speed calculation unit 35 calculates a target rotation speed command using the engine target power. Further, the motor / generator target power calculation unit 34 calculates the assist power command from the difference between the engine target power and the pump required power calculated by the pump power calculation unit 22. Next, the contents of specific calculation processing executed by reference power calculation unit 24, change speed calculation unit 26, and leveling power calculation unit 27 in the present embodiment will be described using FIG.
  • FIG. 9 is a view showing an example of the contents of arithmetic processing in the engine target power arithmetic unit 23A.
  • the reference power calculation unit 24 uses the reference power calculation table 31 shown in FIG. 9 in determining the reference value of the engine target power based on the SOC calculated by the remaining charge amount calculation unit 21.
  • the SOC which is an input to the reference power calculation unit 24, is taken on the horizontal axis
  • the reference power which is the output from the reference power calculation unit 24, is taken on the vertical axis.
  • the reference power calculation table 31 of FIG. 9 differs from that of the first embodiment shown in FIG.
  • the reference value engine target power
  • the reference value reaches the maximum value when the SOC reaches a value of S1 or less, and reaches the minimum value when the SOC reaches S2 or more.
  • FIG. 10 is an explanatory view of the minimum value related to the reference value of the engine target power. It is preferable that the minimum value of the reference value (engine target power) in the reference power calculation table 31 be defined by "maximum power of hydraulic pump 3-maximum power of motor / generator 2". Assuming that this value is the minimum value of the reference value, even if the pump required power sharply increases as shown in FIG. 10, the pump required power can be secured without changing the engine power, so the combustion situation of the engine 1 is deteriorated. There is no risk that the operability of the hydraulic equipment will be impaired. In addition, when a pump request
  • the minimum value of the engine target power can also be determined according to "the response of the motor / generator 2."
  • the power change speed “(A-B) / (t2-t1)” defined by the time “t2-t1" from engine power point B to reaching pump maximum power point A.
  • the point B may be designed so that the speed of the motor / generator 2 is less than or equal to the maximum power change rate of the motor / generator 2.
  • the power change speed indicates the amount of change in power per unit time, and indicates the output responsiveness of the engine 1, the generator / motor 2, and the like.
  • FIG. 11 is a diagram showing another example of the reference power calculation table 31.
  • the reference value of the target power of the engine 1 is lowered again. At that time, repetition of charge / discharge (hunting) may occur due to switching of the control target value.
  • the reference power when the SOC decreases, the reference power is increased according to the solid line 51, and when the SOC is increased, the reference power is reduced according to the dotted line 52.
  • hunting can be prevented.
  • the power speed calculator 25 adopts a configuration using a first order low pass filter.
  • the time constant T of the low pass filter is determined according to the SOC calculated by the remaining charge amount calculation unit 21.
  • the time constant calculation table 32 shown in FIG. 9 is used for this calculation.
  • the time constant calculation table 32 has the horizontal axis representing the SOC input to the change speed calculation unit 26, and has the vertical axis representing the time constant T output from the change speed calculation unit 26.
  • the time constant T is set large when the remaining charge amount is large (the SOC is high), and the time constant T is set small when the remaining charge amount is small (the SOC is low).
  • the leveling power calculation unit 27 is a first-order low-pass filter, and its time constant T changes according to the output calculated by the change speed calculation unit 26.
  • T time constant
  • a value obtained by leveling the pump request power is calculated as the output of the power speed calculation unit 25.
  • the time constant T takes a large value when the state of charge is large (the SOC is high), and the output of the power speed calculation unit 25 corresponds to the change speed of the pump request power. It will stand up very slowly. For this reason, even if the pump required power rises sharply, the engine target power hardly changes from the reference power calculated by the reference power calculator 24. Thus, the engine 1 can maintain a stable combustion state.
  • the minimum value (minimum time constant) of the time constant T determined by the time constant calculation table 32 (the change speed calculation unit 26) defines the maximum value of the power change speed of the engine. It is necessary to design the frequency region passing through the low pass filter at the constant T in such a range that the fuel efficiency of the engine and the transient response characteristic of the exhaust gas are not deteriorated.
  • the gain K of the low-pass filter used in the leveling power calculation unit 27 is also a parameter for determining the rate of change of the engine target power. In the present embodiment, although the gain K is simplified to be a constant value, the value of the gain K may be changed according to the SOC as in the time constant T.
  • a first-order low-pass filter is used for the leveling power calculator 27, the method of realizing the controller is of course not limited to this example.
  • "changing the time constant when using a first-order low-pass filter” means “changing the number of data points when using moving average” or "using a rate limiter. Change the rate of change in the case.
  • a "high-order low-pass filter” may be used. In this case, parameters for changing the cutoff frequency are to be changed.
  • the power change speed of the motor / generator 2 is faster than the power change speed of the engine 1, and the power actually output by the motor / generator 2 instantaneously matches the "assist power command". For this reason, by adopting the configuration as described above, the power actually output by the engine 1 becomes equal to "pump power-assist power command". That is, although the power of the engine 1 is not directly controlled in the present embodiment, the power of the engine 1 can indirectly follow the target power calculated by the target power calculator 23.
  • FIG. 12 is a diagram showing changes in the SOC, the pump required power, the engine target power, and the assist power command in the case where the SOC is sufficient (for example, at the start of work the day after night charge etc.).
  • the reference value of the engine target power starts from the minimum value at the SOC of time zero.
  • the time constant T determined by the time constant calculation table 31 becomes the maximum value. For this reason, the change speed of the engine target power continues to take a value close to the reference value without following that of the pump power.
  • FIG. 13 shows the SOC, the pump required power, the engine target power and the assist target when the SOC decreases near the predetermined level Sc (value greater than S1 and less than S2) indicated by the broken line in FIG. It is a figure which shows the change of motive power.
  • the reference power calculated by the reference power calculation unit 24 has a value somewhat higher than that in the first case according to the decrease in SOC, and the value of the time constant T determined by the change speed calculation unit 26 is also It is smaller than the previous case.
  • the engine target power is adjusted to be approximately the median (for example, moving average) of the pump required power or a value slightly higher than the median. It is preferable to keep the In this way, since the engine target power takes the median value of the pump required power, the assist power command of the motor / generator 2 calculated by "pump required power-engine target power" is shown in FIG. 13 (c). Repeat charging and discharging. As a result, the power of the engine 1 can be prevented from changing sharply, and the SOC can be kept at a constant level, so that it is possible to avoid the situation where the motor / generator 2 can not assist the engine 1. Further, setting the engine target power higher than the median value of the pump required power has the effect of preventing the SOC from being reduced due to the energy loss associated with charge and discharge.
  • the engine target power is adjusted to be approximately the median (for example, moving average) of the pump required power or a value slightly higher than the median.
  • FIG. 14 is a diagram showing changes in the SOC, the pump required power, the engine target power and the assist target power when the SOC is less than S1.
  • the reference power of the engine 1 calculated by the reference power calculation unit 24 takes a value higher than the maximum value of the engine power.
  • the reference power is maintained until the SOC recovers to a certain value because the transition to the dotted line 52 is made.
  • the SOC threshold (S1) under the conditions as shown in FIG. 14 based on the change profile of the pump required power in the construction machine to which the SOC is applied.
  • FIG. 15 is a simplified explanatory view of how to determine the engine target power when the SOC is low.
  • the reference power of the engine target power takes a value higher than the maximum power line of the engine 1 as shown in FIG.
  • the operation performed by the low pass filter corresponds to the change 91 with respect to the reference power.
  • the change 91 in FIG. 15 is an example for making the description easy to understand, and the degree is not limited to that illustrated.
  • the engine target power (the reference power calculation) generated in consideration of the change 91 (the output of the power speed calculation unit 25)
  • the sum of the outputs of the unit 24 and the power speed calculating unit 25) is also always higher than the maximum power line of the engine 1.
  • the final engine target power (the output of the engine target power calculation unit 23A) is limited to the maximum power and continues to take that value.
  • the assist power command to the motor / generator 2 is defined by the value of "maximum engine power-pump required power" and is always given as "power generation request". to continue.
  • control such as limitation of the pump required power is required.
  • the change of the target power of the engine becomes sufficiently gentle with respect to the change speed of the pump required power.
  • the assist power command assistant target power
  • quick power assistance is realized with the high response motor / generator 2, and the engine 1 and the motor / generator 2 It can meet the pump power requirements.
  • the motive power of the engine 1 whose response is slower than that of the motor / generator 2 changes gently.
  • the pump required power sharply decreases, the surplus of the engine power is used for the power generation, so that the energy generated by the engine 1 can be used without waste.
  • the change speed of the engine power is set relatively small, and the engine target power is relatively large (high In the output region, the change speed of the engine power is set relatively large.
  • the above operation and effects are achieved by utilizing the configuration in which the change speed of the engine power is changed based on the SOC and the pump required power, but depending on the magnitude of the engine target power Setting the limit value of the change speed of the engine power, and changing the set value according to the magnitude of the engine target power (that is, the limit value of the change speed of the engine power is set larger as the engine target power increases.
  • the limit value of the change speed of the engine power that is, the limit value of the change speed of the engine power is set larger as the engine target power increases.
  • the engine target rotational speed calculation unit 35 The specific calculation method of the engine target speed in FIG. 3) was not particularly mentioned.
  • the target engine speed is preferably calculated on the basis of engine characteristic data indicating the relationship between the amount of exhaust gas components such as nitrogen oxides and the fuel efficiency, and the engine speed and torque. Then, next, a preferred calculation example of the target rotational speed in the engine target rotational speed calculation unit 35 will be described.
  • FIG. 16 is a view showing a fuel consumption table used by the engine target speed computing unit 35 according to the third embodiment of the present invention.
  • the equal fuel consumption table shown in this figure is a table format representing engine characteristic data indicating the fuel consumption of the engine at a predetermined rotational speed and torque, with the horizontal axis representing engine rotational speed and the vertical axis representing engine torque.
  • the fuel consumption characteristic of the engine 1 is represented by plotting the combinations of revolutions and torques with equal fuel consumption by contour lines on a two-dimensional plane.
  • the engine target speed calculation unit 35 described above selects a plurality of combinations of torque and rotation speed that can output the engine target power.
  • One combination (or one combination closest to the desired fuel consumption) that can achieve the desired fuel consumption is extracted, and the rotation speed related to the one combination is output as the target rotation speed.
  • the engine power is the product of torque and rotational speed, and the combination of torque and rotational speed that can achieve a predetermined engine target power can be drawn as a curve (equal power line 101) on the equal fuel consumption table. Therefore, as shown in FIG.
  • an equal power line 101 is drawn based on the input value from engine target power calculation unit 23, and the number of revolutions related to the best operating point of fuel efficiency from the point on equal power line 101 (N1 ) May be output as the target rotational speed.
  • the output of the engine target speed calculator 35 is used as the target speed of the engine 1.
  • the “equivalent emission gas table” is used in which the engine characteristic data indicating the amount of exhaust gas components such as nitrogen oxides at a predetermined rotation speed and torque is represented in a table format. It is also possible to determine the target speed.
  • the horizontal axis is the rotational speed
  • the vertical axis is the torque
  • steady-state characteristics for example, the amount of each exhaust gas component
  • the characteristic of the exhaust gas component of the engine 1 is represented by plotting the combinations of equal rotational speeds and torques with contour lines.
  • this equal emission gas table is used in the same manner as the above-mentioned equal fuel consumption table, so the amount of substances having environmental load in the steady state exhaust gas can be optimized, so the effect of exhaust gas purification by load equalization can be further enhanced. It can be improved. Furthermore, the engine 1 can also be driven at an operation point that can realize low fuel consumption and low exhaust gas by using the above-mentioned "equivalent fuel consumption table” and "equal exhaust gas table” in combination. In addition to the fuel consumption and the exhaust gas described above, the target rotational speed may be determined based on other engine characteristic data.
  • the engine 1 can be operated at a preferable operating speed in terms of fuel consumption and exhaust gas without the operator setting the engine speed successively. This not only realizes energy saving and reduction of substances having environmental load in exhaust gas, but also leads to reduction of the workload on the operator.
  • the configuration of engine target power calculation unit 23A shown in FIG. 9 is an effective configuration when power storage device 10 utilizes a device such as a lithium ion battery having a high energy density and capable of continuously utilizing a high output. is there.
  • a storage device which can only supply energy instantaneously like a capacitor, if the reference power is determined according to the SOC as shown in FIG. There is a risk that the engine may stall. Therefore, a configuration that is effective when a capacitor or the like is used as power storage device 10 will be described next with reference to FIG.
  • FIG. 17 is a diagram showing an example of contents of arithmetic processing in the engine target power arithmetic unit 23B.
  • the engine target power calculation unit 23B shown in this figure includes a reference power calculation unit 24B and a power speed calculation unit 25B.
  • the reference power calculation unit 24B is a part configured of the low pass filter 111, and executes the process of generating the reference power by applying the low pass filter 111 to the pump required power output from the pump power calculation unit 22.
  • Kl is a gain
  • Tl is a value independent of SOC.
  • the power speed calculation unit 25B is a part that executes processing for defining the fluctuation speed and fluctuation range of the engine target power by applying the high-pass filter 112 to the pump required power output from the pump power calculation unit 22.
  • Kh in the figure is a gain.
  • the power speed calculation unit 25 B includes a time constant calculation table 113 for defining the time constant Th used by the high pass filter 112 according to the SOC output from the remaining charge amount calculation unit 21. Similar to the time constant calculation table 32 of FIG. 9, in the time constant calculation table 113, the time constant Th is set to be smaller as the remaining amount of charge is higher (the SOC is higher), and the time is smaller as the remaining amount of battery is stored The constant Th is set large.
  • the time constant Th set in this way when the SOC is high, the time constant of the high pass filter 112 becomes small, and the high frequency components to be transmitted are reduced.
  • the remaining charge amount when the remaining charge amount is large, the fluctuation range of the engine target power decreases, and the power fluctuation borne by the motor / generator 2 increases.
  • the time constant of the high pass filter 112 increases, so the high frequency components to be passed increase. If the change of the time constant of the high pass filter 112 is large, the engine target power may increase sharply. In order to avoid this, in the time constant calculation table 113, it is preferable to make the amount of change of the time constant ( ⁇ T in FIG. 17) accompanying the change of SOC relatively small.
  • the engine target power calculation unit 23B configured as described above, the sum of the output values of the reference power calculation unit 24B and the power speed calculation unit 25B is output as the final engine target power.
  • the reference power is calculated regardless of the SOC of the storage device 10 by the reference power calculation unit 24B
  • the engine target power finally output from the engine target power calculation unit 23B is operated by the power speed calculation unit 25B. It will be set larger as the SOC decreases.
  • the behavior in this configuration is basically the same as that shown in FIG. 13 even if the SOC of power storage device 10 changes. Therefore, if engine target power calculation unit 23B is configured as described above, even if a capacitor is used for power storage device 10, it is possible to avoid the occurrence of engine stall when engine power decreases.
  • the engine target power is controlled to increase as the SOC of power storage device 10 decreases.
  • a limit value of engine target power is set, and the limit value is set according to the decrease of SOC. It may be controlled to be larger. That is, not the engine target power but the "limit value of the engine target power" may be controlled according to the SOC.
  • the hydraulic shovel has been described as an example, the other hybrid type in which the hydraulic pump for supplying the hydraulic fluid to the hydraulic actuator is driven by the engine and the motor / generator. It goes without saying that the present invention is also applicable to construction machines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Automation & Control Theory (AREA)
  • Operation Control Of Excavators (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

 エンジン(1)との間でトルクの伝達を行う電動・発電機(2)と、エンジン及び電動・発電機の少なくとも一方によって駆動される油圧ポンプ(3)と、油圧ポンプから吐出される圧油によって駆動される油圧アクチュエータ(5)と、電動・発電機に電力を供給するための蓄電装置(10)と、油圧ポンプの要求動力を満たすようにエンジン及び電動・発電機の目標動力を設定するコントローラ(8)とを備え、コントローラは、蓄電装置の蓄電残量の減少に応じて、エンジンの目標動力が単調増加するように設定する。これにより、燃料消費量及び排出ガスの削減を図りつつも、オペレータの操作フィーリングを良好に保持できる。

Description

ハイブリッド式建設機械
 本発明は、動力源としてエンジンと電動・発電機を備える油圧ショベルやホイールローダ等のハイブリッド式建設機械に関する。
 省エネルギ化(低燃費化)や、エンジンから排出され環境負荷となる排気ガス(二酸化炭素、窒素酸化物、粒子状物質など)の排出量削減を目的とした建設機械(油圧ショベルやホイールローダなど)には、エンジンに加えて電動・発電機を動力源として備えたいわゆるハイブリッド式建設機械がある。
 ハイブリッド式建設機械の技術としては、エンジン燃焼効率の低下を回避し、黒煙(排気ガス)の発生を防止する技術が特許第4633813号に示されている。当該技術は、エンジンの出力上限値をある増加率に従って増加させることで、エンジンが急峻に動力を増加させることを回避して排気ガスの抑制を図っている。
 特許第4512283号には、油圧ポンプの要求動力に対するエンジンの供給動力の過不足分を電動・発電機による充放電操作を通じて調整することで、エンジンと電動・発電機の合計動力の過剰供給を防止して燃費の改善を図り、さらには、油圧ポンプへ動力供給不足によって生じるエンストの防止を図った技術が開示されている。
 特開2003-9308号公報には、エンジンを完全に停止させ電動機のみで建設機械を駆動する構成を選択可能にすることで、当該構成の選択中は燃料を消費せずかつ排気ガスも排出することなく作業可能とした技術が開示されている。
特許第4633813号 特許第4512283号 特開2003-9308号公報
 上記の特許第4633813号では、エンジンの出力上限値を所定の増加率で増加することでエンジンの動力変化速度を制限しているが、ポンプの要求動力がエンジンの出力上限を上回った場合には、その差分を電動機の動力で補っている。そのため、例えば、ショベルの掘削動作のように必要な動力が急激に増加する作業中に、蓄電残量が少なく電動機から十分な動力補助を行えない場合には、ポンプへ供給可能な動力が不足するため、ショベルの動作が緩慢になることが避けられない。さらに、当該状況において、エンジンと電動・発電機から供給可能な動力が、必要なポンプ動力に対して大幅に低い場合には、エンジンがストールしてしまう虞もある。
 上記の特許第4512283号の建設機械では、エンジンを定格出力付近で動作させれば、エンジンの余剰動力を利用して発電機から蓄電装置への充電を常時行うことができる。そのため、蓄電残量が不足する状況を回避でき、ポンプ要求動力に対してエンジンの動力が低い場合にも確実に電動・発電機で動力アシストが実施できる。したがって、先の特許第4633813号に係る技術のようにショベルの動作が緩慢になることは避けられる。しかし、本技術では、エンジン出力に対する制限が存在しないため、過渡的な燃焼状況の悪化を避けることができない。また、エンジンを常に定格出力点(つまり、エンジンの動力増加速度が「±0」の状態)で動作させると、上記の過渡的な状況の発生は避けられるものの、蓄電装置の充放電が常に必要になる。そのため、様々な電気機器(例えば、電動・発電機、インバータなどの変圧デバイス、蓄電装置)の効率に依存したエネルギ損失が常時発生することになり、省エネルギの効果が小さくなる。さらに、油圧ポンプが動力を要求しない場合にエンジンを定格出力で動かし続けることは、排出ガス削減の観点からは好ましいとは言えない。
 上記の特開2003-9308号公報では、エンジンを停止した状態で作業することで、低燃費と低排出ガスの両立を図れるものの、「排気ガスゼロ運転」で操作性を確保するためには、エンジンの最大動力と同水準の出力を備えた電動・発電機が必要になる。電動・発電機の容量はその動力と相関関係があるため、建設機械の大型化が避けられない。建設機械が大型化すると、旋回動作を行う際に必要となるエネルギが増加するため燃費が悪化する。さらに、大型化による重量増加は建設機械の登坂能力にも大きな影響を与えるため好ましくない。また、本技術では、エンジンの停止時から使用時にかけて当該エンジンに要求する動力変化が過大になり、急激な燃料噴射により黒煙が発生する可能性がある。
 本発明は、上記のような課題を鑑みてなされたものであり、燃料消費量及び排出ガスの削減を図りつつも、オペレータの操作フィーリングを良好に保持できるハイブリッド式建設機械を提供することを目的とする。
 本発明は、上記目的を達成するために、エンジンと、前記エンジンとの間でトルクの伝達を行う電動・発電機と、前記エンジン及び前記電動・発電機の少なくとも一方によって駆動される油圧ポンプと、当該油圧ポンプから吐出される圧油によって駆動される油圧アクチュエータと、前記電動・発電機に電力を供給するための蓄電装置と、前記油圧ポンプの要求動力を満たすように前記エンジン及び前記電動・発電機の目標動力を設定する制御手段とを備え、前記制御手段は、前記蓄電装置の蓄電残量の減少に応じて、前記エンジンの目標動力の制限値を単調増加するものとする。
 本発明によれば、蓄電残量が比較的多い場合には応答性の高い電動・発電機が優先的にポンプ要求動力を出力し、蓄電残量が比較的少ない場合には蓄電残量に依存しないエンジンが優先的にポンプ要求動力を出力するので、蓄電残量に関わらず良好な操作フィーリングを確保できるとともに燃料消費量及び排出ガスの削減も図ることができる。
本発明の実施の形態に係るハイブリッド式油圧ショベルにおける油圧駆動制御装置の概略構成図。 本発明の実施の形態に係るレギュレータ14によるポンプ吸収トルクの制御特性図。 本発明の第1の実施の形態に係るコントローラ8の概略構成図。 本発明の第1の実施の形態に係る動力演算テーブルを示す図。 SOCが大きい場合におけるSOC、ポンプ要求動力、エンジン目標動力及びアシスト目標動力の変化を示す図。 SOCが所定の水準まで減少した場合におけるSOC、ポンプ要求動力、エンジン目標動力及びアシスト目標動力の変化を示す図。 SOCが小さい場合におけるSOC、ポンプ要求動力、エンジン目標動力及びアシスト目標動力の変化を示す図。 本発明の第2の実施の形態に係るコントローラの概略構成図。 エンジン目標動力演算部23Aにおける演算処理の内容の一例を示す図。 エンジン目標動力の基準値に係る最小値の説明図。 基準動力演算テーブル31の他の例を示す図。 SOCが大きい場合におけるSOC、ポンプ要求動力、エンジン目標動力及びアシスト目標動力の変化を示す図。 SOCが所定の水準まで減少した場合におけるSOC、ポンプ要求動力、エンジン目標動力及びアシスト目標動力の変化を示す図。 SOCが小さい場合におけるSOC、ポンプ要求動力、エンジン目標動力及びアシスト目標動力の変化を示す図。 SOCが低い場合におけるエンジン目標動力の決め方についての簡易説明図。 本発明の第3の実施の形態に係るエンジン目標回転数演算部35が利用する等燃費テーブルを示す図。 エンジン目標動力演算部23Bにおける演算処理の内容の一例を示す図。
 以下、本発明の実施の形態について図面を用いて説明する。 
 図1は本発明の実施の形態に係るハイブリッド式油圧ショベルにおける油圧駆動制御装置の概略構成図である。この図に示す油圧駆動制御装置は、エンジン1と、エンジン1の燃料噴射量を調整するガバナ7と、エンジン1の実回転数を検出する回転数センサ(実回転数検出手段)6と、エンジン1の出力軸に機械的に連結され、エンジン1との間でトルクの伝達を行う電動・発電機2と、エンジン1及び電動・発電機2の出力軸に機械的に連結され、エンジン1及び電動・発電機2の少なくとも一方によって駆動される可変容量型油圧ポンプ3(以下、単に「油圧ポンプ3」と称することがある)及びパイロットポンプ32と、油圧ポンプ3から吐出される圧油によって駆動される油圧アクチュエータ5と、パイロットポンプ32から吐出される圧油を減圧してバルブ装置4に出力することで油圧アクチュエータ5を制御するための操作レバー(操作装置)16と、主に電動・発電機2を駆動するための電力を蓄えるための蓄電装置(蓄電手段)10と、油圧ポンプ3の容量を調節するポンプ容量調節装置(ポンプ容量調節手段)14と、ポンプ容量調節装置14を制御する電磁比例弁15と、電動・発電機2の制御とともに、電動・発電機2と蓄電装置10間での電力の授受を制御するインバータ(電力変換装置)9と、エンジン1、電動・発電機2及び油圧ポンプ3をはじめとする各種装置を制御するためのコントローラ(制御手段)8とを備えている。
 図1に示す油圧駆動制御装置は、油圧ポンプ3で吐出した圧油をまず複数のコントロールバルブを備えるバルブ装置4に供給し、当該バルブ装置4で圧油の流量・方向・圧力を適宜変更した後に各油圧アクチュエータ5に供給することで各油圧アクチュエータ5の駆動を制御している。バルブ装置4におけるコントロールバルブは、パイロットポンプ32から吐出され、操作レバー16の操作量に応じて減圧された圧油によって制御される。操作レバー16の操作量は、パイロットポンプ32からバルブ装置4(コントロールバルブ)に出力される圧油の圧力を圧力センサ18a,18b(図1参照)等の圧力検出手段で検出することで検出できる。
 また、本実施の形態に係る油圧ショベルに設置される油圧アクチュエータ5としては、上部旋回体の前方に取り付けられた多関節型の作業装置を駆動するための油圧シリンダ(ブームシリンダ、アームシリンダ及びバケットシリンダ等)や、上部旋回体を旋回させるための油圧モータ(旋回モータ)や、上部旋回体の下部に取り付けられた下部走行体を走行させるための油圧モータ(走行モータ)等があるが、図1ではこれらをまとめて油圧アクチュエータ5と表記している。
 エンジン1は、ガバナ7によって燃料噴射量を制御することで調速される。油圧ポンプ3には、油圧ポンプ3の負荷を演算するために必要な情報を検出する手段(ポンプ情報検出手段)として、油圧ポンプ3から吐出される圧油の圧力を計測する圧力センサ19(圧力検出手段)と、当該圧油の流量を計測する図示しない流量センサ(流量検出手段)と、油圧ポンプ3の傾転角を計測する図示しない角度センサ(角度検出手段)とが設置されており、これら圧力センサ19、流量センサ及び角度センサは、検出したセンサ値をコントローラ8に出力している。
 レギュレータ14と電磁比例弁15は、コントローラ8から出力される操作信号に基づいて油圧ポンプ3の容量を調節するポンプ容量調節装置である。レギュレータ14は油圧ポンプ3に備えられており、レギュレータ14によって油圧ポンプ3の斜板もしくは斜軸の傾転角を操作すると、油圧ポンプ3の容量(押しのけ容積)が変更されて油圧ポンプ3の吸収トルク(入力トルク)を制御することができる(ポンプ吸収トルク制御)。電磁比例弁15には、パイロットポンプ32に接続された配管(図示せず)を介して圧油が供給される。本実施の形態におけるレギュレータ14は、電磁比例弁15が発生する制御圧によって制御されている。電磁比例弁15は、コントローラ8から出力される指令値に基づいて作動する。
 本実施の形態に係るレギュレータ14は、例えば、図2に示した制御特性図に従って油圧ポンプ3の容量を制御している。図2は本発明の実施の形態に係るレギュレータ14によるポンプ吸収トルクの制御特性図である。この図に示す折れ線31Aは、油圧ポンプ3の吐出圧に対して設定される油圧ポンプ3の容量の特性を示しており、エンジン1と電動・発電機2の合計出力の最大値(図2中の破線で示した双曲線(一定トルク線図))を超えない範囲で油圧ポンプ3のトルク(ポンプ容量とポンプ吐出圧力の積)がほぼ一定になるように設定されている。すなわち、その時々のポンプ吐出圧力に応じて折れ線31Aを利用して油圧ポンプ3の容量を設定すれば、エンジン1と電動・発電機2による最大出力を超えないように油圧ポンプ3のトルクを制御できる。ポンプ吐出圧力がP1以下である時にはポンプ吸収トルク制御は実施されず、ポンプ容量はバルブ装置4の各コントロールバルブを操作するための操作レバーの操作量によって決定される(例えば、いずれかの操作レバーの操作量が最大の時にq1になる)。一方、ポンプ吐出圧力がP1~P2になると、レギュレータ14によるポンプ吸収トルク制御が実施され、ポンプ吐出圧の増加に伴って折れ線31Aに沿ってポンプ容量が減少するようにレギュレータ14によってポンプ傾転角が操作される。これにより、ポンプ吸収トルクは、折れ線31Aで規定したトルク以下になるように制御される。なお、P2はポンプ吐出圧力の最大値であり、バルブ装置4において油圧ポンプ3側の回路に接続されるリリーフ弁の設定圧力に等しく、ポンプ吐出圧力はこの値以上に上昇しない。なお、ここでは、油圧ポンプの吸収トルクの制御特性図として、2つの直線を組み合わせた折れ線31Aを使用したが、図2中の一定トルク線図(双曲線)を超えない範囲で設定すれば他の制御特性図を利用しても良い。
 コントローラ8は、油圧ポンプ3の吸収トルクに基づいて生成した操作信号(電気信号)を電磁比例弁15に出力し、電磁比例弁15は当該操作信号に応じた制御圧力を生成することでレギュレータ14を駆動する。これによりレギュレータ14によって油圧ポンプ3の容量が変更され、油圧ポンプ3の吸収トルクはエンジンストールが発生しない範囲に調整される。
 バッテリ又はキャパシタ等で構成される蓄電装置10には、蓄電装置10の蓄電量を演算するために必要な情報を検出する手段(蓄電情報検出手段)として、電流センサ11、電圧センサ12及び温度センサ13が取り付けられている。コントローラ8は、これらセンサ11,12,13によって検出された電流、電圧及び温度等の情報に基づいて蓄電残量演算部21(後述)において蓄電装置10の蓄電残量を演算し、蓄電装置10の蓄電量を管理している。
 図3は本発明の第1の実施の形態に係るコントローラ8の概略構成図である。なお、先の図に示した部分と同じ部分には同じ符号を付して説明は適宜省略することがある(後の図についても同じ)。この図に示すコントローラ8は、主に油圧ポンプ3の要求動力を満たすようにエンジン1及び電動・発電機2の目標動力を設定する処理を実行する部分であり、蓄電残量演算部21と、エンジン目標動力演算部23と、ポンプ動力演算部22と、電動・発電機目標動力演算部34と、アシスト動力制御部28と、エンジン目標回転数演算部35と、エンジン目標回転数制御部36を備えている。また、コントローラ8は、ハードウェア構成として、本発明に係る各種処理プログラムを実行するための演算処理装置(例えば、CPU)、当該制御プログラムをはじめ各種データを記憶するための記憶装置(例えば、ROM、RAM)等を備えている(いずれも図示せず)。なお、油圧系や各種電装品等に関してもコントローラ8で制御が実施されているが、ここでは詳細な説明は省略する。
 蓄電残量演算部(蓄電残量演算手段)21は、蓄電装置10の蓄電残量(SOC:State Of Charge(以下、SOCと称することがある))を演算し、当該蓄電残量を出力する処理を実行する部分である。蓄電残量を演算する方法としては、公知のものを利用すれば良く、例えば、電流センサ11と、電圧センサ12と、温度センサ13によって検出された電流、電圧及び温度等の情報に基づいて蓄電残量を算出するものがある。
 エンジン目標動力演算部(エンジン目標動力演算手段)23は、蓄電残量演算部21から出力されたSOCに基づいて、エンジン1の目標動力(エンジン目標動力)を演算する処理を実行する部分である。エンジン目標動力は、エンジン目標動力演算部23によって、SOCの減少とともに単調増加するように設定されている。なお、ここにおける「単調増加」には、(1)SOCの減少とともにエンジン目標動力が常に増加していく「狭義の単調増加」だけでなく、(2)SOCの減少とともに、エンジン目標動力が所定のSOC区間で一定に保持されながら階段状(離散的)に増加していく「広義の単調増加」も含まれるものとする(なお、「広義の単調増加」は、SOCの減少とともに、エンジン目標動力が減少することなく増加することから「単調非減少」と呼ばれることもある。)。本実施の形態におけるエンジン目標動力演算部23は、SOCに基づいてエンジン目標動力を算出するに当たって、図4に示す動力演算テーブルを用いている。
 図4は本発明の第1の実施の形態に係る動力演算テーブルを示す図である。このテーブルは、蓄電残量演算部21からの入力であるSOCを横軸にとっており、エンジン目標動力演算部23の出力である目標動力を縦軸にとっている。この図に示すように、本実施の形態に係る動力演算テーブルでは、SOCの減少に応じてエンジン目標動力が階段状に増加(広義の単調増加)するように設定されており、テーブル全体で見るとエンジン目標動力は左肩上がりで増加しており、左肩下がりの部分は存在していない。これにより、蓄電残量が相対的に多い(SOCが相対的に高い)場合には、エンジン目標動力が低く設定されるようになっており、エンジン1の目標動力を低くすることで燃料消費量の低減を図っている。一方、蓄電残量が相対的に少ない(SOCが相対的に低い)場合には、エンジン目標動力が大きく設定されるようになっている。すなわち、SOCが低い場合には、電動・発電機2を発電機として利用する頻度を高め、蓄電装置10が過放電になる状況の回避を図っている。
 なお、図4の例では、SOCがS1(第1設定値)以下の値に達すると、エンジン目標動力をエンジン1の最大動力に設定しており、また、SOCがS2(第2設定値(S2はS1より大きい値とする))以上に達すると、エンジン目標動力を油圧ポンプ3の最小動力より小さい値に設定している。すなわち、SOCがS2以上のときは、電動・発電機2が電動機として動作することになる。
 また、ここでは、SOCの変化に追従してエンジン目標動力が容易に変化することを抑制する観点から、SOCの減少とともにエンジン目標動力が階段状に単調増加(広義の単調増加)するテーブルを用いた。このようにテーブルを設定すると、さらに、記憶装置の使用容量を抑制できる点や、演算処理装置の演算速度の向上が見込める点にもメリットがある。また、テーブルの設計方法はこれに限られるものではなく、例えば、後述するように、SOCの減少に応じてエンジン目標動力が常に増加(狭義の単調増加)するもの(例えば、曲線状のグラフ)を利用しても良い。
 ポンプ動力演算部(ポンプ動力演算手段)22は、油圧ポンプ3の要求動力(ポンプ要求動力)を演算し、当該ポンプ要求動力を出力する処理を実行する部分である。油圧ポンプ3の要求動力を演算する方法としては、例えば、操作レバー16の操作量(レバー操作量)を入力し、当該操作量の大小に基づいて要求動力を算出するものがある。なお、操作レバー16の操作量を求める方法としては、圧力センサ18a,18bの検出値を利用するものがある。なお、ポンプ要求動力の代わりに、油圧ポンプ3が出力している実際のポンプ動力をポンプ要求動力としてみなしても良い。この実際のポンプ動力を算出する方法としては、例えば、圧力センサ19を介して検出されるポンプ吐出圧と、流量センサを介して検出されるポンプ吐出流量とを乗じるものがある。
 電動・発電機目標動力演算部(電動・発電機目標動力演算手段)34は、エンジン目標動力とポンプ要求動力に基づいて電動・発電機2の目標動力(アシスト目標動力)を演算する処理を実行する部分である。本実施の形態では、ポンプ動力演算部22から出力されるポンプ要求動力から、エンジン目標動力演算部23から出力されるエンジン目標動力を減ずることで、アシスト目標動力が算出されている。つまり、「アシスト目標動力=ポンプ要求動力-エンジン目標動力」。ここで算出されたアシスト目標動力は、アシスト動力指令に変換されてアシスト動力制御部28に出力される。なお、アシスト目標動力が正値の場合(すなわち、「ポンプ要求動力>エンジン目標動力」の場合)は電動・発電機2は充電装置10の電力を利用して電動機として動作し、負値の場合(すなわち、「ポンプ要求動力<エンジン目標動力」の場合)はエンジン1に駆動されて発電機として動作する。
 アシスト動力制御部(アシスト動力制御手段)28は、アシスト動力指令に基づいて電動・発電機2を制御する部分であり、図1中のインバータ9に相当する。
 エンジン目標回転数演算部(目標回転数演算手段)35は、エンジン目標動力演算部23から出力されるエンジン目標動力に基づいてエンジン1の目標回転数を演算する処理を実行する部分である。目標回転数の算出方法としては、例えば、エンジン目標動力演算部23から入力されたエンジン目標動力を達成可能な回転数とトルクの複数の組合せの中から、所望の燃費が達成される組合せを選択し、当該組合せに係る回転数を目標回転数とするものがある。ここで算出されたエンジン目標回転数は、目標回転数指令に変換されてエンジン目標回転数制御部36に出力される。
 エンジン目標回転数制御部(エンジン制御手段)36は、目標回転数指令に基づいてエンジン1を制御する部分であり、図1中のガバナ7に相当する。
 次に上記のように構成される油圧ショベルにおいて、ポンプ要求動力、エンジン目標動力及びアシスト目標動力がSOCに応じてどのように算出されるか時系列にしたがって説明する。
 図5は、SOCがS2以上であり充分に大きい場合(例えば、夜間充電などを実施した翌日の作業開始時)におけるSOC、ポンプ要求動力、エンジン目標動力、及びアシスト目標動力が電動・発電機目標動力演算部34で変換された前述のアシスト動力指令の変化を示す図である。この図のようにSOCがS2以上の場合は、エンジン目標動力は最小値から開始する。図に示した例では、SOCはS2以上であり、エンジン目標動力の最小値は、油圧ポンプ3の最小動力以下に設定されている。この場合、電動・発電機2が発電機として動作されることは無く、電動機として動作するか動作を停止するのみとなる。
 蓄電装置10からの放電が進むと、図5(a)に示すようにSOCが徐々に下がる。しかし、図に示した時間ではS2未満までにはSOCが下がらないので、エンジン目標動力は一定(最小値)に保持される。このように、SOCが高い場合には、エンジン目標動力が比較的低めに設定されるため、ポンプ要求動力からエンジン目標動力を減じた値は正値をとる。そのため、図5(c)に示した電動・発電機2へのアシスト動力指令(アシスト目標動力)は助勢側(アシスト側)に働くので、エンジン1の実動力が略一定に保持されてもポンプ要求動力の変化に容易に追従することができる。特に、電動・発電機2はエンジン1よりも応答性に優れているので、オペレータの操作フィーリングを良好に保持することができる。さらに、エンジン1による燃料消費量を抑制できるので、燃料消費量及び排出ガスの削減を図ることができる。
 次に、ある程度の間、図5に示した動作を続け、SOCがS1より大きくかつS2未満の値まで減少した時点での挙動について図6を用いて説明する。図6は、SOCがS1より大きくS2未満の場合(より具体的には、図4におけるSaより大きくSbより小さい場合)におけるSOC、ポンプ要求動力、エンジン目標動力及びアシスト目標動力(すなわち、アシスト動力指令)の変化を示す図である。
 この場合は、SOCの減少に応じてエンジン目標動力演算部23で算出されるエンジン目標動力が図5の場合よりも高い値になっている。そのため、エンジン目標動力は一定に保持されつつも、「ポンプ要求動力-エンジン目標動力」で算出される電動・発電機2のアシスト動力指令は図6(c)に示すように充電と放電を繰り返す。
 なお、SOCの値が上記のように変化する場合には、エンジン目標動力が、ポンプ要求動力の略中央値(例えば、移動平均値)又は当該中央値よりも僅かに高い値になるように調整しておくことが好ましい。エンジン目標動力の調整は、操作レバー16の操作量からポンプ要求動力を予測して演算テーブルを逐次書き変えることで行ってもよいし、油圧ショベルの作業内容が事前に分かっている場合には当該作業内容に合わせて行っても良い。これにより、SOCが減少した場合には、エンジン目標動力がポンプ要求動力の中央値をとるため、電動・発電機2のアシスト動力指令は図6(c)に示すように充電と放電を繰り返し、エンジン1の動力が急峻に変化することが抑制されつつ、SOCが一定水準に保たれる。これにより、電動・発電機2による助勢(アシスト)が不可能な状況を回避できる。また、エンジン目標動力をポンプ要求動力の中央値よりも高く設定することは、充電側の頻度を高めることになり、充放電に伴うエネルギ損失によりSOCが減少するのを防止する効果がある。
 最後に、SOCがS1を下回った場合の挙動について図7を用いて説明する。図7は、SOCがS1未満の場合におけるSOC、ポンプ要求動力、エンジン目標動力、及びアシスト目標動力(すなわち、アシスト動力指令)の変化を示す図である。
 この場合には、エンジン目標動力演算部23で算出されるエンジン目標動力がエンジン動力の最大値に設定される。そのため、電動・発電機2が電動機として動作されることは無く、発電機として動作するか動作を停止するのみとなる。そのため、図7(a)に示したように、時間の経過とともにSOCが増加する傾向にある。
 このようにエンジン目標動力を設定すると、SOCが少ない場合には、SOCの大小に依存しないエンジンが優先的にポンプ要求動力を出力するので、オペレータの操作フィーリングを良好に保持できる。また、その際、エンジン1は定格出力点(最大動力)で運転されるため、エンジン1の燃焼状態が安定し排出ガス中に含まれる環境負荷を与える物質の含有量が抑制される。また、ポンプ要求動力が小さいときには、エンジン1の効率が良い高出力点で発電することになるので燃費の向上も期待できる。さらに、ポンプ要求動力の最大値以上の動力を出力できるエンジン1を利用すれば、ポンプ要求動力に対して動力不足になることもないので、オペレータの操作フィーリングを常に良好に維持できる。
 なお、SOCの設定値S1(図4参照)は、本発明が適用される建設機械に係るポンプ要求動力の変化プロファイルに基づいて設計することが好ましい。例えば、油圧ショベルに適応する場合であれば、主に掘削動作時にポンプ要求動力が瞬間的に増加することがあるが、そのような場合にも、エンジン動力の急激な変化が抑制可能なアシスト動力を発生できる程度の電力が確保できるようにS1を設定することが好ましい。S1は、この最小電力に対していくらかの余裕を見積もって設計することが好ましい。このようにS1を設計すれば、エンジン動力が急激に変化することが防止でき、かつ、余裕分の見積もりによって過放電になることも回避可能である。
 上記のように構成した本実施の形態によれば、SOCが比較的高い場合には、主に電動・発電機2の動力(アシスト動力)でポンプ要求動力を負担することになるので、エンジン1では過渡的な燃料噴射が抑えられ排出ガス中の環境負荷を有する物質の含有量が抑制される。また、SOCが減少すると、エンジン1による負担分を増やす構成をとっているので、SOCが少ないために充分なアシスト動力が出力できない場合であっても、ポンプ要求動力をエンジン1で確保できる。すなわち、図5から7のすべての状態において、油圧ポンプ3の要求動力がエンジン1と電動・発電機2の動力の和によって確保できていることが確認できる。したがって、本実施の形態によれば、蓄電装置10の蓄電残量によらず、従来の建設機械と同等の速度で油圧アクチュエータ5を動作させることができる、つまり、オペレータの操作フィーリングを良好に保持することができる。
 また、上記のような制御構成を採用すると、ハイブリッド式ショベルにおける掘削動作のように一定の作業を繰り返す操作では、油圧ポンプ3の要求動力は同様の波形を周期的に繰り返すので、電動・発電機2による充電と放電がバランスし易い。そのため、SOCが一定範囲内に収まり、安定した動作を行うことが可能である。
 図8は本発明の第2の実施の形態に係るコントローラの概略構成図である。この図に示すコントローラは、第1の実施の形態とは異なるエンジン目標動力演算部23Aを備えている。エンジン目標動力演算部23Aは、エンジン目標動力の変化速度をポンプ要求動力の変化速度にどの程度まで追従させるかを考慮している点で先の実施の形態のものと異なる。具体的には、目標動力演算部23Aは、蓄電装置10のSOCが減少するにつれてエンジン目標動力の変化速度を大きくする(ポンプ要求動力の変化速度に近づける)ための演算を実行している。
 エンジン目標動力演算部23Aは、エンジン1の目標動力の基準値をSOCに基づいて演算する処理を実行する基準動力演算部(基準動力演算手段)24と、エンジン1の目標動力の変動幅や変動速度をSOCに基づいて演算する処理を実行する動力速度演算部(動力速度演算手段)25を備えている。動力速度演算部25は、SOCに応じてエンジン目標動力の変化速度(時定数T)を規定する変化速度演算部(変化速度演算手段)26と、基準動力演算部24で算出される基準値からの動力変化量をポンプ要求動力に応じて規定する平準動力演算部(平準動力演算手段)27を備えている。目標動力演算部23Aでは、基準動力演算部24と動力速度演算部25の演算結果の和をエンジン目標動力とし、当該エンジン目標動力をエンジン目標回転数演算部35と電動・発電機目標動力演算部34に出力する。エンジン目標回転数演算部35では、第1の実施の形態と同様に、当該エンジン目標動力を用いて目標回転数指令を算出する。また、電動・発電機目標動力演算部34では、当該エンジン目標動力とポンプ動力演算部22で演算されたポンプ要求動力との差からアシスト動力指令を算出している。次に、本実施の形態における基準動力演算部24、変化速度演算部26及び平準動力演算部27で実行される具体的な演算処理の内容について図9を用いて説明する。
 図9はエンジン目標動力演算部23Aにおける演算処理の内容の一例を示す図である。基準動力演算部24は、蓄電残量演算部21で演算されたSOCに基づいてエンジン目標動力の基準値を決めるに当たって、図9に示す基準動力演算テーブル31を用いる。基準動力演算テーブル31では、基準動力演算部24への入力であるSOCを横軸にとっており、基準動力演算部24からの出力である基準動力を縦軸にとっている。図9の基準動力演算テーブル31では、SOCと基準動力の関係を曲線で定義している点で図4に示した第1の実施の形態のものと異なるが、SOCが減少するにつれて基準動力が大きくなるように規定している点で両者は共通している。また、図9の例でも、SOCがS1以下の値に達すると基準値(エンジン目標動力)が最大値に達し、SOCがS2以上に達すると基準値が最小値に達するものとする。次に、基準値の最小値について説明する。
 図10はエンジン目標動力の基準値に係る最小値の説明図である。基準動力演算テーブル31における基準値(エンジン目標動力)の最小値は、「油圧ポンプ3の最大動力-電動・発電機2の最大動力」で規定しておくことが好ましい。この値を基準値の最小値とすると、図10のようにポンプ要求動力が急峻に増加した場合でも、エンジン動力を変化させることなく、ポンプ要求動力を確保できるため、エンジン1の燃焼状況を悪化させることが無く、さらに油圧機器の操作性を損ねることも無い。なお、ポンプ要求動力が低い場合には電動・発電機2で充電を行うことで、アシストが必要なときに備えることもできる。ただし、蓄電装置10がフル充電のときには充電を行うことができないので、エンジン1を停止させるか、エンジン目標動力の基準値を一時的に下げることで過充電の防止を行う必要がある。
 なお、エンジン目標動力の最小値を、「電動・発電機2の応答性」に応じて決めることもできる。この場合には、図10において、エンジン動力点Bからポンプ最大動力点Aに到達するまでの時間「t2-t1」で規定される動力変化速度「(A-B)/(t2-t1)」が電動・発電機2の最大動力変化速度以下になるようにB点を設計すれば良い。実際の利用においては、最大動力で定義されるエンジン目標動力と、動力変化速度で規定されるエンジン目標動力を比較し、どちらか大きな方を選択することが最も好ましい。なお、動力変化速度とは、動力の単位時間あたりの変化量を示し、エンジン1、発電・電動機2などの出力応答性を示す。
 図11は基準動力演算テーブル31の他の例を示す図である。SOCの低下後に電動・発電機2によって発電を行ってSOCを上昇させると、エンジン1の目標動力の基準値を再度下げることになる。その際、制御目標値の切替えに起因して、充放電の繰り返し(ハンチング)が生じる可能性がある。この点に対応する場合には、図11に示した基準動力演算テーブル31のようにヒステリシス特性を持ったものを利用することが好ましい。この動力演算テーブル31では、SOCが減少する際には実線51に従って基準動力を上げていき、SOCが増加する際には点線52に従うように基準動力を下げている。このような基準動力演算テーブル31を利用するとハンチングを防止することができる。
 図9に戻り、動力速度演算部25について説明する。動力速度演算部25では1次のローパスフィルタを利用した構成を採用している。本実施の形態における動力速度演算部25では、まず、蓄電残量演算部21によって演算されたSOCに応じてローパスフィルタの時定数Tを決定する。この演算には図9に示した時定数演算テーブル32を用いる。時定数演算テーブル32は、変化速度演算部26への入力であるSOCを横軸にとっており、変化速度演算部26からの出力である時定数Tを縦軸にとっている。時定数演算テーブル32では、蓄電残量が多い(SOCが高い)場合は時定数Tが大きく設定され、蓄電残量が少ない(SOCが低い)場合には時定数Tが小さく設定される。
 平準動力演算部27は、1次のローパスフィルタになっており、その時定数Tが変化速度演算部26で演算された出力に応じて変化する構成になっている。ポンプ動力演算部22で計算されたポンプ要求動力を、このローパスフィルタにかけることで、ポンプ要求動力が平準化された値が動力速度演算部25の出力として算出される。なお、図中の「s」はラプラス演算子、「K」はゲインを意味する(後の図も同様)。
 動力速度演算部25をこのような構成にすると、蓄電残量が多い(SOCが高い)ときは時定数Tが大きな値をとり、動力速度演算部25の出力は、ポンプ要求動力の変化速度に対して非常にゆっくりと立ち上がることになる。このため、ポンプ要求動力が急峻に立ち上がったとしても、エンジン目標動力は基準動力演算部24で算出された基準動力からほとんど変化することが無い。よって、エンジン1は燃焼状態が安定した状況を維持することができる。
 一方、蓄電残量が少ない(SOCが低い)ときは時定数Tが小さな値をとり、動力速度演算部25の出力は、時定数Tが大きいとき(SOCが高いとき)よりも相対的に素早く立ち上がることになる。このため、SOCが少なく電動アシストが十分に行えないであろう場合には、エンジン1の出力変化速度を大きくとってポンプ要求動力を確保することで、良好な操作性が維持される。
 ここで、時定数演算テーブル32(変化速度演算部26)で決定される時定数Tの最小値(最小時定数)は、エンジンの動力変化速度の最大値を規定することになるので、最小時定数Tにおけるローパスフィルタを通過する周波数領域が、エンジンの燃費や排出ガスの過渡応答特性を悪化しない範囲になるように設計する必要がある。また、平準動力演算部27で利用されるローパスフィルタのゲインKもエンジン目標動力の変化率を決めるパラメータになる。なお、本実施の形態では、簡略してゲインKを一定値としているが、時定数T同様にゲインKの値をSOCに応じて変更する構成にしても良い。
 なお、図9の例では平準動力演算部27に1次のローパスフィルタを用いたが、コントローラの実現方法は、当然、この例に限定されるものではない。なお、上記例において「1次のローパスフィルタを用いた場合の時定数を変更する」ことは、「移動平均を利用した場合のデータ点の個数を変更する」ことや、「レートリミッタを利用した場合の変化率を変化する」ことなどに相当する。また、もちろん「高次のローパスフィルタ」を利用しても良い。この場合は、カットオフ周波数を変化させるパラメータを変更することになる。
 ところで、電動・発電機2の動力変化速度は、エンジン1の動力変化速度より速く、電動・発電機2が実際に出力する動力は瞬時に「アシスト動力指令」に一致する。このため、上記のような構成をとることで、エンジン1が実際に出力する動力は「ポンプ動力-アシスト動力指令」に等しくなる。つまり、本実施の形態ではエンジン1の動力を直接制御することはないものの、間接的にエンジン1の動力を目標動力演算部23で演算した目標動力に追従させることができる。
 次に上記のように構成される油圧ショベルにおいて、ポンプ要求動力、エンジン目標動力及びアシスト目標動力(すなわち、アシスト動力指令)がSOCに応じてどのように算出されるか時系列にしたがって説明する。
 図12は、SOCが充分にある場合(例えば、夜間充電などを実施した翌日の作業開始時)におけるSOC、ポンプ要求動力、エンジン目標動力及びアシスト動力指令の変化を示す図である。この図の例では、時刻ゼロのSOCのとき、エンジン目標動力の基準値は最小値から開始している。また、このとき、時定数演算テーブル31で決定される時定数Tは最大値になる。このため、エンジン目標動力の変化速度はポンプ動力のそれに追従することなく、基準値に近い値をとり続ける。
 蓄電装置10からの放電が進むと、図12(a)のようにSOCが徐々に下がる。これに従い、基準動力演算部24で算出される基準動力は徐々に増加するが、時定数Tは依然として大きい。そのため、エンジン目標動力は、図12(b)のようにSOCの減少と相反するように増加するような挙動を示す。このようにエンジン目標動力は低めに設定されるため、「ポンプ動力-エンジン目標動力」はほぼ正値をとる。そのため、電動・発電機2へのアシスト動力指令(図12(c))は、助勢側に働く頻度が高く、かつ、大きく変動する。このように、変化の速いポンプ要求動力に対して、電動・発電機2から素早く動力を供給すると、エンジン1の実動力は滑らかに変化する。
 次に、図12の状態からある程度時間が経過し、SOCが所定の水準まで減少した時点での挙動について図13を用いて説明する。図13は、図13(a)中に破線で示した所定の水準Sc(S1より大きくかつS2未満の値)の近傍までSOCが減少した場合におけるSOC、ポンプ要求動力、エンジン目標動力及びアシスト目標動力の変化を示す図である。
 この場合は、SOCの減少に応じて基準動力演算部24で算出される基準動力が先の場合よりもある程度高い値になっており、かつ、変化速度演算部26で求まる時定数Tの値も先の場合よりも小さくなっている。
 この場合についても、第1の実施の形態と同様に、エンジン目標動力を、ポンプ要求動力の略中央値(例えば、移動平均値)又は当該中央値よりも僅かに高い値になるように調整しておくことが好ましい。このようにすると、エンジン目標動力がポンプ要求動力の中央値をとるため、「ポンプ要求動力-エンジン目標動力」で算出される電動・発電機2のアシスト動力指令は図13(c)に示したように充放電を繰り返す。これにより、エンジン1の動力が急峻に変化することが防止できるとともに、SOCが一定水準に保たれるので電動・発電機2によってエンジン1の助勢が不可能な状況に陥ることを回避できる。また、エンジン目標動力をポンプ要求動力の中央値よりも高くとることは、充放電に伴うエネルギ損失によりSOCが減少することを防止する効果がある。
 最後に、SOCがS1を下回った場合の挙動について図14を用いて説明する。図14は、SOCがS1未満の場合におけるSOC、ポンプ要求動力、エンジン目標動力及びアシスト目標動力の変化を示す図である。
 この場合には、基準動力演算部24で算出されるエンジン1の基準動力がエンジン動力の最大値よりも高い値をとる。なお、基準動力演算テーブル31として図11に示したものを利用した場合には、点線52のラインへと遷移するため、SOCがある程度の値に回復するまではこの基準動力が維持される。
 また、このときのSOCは小さいため、変化速度演算部26で算出される時定数Tは小さな値をとることになる。そのため、平準動力演算部27で算出される動力の変化速度はポンプ要求動力のそれに近づく。なお、図14のような条件になるSOCの閾値(S1)は、第1の実施の形態と同様に、適用先の建設機械でのポンプ要求動力の変化プロファイルに基づいて設計することが好ましい。
 図14のような状態にある場合のエンジン目標動力の変化の様子について、図15のエンジン1のトルク-回転数特性図(T-N特性図)を利用して説明する。図15はSOCが低い場合におけるエンジン目標動力の決め方についての簡易説明図である。
 まず、前述の通り、エンジン目標動力の基準動力は、図15に示すようにエンジン1の最大動力線よりも高い値をとっている。ローパスフィルタで行われる演算は、基準動力に対する変化分91に相当する。なお、図15における変化分91は、説明を分かり易くするための一例であり、その程度は図示したものに限らない。図15のように基準動力(基準動力演算部24の出力)を充分に高く設定すれば、変化分91(動力速度演算部25の出力)を考慮して生成されるエンジン目標動力(基準動力演算部24と動力速度演算部25の出力の和)もエンジン1の最大動力線より常に高くなる。しかし、エンジン1の目標動力を最大動力より高くとることはできないので、最終的なエンジン目標動力(エンジン目標動力演算部23Aの出力)は最大動力に制限され、その値をとり続ける。このように、図14のようにSOCが低い場合には、電動・発電機2へのアシスト動力指令は「エンジン最大動力-ポンプ要求動力」の値で定義され、常に「発電要求」として与えられ続ける。なお、エンジンの小型化などを図る目的で、ポンプ要求動力がエンジンの最大動力を上回るエンジンを搭載した場合は、ポンプ要求動力を制限するなどの制御が必要である。
 図15のように基準動力をとることで、エンジン1は定格出力点で運転をするため、エンジン1の燃焼状態が安定し排出ガス中に含まれる環境負荷を有する物質の含有量が抑制され、かつ、ポンプ要求動力に対して動力不足になることもないので操作性も維持される。また、エンジン1の効率が良い高出力点で発電に専念するので燃費の向上も期待できる。
 上記のように構成した本実施の形態によれば、蓄電装置10の蓄電残量が多い場合には、ポンプ要求動力の変化速度に対してエンジンの目標動力の変化は十分に緩やかになる。また、エンジン目標動力とポンプ要求動力の差分をアシスト動力指令(アシスト目標動力)とすることで、高応答な電動・発電機2で素早い動力補助が実現され、エンジン1と電動・発電機2によってポンプ要求動力を満たすことができる。その際、電動・発電機2に比べて応答の遅いエンジン1の動力は緩やかに変化することになる。このため、エンジン1では過渡的な燃料噴射が抑えられ、排出ガス中の環境負荷を有する物質の含有量が抑制される。また、ポンプ要求動力が急激に減少した場合には、エンジン動力の余剰分が発電動力に利用されるため、エンジン1で発生したエネルギを無駄なく利用することができる。
 一方、蓄電装置10の蓄電残量が減少すると、エンジン目標動力の変化速度が上昇するとともにエンジン動力による負担分を増やす構成をとっていることで、充電残量が少なく電動・発電機2による充分なアシストが行えない場合であっても、油圧ポンプ3の要求動力をエンジン単独で確保できる。これによって、蓄電装置10の蓄電残量によらずに良好な操作性を確保することが可能になる。
 また、本実施の形態によれば、エンジン目標動力が相対的に小さい領域(低出力領域)で、エンジン動力の変化速度が相対的に小さく設定され、エンジン目標動力が相対的に大きい領域(高出力領域)で、エンジン動力の変化速度が相対的に大きく設定されることになる。このように制御すると、低出力領域では、排出ガスによる環境負荷の増加が懸念される動作を抑制でき、高出力領域では、無駄な燃料消費を抑制することができる。すなわち、燃費向上と排出ガス抑制の両方に関して効果を発揮できる。なお、本実施の形態では、SOCとポンプ要求動力に基づいてエンジン動力の変化速度を変化させる構成を利用することで、上記の作用・効果を奏するものとしたが、エンジン目標動力の大小に応じてエンジン動力の変化速度の制限値を設定し、当該設定値をエンジン目標動力の大小に応じて変化する構成(すなわち、エンジン目標動力が増加するにつれて、エンジン動力の変化速度の制限値を大きく設定する)を利用しても、同様の作用・効果を発揮できる。
 ところで、上記の各実施の形態では、エンジン目標回転数制御部36(図3参照)によってエンジン1を回転数制御している場合を例に挙げて説明したが、エンジン目標回転数演算部35(図3参照)におけるエンジン目標回転数の具体的な算出方法については特に言及しなかった。エンジン目標回転数は、窒素酸化物等の排出ガス成分の量及び燃費とエンジン回転数及びトルクとの関係を示すエンジン特性データに基づいて算出することが好ましい。そこで、次に、エンジン目標回転数演算部35における目標回転数の好ましい算出例について説明する。
 図16は本発明の第3の実施の形態に係るエンジン目標回転数演算部35が利用する等燃費テーブルを示す図である。この図に示す等燃費テーブルは、所定の回転数及びトルクにおけるエンジンの燃費を示すエンジン特性データをテーブル形式で表したものであり、横軸にエンジン回転数をとり、縦軸にエンジントルクをとった二次元平面上に、燃費の等しい回転数とトルクの組合せを等高線でプロットすることでエンジン1の燃費特性を表している。
 前述したエンジン目標回転数演算部35は、前述したエンジン目標動力演算部23から入力されるエンジン目標動力に基づいて、当該エンジン目標動力を出力可能なトルクと回転数の複数の組合せの中から、所望の燃費が実現できる一の組合せ(又は所望の燃費に最も近い一の組合せ)を抽出し、当該一の組合せに係る回転数を目標回転数として出力する。なお、エンジン動力はトルクと回転数の積であり、所定のエンジン目標動力が達成可能なトルクと回転数の組合せは等燃費テーブル上に曲線(等動力線101)として描くことができる。そのため、図16に示すように、エンジン目標動力演算部23からの入力値に基づいて等動力線101を描き、その等動力線101上の点から燃費の最も良い動作点に係る回転数(N1)を目標回転数として出力しても良い。エンジン目標回転数演算部35の出力はエンジン1の目標回転数として利用される。
 なお、図16に示した等燃費テーブルと同様に、所定の回転数及びトルクにおける窒素酸化物等の排出ガス成分の量を示すエンジン特性データをテーブル形式で表した「等排出ガステーブル」を利用して目標回転数を決定することも可能である。等排出ガステーブルとしては、横軸に回転数、縦軸にトルクをとり、窒素酸化物、粒子状物質、二酸化炭素などの各種排出ガス成分の定常特性(例えば、各排出ガス成分の量)が等しい回転数およびトルクの組み合わせを等高線でプロットすることでエンジン1の排出ガス成分の特性を表したものがある。この等排出ガステーブルを前述の等燃費テーブルと同様に使用すれば、定常状態での排出ガス中の環境負荷を有する物質の量を最適化できるため、負荷の平準化による排ガス浄化の効果をさらに向上することができる。さらに、上記の「等燃費テーブル」と「等排出ガステーブル」を併用することで、低燃費かつ低排出ガスを実現できる動作点でエンジン1を駆動することも可能になる。また、上記の燃費及び排出ガスだけでなく、他のエンジン特性データに基づいて目標回転数を決定しても良い。
 上記のようにエンジン目標回転数演算部35を構成すれば、オペレータが逐次エンジン回転数を設定することなく、燃費や排出ガスの観点で好ましい動作回転数でエンジン1を動かすことができる。これは省エネルギ、排出ガス中の環境負荷を有する物質の低減を実現するだけでなく、オペレータの作業負担の軽減にもつながる。
 ところで、図9に示したエンジン目標動力演算部23Aの構成は、蓄電装置10として、リチウムイオンバッテリなどのエネルギ密度が高く、高い出力を持続的に利用できるものを利用した場合に有効な構成である。しかし、キャパシタのように瞬間的にしかエネルギを供給できない蓄電デバイスの場合にも図9のように基準動力をSOCに応じて決定すると、基準動力が急激に上下してしまい、エンジン動力の減少時にエンジンがストールしてしまう虞がある。そこで、次に、蓄電装置10として、キャパシタのようなものを利用した場合に有効となる構成について図17を用いて説明する。
 図17はエンジン目標動力演算部23Bにおける演算処理の内容の一例を示す図である。この図に示すエンジン目標動力演算部23Bは、基準動力演算部24Bと、動力速度演算部25Bを備えている。
 基準動力演算部24Bは、ローパスフィルタ111で構成され、ポンプ動力演算部22から出力されるポンプ要求動力に対してローパスフィルタ111をかけることで基準動力を生成する処理を実行する部分である。なお、図中のKlはゲインであり、時定数TlはSOCに依存しない値である。このようにローパスフィルタ111で基準動力を生成すると、エンジン目標動力がポンプ要求動力の中央値に設定される傾向(例えば、図13のような状態)が表れるため、図9の場合と比較して長時間に渡って高出力な動力アシストを行う頻度が低くなる。
 動力速度演算部25Bは、ポンプ動力演算部22から出力されるポンプ要求動力に対してハイパスフィルタ112をかけることでエンジン目標動力の変動速度、変動幅を規定する処理を実行する部分である。なお、図中のKhはゲインである。また、動力速度演算部25Bは、ハイパスフィルタ112で利用される時定数Thを、蓄電残量演算部21から出力されるSOCに応じて規定するための時定数演算テーブル113を備えている。時定数演算テーブル113は、図9の時定数演算テーブル32と同様に、蓄電残量が多い(SOCが高い)ほど時定数Thは小さく設定され、蓄電残量が少ない(SOCが低い)ほど時定数Thは大きく設定される。
 このように設定される時定数Thをハイパスフィルタ112で利用すると、SOCが高い時はハイパスフィルタ112の時定数が小さくなるため通過する高周波成分が少なくなる。これによって、蓄電残量が多い場合には、エンジン目標動力の変動幅は小さくなり、電動・発電機2で負担する動力変動が大きくなる。一方、蓄電残量が少なくなると、ハイパスフィルタ112の時定数は大きくなるため、通過する高周波成分が多くなる。なお、ハイパスフィルタ112の時定数の変化が大きいと、エンジン目標動力が急峻に増加し得る。これを避けるため、時定数演算テーブル113では、SOCの変化に伴う時定数の変化量(図17中のΔT)を比較的小さくとることが好ましい。
 上記のように構成したエンジン目標動力演算部23Bによれば、基準動力演算部24Bと動力速度演算部25Bの出力値の和が最終的なエンジン目標動力と出力される。このとき、基準動力は基準動力演算部24Bで蓄電装置10のSOCと関係無く算出されるものの、エンジン目標動力演算部23Bから最終的に出力されるエンジン目標動力は動力速度演算部25Bの作用によりSOCが減少するにつれて大きく設定されることになる。そして、このように構成した場合の挙動は、蓄電装置10のSOCが変化しても基本的に図13と同じ動作を繰り返すことになる。したがって、上記のようにエンジン目標動力演算部23Bを構成すれば、蓄電装置10にキャパシタを利用しても、エンジン動力の減少時にエンジンストールが発生することを回避することができる。
 なお、上記の各実施の形態では、蓄電装置10のSOCが減少するにつれてエンジン目標動力が大きくなるように制御したが、エンジン目標動力の制限値を設定し、当該制限値をSOCの減少に応じて大きくするように制御しても良い。すなわち、エンジン目標動力ではなく、「エンジン目標動力の制限値」をSOCに応じて制御しても良い。また、上記の各実施の形態では、油圧ショベルを例に挙げて説明したが、油圧アクチュエータに圧油を供給するための油圧ポンプをエンジン及び電動・発電機で駆動しているその他のハイブリッド式の建設機械にも本発明が適用可能であることは言うまでもない。
 ところで、発明者等は、上記各実施の形態で代表される本発明をハイブリッド式油圧ショベルに適応することで、油圧ショベルの標準的な動作において、排出ガス中の粒子状物質を約30%、窒素酸化物を約20%抑制できることを確認している。
  1   エンジン
  2   電動・発電機
  3   油圧ポンプ
  5   油圧アクチュエータ
  9   インバータ
 10   蓄電装置
 16   操作レバー
 21   蓄電残量演算部
 22   ポンプ動力演算部
 23,23A,23B   エンジン目標動力演算部
 24,24B   基準動力演算部
 25,25B   動作速度演算部
 26   変化速度演算部
 27   平準動力演算部
 28   アシスト動力制御部
 31   基準動力演算テーブル
 32   時定数演算テーブル
 34   電動・発電機目標動力演算部
 35   エンジン目標回転数演算部
 36   エンジン目標回転数制御部
111   ローパスフィルタ
112   ハイパスフィルタ
113   時定数演算テーブル

Claims (6)

  1.  エンジンと、
     前記エンジンとの間でトルクの伝達を行う電動・発電機と、
     前記エンジン及び前記電動・発電機の少なくとも一方によって駆動される油圧ポンプと、
     当該油圧ポンプから吐出される圧油によって駆動される油圧アクチュエータと、
     前記電動・発電機に電力を供給するための蓄電装置と、
     前記蓄電装置の蓄電残量に基づいて前記エンジンの目標動力を設定し、当該エンジンの目標動力と前記ポンプの要求動力に基づいて前記電動・発電機の目標動力を設定する制御手段とを備え、
     前記エンジンの目標動力は、前記蓄電装置の蓄電残量が減少するに応じて単調増加するように設定されていることを特徴とするハイブリッド式建設機械。
  2.  請求項1に記載のハイブリッド式建設機械において、
     前記制御手段は、前記蓄電残量が減少するにつれて、前記エンジンの目標動力の変化速度を大きく設定することを特徴とするハイブリッド式建設機械。
  3.  請求項1又は2に記載のハイブリッド式建設機械において、
     前記制御手段は、前記エンジンの目標動力が増加するにつれて、前記エンジンの動力の変化速度の制限値を大きく設定することを特徴とするハイブリッド式建設機械。
  4.  請求項1から3のいずれかに記載のハイブリッド式建設機械において、
     前記制御手段は、前記蓄電残量が第1設定値以下の値に達すると、前記エンジンの目標動力を前記エンジンの最大動力に設定することを特徴とするハイブリッド式建設機械。
  5.  請求項1から4のいずれかに記載のハイブリッド式建設機械において、
     前記制御手段は、前記第1設定値より大きい第2設定値以上の値に前記蓄電残量が達すると、前記エンジンの目標動力を前記油圧ポンプの最小動力より小さい値に設定することを特徴とするハイブリッド式建設機械。
  6.  請求項1から5のいずれかに記載のハイブリッド式建設機械において、
     前記制御手段は、前記エンジンの燃費及び排ガス量の少なくとも一方と当該エンジンの回転数及びトルクとの関係を示すエンジン特性データと、前記エンジンの目標動力とに基づいて、前記エンジンの目標回転数を設定することを特徴とするハイブリッド式建設機械。
PCT/JP2013/063199 2012-05-14 2013-05-10 ハイブリッド式建設機械 WO2013172276A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014515600A JP5952901B2 (ja) 2012-05-14 2013-05-10 ハイブリッド式建設機械
US14/400,947 US9487932B2 (en) 2012-05-14 2013-05-10 Hybrid construction machine
EP13790109.6A EP2851475B1 (en) 2012-05-14 2013-05-10 Hybrid construction machinery
CN201380025106.0A CN104302847B (zh) 2012-05-14 2013-05-10 混合动力式工程机械
KR1020147030391A KR101716943B1 (ko) 2012-05-14 2013-05-10 하이브리드식 건설 기계

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012110875 2012-05-14
JP2012-110875 2012-05-14

Publications (1)

Publication Number Publication Date
WO2013172276A1 true WO2013172276A1 (ja) 2013-11-21

Family

ID=49583681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063199 WO2013172276A1 (ja) 2012-05-14 2013-05-10 ハイブリッド式建設機械

Country Status (6)

Country Link
US (1) US9487932B2 (ja)
EP (1) EP2851475B1 (ja)
JP (1) JP5952901B2 (ja)
KR (1) KR101716943B1 (ja)
CN (1) CN104302847B (ja)
WO (1) WO2013172276A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014051795A (ja) * 2012-09-06 2014-03-20 Kobelco Contstruction Machinery Ltd ハイブリッド建設機械の動力制御装置
JP2016159785A (ja) * 2015-03-02 2016-09-05 日立建機株式会社 ハイブリッド式作業機械
JP2017206865A (ja) * 2016-05-18 2017-11-24 日立建機株式会社 建設機械
EP3103693A4 (en) * 2014-02-03 2017-12-20 Hitachi Construction Machinery Co., Ltd. Hybrid construction machine
WO2018061166A1 (ja) * 2016-09-29 2018-04-05 日立建機株式会社 ハイブリッド建設機械
CN115324149A (zh) * 2022-06-30 2022-11-11 三一重机有限公司 液压泵控制方法、装置及作业机械

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6014463B2 (ja) * 2012-11-07 2016-10-25 日立建機株式会社 作業車両
JP5303061B1 (ja) * 2012-11-20 2013-10-02 株式会社小松製作所 エンジン制御装置及び建設機械
WO2015133625A1 (ja) * 2014-03-06 2015-09-11 住友建機株式会社 ショベル
WO2016060132A1 (ja) * 2014-10-14 2016-04-21 日立建機株式会社 ハイブリッド式建設機械
CN107429716B (zh) * 2015-01-08 2019-05-14 沃尔沃建筑设备公司 建筑机械的液压致动器的驱动控制方法
JP6232007B2 (ja) * 2015-03-02 2017-11-15 株式会社日立建機ティエラ ハイブリッド式作業機械
CN105172617B (zh) * 2015-09-07 2017-12-22 吉林大学 前后桥独立驱动装载机结构及转矩动态分配方法
JP6419063B2 (ja) * 2015-12-24 2018-11-07 日立建機株式会社 ハイブリッド式作業機械
JP6647963B2 (ja) * 2016-05-18 2020-02-14 日立建機株式会社 建設機械
KR102282022B1 (ko) * 2017-12-15 2021-07-29 닛산 지도우샤 가부시키가이샤 하이브리드 차량의 제어 방법 및 제어 장치
CN113525345B (zh) * 2021-07-30 2022-09-06 三一汽车起重机械有限公司 一种混合动力工程机械跛行控制方法、装置及起重机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003009308A (ja) 2001-06-22 2003-01-10 Kobelco Contstruction Machinery Ltd 作業機械
JP4512283B2 (ja) 2001-03-12 2010-07-28 株式会社小松製作所 ハイブリッド式建設機械
JP4633813B2 (ja) 2008-03-12 2011-02-16 住友重機械工業株式会社 建設機械の制御方法
JP2011190072A (ja) * 2010-03-16 2011-09-29 Kobe Steel Ltd 作業用車両
WO2012050135A1 (ja) * 2010-10-15 2012-04-19 日立建機株式会社 ハイブリッド建設機械

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3833573B2 (ja) * 2002-06-06 2006-10-11 新キャタピラー三菱株式会社 ハイブリッド式建設機械
JP5064160B2 (ja) * 2007-09-19 2012-10-31 株式会社小松製作所 エンジンの制御装置
JP5149826B2 (ja) * 2009-01-29 2013-02-20 住友重機械工業株式会社 ハイブリッド式作業機械及びサーボ制御システム
JP2012017677A (ja) * 2010-07-07 2012-01-26 Caterpillar Sarl ハイブリッド建設機械の制御装置
WO2012046788A1 (ja) * 2010-10-06 2012-04-12 住友重機械工業株式会社 ハイブリッド型作業機械
JP6019956B2 (ja) * 2012-09-06 2016-11-02 コベルコ建機株式会社 ハイブリッド建設機械の動力制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4512283B2 (ja) 2001-03-12 2010-07-28 株式会社小松製作所 ハイブリッド式建設機械
JP2003009308A (ja) 2001-06-22 2003-01-10 Kobelco Contstruction Machinery Ltd 作業機械
JP4633813B2 (ja) 2008-03-12 2011-02-16 住友重機械工業株式会社 建設機械の制御方法
JP2011190072A (ja) * 2010-03-16 2011-09-29 Kobe Steel Ltd 作業用車両
WO2012050135A1 (ja) * 2010-10-15 2012-04-19 日立建機株式会社 ハイブリッド建設機械

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014051795A (ja) * 2012-09-06 2014-03-20 Kobelco Contstruction Machinery Ltd ハイブリッド建設機械の動力制御装置
EP3103693A4 (en) * 2014-02-03 2017-12-20 Hitachi Construction Machinery Co., Ltd. Hybrid construction machine
JP2016159785A (ja) * 2015-03-02 2016-09-05 日立建機株式会社 ハイブリッド式作業機械
WO2016139853A1 (ja) * 2015-03-02 2016-09-09 日立建機株式会社 ハイブリッド式作業機械
JP2017206865A (ja) * 2016-05-18 2017-11-24 日立建機株式会社 建設機械
WO2018061166A1 (ja) * 2016-09-29 2018-04-05 日立建機株式会社 ハイブリッド建設機械
US10668802B2 (en) 2016-09-29 2020-06-02 Hitachi Construction Machinery Co., Ltd. Hybrid construction machine
CN115324149A (zh) * 2022-06-30 2022-11-11 三一重机有限公司 液压泵控制方法、装置及作业机械
CN115324149B (zh) * 2022-06-30 2023-10-27 三一重机有限公司 液压泵控制方法、装置及作业机械

Also Published As

Publication number Publication date
US20150144408A1 (en) 2015-05-28
US9487932B2 (en) 2016-11-08
JP5952901B2 (ja) 2016-07-13
EP2851475A1 (en) 2015-03-25
CN104302847B (zh) 2016-10-12
JPWO2013172276A1 (ja) 2016-01-12
CN104302847A (zh) 2015-01-21
KR20150001785A (ko) 2015-01-06
EP2851475A4 (en) 2016-02-24
EP2851475B1 (en) 2018-07-11
KR101716943B1 (ko) 2017-03-15

Similar Documents

Publication Publication Date Title
WO2013172276A1 (ja) ハイブリッド式建設機械
JP5356436B2 (ja) 建設機械の制御装置
JP5916763B2 (ja) 建設機械の制御装置
JP5715047B2 (ja) ハイブリッド型作業機械
JP5974014B2 (ja) ハイブリッド駆動式の油圧作業機械
CN103180519B (zh) 混合动力工程机械
KR101776543B1 (ko) 작업 기계
KR101804433B1 (ko) 건설 기계
JP2007262978A (ja) ハイブリッド作業機械の出力制御装置及びハイブリッド作業機械の出力制御方法
WO2014087978A1 (ja) 作業機械
JP6382023B2 (ja) 動力制御装置及びこれを備えたハイブリッド建設機械
CN107923148B (zh) 混合动力式作业机械
WO2020044921A1 (ja) ハイブリッド建設機械
KR101998379B1 (ko) 하이브리드 쇼벨 및 하이브리드 쇼벨의 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13790109

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014515600

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147030391

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013790109

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14400947

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE