WO2013171899A1 - インバータ装置 - Google Patents

インバータ装置 Download PDF

Info

Publication number
WO2013171899A1
WO2013171899A1 PCT/JP2012/062817 JP2012062817W WO2013171899A1 WO 2013171899 A1 WO2013171899 A1 WO 2013171899A1 JP 2012062817 W JP2012062817 W JP 2012062817W WO 2013171899 A1 WO2013171899 A1 WO 2013171899A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
control
circuit
power
external power
Prior art date
Application number
PCT/JP2012/062817
Other languages
English (en)
French (fr)
Inventor
竜一 竹澤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2012/062817 priority Critical patent/WO2013171899A1/ja
Priority to CN201280073205.1A priority patent/CN104303407B/zh
Priority to US14/386,945 priority patent/US9124204B2/en
Priority to JP2013515453A priority patent/JP5345263B1/ja
Priority to TW101143621A priority patent/TWI470909B/zh
Publication of WO2013171899A1 publication Critical patent/WO2013171899A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/0241Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being an overvoltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P4/00Arrangements specially adapted for regulating or controlling the speed or torque of electric motors that can be connected to two or more different electric power supplies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0006Arrangements for supplying an adequate voltage to the control circuit of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to an inverter device.
  • Patent Document 1 in a gate power supply device that supplies a gate power to a gate drive circuit for applying a gate voltage to a semiconductor element, the gate power supply circuit receives a voltage when the semiconductor element is off and receives a resistance component.
  • the gate power supply is self-supplied by charging the capacitor through the diode, and the backup power supply circuit can store the charge enough to maintain the gate voltage in the capacitor because the voltage when the semiconductor element is off decreases. It is described that when the voltage is lost, the voltage of the gate power supply self-sufficiency circuit is received, the resistance is divided, and the capacitor of the gate power supply self-sufficiency circuit is charged through a diode.
  • Patent Document 2 describes that, in an inverter device, a commercial power supply is connected to the inverter body, a parameter unit is connected to the inverter body via a parameter communication cable, and an external power supply unit is connected to the parameter unit. ing.
  • a commercial power supply is connected to the inverter body
  • a parameter unit is connected to the inverter body via a parameter communication cable
  • an external power supply unit is connected to the parameter unit.
  • Patent Document 1 Since the technique of Patent Document 1 is premised on not providing an external power supply, there is no description on how to make both the power supply by the main power supply and the power supply by the external power supply compatible.
  • Patent Document 2 also describes that an inverter is provided with an external power supply unit connection connector, and the external power supply unit is connected to the external power supply unit connection connector.
  • the external power supply unit connection connector and the commercial power supply (main power supply) are also described. There is no description on how to connect the circuit on the side to which the power source is connected, and there is no description on how to make both the power supply by the main power supply and the power supply by the external power supply compatible.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain an inverter device that can achieve both power supply by a main power supply and power supply by an external power supply in a power-saving and efficient manner.
  • an inverter device includes a rectifier circuit that rectifies AC power supplied from a main power source to generate DC power, and the generated rectifier circuit.
  • a control power supply circuit that generates control DC power using at least one of DC power supplied from an external power supply and control that receives the generated control DC power and performs a predetermined control operation
  • An insulating transformer including a primary winding connected to the rectifier circuit and a secondary winding insulated from the primary winding; and A first control power supply capacitor connected to the secondary winding via a first diode; a second control diode connected to the first control power supply capacitor via a second diode; The power supply is connected And having an external power source capacitor connected via a third diode to the terminal being, and a second control power supply capacitor connected to the external power supply capacitor.
  • the main power supply and the main power supply + external power supply can be separated, the power supplied from the external power supply can be reduced, and the power can be saved. Also, by dividing the capacitor into a control power supply capacitor and an external power supply capacitor, the capacity of the external power supply capacitor can be reduced, and the inrush current from the external power supply to the external power supply capacitor can be reduced. Inrush current can be efficiently suppressed without providing a resistor. Therefore, the power supply by the main power supply and the power supply by the external power supply can be made both energy efficient and efficient.
  • FIG. 1 is a diagram illustrating a configuration of the inverter device according to the first embodiment.
  • FIG. 2 is a diagram illustrating a configuration of the inverter device according to the first embodiment.
  • FIG. 3 is a diagram illustrating a configuration of the rectifier circuit and the control power supply circuit in the first embodiment.
  • FIG. 4 is a diagram illustrating an operation of the inverter device according to the first embodiment.
  • FIG. 5 is a diagram illustrating the operation of the inverter device according to the first embodiment.
  • FIG. 6 is a diagram illustrating a configuration of the inverter device according to the second embodiment.
  • FIG. 7 is a diagram illustrating a configuration of the inverter device according to the second embodiment.
  • FIG. 1 is a diagram illustrating a configuration of the inverter device according to the first embodiment.
  • FIG. 2 is a diagram illustrating a configuration of the inverter device according to the first embodiment.
  • FIG. 3 is a diagram illustrating a configuration of the rectifier circuit and
  • FIG. 8 is a diagram illustrating a configuration of the rectifier circuit and the control power supply circuit according to the second embodiment.
  • FIG. 9 is a diagram illustrating a configuration of an inverter device according to a basic mode.
  • FIG. 10 is a diagram illustrating the configuration of the rectifier circuit and the control power supply circuit in the basic form.
  • FIG. 11 is a diagram illustrating a configuration of an inverter device according to a modification of the basic mode.
  • FIG. 12 is a diagram illustrating a configuration of a rectifier circuit and a control power supply circuit in a modified example of the basic form.
  • FIG. 9 is a diagram showing a configuration of an inverter device 900 according to a basic form.
  • the inverter device 900 receives AC power from the main power source AC, converts the received AC power into predetermined DC power, further converts the converted DC power into AC power, and uses the converted AC power to the motor M. Drive.
  • the main power supply AC is an AC power supply of AC 200V / 400V, for example.
  • the inverter device 900 includes a rectifier circuit 903, an inverter main circuit 904, a rectifier circuit 910, a control power supply circuit 920, and a control unit 950.
  • the rectifier circuit 903, the inverter main circuit 904, the rectifier circuit 910, the control power supply circuit 920, and the control unit 950 are disposed in, for example, the housing 902 of the inverter device 900.
  • the rectifier circuit 903 receives, for example, three-phase (R phase, S phase, T phase) AC power from the main power supply AC via the input terminals R, S, T on the housing 902.
  • the rectifier circuit 903 rectifies and smoothes AC power to generate DC power.
  • the rectifier circuit 903 has, for example, a plurality of diodes (not shown) connected in a bridge, rectifies AC power using the plurality of diodes, and generates rectified DC power.
  • the rectifier circuit 903 includes, for example, a smoothing capacitor (not shown), smoothes the DC power rectified using the smoothing capacitor, and generates the smoothed DC power.
  • the rectifier circuit 903 supplies the generated DC power to the inverter main circuit 904.
  • the inverter main circuit 904 receives DC power from the rectifier circuit 903.
  • the inverter main circuit 904 converts the DC power into, for example, three-phase (U phase, V phase, W phase) AC power under the control of the control unit 950.
  • the inverter main circuit 904 has a plurality of switching elements corresponding to, for example, three phases (U phase, V phase, W phase), and turns on and off each of the plurality of switching elements at a predetermined timing. For example, it is converted into AC power of three phases (U phase, V phase, W phase).
  • the inverter main circuit 904 drives the motor M by supplying the converted AC power to the motor M via the output terminals U, V, and W on the housing 902.
  • the inverter device 900 internally generates a control power source for operating the control unit 950. That is, the rectifier circuit 910 receives, for example, two-phase (R-phase, S-phase) AC power from the main power supply AC via the input terminals R1 and S1 on the housing 902.
  • the rectifier circuit 910 rectifies and smoothes AC power to generate DC power.
  • the rectifier circuit 910 includes a plurality of diodes D911 to D914 that are bridge-connected, rectifies AC power using the plurality of diodes D911 to D914, and generates rectified DC power. To do. Further, for example, as shown in FIG.
  • the rectifier circuit 910 has a smoothing capacitor C911 at the subsequent stage, and smoothes the DC power using the smoothing capacitor C911 to generate the smoothed DC power.
  • the rectifier circuit 910 supplies the generated DC power to the control power supply circuit 920.
  • Control power supply circuit 920 receives DC power from rectifier circuit 910.
  • the control power supply circuit 920 transforms DC power to generate control DC power.
  • the control power supply circuit 920 includes an insulation transformer T900 including a primary winding T900a connected to the rectifier circuit 910 and a secondary winding T900b insulated from the primary winding T900a.
  • the insulation transformer T900 transforms (for example, steps down) the DC power in accordance with the turn ratio of the primary side winding T900a and the secondary side winding T900b, and generates the transformed DC power. Further, for example, as shown in FIG.
  • the control power supply circuit 920 includes a control power supply capacitor C901 connected to the secondary winding T900b via a diode D901.
  • the control power supply capacitor C901 receives DC power from the secondary winding T900b via the diode D901 and accumulates electric charge according to the received DC power.
  • the control power supply capacitor C901 supplies power corresponding to the accumulated charge to the control unit 950 as control DC power IPS900.
  • Control unit 950 receives control DC power IPS 900 from control power supply circuit 920.
  • the control unit 950 performs a predetermined control operation using the control DC power IPS900.
  • the control unit 950 generates a control signal by receiving a speed command from the outside (for example, a host controller) and performing PWM control for operating the inverter main circuit 904 so that the motor M operates according to the speed command.
  • the control unit 950 supplies the generated control signal to the control terminals of the plurality of switching elements in the inverter main circuit 904, thereby turning on the plurality of switching elements at a predetermined timing so that the motor M operates according to the speed command. ⁇ Turn it off.
  • the control power source that is, the control direct-current power IPS 900 in the inverter device 900 cannot be established without power supply from the main power source (AC 200V / 400V). Therefore, when the power supply from the main power supply is lost during a power failure or the like, the control operation cannot be performed by the control unit 950, and it may be difficult to stop the motor M safely. Alternatively, when the power supply by the main power source such as an instantaneous voltage drop becomes unstable, the control operation by the control unit 950 may also become unstable, making it difficult to operate the motor M safely.
  • the present inventor performs power supply by an external power supply (for example, DC 24V) in addition to power supply by a main power supply (for example, AC 200V / 400V), that is, power supply by the main power supply and external power supply.
  • an external power supply for example, DC 24V
  • a main power supply for example, AC 200V / 400V
  • the input terminals R2 and S2 are added on the housing 902i, and the input terminal R2 is a control power supply capacitor in the control power supply circuit 920i as shown in FIG.
  • the input terminal 2 is connected to the other end of the control power supply capacitor C901 in the control power supply circuit 920i.
  • the following (1) to (5) can be used to achieve both the supply method using the main power supply and the supply method using the external power supply at low cost and efficiently. It turned out to be difficult.
  • control DC power IPS900 When a control power supply (that is, control DC power IPS900) is generated only by an external power supply (for example, DC 24V or the like), a large current is generated because the voltage is lower than that of the main power supply (for example, AC 200V / 400V). And a large output external power source DC is required.
  • an external power supply for example, DC 24V or the like
  • the external power supply DC is a power storage power source such as a power storage battery or a storage battery, it does not save energy but is inefficient. It is.
  • FIG. 1 is a diagram illustrating a configuration of the inverter device 1 according to the first embodiment.
  • FIG. 2 is a diagram more specifically showing the configuration of the inverter device 1 according to the first embodiment.
  • FIG. 3 is a diagram showing the configuration of the rectifier circuit 10 and the control power supply circuits 20-1 and 20-2 in the first embodiment. Below, it demonstrates centering on a different part from the inverter apparatus 900 concerning a basic form.
  • the casing 902 of the inverter device 900 shown in FIG. 9 has only input terminals R1 and S1 for supplying main power (AC200 / 400V) as input terminals for establishing control power.
  • terminals R2-1 and S2-1 for supplying an external power source DC-1 (for example, DC 24V) to the casing 2 of the inverter device 1 in addition to the input terminals R1 and S1;
  • the terminals R2-2 and S2-2 for supplying the external power supply DC-2 (for example, DC5V) are attached, and a supply port dedicated to the external power supply is installed.
  • the inverter device 1 includes a rectifier circuit 10, a control power circuit 20-1, a control power circuit (second control power circuit) 20-2, a monitoring unit 40, a control unit 50, an open / close Part 70, opening / closing part 80-1, and opening / closing part 80-2.
  • the rectifier circuit 10, the control power circuit 20-1, the control power circuit (second control power circuit) 20-2, the monitoring unit 40, and the control unit 50 are disposed in the casing 2 of the inverter device 1,
  • the opening / closing part 70, the opening / closing part 80-1, and the opening / closing part 80-2 are arranged outside the casing 2 of the inverter device 1.
  • the rectifier circuit 10 includes a plurality of diodes D11 to D14, a smoothing capacitor C11, a resistor R11, a capacitor C12, a diode D15, a transistor TR11, and a resistor R12.
  • the plurality of diodes D11 to D14 are bridge-connected, and the two midpoints are connected to the input terminals R1 and S1, respectively.
  • the smoothing capacitor C11 is connected between the P line and the N line.
  • the resistor R11 and the capacitor C12 are connected in parallel between the P line and the cathode of the diode D15.
  • the transistor TR11 is connected between the anode of the diode D15 and the N line, and the resistor R12 is connected to the gate.
  • the AC power supplied from the input terminals R1 and S1 of the main power supply (AC200 / 400V) is rectified by a plurality of diodes D11 to D14 to generate DC power, and further smoothed by a smoothing capacitor C11.
  • the converted DC power is output to the control power supply circuit 20-1 via the resistor R11, the capacitor C12, and the diode D15.
  • the control power supply circuit 20-1 includes an insulating transformer T-1, a diode D1-1, a control power supply capacitor C1-1, a diode D2-1, a diode D3-1, an external power supply capacitor C2-1, a resistor R1-1, It has a control power supply capacitor C3-1, a diode D4-1, a transistor TR-1, and a resistor R2-1.
  • the insulating transformer T-1 includes a primary winding T-1a connected to the rectifier circuit 10, a secondary winding T-1b insulated from the primary winding T-1a, and a rectifier circuit 10. And a connected tertiary winding T-1c.
  • the diode D1-1 has an anode connected to the primary winding T-1a and a cathode connected to one end of the control power supply capacitor C1-1 via the output node N1-1.
  • the control power supply capacitor C1-1 has one end connected to the P line at the output node N1-1 and the other end connected to the N line.
  • the diode D2-1 has an anode connected to the output node N1-1 and a cathode connected to one end of the external power supply capacitor C2-1 through the input node N3-1.
  • the diode D3-1 has an anode connected to the input terminal R2-1 and a cathode connected to one end of the external power supply capacitor C2-1 through the input node N3-1.
  • the external power supply capacitor C2-1 has one end connected to the P line at the input node N3-1 and the other end connected to the N line.
  • An input terminal S2-1 is connected to the input node N4-1 on the N line.
  • the resistor R1-1 and the control power supply capacitor C3-1 are connected in parallel between the P line and the cathode of the diode D4-1.
  • the transistor TR-1 is connected between the anode of the diode D4-1 and the N line, and the resistor R2-1 is connected to the gate.
  • the DC power output from the rectifier circuit 10 is received by the primary winding T-1a of the insulation transformer T-1, and the DC power is received by the primary winding T-1a and the secondary winding.
  • the voltage is transformed according to the turn ratio with the side winding T-1b (eg, stepped down from 200 / 400V to 24V) to generate transformed DC power.
  • the control power supply capacitor C1-1 receives DC power from the secondary winding T-1b via the diode D1-1 and accumulates electric charge according to the received DC power.
  • the control power supply capacitor C1-1 converts the electric power corresponding to the accumulated electric charge from the output node N1-1 to the control unit 50 as an insulating internal power supply, that is, control DC power IPS1-1 (for example, 24V).
  • control DC power IPS1-1 for example, 24V
  • the data is supplied to the control circuit 51-1 and the monitoring unit 40.
  • the external power supply capacitor C2-1 receives DC power (for example, 24V) from the control power supply capacitor C1-1 via the diode D2-1 and the input node N3-1, and the external power supply DC-1 has an input terminal. At least one of receiving DC power (for example, 24V) via R2-1, diode D3-1, and input node N3-1 is performed, and charges corresponding to the received DC power are accumulated.
  • the external power supply capacitor C2-1 supplies power corresponding to the accumulated electric charge to the control power supply capacitor C3-1 via the input node N3-1 and the output node N2-1.
  • Control power supply capacitor C3-1 receives DC power from external power supply capacitor C2-1 via input node N3-1 and output node N2-1 and accumulates electric charge according to the received DC power.
  • the control power supply capacitor C3-1 converts the electric power corresponding to the accumulated electric charge from the output node N2-1 to the control unit 50 as an insulating internal power supply, that is, control DC power IPS2-1 (for example, 24V). For example, it is supplied to the control circuit 51-2.
  • the internal power supply IPS1-1 main power supply
  • the internal power supply IPS2-1 main power supply + external DC power supply
  • the separated internal power supply IPS1-1 is Driving power that requires a large amount of power (for example, FAN) or that does not need to be operated by an external power source (other than the CPU periphery) can reduce the power supplied to the external power source DC-1 and reduce current. be able to.
  • an external power supply capacitor C2-1 that receives power supply from the external power supply DC-1 is provided separately from the control power supply capacitor C1-1 that receives power supply from the main power supply via the rectifier circuit 10.
  • the capacity of the capacitor C2-1 can be reduced, and the above problem (3) can be solved.
  • control power supply capacitor C1-1 and the external power supply capacitor C2-1 are shared, the capacity of the capacitor is increased in order to stably receive power from the main power supply via the rectifier circuit 10. There is a possibility that a large inrush current flows from the external power source DC-1 to the capacitor.
  • the capacitor by dividing the capacitor into the control power supply capacitor C1-1 and the external power supply capacitor C2-1, the capacity of the external power supply capacitor C2-1 can be reduced.
  • the inrush current from the power source DC-1 to the external power source capacitor C2-1 can be reduced.
  • the control power supply circuit 20-2 includes an isolation transformer T-2, a diode D1-2, a control power supply capacitor C1-2, a diode D2-2, a diode D3-2, an external power supply capacitor C2-2, a resistor R1-2, A control power supply capacitor C3-2, a diode D4-2, a transistor TR-2, and a resistor R2-2 are included.
  • the isolation transformer T-2 includes a primary winding T-2a connected to the control power supply circuit 20-1 and a secondary side insulated from the primary winding T-2a.
  • a winding T-2b and a tertiary winding T-1c connected to the control power circuit 20-1 are included.
  • Output node N2-2 and the anode of diode D4-2 are connected.
  • the resistor R2-2 has one end connected to the gate of the transistor TR-2 and the other end connected to the source (or drain) of the transistor TR-2.
  • the other points are the same as the configuration of each part in the control power supply circuit 20-1.
  • the control power supply circuit 20-2 transforms the DC power output from the control power supply circuit 20-1 in accordance with the turn ratio between the primary winding T-1a and the secondary winding T-1b (for example, , The voltage is stepped down from 24V to 5V) to generate transformed DC power.
  • the control power supply capacitor C1-2 converts the electric power corresponding to the accumulated electric charge from the output node N1-2 to the control unit 50 as an insulating internal power supply, that is, control DC power IPS1-2 (for example, 5V). For example, it is supplied to the control circuit 51-2.
  • the external power supply capacitor C2-2 receives DC power (for example, 5V) from the control power supply capacitor C1-2 via the diode D2-2 and the input node N3-2, and receives an input terminal from the external power supply DC-2. At least one of receiving DC power (for example, 5 V) via R2-2, diode D3-2, and input node N3-2 is performed, and charges corresponding to the received DC power are accumulated. Further, the control power supply capacitor C3-2 converts the electric power corresponding to the accumulated electric charge from the output node N2-2 to the control unit as an insulating internal power supply, that is, control DC power IPS2-2 (for example, 5V). 50, for example, to the control circuit 51-2. The other points are the same as the operation of the control power supply circuit 20-1.
  • the internal power supply IPS1-2 main power supply + external DC power supply
  • the insulating transformer T-2 are used to supply the insulating internal power supply IPS1-2, thereby supplying the non-insulating external power supply.
  • an insulating internal power supply can be supplied, and the problem (1) can be solved.
  • the monitoring unit 40 receives one of the control DC power IPS2-1 and IPS2-1 (for example, 24V each) from the control power supply circuit 20-1, and receives the received control DC power IPS2-1 and IPS2-1.
  • the voltage of the control power supply capacitor C1-1 is monitored.
  • the monitoring unit 40 supplies the monitored voltage value as a monitoring result to the control unit 50 (for example, the control circuit 51-2).
  • the control unit 50 receives one of the control DC powers IPS2-1 and IPS2-1 (for example, 24V each) from the control power supply circuit 20-1, and receives the control DC power IPS2-2 and IPS2-2 (for example, Each of 5V) is received from the control power supply circuit 20-2.
  • the control unit 50 performs a predetermined control operation using the received control DC power IPS2-1 and IPS2-1 and the received control DC power IPS2-2 and IPS2-2, respectively.
  • control unit 50 includes a plurality of control circuits 51-1 and 51-2.
  • the control circuit 51-1 includes circuit parts that operate at a relatively high voltage, and receives one of the control DC power IPS2-1 and IPS2-1 (for example, 24V each) from the control power supply circuit 20-1.
  • a predetermined control operation is performed using the received DC power IPS2-1 and IPS2-1 for control.
  • the control circuit 51-2 includes circuit components (eg, transistors) that operate at a relatively low voltage, and one of the control DC power IPS2-2 and IPS2-2 (eg, 5V, respectively) is used as a control power supply circuit. A predetermined control operation is performed using the received DC power IPS2-2 and IPS2-2 for control received from 20-2.
  • the opening / closing part 70 is connected between the main power supply AC and the input terminals R, S, T, for example.
  • the open / close unit 70 opens and closes the electrical connection between the main power supply AC and the rectifier circuit 903 under the control of the control unit 50.
  • the open / close unit 70 includes, for example, a plurality of switches 71 to 73 that are turned off and on in synchronization, and according to a control signal supplied from the control circuit 51-2, the main power supply AC and the input terminals R, S, T
  • the electrical connection between the main power supply AC and the rectifier circuit 903 is opened and closed by synchronously turning off and on the electrical connection with the rectifier circuit 903.
  • the open / close unit 80-1 is connected, for example, between the external power source DC-1 and the input terminals R2-1 and S2-1.
  • the open / close unit 80-1 opens and closes the electrical connection between the external power supply DC-1 and the control power supply circuit 20-1 under the control of the control unit 50.
  • the open / close unit 80-1 includes, for example, a circuit breaker 81-1 (for example, a relay) that cuts off the electrical connection between the external power source DC-1 and the input terminal R2-1, and is supplied from the control circuit 51-2.
  • shutoff signal or energization signal In response to the control signal (shutoff signal or energization signal), the electrical connection between the main power supply AC and the input terminals R, S, T is shut off or released so that the external power source DC-1 And the control power supply circuit 20-1 are opened and closed.
  • the open / close unit 80-2 is connected, for example, between the external power source DC-2 and the input terminals R2-2 and S2-2.
  • the open / close unit 80-2 opens and closes the electrical connection between the external power supply DC-2 and the control power supply circuit 20-2 under the control of the control unit 50.
  • the open / close unit 80-2 includes, for example, a circuit breaker 81-2 (eg, a relay) that cuts off the electrical connection between the external power source DC-2 and the input terminal R2-2, and is supplied from the control circuit 51-2.
  • the control signal shut off signal or energization signal
  • the external power source DC-2 is disconnected by breaking or releasing the electrical connection between the main power source AC and the input terminals R, S, T.
  • the control power supply circuit 20-2 are opened and closed.
  • control circuit 51-2 receives the monitoring result of the voltage of the control power supply capacitor C1-1 from the monitoring unit 40.
  • the control circuit 51-2 includes a first mode in which the external power sources DC-1 and DC-2 are disconnected from the control power source circuits 20-1 and 20-2, a main power source AC, The operation of the inverter device 1 is switched between the second mode in which the external power sources DC-1 and DC-2 are used together and the third mode in which the main power source AC is cut off from the rectifier circuit 903.
  • control circuit 51-2 controls the opening / closing unit 70, the opening / closing unit 80-1, and the opening / closing unit 80-2 according to the monitoring result of the monitoring unit 40.
  • the switching unit 70 closes the electrical connection between the main power source AC and the rectifier circuit 903, and the switching unit 80-1 is connected to the external power source DC-1 and the control power source.
  • the electrical connection with the circuit 20-1 is opened, and the open / close unit 80-2 is controlled to open the electrical connection between the external power supply DC-2 and the control power supply circuit 20-2.
  • the control circuit 51-2 causes the switching unit 70 to close the electrical connection between the main power supply AC and the rectifier circuit 903, and the switching unit 80-1 to connect to the external power supply DC-1.
  • the electrical connection with the control power supply circuit 20-1 is closed, and the open / close section 80-2 is controlled so as to close the electrical connection between the external power supply DC-2 and the control power supply circuit 20-2.
  • the control circuit 51-2 opens the electrical connection between the main power supply AC and the rectifier circuit 903 in the third mode, and the switch 80-1 connects with the external power supply DC-1.
  • the electrical connection with the control power supply circuit 20-1 is closed, and the open / close section 80-2 is controlled so as to close the electrical connection between the external power supply DC-2 and the control power supply circuit 20-2.
  • FIG. 4 is a diagram showing an algorithm for determining the current power supply state.
  • step ST1 power is supplied, and a CPU (not shown) including the monitoring unit 40 and the control unit 50 operates (step ST1).
  • the CPU detects the voltage of the separated control power supply capacitor C1-1, and compares the voltage with a predetermined threshold value to determine whether the voltage of the control power supply capacitor C1-1 is present or not. Judgment is made (step ST2).
  • the power is supplied from the main power supply AC (steps ST3 and ST4), and it is determined that there is no voltage of the control power supply capacitor C1-1.
  • the external power source DC-1 is supplied (step ST5). Thereby, the supply port of a power supply can be discriminate
  • step ST3 and ST4 When it is found that the main power supply is supplied from the main power supply AC (steps ST3 and ST4), the main power supply alone or the combined use of the main power supply and the external power supply is inquired to the user. It waits for an instruction to select whether to supply only power or to use both main power and external power (step ST6).
  • the control mode of the inverter device 1 is changed to the first mode (step ST8).
  • the control mode of the inverter device 1 is changed to the first mode (step ST8).
  • a shut-off signal is output from the control unit 50 to the breakers 81-1 and 81-2 (step ST10), and the breaker 81-1 and 81-2 outside the housing 2 is shut off (step ST12). ).
  • FIG. 5 is a time chart thereof.
  • the CPU starts operating with the external power source DC-1 and when the power is supplied from the main power source AC, the voltage of the control power source capacitor C1-1 is detected and a cutoff signal is output.
  • the control mode of the inverter device 1 is changed to the second mode (step ST9).
  • the control unit 50 outputs energization signals to the circuit breakers 81-1 and 81-2 (step ST11), and the circuit breakers 81-1 and 81-2 outside the housing 2 release the circuit break ( Step ST13).
  • the second mode is a high-reliability mode in which, even when the main power supply AC is shut down for some reason, the CPU can be powered off and the situation can be grasped, judged and recorded. At this time, for example, if DC power is supplied from the control power supply circuit 20-1 to the inverter main circuit 904, the operation of driving the motor M can be continued.
  • the main power supply AC is dropped due to an instantaneous power failure or power failure, it can be seen that it is supplied from the external power source DC-1 according to the algorithm of FIG. 4 (step ST5).
  • the mode is changed to (step ST7). Thereby, the power supply to the CPU can be resumed. At this time, the CPU can record an instantaneous power failure, a power failure, or the like.
  • the main power supply and the external power supply are used together, and the setting change of the inverter device 1 and the state of the inverter device 1 can be easily confirmed without turning on the main power supply AC. The convenience and maintainability of the device 1 can be improved.
  • the state of the inverter device 1 can be confirmed safely, and it is not necessary to supply electricity to the inverter main circuit 904, so that power can be saved. Further, the state of the inverter device 1 can be confirmed remotely by using communication such as CC-LINK. Further, since the operation such as driving the motor M becomes impossible and the function is automatically limited, the safety of driving the motor M can be ensured, and the above problem (5) can be solved.
  • the isolation transformer T-1 includes the primary winding T-1a connected to the rectifier circuit 10 and the primary winding T-. And a secondary winding T-1b insulated from 1a.
  • the control power supply capacitor C1-1 is connected to the secondary winding T-1b of the insulation transformer T-1 via the diode D1-1.
  • the external power supply capacitor C2-1 is connected to the control power supply capacitor C1-1 via the diode D2-1, and the diode D3-1 is connected to the input terminal R2-1 to which the external power supply DC-1 is connected. Connected through.
  • the control power supply capacitor C3-1 is connected to the external power supply capacitor C2-1.
  • the internal power supply IPS1-1 (main power supply) and the internal power supply IPS2-1 (main power supply + external DC power supply) can be separated, and the power supplied to the external power supply DC-1 can be reduced, thereby saving power. Can be achieved. Further, by dividing the capacitor into the control power supply capacitor C1-1 and the external power supply capacitor C2-1, the capacity of the external power supply capacitor C2-1 can be reduced, and the external power supply DC-1 can be used for the external power supply. Since the inrush current to the capacitor C2-1 can be reduced, the inrush current can be efficiently suppressed without providing a resistor. Therefore, the power supply by the main power supply and the power supply by the external power supply can be made both energy efficient and efficient.
  • the isolation transformer T-2 is insulated from the primary side winding T-2a connected to the rectifier circuit 10 and the primary side winding T-2a. Secondary winding T-2b.
  • the control power supply capacitor C1-2 is connected to the secondary winding T-2b of the insulation transformer T-2 via a diode D1-2.
  • the external power supply capacitor C2-2 is connected to the control power supply capacitor C1-2 via the diode D2-2, and the diode D3-2 is connected to the input terminal R2-2 to which the external power supply DC-2 is connected. Connected through.
  • the control power supply capacitor C3-2 is connected to the external power supply capacitor C2-2.
  • the insulated internal power supply IPS1-2 is supplied by the internal power supply IPS2-1 (main power supply + external DC power supply) and the isolation transformer T-2, so that power is supplied by a non-isolated external power supply.
  • an insulating internal power supply can be supplied without insulating the external power supply DC.
  • the monitoring unit 40 monitors the voltage of the control power supply capacitor C1-1.
  • the control unit 50 includes a first mode in which the external power sources DC-1 and DC-2 are disconnected from the control power source circuits 20-1 and 20-2, a main power source AC, and an external power source according to the monitoring result of the monitoring unit 40.
  • the operation of the inverter device 1 is switched between the second mode in which DC-1 and DC-2 are used together and the third mode in which the main power supply AC is cut off from the rectifier circuit 903.
  • the power supply port main power supply / external power supply
  • the control mode of the inverter device 1 can be changed according to the supply method and purpose (setting).
  • the external power supply can be shut off when the main power supply / external power supply is used together, and power saving of the battery of the external power supply can be achieved.
  • the reliability of the operation of the inverter device 1 can be improved so that the power of the CPU (the monitoring unit 40 and the control unit 50) is not turned off at any time.
  • restrictions such as not driving the motor M are automatically applied, and the inverter device 1 can be set and maintained safely.
  • FIG. 6 is a diagram illustrating a configuration of the inverter device 1i. Below, it demonstrates focusing on a different part from Embodiment 1.
  • FIG. 6 is a diagram illustrating a configuration of the inverter device 1i. Below, it demonstrates focusing on a different part from Embodiment 1.
  • the inverter device 1i is connected to various types of external power sources DC-1 and DC-. 2,..., DC-k (k is an integer of 3 or more) are connected.
  • terminals R2-1 and S2-1 for supplying an external power source DC-1 in addition to the input terminals R1 and S1, as input terminals for establishing a control power source in the casing 2 of the inverter device 1i, Attaching the terminals R2-2 and S2-2 for supplying the external power supply DC-2, ..., attaching the terminals R2-k and S2-k for supplying the external power supply DC-k, and supplying them exclusively for the external power supply Set up a mouth.
  • a plurality of insulating transformers T-1, T-2,... , And control power supply circuit 20-k are connected in multiple stages.
  • the internal configurations of the control power supply circuit 20-1, the control power supply circuit 20-2,..., And the control power supply circuit 20- (k-1) excluding the final stage are respectively the control power supply circuit of the first embodiment.
  • the internal configuration of the control power supply circuit 20-k at the final stage is the same as the internal configuration of the control power supply circuit 20-2 of the first embodiment.
  • the insulation internal power source at the level transformed in multiple steps (for example, DC48V, DC24V, DC5V, DC3.3V, etc.), that is, the control DC power IPS1-1, IPS2-1, IPS1-2, IPS2-2,..., IPS1-k, IPS2-k can be generated, and there are control circuits 51-1, 51-2,.
  • an insulating internal power supply can be supplied to each control circuit.
  • the monitoring unit 40i controls the control power supply capacitors C1-1 and C1 in the control power supply circuit 20-1, the control power supply circuit 20-2,..., The control power supply circuit 20- (k-1) except for the final stage. -2, ..., C1- (k-1) is monitored.
  • the monitoring unit 40i supplies each monitored voltage value as a monitoring result to the control unit 50 (for example, the control circuit 51-2).
  • the control circuit 51-2 displays monitoring results of the voltage of the control power supply capacitor C1-1, the voltage of the control power supply capacitor C1-2,..., And the voltage of the control power supply capacitor C1-k. Receive from.
  • the control circuit 51-2 first cuts off the external power supplies DC-1, DC-2,..., DC-k from the control power supply circuits 20-1 and 20-2 according to the monitoring result by the monitoring unit 40i. Mode, a second mode in which main power source AC and external power sources DC-1, DC-2,..., DC-k are used together, and a third mode in which main power source AC is cut off from rectifier circuit 903 The operation of the inverter device 1i is switched between.
  • the control circuit 51-2 controls the opening / closing unit 70, the opening / closing unit 80-1, the opening / closing unit 80-2,..., And the opening / closing unit 80-k according to the monitoring result by the monitoring unit 40i.
  • the power supply port main power supply / external power supply
  • the control mode of the inverter device 1i can be more accurately changed in accordance with the supply method and purpose (setting).
  • the control circuit 51-2 includes an inverter between more control modes.
  • the operation of the device 1i may be switched.
  • a mode in which a part of the external power supplies DC-1, DC-2,..., DC-k is cut off from the control power supply circuits 20-1 and 20-2 may be further provided.
  • a mode in which a part of the power sources DC-1, DC-2,..., DC-k is used together may be further provided.
  • the inverter apparatus 1i can be operated more finely according to the supply system and the purpose (setting).
  • the inverter device according to the present invention is useful for establishing a control power source.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)

Abstract

 インバータ装置は、主電源から供給された交流電力を整流化して直流電力を生成する整流回路と、前記生成された直流電力と外部電源から供給された直流電力との少なくとも一方を用いて制御用直流電力を生成する制御電源回路と、前記生成された制御用直流電力を受けて、所定の制御動作を行う制御部とを備え、前記制御電源回路は、前記整流回路に接続された1次側巻線と前記1次側巻線から絶縁された2次側巻線とを含む絶縁トランスと、前記絶縁トランスの前記2次側巻線に第1のダイオードを介して接続された第1の制御電源用コンデンサと、前記第1の制御電源用コンデンサに第2のダイオードを介して接続されているとともに、前記外部電源が接続される端子に第3のダイオードを介して接続された外部電源用コンデンサと、前記外部電源用コンデンサに接続された第2の制御電源用コンデンサとを有する。

Description

インバータ装置
 本発明は、インバータ装置に関する。
 特許文献1には、半導体素子へのゲート電圧を印加するためのゲート駆動回路にゲート電源を供給するゲート電源供給装置において、ゲート電源自給回路が、半導体素子のオフ時の電圧を受けて抵抗分圧しダイオードを介してコンデンサに充電することでゲート電源を自給し、バックアップ電源回路が、半導体素子のオフ時の電圧が低下しゲート電源自給回路がコンデンサにゲート電圧を維持するだけの電荷を蓄積できなくなったときに、ゲート電源自給回路の電圧を受けて抵抗分圧しダイオードを介してゲート電源自給回路のコンデンサに充電することが記載されている。これにより、特許文献1によれば、外部電源を設けなくても自己の半導体素子のゲート駆動回路にバックアップ電源回路からゲート電圧を供給できるので、複数個の半導体素子が並列接続された場合において1つの半導体素子が短絡故障した場合でもゲート電源を確保することができるとされている。
 特許文献2には、インバータ装置において、インバータ本体に商用電源が接続されるとともに、インバータ本体にパラメータ通信ケーブルを介してパラメータユニットが接続され、パラメータユニットに外部電源ユニットが接続されることが記載されている。これにより、特許文献2によれば、インバータ本体の立ち上げ時に商用電源を投入できない状態であっても、設定値の確認や変更を行うことができるとされている。
特開2007-236134号公報 国際公開第2004/107551号
 特許文献1の技術は、外部電源を設けないことが前提となっているので、主電源による電源供給と外部電源による電源供給とをどのように両立させるのかについて一切記載がない。
 特許文献2には、インバータ本体に外部電源ユニット接続コネクタを設け、外部電源ユニットをその外部電源ユニット接続コネクタに接続することも記載されているが、外部電源ユニット接続コネクタと商用電源(主電源)が接続される側の回路とをどのように接続するのかについて一切記載がなく、主電源による電源供給と外部電源による電源供給とをどのように両立させるのかについても一切記載がない。
 本発明は、上記に鑑みてなされたものであって、主電源による電源供給と外部電源による電源供給とを省電力かつ効率的に両立させることができるインバータ装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明の1つの側面にかかるインバータ装置は、主電源から供給された交流電力を整流化して直流電力を生成する整流回路と、前記生成された直流電力と外部電源から供給された直流電力との少なくとも一方を用いて制御用直流電力を生成する制御電源回路と、前記生成された制御用直流電力を受けて、所定の制御動作を行う制御部とを備え、前記制御電源回路は、前記整流回路に接続された1次側巻線と前記1次側巻線から絶縁された2次側巻線とを含む絶縁トランスと、前記絶縁トランスの前記2次側巻線に第1のダイオードを介して接続された第1の制御電源用コンデンサと、前記第1の制御電源用コンデンサに第2のダイオードを介して接続されているとともに、前記外部電源が接続される端子に第3のダイオードを介して接続された外部電源用コンデンサと、前記外部電源用コンデンサに接続された第2の制御電源用コンデンサとを有することを特徴とする。
 本発明によれば、主電源供給と主電源+外部電源供給とを分離でき、外部電源の供給電力を減らすことができ、省電力化を図ることができる。また、制御電源用コンデンサと外部電源用コンデンサとにコンデンサを分割することで、外部電源用コンデンサの容量を減らすことができ、外部電源から外部電源用コンデンサへの突入電流を小さくすることができるので、抵抗を設けることなく突入電流を効率的に抑制できる。したがって、主電源による電源供給と外部電源による電源供給とを省電力かつ効率的に両立させることができる。
図1は、実施の形態1にかかるインバータ装置の構成を示す図である。 図2は、実施の形態1にかかるインバータ装置の構成を示す図である。 図3は、実施の形態1における整流回路及び制御電源回路の構成を示す図である。 図4は、実施の形態1にかかるインバータ装置の動作を示す図である。 図5は、実施の形態1にかかるインバータ装置の動作を示す図である。 図6は、実施の形態2にかかるインバータ装置の構成を示す図である。 図7は、実施の形態2にかかるインバータ装置の構成を示す図である。 図8は、実施の形態2における整流回路及び制御電源回路の構成を示す図である。 図9は、基本の形態にかかるインバータ装置の構成を示す図である。 図10は、基本の形態における整流回路及び制御電源回路の構成を示す図である。 図11は、基本の形態の変形例にかかるインバータ装置の構成を示す図である。 図12は、基本の形態の変形例における整流回路及び制御電源回路の構成を示す図である。
 以下に、本発明にかかるインバータ装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 実施の形態1にかかるインバータ装置1について説明する前に、基本の形態にかかるインバータ装置900について図9を用いて説明する。図9は、基本の形態にかかるインバータ装置900の構成を示す図である。
 インバータ装置900は、主電源ACから交流電力を受け、受けた交流電力を所定の直流電力に変換し、変換された直流電力をさらに交流電力に変換し、変換された交流電力を用いてモータMを駆動する。なお、主電源ACは、例えばAC200V/400Vの交流電源である。
 具体的には、インバータ装置900は、整流回路903、インバータ主回路904、整流回路910、制御電源回路920、及び制御部950を備える。整流回路903、インバータ主回路904、整流回路910、制御電源回路920、及び制御部950は、例えば、インバータ装置900の筐体902内に配置される。
 整流回路903は、筐体902上の入力端子R、S、Tを介して、主電源ACから例えば3相(R相、S相、T相)の交流電力を受ける。整流回路903は、交流電力を整流化・平滑化して直流電力を生成する。整流回路903は、例えばブリッジ接続された複数のダイオード(図示せず)を有し、複数のダイオードを用いて交流電力を整流化し、整流化された直流電力を生成する。また、整流回路903は、例えば平滑コンデンサ(図示せず)を有し、平滑コンデンサを用いて整流化された直流電力を平滑化し、平滑化された直流電力を生成する。整流回路903は、生成された直流電力をインバータ主回路904へ供給する。
 インバータ主回路904は、直流電力を整流回路903から受ける。インバータ主回路904は、制御部950による制御のもと、直流電力を例えば3相(U相、V相、W相)の交流電力に変換する。インバータ主回路904は、例えば3相(U相、V相、W相)に対応した複数のスイッチング素子を有し、複数のスイッチング素子をそれぞれ所定のタイミングでオン・オフさせることで、直流電力を例えば3相(U相、V相、W相)の交流電力に変換する。インバータ主回路904は、変換された交流電力を、筐体902上の出力端子U、V、Wを介してモータMへ供給することで、モータMを駆動する。
 このとき、インバータ装置900は、制御部950を動作させるための制御電源を内部的に生成する。すなわち、整流回路910は、筐体902上の入力端子R1、S1を介して、主電源ACから例えば2相(R相、S相)の交流電力を受ける。整流回路910は、交流電力を整流化・平滑化して直流電力を生成する。整流回路910は、例えば図10に示すように、ブリッジ接続された複数のダイオードD911~D914を有し、複数のダイオードD911~D914を用いて交流電力を整流化し、整流化された直流電力を生成する。また、整流回路910は、例えば図10に示すように、その後段に平滑コンデンサC911を有し、平滑コンデンサC911を用いて直流電力を平滑化し、平滑化された直流電力を生成する。整流回路910は、生成された直流電力を制御電源回路920へ供給する。
 制御電源回路920は、直流電力を整流回路910から受ける。制御電源回路920は、直流電力を変圧して制御用直流電力を生成する。制御電源回路920は、例えば図10に示すように、整流回路910に接続された1次側巻線T900aと1次側巻線T900aから絶縁された2次側巻線T900bとを含む絶縁トランスT900を有する。絶縁トランスT900は、例えば、1次側巻線T900aと2次側巻線T900bとの巻き数比に応じて直流電力を変圧し(例えば降圧し)、変圧された直流電力を生成する。また、制御電源回路920は、例えば図10に示すように、2次側巻線T900bにダイオードD901を介して接続された制御電源用コンデンサC901を有する。制御電源用コンデンサC901は、2次側巻線T900bからダイオードD901を介して直流電力を受け、受けた直流電力に応じた電荷を蓄積する。制御電源用コンデンサC901は、蓄積された電荷に応じた電力を、制御用の直流電力IPS900として制御部950へ供給する。
 制御部950は、制御用の直流電力IPS900を制御電源回路920から受ける。制御部950は、制御用の直流電力IPS900を用いて、所定の制御動作を行う。例えば、制御部950は、速度指令を外部(例えば、上位のコントローラ)から受けて、速度指令に従ってモータMが動作するようにインバータ主回路904を動作させるためのPWM制御を行って制御信号を生成する。制御部950は、生成された制御信号をインバータ主回路904における複数のスイッチング素子の制御端子に供給することで、速度指令に従ってモータMが動作するように複数のスイッチング素子をそれぞれ所定のタイミングでオン・オフさせる。
 このように、基本の形態にかかるインバータ装置900では、主電源(AC200V/400V)による電力供給がないとインバータ装置900内の制御電源(すなわち、制御用の直流電力IPS900)を確立できない。そのため、停電時等の主電源による電力供給がなくなった際に、制御部950により制御動作ができなくなり、モータMを安全に停止させることが困難になる可能性がある。あるいは、瞬時電圧低下等の主電源による電力供給が不安定になった際に、制御部950による制御動作も不安定になり、モータMを安全に動作させることが困難になる可能性がある。
 それに対して、本発明者は、主電源(例えば、AC200V/400V)による電力供給に加えて、外部電源(例えば、DC24V等)による電力供給を行うことで、すなわち、主電源による電源供給と外部電源による電源供給とを両立させることで、主電源による電力供給がなくなった際や主電源による電力供給が不安定になった際でも制御電源を確立できるのではないかと考え、基本の形態にかかるインバータ装置900に対して、図11に示すように、外部電源DCを接続できるように改良されたインバータ装置900iを検討してみた。
 すなわち、基本の形態の変形例にかかるインバータ装置900iでは、筐体902i上に入力端子R2、S2が追加され、図12に示すように、入力端子R2が制御電源回路920i内の制御電源用コンデンサC901の一端に接続され、入力端子2が制御電源回路920i内の制御電源用コンデンサC901の他端に接続されている。本発明者が検討を行ったところ、インバータ装置900iでは、主電源による供給方式と外部電源による供給方式とを低コストかつ効率的に両立させるのは、例えば、下記の(1)~(5)の問題があり困難であることが分かった。
(1)非絶縁系の制御電源(すなわち、制御用の直流電力IPS900)を供給するためには、外部電源DCも絶縁しなければいけないため、コストと手間とがかかる。非絶縁系の外部電源の使用が困難である。
(2)外部電源(例えば、DC24V等)のみで、制御電源(すなわち、制御用の直流電力IPS900)を生成させると、主電源(例えば、AC200V/400V)に比べ、電圧が低い分、大きな電流を流すことが必要となり、大出力の外部電源DCが必要となる。
(3)外部電源DCから直流電力を初めに供給する際、制御電源用コンデンサC901に大きな突入電流が流れる可能性がある。突入電流を抑制するには、入力端子R2、S2と制御電源用コンデンサC901との間に抵抗を付ければよいが、電力損失となり、効率が低下する。
(4)主電源(AC200V/400V)による供給方式と外部電源による供給方式とを同時に実施した場合、外部電源DCが蓄電用バッテリーや蓄電池といった蓄電用の電源であると、省エネとならず非効率である。
(5)外部電源DCのみの供給方式において(すなわち、主電源による電源供給がない状態において)、安全の面でモータMを駆動しない等の制御が必要となるが、インバータ装置900iが供給方式を簡単に判別する方法が確立されていないので、モータMを駆動しない等の制御をいつ行うのかを決めることが困難である。
 そこで、本実施の形態では、上記の(1)~(5)の問題を解決するために、基本の形態にかかるインバータ装置900に対して、図1~図3に示すような改良を行う。図1は、実施の形態1にかかるインバータ装置1の構成を示す図である。図2は、実施の形態1にかかるインバータ装置1の構成をさらに具体的に示す図である。図3は、実施の形態1における整流回路10及び制御電源回路20-1、20-2の構成を示す図である。以下では、基本の形態にかかるインバータ装置900と異なる部分を中心に説明する。
 具体的には、図9に示すインバータ装置900の筐体902には制御電源を確立させるための入力端子として、主電源(AC200/400V)を供給する入力端子R1、S1しか存在しないが、本実施の形態では、図1に示すように、インバータ装置1の筐体2に、入力端子R1、S1以外に外部電源DC-1(例えば、DC24V)を供給する端子R2-1、S2-1と、外部電源DC-2(例えば、DC5V)を供給する端子R2-2、S2-2とを取り付け、外部電源専用の供給口を設置する。
 インバータ装置1は、図2及び図3に示すように、整流回路10、制御電源回路20-1、制御電源回路(第2の制御電源回路)20-2、監視部40、制御部50、開閉部70、開閉部80-1、及び開閉部80-2を備える。例えば、整流回路10、制御電源回路20-1、制御電源回路(第2の制御電源回路)20-2、監視部40、及び制御部50は、インバータ装置1の筐体2内に配置され、例えば、開閉部70、開閉部80-1、及び開閉部80-2は、インバータ装置1の筐体2外に配置される。
 整流回路10は、複数のダイオードD11~D14、平滑コンデンサC11、抵抗R11、コンデンサC12、ダイオードD15、トランジスタTR11、及び抵抗R12を有する。複数のダイオードD11~D14は、ブリッジ接続され、2つの中点が入力端子R1、S1にそれぞれ接続されている。複数のダイオードD11~D14の後段において、平滑コンデンサC11はPラインとNラインとの間に接続されている。平滑コンデンサC11の後段において、抵抗R11及びコンデンサC12が、PラインとダイオードD15のカソードとの間に並列接続されている。トランジスタTR11は、ダイオードD15のアノードとNラインとの間に接続され、ゲートに抵抗R12が接続されている。
 整流回路10では、主電源(AC200/400V)の入力端子R1、S1から供給された交流電力を複数のダイオードD11~D14で整流化して直流電力を生成し、さらに平滑コンデンサC11で平滑化し、平滑化された直流電力を抵抗R11、コンデンサC12、及びダイオードD15を介して制御電源回路20-1へ出力する。
 制御電源回路20-1は、絶縁トランスT-1、ダイオードD1-1、制御電源用コンデンサC1-1、ダイオードD2-1、ダイオードD3-1、外部電源用コンデンサC2-1、抵抗R1-1、制御電源用コンデンサC3-1、ダイオードD4-1、トランジスタTR-1、及び抵抗R2-1を有する。絶縁トランスT-1は、整流回路10に接続された1次側巻線T-1aと、1次側巻線T-1aから絶縁された2次側巻線T-1bと、整流回路10に接続された3次側巻線T-1cとを含む。ダイオードD1-1は、アノードが1次側巻線T-1aに接続され、カソードが出力ノードN1-1を介して制御電源用コンデンサC1-1の一端に接続されている。制御電源用コンデンサC1-1は、一端が出力ノードN1-1でPラインに接続され、他端がNラインに接続されている。
 ダイオードD2-1は、アノードが出力ノードN1-1に接続され、カソードが入力ノードN3-1を介して外部電源用コンデンサC2-1の一端に接続されている。ダイオードD3-1は、アノードが入力端子R2-1に接続され、カソードが入力ノードN3-1を介して外部電源用コンデンサC2-1の一端に接続されている。外部電源用コンデンサC2-1は、一端が入力ノードN3-1でPラインに接続され、他端がNラインに接続されている。Nライン上の入力ノードN4-1には、入力端子S2-1が接続されている。外部電源用コンデンサC2-1の後段において、抵抗R1-1及び制御電源用コンデンサC3-1が、PラインとダイオードD4-1のカソードとの間に並列接続されている。トランジスタTR-1は、ダイオードD4-1のアノードとNラインとの間に接続され、ゲートに抵抗R2-1が接続されている。
 制御電源回路20-1では、整流回路10から出力された直流電力を絶縁トランスT-1の1次側巻線T-1aで受け、その直流電力を1次側巻線T-1aと2次側巻線T-1bとの巻き数比に応じて変圧し(例えば、200/400Vから24Vに降圧し)、変圧された直流電力を生成する。また、制御電源用コンデンサC1-1は、2次側巻線T-1bからダイオードD1-1を介して直流電力を受け、受けた直流電力に応じた電荷を蓄積する。制御電源用コンデンサC1-1は、蓄積された電荷に応じた電力を、絶縁系の内部電源、すなわち制御用の直流電力IPS1-1(例えば、24V)として出力ノードN1-1から制御部50における例えば制御回路51-1と監視部40とへ供給する。
 外部電源用コンデンサC2-1は、制御電源用コンデンサC1-1からダイオードD2-1及び入力ノードN3-1を介して直流電力(例えば、24V)を受けることと、外部電源DC-1から入力端子R2-1、ダイオードD3-1及び入力ノードN3-1を介して直流電力(例えば、24V)を受けることとの少なくとも一方を行い、受けた直流電力に応じた電荷を蓄積する。外部電源用コンデンサC2-1は、蓄積された電荷に応じた電力を、入力ノードN3-1及び出力ノードN2-1を介して制御電源用コンデンサC3-1へ供給する。また、制御電源用コンデンサC3-1は、外部電源用コンデンサC2-1から入力ノードN3-1及び出力ノードN2-1を介して直流電力を受け、受けた直流電力に応じた電荷を蓄積する。制御電源用コンデンサC3-1は、蓄積された電荷に応じた電力を、絶縁系の内部電源、すなわち制御用の直流電力IPS2-1(例えば、24V)として出力ノードN2-1から制御部50における例えば制御回路51-2へ供給する。
 ここで、ダイオードD2-1、ダイオードD3-1、及び外部電源用コンデンサC2-1を追加していることで、内部電源IPS1-1(主電源供給)と内部電源IPS2-1(主電源供給+外部DC電源供給)とに分離でき、上記の問題(2)の解決を図ることができる。
 仮に、内部電源IPS1-1(主電源供給)と内部電源IPS2-1(主電源供給+外部DC電源供給)とを分離してなければ、外部電源ですべての電力を供給しなければならず、大出力の外部電源が必要となる。
 それに対して、本実施の形態では、内部電源IPS1-1(主電源供給)と内部電源IPS2-1(主電源供給+外部DC電源供給)とを分離し、分離した内部電源IPS1-1で、大きな電力が必要なもの(例えば、FANなど)や外部電源で動かす必要のないもの(CPU周辺以外)を駆動することで、外部電源DC-1の供給電力を減らすことができ、電流を削減することができる。
 また、外部電源DC-1から電力供給を受ける外部電源用コンデンサC2-1を、主電源から整流回路10を介して電力供給を受ける制御電源用コンデンサC1-1と別に設けることで、外部電源用コンデンサC2-1の容量を減らすことができ、上記の問題(3)の解決を図ることができる。
 仮に、制御電源用コンデンサC1-1と外部電源用コンデンサC2-1とが共通化されていると、主電源から整流回路10を介して電力供給を安定して受けさせるためにコンデンサの容量を大きくしなければならず、外部電源DC-1からコンデンサに大きな突入電流が流れる可能性がある。
 それに対して、本実施の形態では、制御電源用コンデンサC1-1と外部電源用コンデンサC2-1とにコンデンサを分割することで、外部電源用コンデンサC2-1の容量を減らすことができ、外部電源DC-1から外部電源用コンデンサC2-1への突入電流を小さくすることができる。
 制御電源回路20-2は、絶縁トランスT-2、ダイオードD1-2、制御電源用コンデンサC1-2、ダイオードD2-2、ダイオードD3-2、外部電源用コンデンサC2-2、抵抗R1-2、制御電源用コンデンサC3-2、ダイオードD4-2、トランジスタTR-2、及び抵抗R2-2を有する。制御電源回路20-2では、絶縁トランスT-2は、制御電源回路20-1に接続された1次側巻線T-2aと、1次側巻線T-2aから絶縁された2次側巻線T-2bと、制御電源回路20-1に接続された3次側巻線T-1cとを含む。出力ノードN2-2とダイオードD4-2のアノードとが接続されている。抵抗R2-2は、一端がトランジスタTR-2のゲートに接続され、他端がトランジスタTR-2のソース(又はドレイン)に接続されている。それ以外の点は、制御電源回路20-1における各部の構成と同様である。
 制御電源回路20-2では、制御電源回路20-1から出力された直流電力を1次側巻線T-1aと2次側巻線T-1bとの巻き数比に応じて変圧し(例えば、24Vから5Vに降圧し)、変圧された直流電力を生成する。制御電源用コンデンサC1-2は、蓄積された電荷に応じた電力を、絶縁系の内部電源、すなわち制御用の直流電力IPS1-2(例えば、5V)として出力ノードN1-2から制御部50における例えば制御回路51-2へ供給する。外部電源用コンデンサC2-2は、制御電源用コンデンサC1-2からダイオードD2-2及び入力ノードN3-2を介して直流電力(例えば、5V)を受けることと、外部電源DC-2から入力端子R2-2、ダイオードD3-2及び入力ノードN3-2を介して直流電力(例えば、5V)を受けることとの少なくとも一方を行い、受けた直流電力に応じた電荷を蓄積する。また、制御電源用コンデンサC3-2は、蓄積された電荷に応じた電力を、絶縁系の内部電源、すなわち制御用の直流電力IPS2-2(例えば、5V)として出力ノードN2-2から制御部50における例えば制御回路51-2へ供給する。それ以外の点は、制御電源回路20-1の動作と同様である。
 ここで、内部電源IPS2-1(主電源供給+外部DC電源供給)と絶縁トランスT-2とによって、絶縁系の内部電源IPS1-2を供給することで、非絶縁系の外部電源で供給しても、絶縁系の内部電源を供給することができ、(1)の問題を解決することができる。
 監視部40は、制御用の直流電力IPS2-1、IPS2-1(例えば、それぞれ24V)の一方を制御電源回路20-1から受け、受けた制御用の直流電力IPS2-1、IPS2-1を用いて動作し、制御電源用コンデンサC1-1の電圧を監視する。監視部40は、監視された電圧の値を監視結果として制御部50(における例えば制御回路51-2)へ供給する。
 制御部50は、制御用の直流電力IPS2-1、IPS2-1(例えば、それぞれ24V)の一方を制御電源回路20-1から受け、制御用の直流電力IPS2-2、IPS2-2(例えば、それぞれ5V)の一方を制御電源回路20-2から受ける。制御部50は、受けた制御用の直流電力IPS2-1、IPS2-1と受けた制御用の直流電力IPS2-2、IPS2-2とをそれぞれ用いて、所定の制御動作を行う。
 具体的に、制御部50は、複数の制御回路51-1、51-2を有する。制御回路51-1は、比較的に高電圧で動作する回路部品を含み、制御用の直流電力IPS2-1、IPS2-1(例えば、それぞれ24V)の一方を制御電源回路20-1から受け、受けた制御用の直流電力IPS2-1、IPS2-1を用いて所定の制御動作を行う。
 制御回路51-2は、比較的に低電圧で動作する回路部品(例えば、トランジスタなど)を含み、制御用の直流電力IPS2-2、IPS2-2(例えば、それぞれ5V)の一方を制御電源回路20-2から受け、受けた制御用の直流電力IPS2-2、IPS2-2を用いて所定の制御動作を行う。
 開閉部70は、例えば、主電源ACと入力端子R、S、Tとの間に接続される。開閉部70は、制御部50による制御のもと、主電源ACと整流回路903との電気的接続を開閉する。開閉部70は、例えば、同期してオフ・オンする複数のスイッチ71~73を有し、制御回路51-2から供給される制御信号に応じて、主電源ACと入力端子R、S、Tとの電気的接続を同期してオフ・オンさせることで、主電源ACと整流回路903との電気的接続を開閉する。
 開閉部80-1は、例えば、外部電源DC-1と入力端子R2-1、S2-1との間に接続される。開閉部80-1は、制御部50による制御のもと、外部電源DC-1と制御電源回路20-1との電気的接続を開閉する。開閉部80-1は、例えば、外部電源DC-1と入力端子R2-1との電気的接続を遮断する遮断器81-1(例えば、リレー等)を有し、制御回路51-2から供給される制御信号(遮断信号又は通電信号)に応じて、主電源ACと入力端子R、S、Tとの電気的接続を遮断したりその遮断を解除したりすることで、外部電源DC-1と制御電源回路20-1との電気的接続を開閉する。
 開閉部80-2は、例えば、外部電源DC-2と入力端子R2-2、S2-2との間に接続される。開閉部80-2は、制御部50による制御のもと、外部電源DC-2と制御電源回路20-2との電気的接続を開閉する。開閉部80-2は、例えば、外部電源DC-2と入力端子R2-2との電気的接続を遮断する遮断器81-2(例えば、リレー等)を有し、制御回路51-2から供給される制御信号(遮断信号又は通電信号)に応じて、主電源ACと入力端子R、S、Tとの電気的接続を遮断したりその遮断を解除したりすることで、外部電源DC-2と制御電源回路20-2との電気的接続を開閉する。
 例えば、制御回路51-2は、制御電源用コンデンサC1-1の電圧の監視結果を監視部40から受ける。制御回路51-2は、監視部40による監視結果に応じて、外部電源DC-1、DC-2を制御電源回路20-1、20-2から遮断する第1のモードと、主電源AC及び外部電源DC-1、DC-2を併用する第2のモードと、主電源ACを整流回路903から遮断する第3のモードとの間で、インバータ装置1の動作を切り換える。
 具体的には、制御回路51-2は、監視部40による監視結果に応じて、開閉部70、開閉部80-1、及び開閉部80-2を制御する。例えば、制御回路51-2は、第1のモードにおいて、開閉部70が主電源ACと整流回路903との電気的接続を閉状態にし、開閉部80-1が外部電源DC-1と制御電源回路20-1との電気的接続を開状態にし、開閉部80-2が外部電源DC-2と制御電源回路20-2との電気的接続を開状態にするように制御する。また、例えば、制御回路51-2は、第2のモードにおいて、開閉部70が主電源ACと整流回路903との電気的接続を閉状態にし、開閉部80-1が外部電源DC-1と制御電源回路20-1との電気的接続を閉状態にし、開閉部80-2が外部電源DC-2と制御電源回路20-2との電気的接続を閉状態にするように制御する。また、例えば、制御回路51-2は、第3のモードにおいて、開閉部70が主電源ACと整流回路903との電気的接続を開状態にし、開閉部80-1が外部電源DC-1と制御電源回路20-1との電気的接続を閉状態にし、開閉部80-2が外部電源DC-2と制御電源回路20-2との電気的接続を閉状態にするように制御する。
 すなわち、制御電源用コンデンサC1-1の電圧を監視部40が監視し、制御部50が、その監視結果に応じて、現在の電源供給状態が、主電源(AC200V/400V)方式による供給か、もしくは外部電源方式による供給かを判別することで、図4に示すように、上記の(4)、(5)の問題の解決を図る。図4は、現在の電源供給状態を判別するためのアルゴリズムを示す図である。
 図4に示すように、まず、電源が供給され、監視部40及び制御部50を含むCPU(図示せず)が動作する(ステップST1)。次に、CPUが、分離された制御電源用コンデンサC1-1の電圧を検出し、例えばその電圧を所定の閾値と比較することで、制御電源用コンデンサC1-1の電圧が有るか無いかを判断する(ステップST2)。制御電源用コンデンサC1-1の電圧が有ると判断された場合、主電源ACから供給されていることが分かり(ステップST3、ST4)、制御電源用コンデンサC1-1の電圧が無いと判断された場合、外部電源DC-1から供給されていることが分かる(ステップST5)。これにより、電源の供給口を判別し、インバータ装置1の制御モードを変更することができる。
 主電源ACから供給されていることが分かった場合(ステップST3、ST4)、主電源のみの供給か、主電源と外部電源とを併用するかの問い合わせをユーザに対して行うことなどにより、主電源のみの供給か、主電源と外部電源とを併用するかの選択指示を待つ(ステップST6)。
 主電源のみの方式(パラメータや外部入力より設定)が選択された場合、インバータ装置1の制御モードを第1のモードに変更する(ステップST8)。これにより、主電源ACと外部電源DC-1とで同時に電力供給が行われた際、必要のない外部電源方式を遮断することができ、外部電源(バッテリー、電池等)の省電力化を図ることができ、上記の(4)の問題を解決することができる。
 遮断方法は、例えば、制御部50から遮断器81-1、81-2に遮断信号を出力し(ステップST10)、筐体2外部の遮断器81-1、81-2で遮断する(ステップST12)。図5はそのタイムチャートである。外部電源DC-1でCPUが動作を始め、主電源ACにより電力が供給されると、制御電源用コンデンサC1-1の電圧を検出し、遮断信号を出力する例を示している。
 主電源および外部電源供給の併用方式(パラメータや外部入力より設定)が選択された場合、インバータ装置1の制御モードを第2のモードに変更する(ステップST9)。第2のモードでは、制御部50から遮断器81-1、81-2に通電信号を出力し(ステップST11)、筐体2外部の遮断器81-1、81-2が遮断を解除する(ステップST13)。例えば、第2のモードは、何らかの理由で主電源ACが落ちた際も、CPUの電源が切れることなく、状況把握し、判断・記録することができる高信頼性モードとなる。また、このとき、例えば、制御電源回路20-1からインバータ主回路904へ直流電力を供給してやれば、モータMの駆動の動作を継続することは可能である。
 さらに、主電源ACが瞬時停電や停電等で落ちた際、図4のアルゴリズムに従い、外部電源DC-1から供給されていることが分かる(ステップST5)ので、インバータ装置1の制御モードを第3のモードに変更する(ステップST7)。これにより、CPUへの電力供給を再開させることができる。このとき、CPUは瞬時停電や停電等を記録することができる。第3のモードでは、主電源供給と外部電源供給との併用方式であり、主電源ACを入れることなく、インバータ装置1の設定変更やインバータ装置1の状態を簡単に確認することができ、インバータ装置1の利便性やメンテナンス性を向上できる。高電圧(100V~200V以上)が必要なく、安全にインバータ装置1の状態を確認できることやインバータ主回路904に電気を流す必要がないため、省電力化できる。また、CC-LINK等の通信を使用し、遠隔よりインバータ装置1の状態を確認することもできる。さらにモータMの駆動といった動作が不可能となり、機能が自動的に制限されるので、モータMの駆動についての安全性を確保でき、上記の(5)の問題を解決できる。
 以上のように、実施の形態1では、制御電源回路20-1において、絶縁トランスT-1が、整流回路10に接続された1次側巻線T-1aと、1次側巻線T-1aから絶縁された2次側巻線T-1bとを含む。制御電源用コンデンサC1-1は、絶縁トランスT-1の2次側巻線T-1bにダイオードD1-1を介して接続されている。外部電源用コンデンサC2-1は、制御電源用コンデンサC1-1にダイオードD2-1を介して接続されているとともに、外部電源DC-1が接続される入力端子R2-1にダイオードD3-1を介して接続されている。制御電源用コンデンサC3-1は、外部電源用コンデンサC2-1に接続されている。これにより、内部電源IPS1-1(主電源供給)と内部電源IPS2-1(主電源供給+外部DC電源供給)とを分離でき、外部電源DC-1の供給電力を減らすことができ、省電力化を図ることができる。また、制御電源用コンデンサC1-1と外部電源用コンデンサC2-1とにコンデンサを分割することで、外部電源用コンデンサC2-1の容量を減らすことができ、外部電源DC-1から外部電源用コンデンサC2-1への突入電流を小さくすることができるので、抵抗を設けることなく突入電流を効率的に抑制できる。したがって、主電源による電源供給と外部電源による電源供給とを省電力かつ効率的に両立させることができる。
 また、実施の形態1では、制御電源回路20-2において、絶縁トランスT-2が、整流回路10に接続された1次側巻線T-2aと、1次側巻線T-2aから絶縁された2次側巻線T-2bとを含む。制御電源用コンデンサC1-2は、絶縁トランスT-2の2次側巻線T-2bにダイオードD1-2を介して接続されている。外部電源用コンデンサC2-2は、制御電源用コンデンサC1-2にダイオードD2-2を介して接続されているとともに、外部電源DC-2が接続される入力端子R2-2にダイオードD3-2を介して接続されている。制御電源用コンデンサC3-2は、外部電源用コンデンサC2-2に接続されている。これにより、内部電源IPS2-1(主電源供給+外部DC電源供給)と絶縁トランスT-2とによって絶縁系の内部電源IPS1-2を供給するので、非絶縁系の外部電源で電力供給を行った際に、外部電源DCも絶縁することなく、絶縁系の内部電源を供給することができる。この結果、主電源による電源供給と外部電源による電源供給とを低コストに両立させることができる。
 また、実施の形態1では、インバータ装置1において、監視部40が、制御電源用コンデンサC1-1の電圧を監視する。制御部50は、監視部40による監視結果に応じて、外部電源DC-1、DC-2を制御電源回路20-1、20-2から遮断する第1のモードと、主電源AC及び外部電源DC-1、DC-2を併用する第2のモードと、主電源ACを整流回路903から遮断する第3のモードとの間で、インバータ装置1の動作を切り換える。これにより、電源供給口(主電源供給/外部電源供給)を自動で判別し、その供給方式と目的(設定)に合わせて、インバータ装置1の制御モードを変更できる。例えば、第1のモードに変更することにより、主電源供給/外部電源供給の併用時に外部電源を遮断することができ、外部電源のバッテリ-等の省電力化を図ることができる。あるいは、例えば、第2のモードに変更することにより、あらゆる時もCPU(監視部40及び制御部50)の電源を落とさないように、インバータ装置1の動作の信頼性を向上できる。あるいは、例えば、第3のモードに変更することにより、モータMを駆動しない等の制約が自動的にかかり、安全にインバータ装置1を設定・メンテナンスできる。
実施の形態2.
 次に、実施の形態2にかかるインバータ装置1iについて図6を用いて説明する。図6は、インバータ装置1iの構成を示す図である。以下では、実施の形態1と異なる部分を中心に説明する。
 実施の形態1では、インバータ装置1に2種類の外部電源DC-1、DC-2が接続されているが、実施の形態2では、インバータ装置1iに多種類の外部電源DC-1、DC-2、・・・、DC-k(kは3以上の整数)が接続されている。
 具体的には、インバータ装置1iの筐体2に、制御電源を確立させるための入力端子として、入力端子R1、S1以外に、外部電源DC-1を供給する端子R2-1、S2-1と、外部電源DC-2を供給する端子R2-2、S2-2とを取り付け、・・・、外部電源DC-kを供給する端子R2-k、S2-kとを取り付け、外部電源専用の供給口を設置する。
 より具体的には、インバータ装置1iでは、図7及び図8に示すように、複数の絶縁トランスT-1、T-2、・・・、T-kを用いて、制御電源回路20-1、制御電源回路20-2、・・・、及び制御電源回路20-kが多段接続されている。このとき、最終段を除く制御電源回路20-1、制御電源回路20-2、・・・、制御電源回路20-(k-1)の内部構成は、それぞれ、実施の形態1の制御電源回路20-1の内部構成と同様であり、最終段の制御電源回路20-kの内部構成は、実施の形態1の制御電源回路20-2の内部構成と同様である。これにより、多段階的に変圧されたレベル(例えば、DC48V、DC24V、DC5V、DC3.3V等)で絶縁系の内部電源、すなわち制御用の直流電力IPS1-1、IPS2-1、IPS1-2、IPS2-2、・・・、IPS1-k、IPS2-kを生成でき、制御部50内に異なるレベルの電力で動作する制御回路51-1、51-2、・・・、51-kが存在する場合に、それぞれの制御回路に絶縁系の内部電源を供給できる。
 また、監視部40iは、最終段を除く制御電源回路20-1、制御電源回路20-2、・・・、制御電源回路20-(k-1)における各制御電源用コンデンサC1-1、C1-2、・・・、C1-(k-1)の電圧を監視する。監視部40iは、監視された各電圧の値を監視結果として制御部50(における例えば制御回路51-2)へ供給する。
 例えば、制御回路51-2は、制御電源用コンデンサC1-1の電圧、制御電源用コンデンサC1-2の電圧、・・・、及び制御電源用コンデンサC1-kの電圧の監視結果を監視部40iから受ける。制御回路51-2は、監視部40iによる監視結果に応じて、外部電源DC-1、DC-2、・・・、DC-kを制御電源回路20-1、20-2から遮断する第1のモードと、主電源AC及び外部電源DC-1、DC-2、・・・、DC-kを併用する第2のモードと、主電源ACを整流回路903から遮断する第3のモードとの間で、インバータ装置1iの動作を切り換える。制御回路51-2は、監視部40iによる監視結果に応じて、開閉部70、開閉部80-1、開閉部80-2、・・・、及び開閉部80-kを制御する。これにより、電源供給口(主電源供給/外部電源供給)を自動で多段階的に判別し、その供給方式と目的(設定)に合わせて、インバータ装置1iの制御モードをさらに正確に変更できる。
 なお、監視部40iによる監視結果に応じて電源供給口(主電源供給/外部電源供給)を自動で多段階的に判別できることから、制御回路51-2は、さらに多くの制御モードの間でインバータ装置1iの動作を切り換えてもよい。例えば、外部電源DC-1、DC-2、・・・、DC-kの一部を制御電源回路20-1、20-2から遮断するモードをさらに設けてもよいし、主電源ACと外部電源DC-1、DC-2、・・・、DC-kの一部とを併用するモードをさらに設けてもよい。これにより、インバータ装置1iを、その供給方式と目的(設定)に合わせて、さらにきめ細かく動作させることができる。
 以上のように、本発明にかかるインバータ装置は、制御電源の確立に有用である。
 1、1i インバータ装置
 2 筐体
 10 整流回路
 20-1~20-k 制御電源回路
 40、40i 監視部
 50 制御部
 51-1~51-k 制御回路
 70 開閉部
 71~73 スイッチ
 80-1~80-k 開閉部
 81-1~81-k 遮断器
 900、900i インバータ装置
 902、902i 筐体
 903 整流回路
 904 インバータ主回路
 910 整流回路
 920、920i 制御電源回路
 950 制御部
 AC 主電源
 C1-1~C1-k 制御電源用コンデンサ
 C2-1~C2-k 外部電源用コンデンサ
 C3-1~C3-k 制御電源用コンデンサ
 D1-1~D1-k ダイオード
 D2-1~D2-k ダイオード
 D3-1~D3-k ダイオード
 DC 外部電源
 DC-1~DC-k 外部電源
 T-1~T-k 絶縁トランス
 T-1a~T-ka 1次側巻線
 T-1b~T-kb 2次側巻線
 T900 絶縁トランス
 T900 1次側巻線
 T900 2次側巻線

Claims (6)

  1.  主電源から供給された交流電力を整流化して直流電力を生成する整流回路と、
     前記生成された直流電力と外部電源から供給された直流電力との少なくとも一方を用いて制御用直流電力を生成する制御電源回路と、
     前記生成された制御用直流電力を用いて、所定の制御動作を行う制御部と、
     を備え、
     前記制御電源回路は、
     前記整流回路に接続された1次側巻線と前記1次側巻線から絶縁された2次側巻線とを含む絶縁トランスと、
     前記絶縁トランスの前記2次側巻線に第1のダイオードを介して接続された第1の制御電源用コンデンサと、
     前記第1の制御電源用コンデンサに第2のダイオードを介して接続されているとともに、前記外部電源が接続される端子に第3のダイオードを介して接続された外部電源用コンデンサと、
     前記外部電源用コンデンサに接続された第2の制御電源用コンデンサと、
     を有する
     ことを特徴とするインバータ装置。
  2.  前記生成された制御用直流電力と第2の外部電源から供給された直流電力との少なくとも一方を用いて第2の制御用直流電力を生成する第2の制御電源回路をさらに備え、
     前記制御部は、前記生成された制御用直流電力と前記生成された第2の制御用直流電力とを用いて、所定の制御動作を行い、
     前記第2の制御電源回路は、
     前記第2の制御電源用コンデンサに接続された1次側巻線と前記1次側巻線から絶縁された2次側巻線とを含む第2の絶縁トランスと、
     前記第2の絶縁トランスの前記2次側巻線に第4のダイオードを介して接続された第3の制御電源用コンデンサと、
     前記第3の制御電源用コンデンサに第5のダイオードを介して接続されているとともに、前記第2の外部電源が接続される端子に第6のダイオードを介して接続された第2の外部電源用コンデンサと、
     前記第2の外部電源用コンデンサに接続された第4の制御電源用コンデンサと、
     を有する
     ことを特徴とする請求項1に記載のインバータ装置。
  3.  前記第1の制御電源用コンデンサの電圧を監視する監視部と、
     前記主電源から供給された交流電力を整流化して直流電力を生成する第2の整流回路と、
     前記第2の整流回路により生成された直流電力を交流電力に変換し、変換された交流電力を用いてモータを駆動するインバータ主回路と、
     をさらに備え、
     前記制御部は、前記監視部による監視結果に応じて、前記外部電源を前記制御電源回路から遮断する第1のモードと、前記主電源及び前記外部電源を併用する第2のモードと、前記主電源を前記第2の整流回路から遮断する第3のモードとの間で、前記インバータ装置の動作を切り換える
     ことを特徴とする請求項1に記載のインバータ装置。
  4.  前記主電源と前記第2の整流回路との電気的接続を開閉する第1の開閉部と、
     前記外部電源と前記制御電源回路との電気的接続を開閉する第2の開閉部と、
     をさらに備え、
     前記制御部は、前記監視部による監視結果に応じて前記第1の開閉部及び前記第2の開閉部を制御する
     ことを特徴とする請求項3に記載のインバータ装置。
  5.  前記第1の制御電源用コンデンサの電圧と前記第3の制御電源用コンデンサの電圧とを監視する監視部と、
     前記主電源から供給された交流電力を整流化して直流電力を生成する第2の整流回路と、
     前記第2の整流回路により生成された直流電力を交流電力に変換し、変換された交流電力を用いてモータを駆動するインバータ主回路と、
     をさらに備え、
     前記制御部は、前記監視部による監視結果に応じて、前記外部電源を前記制御電源回路から遮断し前記第2の外部電源を前記第2の制御電源回路から遮断する第1のモードと、前記主電源、前記外部電源、及び前記第2の外部電源を併用する第2のモードと、前記主電源を前記第2の整流回路から遮断する第3のモードとの間で、前記インバータ装置の動作を切り換える
     ことを特徴とする請求項2に記載のインバータ装置。
  6.  前記主電源と前記第2の整流回路との電気的接続を開閉する第1の開閉部と、
     前記外部電源と前記制御電源回路との電気的接続を開閉する第2の開閉部と、
     前記第2の外部電源と前記第2の制御電源回路との電気的接続を開閉する第3の開閉部と、
     をさらに備え、
     前記制御部は、前記監視部による監視結果に応じて前記第1の開閉部、前記第2の開閉部、及び前記第3の開閉部を制御する
     ことを特徴とする請求項5に記載のインバータ装置。
PCT/JP2012/062817 2012-05-18 2012-05-18 インバータ装置 WO2013171899A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2012/062817 WO2013171899A1 (ja) 2012-05-18 2012-05-18 インバータ装置
CN201280073205.1A CN104303407B (zh) 2012-05-18 2012-05-18 逆变器装置
US14/386,945 US9124204B2 (en) 2012-05-18 2012-05-18 Inverter device
JP2013515453A JP5345263B1 (ja) 2012-05-18 2012-05-18 インバータ装置
TW101143621A TWI470909B (zh) 2012-05-18 2012-11-22 換流器裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/062817 WO2013171899A1 (ja) 2012-05-18 2012-05-18 インバータ装置

Publications (1)

Publication Number Publication Date
WO2013171899A1 true WO2013171899A1 (ja) 2013-11-21

Family

ID=49583341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062817 WO2013171899A1 (ja) 2012-05-18 2012-05-18 インバータ装置

Country Status (5)

Country Link
US (1) US9124204B2 (ja)
JP (1) JP5345263B1 (ja)
CN (1) CN104303407B (ja)
TW (1) TWI470909B (ja)
WO (1) WO2013171899A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106104950B (zh) * 2014-03-26 2018-03-02 三菱电机株式会社 电力切断装置
JP6415838B2 (ja) * 2014-03-31 2018-10-31 住友重機械工業株式会社 射出成形機
JP6719184B2 (ja) * 2015-08-26 2020-07-08 株式会社日立産機システム 電力変換装置
CN105680732A (zh) * 2015-12-31 2016-06-15 天津拓晟科技发展有限公司 电机双电源控制开关
JP6506199B2 (ja) * 2016-03-18 2019-04-24 ファナック株式会社 工作機械
JP6359223B1 (ja) * 2017-02-27 2018-07-18 三菱電機株式会社 モータ駆動装置および回生抵抗選定装置
JP6517862B2 (ja) * 2017-03-27 2019-05-22 ファナック株式会社 短絡故障検出機能を備えたコンバータ装置及びコンバータ装置の短絡故障検出方法
KR102086529B1 (ko) 2018-05-18 2020-03-09 엘에스산전 주식회사 셀프 파워 계전기 및 이의 오동작 방지 방법
WO2020062169A1 (zh) * 2018-09-29 2020-04-02 西门子(中国)有限公司 一种机器人关节模组及其无线供电装置、系统和方法
CN111313796A (zh) * 2019-12-13 2020-06-19 珠海格力电器股份有限公司 可切换驱动模式的驱动电路、方法、变频器及设备
US11777323B2 (en) 2020-08-13 2023-10-03 Entrantech Inc. Sequential power discharge for batteries in a power system
US11489455B2 (en) 2020-08-13 2022-11-01 Entrantech Inc. AC and persistent DC co-distritbution
US11605970B2 (en) 2020-08-13 2023-03-14 Entrantech Inc. Persistent DC power and control switch
CN112959964B (zh) * 2021-03-27 2022-11-22 华为数字能源技术有限公司 一种电机控制模块的供电系统及车辆
US11831167B2 (en) 2021-08-13 2023-11-28 Entrantech Inc. Persistent Dc circuit breaker
JP2023073887A (ja) * 2021-11-16 2023-05-26 本田技研工業株式会社 モータ駆動装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58139675A (ja) * 1982-02-13 1983-08-19 Nippon Telegr & Teleph Corp <Ntt> 電力変換装置
JP2001114482A (ja) * 1999-10-18 2001-04-24 Toshiba Fa Syst Eng Corp エレベータの停電時救出運転装置
WO2004107551A1 (ja) * 2003-05-29 2004-12-09 Mitsubishi Denki Kabushiki Kaisha インバータ装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3096676B2 (ja) 1998-06-23 2000-10-10 三洋電機株式会社 電源回路
JP2000197347A (ja) 1998-12-25 2000-07-14 Hitachi Ltd 電源装置
JP3918833B2 (ja) 2004-07-16 2007-05-23 株式会社明電舎 遠方監視システム
JP2007236134A (ja) 2006-03-02 2007-09-13 Tokyo Electric Power Co Inc:The 半導体素子のゲート電源供給装置
JP4874874B2 (ja) * 2007-06-06 2012-02-15 トヨタ自動車株式会社 車両の電源装置
JP4623181B2 (ja) * 2008-09-24 2011-02-02 トヨタ自動車株式会社 電動車両および充電制御システム
JP5594239B2 (ja) * 2011-06-27 2014-09-24 株式会社デンソー 車載用蓄電池の充電システム
CN103119822B (zh) * 2011-09-21 2015-01-07 丰田自动车株式会社 蓄电系统以及蓄电系统的控制方法
WO2013061443A1 (ja) * 2011-10-27 2013-05-02 トヨタ自動車株式会社 電力供給システムおよび車両

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58139675A (ja) * 1982-02-13 1983-08-19 Nippon Telegr & Teleph Corp <Ntt> 電力変換装置
JP2001114482A (ja) * 1999-10-18 2001-04-24 Toshiba Fa Syst Eng Corp エレベータの停電時救出運転装置
WO2004107551A1 (ja) * 2003-05-29 2004-12-09 Mitsubishi Denki Kabushiki Kaisha インバータ装置

Also Published As

Publication number Publication date
TW201349719A (zh) 2013-12-01
US20150048767A1 (en) 2015-02-19
JP5345263B1 (ja) 2013-11-20
CN104303407A (zh) 2015-01-21
TWI470909B (zh) 2015-01-21
JPWO2013171899A1 (ja) 2016-01-07
CN104303407B (zh) 2017-04-12
US9124204B2 (en) 2015-09-01

Similar Documents

Publication Publication Date Title
JP5345263B1 (ja) インバータ装置
US10432020B2 (en) Emergency back-up power system for traction elevators
EP3258585A1 (en) Isolated power converter with output voltage protection
US8987947B2 (en) Air conditioner
US20170358926A1 (en) Photovoltaic Air-conditioning System and Photovoltaic Air Conditioner Having Same
US20050006182A1 (en) Back-up power system for a traction elevator
AU2011323988A1 (en) System and method for bidirectional DC-AC power conversion
US10199859B2 (en) Uninterruptible power supply system with precharge converter
CN103475243B (zh) 一种用于逆变器的控制系统及方法
EP3104512B1 (en) Air conditioning device
CN103384118A (zh) 电力转换系统
EP3133354B1 (en) Air-conditioning apparatus
JP2012115006A (ja) 充電装置
TW546884B (en) Power management system associated with semiconductor manufacturing facilities
US9583974B1 (en) Uninterruptible power supply for an electric apparatus
EP2416473A2 (en) Series power module
JP2009278780A (ja) 全波整流回路
CN108027159B (zh) 空气调节机以及空气调节机的控制方法
US20220385100A1 (en) Ups module and ups module control method
WO2017068519A1 (en) Method of supplying an emergency supply module and emergency supply module with reduced power consumption
US20230182586A1 (en) Direct current fast charger system with low standby power
KR20170104858A (ko) 정전압장치를 가지고 있는 유피에스용 소형 에이티에스 및 그 제어방법
WO2021046123A2 (en) System to provide ac or dc power to electronic equipment
CN115603390A (zh) 兼容交直流双路电源供电电路和方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013515453

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12876803

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14386945

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12876803

Country of ref document: EP

Kind code of ref document: A1