WO2013171853A1 - 有機el発光装置 - Google Patents

有機el発光装置 Download PDF

Info

Publication number
WO2013171853A1
WO2013171853A1 PCT/JP2012/062466 JP2012062466W WO2013171853A1 WO 2013171853 A1 WO2013171853 A1 WO 2013171853A1 JP 2012062466 W JP2012062466 W JP 2012062466W WO 2013171853 A1 WO2013171853 A1 WO 2013171853A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
organic
unit
voltage
drive voltage
Prior art date
Application number
PCT/JP2012/062466
Other languages
English (en)
French (fr)
Inventor
佑生 寺尾
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2012/062466 priority Critical patent/WO2013171853A1/ja
Publication of WO2013171853A1 publication Critical patent/WO2013171853A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • H05B45/58Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits involving end of life detection of LEDs
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/60Circuit arrangements for operating LEDs comprising organic material, e.g. for operating organic light-emitting diodes [OLED] or polymer light-emitting diodes [PLED]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the present invention relates to an organic EL light emitting device including an organic EL (Electro Luminescence) light emitting panel.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide an organic EL light emitting device that promotes replacement of the organic EL light emitting panel and extends its life.
  • An organic EL light emitting device includes at least one organic EL light emitting unit that emits light according to a driving voltage, a driving unit that generates the driving voltage and applies the driving voltage to the organic EL light emitting unit, and the organic EL light emitting unit.
  • a deterioration detecting unit that detects deterioration based on a criterion and outputs a deterioration detection signal to the driving unit when the deterioration is detected, and when the driving unit receives the deterioration detecting signal, the driving unit An AC voltage having a negative minimum potential is output.
  • FIG. 6B is a waveform diagram illustrating an example of a drive voltage pattern generated by the drive unit according to the drive voltage control signal and applied to the light emitting unit.
  • (A) is a drive current
  • (b) is a drive voltage
  • (c) is a deterioration detection signal
  • (d) is a time chart which shows an example of a drive voltage control signal.
  • FIG. 1 It is a block diagram which shows another structure of the organic electroluminescent light emitting device which is a 2nd Example.
  • A is a drive current
  • (b) is a drive voltage
  • (c) is a deterioration detection signal
  • (d) is a time chart which shows another example of a drive voltage control signal.
  • FIG. 1 shows the configuration of an organic EL light emitting device 1 of this embodiment.
  • the light emitting unit 2 includes at least one organic EL light emitting panel in which at least one organic EL light emitting element is disposed.
  • the light emitting unit 2 emits light by the drive current I EL supplied from the drive voltage generating unit 5. At this time, a drive voltage V EL is applied between the positive and negative electrodes of the organic EL light emitting element.
  • the deterioration detection unit 3 monitors the driving voltage V EL applied between the positive and negative electrodes of the organic EL light emitting element included in the light emitting unit 2 and determines that the driving voltage V EL has reached a predetermined reference voltage, That is, when it is determined that the deterioration of the light emitting unit 2 has progressed beyond a predetermined standard, the deterioration detection signal SLT indicating the detection of deterioration is output.
  • the drive unit 4 is configured to drive the light emitting unit 2 to emit light, and includes a drive voltage generating unit 5 and a control unit 6.
  • the drive voltage generation unit 5 that is, the driver, supplies the light emission unit 2 with a drive current I EL for driving light emission.
  • the drive voltage generator 5 can control the magnitude and direction of the drive voltage V EL , that is, the polarity in order to control the drive current I EL .
  • the drive voltage generator 5 controls the drive voltage V EL according to the drive voltage control signal S V from the controller 6. Details of the control will be described later (FIGS. 2 and 3).
  • the control unit 6 generates a drive voltage control signal S V for controlling the drive voltage V EL generated by the drive voltage generation unit 5 in accordance with the deterioration detection signal S LT from the deterioration detection unit 3. To supply.
  • FIG. 2 (a) an example of a drive voltage control signal S V supplied from the control unit 6 to the driving voltage generating unit 5 is shown.
  • reverse bias application pulse widths T R1 , T R2 ,..., T RN forward bias application pulse widths T F1 , T F2 ,.
  • Each parameter of the repetition period T REPEAT and the pulse level P L is set in advance.
  • the reverse bias application pulse widths T R1 , T R2 ,..., T RN do not necessarily have to be the same. For example, it may increase or decrease according to the number of times of application N.
  • Reverse bias instruction pulses P S1 , P S2 ,..., P SN occur in the reverse bias application pulse widths T R1 , T R2 ,.
  • each of the forward bias application pulse widths T F1 , T F2 ,..., T FN-1 does not necessarily have to be the same, for example, may increase or decrease according to the number N of times of application.
  • the length should be recognizable.
  • the reverse bias applied pulse widths T R1 , T R2 ,..., T RN are too long, the non-light emission time at the time of blinking becomes long, which causes excessive discomfort to the user. Therefore, for example, each of the forward bias applied pulse widths T F1 , T F2 ,..., T FN-1 is 0.1 to 10 seconds, and the reverse bias applied pulse widths T R1 , T R2 ,. Each of these is preferably about 0.1 to 1 second.
  • the reverse bias application frequency N may be one or more, but is preferably two or more so as not to be mistaken for an abnormal operation such as a momentary power failure. Further, the number N of reverse bias application can be made infinite. In order not to give the user excessive discomfort, it is preferable to set the reverse bias application frequency N to about 3 to 10 times.
  • the repetition period T REPEAT is a parameter indicating an interval for performing a predetermined number of blinking operations.
  • the repetition period T REPEAT only needs to be longer than the time at which N reverse bias applications are completed. That is, it suffices if the relationship of the repetition cycle T REPEAT > T R1 + T F1 + T R2 + T F2 +... + T FN ⁇ 1 + T RN is satisfied.
  • the pulse level P L is the magnitude of the pulse amplitude of the reverse bias instruction pulses P S1 , P S2 ,..., PSN , and is used to determine the level of the reverse bias voltage generated by the drive voltage generator 5. It is a parameter.
  • the pulse level P L is not necessarily constant. For example, the pulse level P L may increase or decrease according to the number N of application times of the reverse bias instruction pulses P S1 , P S2 ,.
  • FIG. 2B shows an example of a pattern of the drive voltage V EL generated by the drive voltage generation unit 5 according to the drive voltage control signal S V and applied to the light emitting unit 2.
  • the drive voltage generator 5 reverse bias voltage pulses P S1 , P S2 ,..., P SN of the drive voltage control signal S V during the presence period of the reverse bias voltage pulses P S1 , P S2 ,. PSN is generated.
  • the durations of the reverse bias voltage pulses P S1 , P S2 ,..., P SN are equal to the reverse bias application pulse widths T R1 , T R2 ,.
  • the reverse bias voltage level V R of each of the reverse bias voltage pulses P S1 , P S2 ,..., P SN is a negative value.
  • the reverse bias voltage level V R has a height corresponding to the pulse level P L of the drive voltage control signal S V. For example, as the pulse level P L of the drive voltage control signal S V is high, the reverse bias voltage level V R becomes lower.
  • the forward bias voltage level V F is determined according to the value of the drive current I EL (FIG. 1) and the cumulative drive time of the light emitting unit 2, and is not set in advance.
  • 3A shows the drive current I EL
  • FIG. 3B shows the drive voltage V EL
  • FIG. 3C shows the deterioration detection signal S LT
  • FIG. 3D shows the drive voltage control signal S V. An example of each is shown.
  • the drive current I EL is kept at a steady level Is.
  • the steady level Is is a current value of a magnitude that allows the light emitting unit 2 to emit light.
  • a driving voltage V EL is applied to the light emitting unit 2.
  • the drive voltage V EL is lower than the predetermined reference voltage V S. Therefore, the deterioration detection unit 3 does not output the deterioration detection signal SLT .
  • the signal level of the deterioration detection signal SLT is low. Since deterioration detection signal S LT is not output, the control unit 6 does not output the driving voltage control signal S V.
  • the signal level of the drive voltage control signal S V at this time is low.
  • the drive voltage V EL increases with time, but is still lower than the reference voltage V S. Therefore, the deterioration detection unit 3 does not output the deterioration detection signal SLT .
  • the control unit 6 does not output the driving voltage control signal S V.
  • the drive current I EL is kept at the steady level Is.
  • the driving voltage V EL reaches the reference voltage V S.
  • the deterioration detector 3 outputs a deterioration detection signal SLT .
  • the signal level of the deterioration detection signal SLT is high.
  • the control unit 6 outputs a driving voltage control signal S V.
  • the drive voltage control signal S V at this time has a preset pattern.
  • the pattern includes reverse bias instruction pulses P S1 , P S2 , and P S3 having a pulse level P L.
  • the reverse bias application frequency N is “3”.
  • the drive voltage generator 5 generates reverse bias voltage pulses P V1 , P V2 , and P V3 according to the reverse bias instruction pulses P S1 , P S2 , and P S3 and supplies them to the light emitting unit 2.
  • the reverse bias voltage level V R of each of the reverse bias voltage pulses P V1 , P V2 , and P V3 is a negative level.
  • the reverse bias voltage level V R decreases as the pulse level P L of the drive voltage control signal S V increases.
  • the drive current I EL falls to zero level during the period in which the reverse bias voltage pulses P V1 , P V2 , and P V3 exist. In other periods, the drive current I EL is at a steady level Is.
  • the absolute value of the reverse bias current is sufficiently smaller than the steady level Is, it is regarded as the zero level.
  • the light emitting unit 2 is turned off when the driving current I EL is at a zero level, that is, when the driving voltage V EL is a reverse bias voltage, and when the driving current I EL is at a steady level Is, that is, the driving voltage V EL is forward biased. Lights when voltage is present.
  • the reverse bias voltage is a negative voltage
  • the forward bias voltage is a positive voltage.
  • the light emitting unit 2 blinks by intermittently switching the reverse bias voltage and the forward bias voltage.
  • signals whose signal level varies with time are collectively referred to as AC signals.
  • the driving voltage V EL at the time of blinking can be said to be an AC voltage signal whose minimum potential is negative.
  • the drive voltage V EL becomes the lowest potential when a reverse bias voltage is applied, and becomes a negative potential.
  • the user is notified that the light emitting unit 2 has deteriorated due to the light emitting unit 2 blinking. Further, by applying a reverse bias voltage to the light emitting unit 2, the carriers accumulated in the organic EL light emitting element are released. Thereby, the lifetime of the light emission part 2 can be extended.
  • the carrier is accumulated inside the element accumulated by continuing current driving of the organic EL light emitting element. Further, it is generally known that the characteristics of the organic EL light emitting element are deteriorated by the accumulation of carriers.
  • the drive voltage control signal S V is not output.
  • the drive voltage control signal SV is at a low level. Therefore, the drive voltage V EL is switched to the forward bias.
  • the drive current I EL becomes a steady level Is. Since the drive voltage V EL at this time is higher than the reference voltage V S , the deterioration detection signal S LT remains output. At this time, the signal level of the deterioration detection signal SLT is high.
  • Time T 4 is the time when a predetermined repetition period T REPEAT has elapsed from time T 2 which is the previous reverse bias application start time.
  • the control unit 6 starts outputting the drive voltage control signal S V having a preset pattern again.
  • the drive voltage control signal S V is a pattern composed of reverse bias instruction pulses P S4 , P S5 , and P S6 of the pulse level P L.
  • control unit 6 outputs a drive voltage control signal S V having a preset pattern every time a predetermined repetition period T REPEAT elapses.
  • the control unit 6 repeats the operation until the power is shut off for the replacement of the light emitting unit 2.
  • the drive voltage V EL is already set to the reference voltage V EL when the power is turned on. Since it exceeds S , reverse bias application starts from the time of power-on.
  • the voltage level of the drive voltage V EL is intermittently generated from the time when the drive voltage V EL applied to the light emitting unit 2 exceeds the predetermined reference voltage V S. Is a negative voltage, that is, a reverse bias voltage.
  • the light emitting unit 2 blinks by applying the forward bias voltage and the reverse bias voltage alternately. The blinking starts from the state where the light emitting unit 2 is lit. The blinking can notify the user that the deterioration of the light emitting unit 2 has progressed beyond a predetermined standard.
  • the carrier accumulated in the organic EL light emitting element is released by applying a reverse bias voltage which is a negative voltage to the light emitting unit 2. Thereby, the lifetime of the light emission part 2 can be extended.
  • the organic EL light emitting device 1 of the present embodiment it is possible to promptly replace the light emitting panel and prolong its life. By performing these operations simultaneously, the number of blinking operations can be minimized, and the light emitting device can be prevented from blinking more than necessary, thereby improving usability and reducing power consumption.
  • the drive voltage V EL is an example of the case where the deterioration is determined, but the present invention is not limited to this.
  • the luminance and driving time of the light emitting unit 2 can be monitored.
  • an optical sensor (not shown) is provided, and the deterioration detection unit 3 determines the deterioration of the light emitting unit 2 based on whether or not the sensor value has reached a predetermined determination criterion.
  • a counter (not shown) is provided, and the deterioration detector 3 determines deterioration based on whether or not the count value has reached a predetermined determination criterion.
  • FIG. 4 shows the configuration of the organic EL light emitting device 1 of the present embodiment. In the following, differences from the first embodiment will be mainly described.
  • the organic EL light emitting device 1 has a plurality of light emitting units 2-1 to 2-n (n is an integer of 2 or more).
  • the light emitting units 2-1 to 2-n include a first group of light emitting units 2-1, 2-3,..., 2- (n-1), and light emitting units 2-2, 2-4,. .. grouped into a second group consisting of 2-n The grouping may be performed based on a difference in light emission colors such as RGB, or may be performed for each area of the light emitting panel.
  • the light emitting units 2-1 to 2-n may be arranged in a line or may be arranged in a matrix.
  • Each of the light emitting units 2-1, 2-3,..., 2- (n ⁇ 1) belonging to the first group operates by receiving the driving current I EL 1 from the driving voltage generation unit 5-1.
  • Each of the light emitting units 2-2, 2-4,..., 2-n belonging to the second group operates by receiving the driving current I EL 2 from the driving voltage generating unit 5-2.
  • the deterioration detector 3-1 monitors the drive voltage V EL 1 applied to one of the light emitting units belonging to the first group, for example, the light emitting unit 2-1.
  • the deterioration detection unit 3-1 supplies a deterioration detection signal SLT1 to the control unit 6-1 when the drive voltage V EL1 exceeds a predetermined reference voltage.
  • the deterioration detection unit 3-2 monitors the drive voltage V EL2 applied to one of the light emitting units belonging to the second group, for example, the light emitting unit 2-2.
  • the deterioration detection unit 3-2 supplies a deterioration detection signal SLT2 to the control unit 6-2 when the drive voltage VEL2 exceeds a predetermined reference voltage.
  • the control unit 6-1 In accordance with the deterioration detection signal S LT 1, the control unit 6-1 generates a drive voltage control signal S V 1 having a preset pattern as shown in FIG. 2 or FIG. 5-1.
  • the control unit 6-2 generates a drive voltage control signal S V 2 having a preset pattern as shown in FIG. 2 or FIG. 3D , for example, in accordance with the deterioration detection signal S LT 2. 5-2.
  • the drive voltage generator 5-1 In response to the drive voltage control signal S V 1, the drive voltage generator 5-1 generates a drive voltage V EL 1 as shown in FIG. 3B, for example, as in the first embodiment.
  • the drive voltage V EL 1 is applied to each of the light emitting units 2-1, 2-3,..., 2- (n ⁇ 1) belonging to the first group.
  • a driving current I EL 1 is supplied to each of the light emitting units 2-1, 2-3,..., 2- (n-1).
  • the drive voltage generator 5-2 In response to the drive voltage control signal S V 2, the drive voltage generator 5-2 generates a drive voltage V EL 2 as shown in FIG. 3B, for example, as in the first embodiment.
  • the drive voltage V EL 2 is applied to each of the light emitting units 2-2, 2-4,..., 2-n belonging to the second group.
  • a driving current I EL 2 is supplied to each of the light emitting units 2-2, 2-4,.
  • FIG. 5 shows a modification of the organic EL light emitting device 1 having a plurality of light emitting units 2-1 to 2-n.
  • a switching unit 7 is provided at the subsequent stage of the control unit 6. In the following, portions different from the above embodiment will be mainly described.
  • the degradation detection unit 3 monitors the drive voltage V EL applied to any one of the light emitting units 2-1 to 2-n, for example, the light emitting unit 2-1.
  • the deterioration detection unit 3 supplies a deterioration detection signal SLT to each of the control unit 6 and the switching unit 7 when the drive voltage V EL exceeds a predetermined reference voltage.
  • the controller 6 outputs a drive voltage control signal SV having a preset pattern as shown in FIG. 2 or FIG. 3D , for example, according to the deterioration detection signal SLT .
  • the switching unit 7 is the time of receiving a degradation detection signal S LT, start the supply of the driving voltage control signal S V relative to either one of the driving voltage generating unit 5-1 and the driving voltage generating unit 5-2 To do. Thereafter, the switching unit 7 switches the supply destination of the driving voltage control signal S V, for example, between the drive voltage generating unit 5-1 every predetermined repetition period T REPEAT and the driving voltage generating unit 5-2.
  • the drive voltage generator 5-1 In response to the supplied drive voltage control signal S V , the drive voltage generator 5-1 generates a drive current I EL 1 as shown in FIG. 3A, for example, as shown in FIG. ⁇ 1, 2-3,..., 2- (n ⁇ 1) are supplied.
  • the drive voltage generator 5-2 generates a drive current I EL 2 as shown in FIG. 3A, for example, in the same manner as in the first embodiment, according to the drive voltage control signal S V supplied at different timings. Supplied to each of the light emitting units 2-2, 2-4,.
  • the light emitting unit group can be blinked for each group.
  • the switching interval of the supply destination of the drive voltage control signal S V is not limited to each repetition cycle T REPEAT .
  • a predetermined interval determined in advance or a randomly determined interval may be used.
  • the organic EL light emitting device 1 of the present embodiment only a part of the plurality of light emitting units constituting the light emitting panel is caused to blink. Accordingly, it is possible to promote replacement by changing the gradation of the luminance and the emission color, and the usability of the light emitting device is improved. Further, when the light emitting units 2-1 to 2-n are grouped for each light emission color such as RGB, the following effects are obtained. In general, since the lifetime of the organic EL light emitting element varies depending on the emission color, a reverse bias is applied early to a light emitting unit having an organic EL light emitting element with a short lifetime.
  • the life extension measure of the organic EL light emitting element having a short lifetime can be started at an early stage, and the life balance among the plurality of organic EL light emitting elements constituting the light emitting panel can be achieved. Further, when the light emitting portions 2-1 to 2-n are grouped regardless of the light emission color, the following effects are obtained. Since application of a reverse bias is started in response to the detection of deterioration of the organic EL light emitting element having a short lifetime, the life of the organic EL light emitting element having a long lifetime may be taken before the lifetime is reached. it can. Therefore, it is possible to extend the life of the organic EL light-emitting element having a long emission color, and thus the life of the entire light-emitting panel.
  • the deterioration detection unit 3 When the drive voltage V EL exceeds a predetermined first reference voltage V S 1 at time T 1 , the deterioration detection unit 3 outputs a first deterioration detection signal S LT having a predetermined first voltage level V LT 1. .
  • the controller 6 outputs a first drive voltage control signal S V 1 having a predetermined first pattern in response to the first deterioration detection signal SLT .
  • the first pattern includes reverse bias instruction pulses P S1 , P S2 , and P S3 .
  • the drive voltage generation unit 5 generates a first drive voltage having a first pattern according to the first drive voltage control signal S V 1.
  • the first pattern includes reverse bias voltage pulses P V1 , P V2 , and P V3 .
  • the light emitting unit 2 is supplied with the first drive current I EL 1 corresponding to the first pattern for each repetition period T REPEAT . Thus, the light emitting unit 2 starts flashing from time T 1.
  • the deterioration detection unit 3 When the drive voltage V EL exceeds a predetermined second reference voltage V S 2 at time T 2 , the deterioration detection unit 3 outputs a second deterioration detection signal S LT having a predetermined second voltage level V LT 2. .
  • the controller 6 outputs a second drive voltage control signal S V 2 having a predetermined second pattern in response to the second deterioration detection signal SLT .
  • the second pattern includes reverse bias instruction pulses P S4 , P S5 , and P S6 .
  • the drive voltage generator 5 generates a second drive voltage having a second pattern in response to the second drive voltage control signal S V 2.
  • the second pattern includes reverse bias voltage pulses P V4 , P V5 , and P V6 .
  • a drive current I EL 2 corresponding to the second pattern is supplied to the light emitting unit 2 for each repetition period T REPEAT .
  • the reverse bias application pulse width T R12 of the second pattern is set in advance so as to be larger than the reverse bias application pulse width T R11 of the first pattern. Therefore, as the drive voltage V EL increases, the application time of the reverse bias becomes longer, and the life extension effect can be further enhanced. Moreover, since the extinguishing period during the blinking operation becomes longer each time the deterioration progresses, the user can also know the progress of the deterioration.
  • the organic EL light emitting device 1 by providing two or more determination criteria for detecting deterioration, not only the deterioration notification but also the degree of deterioration of the light emitting panel can be provided to the user step by step. I can tell you. At the same time, since the reverse bias application pulse width is increased in accordance with the magnitude of the drive voltage V EL , the life extension effect can be enhanced.
  • the driving voltage V EL is but an example of the case of changing the potential of the deterioration detection signal S LT every reach one of the plurality of criteria is not limited thereto.
  • the deterioration detection unit 3 outputs a deterioration detection signal SLT having a pulse with the first pulse width.
  • the drive voltage V EL reaches a determination criterion different from the one determination criterion
  • the control unit 6 outputs a first drive voltage control signal S V 1 having a predetermined first pattern in response to the deterioration detection signal S LT having the first pulse, and the deterioration detection signal S having the second pulse.
  • a second drive voltage control signal S V 2 having a predetermined second pattern is output according to LT . That is, the control unit 6 outputs the drive voltage control signal SV having a different pattern depending on the difference in pulse width.
  • the above embodiment is an example in which two determination criteria are provided, but it is also possible to operate in the same manner by providing three or more determination criteria.
  • any known material such as a fluorescent material or a phosphorescent material can be applied.
  • Examples of fluorescent materials that emit blue light include naphthalene, perylene, and pyrene.
  • fluorescent materials that give green light emission include quinacridone derivatives, coumarin derivatives, and aluminum complexes such as Alq3 (tris (8-hydroxy-quinoline) aluminum).
  • Examples of fluorescent materials that give yellow light include rubrene and perimidone derivatives.
  • Examples of fluorescent materials that give red light emission include DCM (4- (dicyanomethylene) -2-methyl-6- (p-dimethylaminostyryl) -4H-pyran) compounds, benzopyran derivatives, rhodamine derivatives, and the like.
  • Examples of the phosphorescent material include ruthenium, rhodium, and palladium. Specific examples of the phosphorescent material include tris (2-phenylpyridine) iridium (so-called Ir (ppy) 3), tris (2-phenylpyridine) ruthenium, and the like.

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

【課題】発光パネルの交換を促しつつその延命を図る有機EL発光装置を提供する。 【解決手段】有機EL発光部の劣化が進んだと判定した場合に最低電位が負である交流電圧を駆動電圧として当該有機EL発光部に印加してこれを点滅駆動せしめる。

Description

有機EL発光装置
 本発明は、有機EL(Electro Luminescence)発光パネルを含む有機EL発光装置に関する。
 一般に照明器具においては、長時間に亘る使用によって発光輝度の低下などの性能低下が生じる。そこで、使用に支障を来たすほど性能が低下する前にその交換時期を知らせる方法が提案されている。例えば特許文献1には、光源の点灯時間等に基づいて寿命が到来したと判別した場合に、当該光源とは別に設けられた補助光源の点灯状態を通常時とは異なる状態(点滅状態)に制御する照明器具が開示されている。かかる構成により、照明器具が寿命を迎えたことを使用者に告知することができる。
特開2006-236673号公報
 ところで、特許文献1に開示されている技術のように、有機EL発光パネルの劣化が進んだことを補助光源の点滅によって告知することも可能である。しかし、その一方で、有機EL発光パネル特有の性質を考慮して劣化告知をより有効に行なうことが望まれる。
 本発明は上記した点に鑑みてなされたものであって、有機EL発光パネルの交換を促しつつその延命を図る有機EL発光装置を提供することを目的とする。
 本発明による有機EL発光装置は、駆動電圧に応じて発光する少なくとも1つの有機EL発光部と、前記駆動電圧を生成して前記有機EL発光部に印加する駆動部と、前記有機EL発光部の劣化を判定基準によって検知し、劣化検知をしたときに劣化検知信号を前記駆動部に出力する劣化検知部と、を含み、前記駆動部は、前記劣化検知信号を受信した時、前記駆動電圧の最低電位が負である交流電圧を出力することを特徴とする。
第1の実施例である有機EL発光装置の構成を示すブロック図である。 (a)は、図1の駆動制御部から駆動部に供給される駆動電圧制御信号の一例を示す波形図である。(b)は、駆動電圧制御信号に応じて駆動部が生成し、発光部に印加される駆動電圧のパターンの一例を示す波形図である。 (a)は駆動電流、(b)は駆動電圧、(c)は劣化検知信号、(d)は駆動電圧制御信号の一例を示すタイムチャートである。 第2の実施例である有機EL発光装置の構成を示すブロック図である。 第2の実施例である有機EL発光装置の別の構成を示すブロック図である。 (a)は駆動電流、(b)は駆動電圧、(c)は劣化検知信号、(d)は駆動電圧制御信号の別の一例を示すタイムチャートである。
 以下、本発明に係る実施例について添付の図面を参照しつつ詳細に説明する。
 <第1の実施例>
 図1には、本実施例の有機EL発光装置1の構成が示されている。
 発光部2は、有機EL発光素子を少なくとも1つ配置した有機EL発光パネルを少なくとも1枚含む。発光部2は、駆動電圧生成部5から供給される駆動電流IELにより発光する。このとき、有機EL発光素子の正負電極間には駆動電圧VELが印加されている。
 劣化検知部3は、発光部2に含まれる有機EL発光素子の正負電極間に印加されている駆動電圧VELをモニターし、駆動電圧VELが所定の基準電圧に達したと判定したとき、すなわち、発光部2の劣化が所定基準以上に進んだと判定したときに劣化検知を示す劣化検知信号SLTを出力する。
 駆動部4は、発光部2を発光駆動する構成であり、駆動電圧生成部5と制御部6とからなる。
 駆動電圧生成部5すなわちドライバは、発光駆動させるための駆動電流IELを発光部2に供給する。駆動電圧生成部5は、駆動電流IELを制御するために駆動電圧VELの大きさ及び向きすなわち極性を制御できる。駆動電圧生成部5は、制御部6からの駆動電圧制御信号SVに応じて駆動電圧VELを制御する。制御の詳細については後述する(図2及び図3)。
 制御部6は、劣化検知部3からの劣化検知信号SLTに応じて、駆動電圧生成部5によって生成される駆動電圧VELを制御するための駆動電圧制御信号SVを駆動電圧生成部5に供給する。
 図2(a)には、制御部6から駆動電圧生成部5に供給される駆動電圧制御信号SVの一例が示されている。
 制御部6においては、逆バイアス印加パルス幅TR1、TR2、・・・、TRN、順バイアス印加パルス幅TF1、TF2、・・・、TFN-1、逆バイアス印加回数N、繰り返し周期TREPEAT、及び、パルスレベルPLの各パラメータが予め設定されている。逆バイアス印加パルス幅TR1、TR2、・・・、TRNの各々は、必ずしも同一でなくても良い。例えば、印加回数Nに応じて増加又は減少変化するものでも良い。逆バイアス印加パルス幅TR1、TR2、・・・、TRNの区間においてそれぞれ逆バイアス指示パルスPS1、PS2、・・・、PSNが生じる。また、順バイアス印加パルス幅TF1、TF2、・・・、TFN-1の各々も必ずしも同一でなくても良く、例えば印加回数Nに応じて増加又は減少変化するものでも良い。
 順バイアス印加パルス幅TF1、TF2、・・・、TFN-1及び逆バイアス印加パルス幅TR1、TR2、・・・、TRNの各々は、人間が発光部2の点滅発光を認識できる程度の長さとする。一方、逆バイアス印加パルス幅TR1、TR2、・・・、TRNが長過ぎる場合には点滅時の非発光時間が長くなり、使用者に過度の不快感を与えてしまう。したがって、例えば、順バイアス印加パルス幅TF1、TF2、・・・、TFN-1の各々は0.1~10秒、逆バイアス印加パルス幅TR1、TR2、・・・、TRNの各々は0.1~1秒程度が好ましい。
 逆バイアス印加回数Nは、1回以上であれば良いが瞬間停電などの異常動作と誤認されないように2回以上にすることが好ましい。また、逆バイアス印加回数Nを無限大とすることもできる。使用者に過度の不快感を与えないようにするためには、逆バイアス印加回数Nを3~10回程度とすることが好ましい。
 繰り返し周期TREPEATは、一定回数の点滅動作を行なう間隔を示すパラメータである。繰り返し周期TREPEATは、N回の逆バイアス印加が終了する時間よりも長ければ良い。すなわち、繰り返し周期TREPEAT>TR1+TF1+TR2+TF2+・・・+TFN-1+TRNの関係を満たしていれば良い。
 パルスレベルPLは、逆バイアス指示パルスPS1、PS2、・・・、PSNのパルス振幅の大きさであり、駆動電圧生成部5よって生成される逆バイアス電圧のレベルを決定するためのパラメータである。パルスレベルPLは、必ずしも一定でなくても良く、例えば逆バイアス指示パルスPS1、PS2、・・・、PSNの印加回数Nに応じて増加又は減少変化するものでも良い。
 図2(b)には、駆動電圧制御信号SVに応じて駆動電圧生成部5が生成し、発光部2に印加される駆動電圧VELのパターンの一例が示されている。駆動電圧生成部5は、駆動電圧制御信号SVの逆バイアス指示パルスPS1、PS2、・・・、PSNの存在期間中にそれぞれ逆バイアス電圧パルスPS1、PS2、・・・、PSNを生成する。逆バイアス電圧パルスPS1、PS2、・・・、PSNの存在期間は、それぞれ逆バイアス印加パルス幅TR1、TR2、・・・、TRNに等しい。逆バイアス電圧パルスPS1、PS2、・・・、PSNの各々の逆バイアス電圧レベルVRは負の値である。逆バイアス電圧レベルVRは、駆動電圧制御信号SVのパルスレベルPLに応じた高さとなる。例えば、駆動電圧制御信号SVのパルスレベルPLが高くなるほど、逆バイアス電圧レベルVRが低くなる。順バイアス電圧レベルVFは、駆動電流IEL(図1)の値及び発光部2の累積駆動時間に応じて定まり、予め設定はされていない。
 以下、図3(a)~(d)を参照しつつ、有機EL発光装置1の点滅動作について説明する。図3(a)には駆動電流IEL、図3(b)には駆動電圧VEL、図3(c)には劣化検知信号SLT、図3(d)には駆動電圧制御信号SVの一例がそれぞれ示されている。
 電源投入時刻T0において、駆動電圧生成部5から発光部2に駆動電流IELの供給が開始される。駆動電流IELは定常レベルIsに保たれている。定常レベルIsは、発光部2を発光させることができる大きさの電流値である。発光部2には駆動電圧VELが印加されている。電源投入時刻T0においては、駆動電圧VELは所定の基準電圧VSよりも低くなっている。故に、劣化検知部3は劣化検知信号SLTを出力しない。このときの劣化検知信号SLTの信号レベルはローレベルである。劣化検知信号SLTが出力されていないので、制御部6は駆動電圧制御信号SVを出力しない。このときの駆動電圧制御信号SVの信号レベルはローレベルである。
 時刻T1においては、駆動電圧VELが時間の経過と共に上昇しているものの、未だ基準電圧VSよりも低い。故に、劣化検知部3は劣化検知信号SLTを出力しない。また、制御部6は駆動電圧制御信号SVを出力しない。駆動電流IELは定常レベルIsに保たれたままである。
 時刻T2において、駆動電圧VELが基準電圧VSに達する。このとき、劣化検知部3は、劣化検知信号SLTを出力する。このときの劣化検知信号SLTの信号レベルはハイレベルである。劣化検知信号SLTが出力されているので、制御部6は駆動電圧制御信号SVを出力する。このときの駆動電圧制御信号SVは予め設定されたパターンからなる。図3(d)に示される例においては、当該パターンは、パルスレベルPLの逆バイアス指示パルスPS1、PS2、及び、PS3からなる。このときの逆バイアス印加回数Nは「3」である。駆動電圧生成部5は、逆バイアス指示パルスPS1、PS2、及び、PS3に応じて逆バイアス電圧パルスPV1、PV2、及び、PV3を生成し発光部2に供給する。逆バイアス電圧パルスPV1、PV2、及び、PV3の各々の逆バイアス電圧レベルVRは負のレベルである。逆バイアス電圧レベルVRは、駆動電圧制御信号SVのパルスレベルPLが高いほど低くなる。駆動電流IELは、逆バイアス電圧パルスPV1、PV2、及び、PV3が存在する期間においてゼロレベルに低下する。その他の期間においては、駆動電流IELは定常レベルIsとなる。ここで、逆バイアス電流は定常レベルIsと比べてその絶対値は十分小さいため、ゼロレベルとみなす。
 発光部2は、駆動電流IELがゼロレベルのとき、すなわち駆動電圧VELが逆バイアス電圧であるときに消灯し、駆動電流IELが定常レベルIsのとき、すなわち駆動電圧VELが順バイアス電圧であるときに点灯する。逆バイアス電圧は負の電圧であり、順バイアス電圧は正の電圧である。逆バイアス電圧と順バイアス電圧とが断続的に切り替えられることによって発光部2が点滅する。以下、信号レベルが時間的に変動する信号を総称して交流信号と称する。点滅時の駆動電圧VELは、最低電位が負である交流電圧信号ということができる。駆動電圧VELにおいては、逆バイアス電圧印加時に最低電位となり、負の電位となる。
 このように、有機EL発光装置1においては、発光部2が点滅することによって発光部2が劣化したことをユーザーに告知する。また、発光部2に逆バイアス電圧を印加することによって有機EL発光素子内部に蓄積されたキャリアが解放される。これにより、発光部2の寿命を延ばすことができる。なお、当該キャリアは、有機EL発光素子を電流駆動し続けることによって蓄積された当該素子内部に蓄積されたものである。また、キャリアの蓄積によって有機EL発光素子の特性が悪化することが一般に知られている。
 時刻T3においては、駆動電圧制御信号SVは出力されていない。このときの駆動電圧制御信号SVはローレベルとなっている。故に、駆動電圧VELは順バイアスに切り替わっている。駆動電流IELは定常レベルIsとなる。このときの駆動電圧VELは基準電圧VSよりも高いので、劣化検知信号SLTは出力されたままである。このときの劣化検知信号SLTの信号レベルはハイレベルである。
 時刻T4は、前回の逆バイアス印加開始時点である時刻T2から所定の繰り返し周期TREPEATだけ経過した時刻である。時刻T4において、制御部6は、予め設定されたパターンからなる駆動電圧制御信号SVの出力を再び開始する。図3(d)に示される例においては、駆動電圧制御信号SVは、パルスレベルPLの逆バイアス指示パルスPS4、PS5、及び、PS6からなるパターンである。
 これ以降、制御部6は、所定の繰り返し周期TREPEATだけ経過する度に予め設定されたパターンからなる駆動電圧制御信号SVを出力する。制御部6は、当該動作を、発光部2の交換のために電源が遮断されるまで繰り返す。なお、発光部2の劣化の程度が判定基準に達した後に、新しい発光パネルに交換せずに発光部2を使用している場合には、電源投入時点において既に駆動電圧VELが基準電圧VSを上回っているので、電源投入時点から逆バイアスの印加が開始される。
 上記したように、本実施例の有機EL発光装置1においては、発光部2に印加される駆動電圧VELが所定の基準電圧VSを上回った時点から断続的に駆動電圧VELの電圧レベルを負の電圧すなわち逆バイアス電圧とする。順バイアス電圧と逆バイアス電圧とが交互に印加されることによって発光部2が点滅する。点滅は、発光部2が点灯している状態から開始される。当該点滅によって発光部2の劣化が所定基準以上に進んだことをユーザーに対して告知することができる。また、発光部2に対して負の電圧である逆バイアス電圧を印加することにより、有機EL発光素子に蓄積されたキャリアを解放する。これにより、発光部2の寿命を延ばすことができる。
 かかる構成により、本実施例の有機EL発光装置1によれば、発光パネルの交換を促すことと、その延命を図ることとを同時に行なうことができる。これらの動作を同時に行なうことにより、点滅動作回数を最小限に抑えて、発光装置が必要以上に点滅することを避けることができるため、使い勝手が向上し、且つ、消費電力も抑えることができる。
 上記実施例においては、駆動電圧VELを劣化判定対象とする場合の例であるが、これに限られない。例えば、発光部2の輝度や駆動時間を監視対象とすることもできる。輝度をモニターする場合には光センサー(図示せず)を設け、そのセンサー値が所定の判定基準に達したか否かに基づいて劣化検知部3が発光部2の劣化を判定する。累積駆動時間をモニターする場合にはカウンタ(図示せず)を設け、そのカウント値所定の判定基準に達したか否かに基づいて劣化検知部3が劣化を判定する。
 <第2の実施例>
 図4には、本実施例の有機EL発光装置1の構成が示されている。以下、第1の実施例と異なる部分について主に説明する。
 有機EL発光装置1は、複数の発光部2-1~2-n(nは2以上の整数)を有している。発光部2-1~2-nは、発光部2-1、2-3、・・・、2-(n-1)からなる第1グループと、発光部2-2、2-4、・・・、2-nからなる第2グループとに群分けされる。群分けは、例えばRGBのような発光色の違いによりなされても良いし、発光パネルのエリア毎になされても良い。発光部2-1~2-nは、一列に配置されていても良いし、マトリックス状に配置されていても良い。第1グループに属する発光部2-1、2-3、・・・、2-(n-1)の各々は、駆動電圧生成部5-1から駆動電流IEL1の供給を受けて動作する。第2グループに属する発光部2-2、2-4、・・・、2-nの各々は、駆動電圧生成部5-2から駆動電流IEL2の供給を受けて動作する。
 劣化検知部3-1は、第1グループに属する発光部のうちの1つ、例えば発光部2-1に印加されている駆動電圧VEL1をモニターする。劣化検知部3-1は、駆動電圧VEL1が所定の基準電圧を上回ったときに劣化検知信号SLT1を制御部6-1に供給する。劣化検知部3-2は、第2グループに属する発光部のうちの1つ、例えば発光部2-2に印加されている駆動電圧VEL2をモニターする。劣化検知部3-2は、駆動電圧VEL2が所定の基準電圧を上回ったときに劣化検知信号SLT2を制御部6-2に供給する。
 制御部6-1は、劣化検知信号SLT1に応じて、例えば図2や図3(d)に示されるような予め設定されたパターンからなる駆動電圧制御信号SV1を駆動電圧生成部5-1に供給する。制御部6-2は、劣化検知信号SLT2に応じて、例えば図2や図3(d)に示されるような予め設定されたパターンからなる駆動電圧制御信号SV2を駆動電圧生成部5-2に供給する。
 駆動電圧生成部5-1は、駆動電圧制御信号SV1に応じて、第1の実施例と同様に例えば図3(b)に示されるような駆動電圧VEL1を生成する。駆動電圧VEL1は、第1グループに属する発光部2-1、2-3、・・・、2-(n-1)の各々に印加される。発光部2-1、2-3、・・・、2-(n-1)の各々には駆動電流IEL1が供給される。駆動電圧生成部5-2は、駆動電圧制御信号SV2に応じて、第1の実施例と同様に例えば図3(b)に示されるような駆動電圧VEL2を生成する。駆動電圧VEL2は、第2グループに属する発光部2-2、2-4、・・・、2-nの各々に印加される。発光部2-2、2-4、・・・、2-nの各々には駆動電流IEL2が供給される。かかる構成により、グループ毎に発光部群を点滅させることができる。
 図5には、複数の発光部2-1~2-nを有する有機EL発光装置1の変形例が示されている。制御部6の後段にはスイッチング部7が設けられている。以下、上記実施例と異なる部分について主に説明する。
 劣化検知部3は、発光部2-1~2-nのうちのいずれか1つ、例えば発光部2-1に印加されている駆動電圧VELをモニターする。劣化検知部3は、駆動電圧VELが所定の基準電圧を上回ったときに劣化検知信号SLTを制御部6及びスイッチング部7の各々に供給する。
 制御部6は、劣化検知信号SLTに応じて、例えば図2や図3(d)に示されるような予め設定されたパターンからなる駆動電圧制御信号SVを出力する。
 スイッチング部7は、劣化検知信号SLTを受信した時点において、駆動電圧生成部5-1及び駆動電圧生成部5-2のうちのいずれか一方に対して駆動電圧制御信号SVの供給を開始する。その後、スイッチング部7は、駆動電圧制御信号SVの供給先を例えば所定の繰り返し周期TREPEAT毎に駆動電圧生成部5-1と駆動電圧生成部5-2との間で切り替える。
 駆動電圧生成部5-1は、供給された駆動電圧制御信号SVに応じて、第1の実施例と同様に例えば図3(a)に示されるような駆動電流IEL1を発光部2-1、2-3、・・・、2-(n-1)の各々に供給する。駆動電圧生成部5-2は、異なるタイミングで供給された駆動電圧制御信号SVに応じて、第1の実施例と同様に例えば図3(a)に示されるような駆動電流IEL2を発光部2-2、2-4、・・・、2-nの各々に供給する。
 かかる構成によっても、グループ毎に発光部群を点滅させることができる。なお、駆動電圧制御信号SVの供給先の切り替え間隔は繰り返し周期TREPEAT毎に限られない。例えば予め決められた所定間隔でも良いし、ランダムに決定された間隔でも良い。
 このように、本実施例の有機EL発光装置1によれば、発光パネルを構成する複数の発光部のうちの一部のみを点滅動作させる。これにより、輝度や発光色を階調変化させることで交換を促すことが可能となり、発光装置の使い勝手が向上する。また、例えばRGBなどの発光色毎に発光部2-1~2-nを群分けした場合には以下の効果を奏する。一般に有機EL発光素子の寿命は発光色毎に異なるので、寿命の短い有機EL発光素子を有する発光部には早期に逆バイアスが印加されることとなる。故に、寿命の短い有機EL発光素子の延命措置を早期に開始することができ、発光パネルを構成する複数の有機EL発光素子間の寿命バランスをとることができる。また、発光色に拘わらずに発光部2-1~2-nを群分けした場合には以下の効果を奏する。寿命の短い発光色の有機EL発光素子の劣化検知に応じて逆バイアスの印加が開始されるので、寿命の長い発光色の有機EL発光素子については、その寿命到達前から延命措置をとることができる。故に、寿命の長い発光色の有機EL発光素子の寿命、ひいては発光パネル全体としての寿命を延ばすことができる。
 <第3の実施例>
 以下、図1及び図6を参照しつつ、劣化検知のための判定基準が2つ以上ある場合の例について説明する。なお、第1の実施例と異なる部分について主に説明する。
 時刻T1において駆動電圧VELが所定の第1基準電圧VS1を上回ったときに、劣化検知部3は所定の第1電圧レベルVLT1からなる第1劣化検知信号SLTを出力する。
 制御部6は、第1劣化検知信号SLTに応じて、所定の第1パターンからなる第1駆動電圧制御信号SV1を出力する。図6の例においては、当該第1パターンは、逆バイアス指示パルスPS1、PS2、及び、PS3からなる。
 駆動電圧生成部5は、第1駆動電圧制御信号SV1に応じて、第1パターンからなる第1駆動電圧を生成する。図6の例においては、当該第1パターンは、逆バイアス電圧パルスPV1、PV2、及び、PV3からなる。発光部2には当該第1パターンに応じた第1駆動電流IEL1が繰り返し周期TREPEAT毎に供給される。これにより、発光部2は、時刻T1から点滅を開始する。
 時刻T2において駆動電圧VELが所定の第2基準電圧VS2を上回ったときに、劣化検知部3は所定の第2電圧レベルVLT2からなる第2劣化検知信号SLTを出力する。
 制御部6は、第2劣化検知信号SLTに応じて、所定の第2パターンからなる第2駆動電圧制御信号SV2を出力する。図6の例においては、当該第2パターンは、逆バイアス指示パルスPS4、PS5、及び、PS6からなる。
 駆動電圧生成部5は、第2駆動電圧制御信号SV2に応じて、第2パターンからなる第2駆動電圧を生成する。図6の例においては、当該第2パターンは、逆バイアス電圧パルスPV4、PV5、及び、PV6からなる。発光部2には当該第2パターンに応じた駆動電流IEL2が繰り返し周期TREPEAT毎に供給される。
 第2パターンの逆バイアス印加パルス幅TR12は、第1パターンの逆バイアス印加パルス幅TR11よりも大きくなるように予め設定されている。それ故、駆動電圧VELが大きくなるほど逆バイアスの印加時間が長くなり、延命効果をより高めることができる。また、劣化が進む毎に点滅動作時における消灯期間が長くなるので、ユーザーは劣化の進み具合を知ることもできる。
 上記したように、本実施例の有機EL発光装置1においては、劣化検知のための判定基準を2つ以上設けることによって、劣化告知だけでなく発光パネルの劣化の程度についても段階的にユーザーに伝えることができる。また、これと同時に、駆動電圧VELの大きさに応じて逆バイアス印加パルス幅を大きくするので、延命効果を高めることができる。
 また、上記実施例は、駆動電圧VELが複数の判定基準の1つに達する毎に劣化検知信号SLTの電位を変える場合の例であるが、これに限られない。例えば、駆動電圧VELが判定基準の1つに達したときに、劣化検知部3が第1パルス幅のパルスを有する劣化検知信号SLTを出力する。その後、駆動電圧VELが当該1つの判定基準とは別の判定基準に達したときに、劣化検知部3が当該第1パルス幅とは異なる第2パルス幅のパルスを有する劣化検知信号SLTを出力することもできる。この場合、制御部6は、第1パルスを有する劣化検知信号SLTに応じて所定の第1パターンからなる第1駆動電圧制御信号SV1を出力し、第2パルスを有する劣化検知信号SLTに応じて所定の第2パターンからなる第2駆動電圧制御信号SV2を出力する。すなわち、制御部6は、パルス幅の違いにより異なるパターンの駆動電圧制御信号SVを出力する。
 上記実施例は、2つの判定基準を設けた場合の例であるが、3つ以上の判定基準を設けて同様に動作させることもできる。
 発光部2、2-1~2-nの有機EL材料としては、例えば、蛍光材料や燐光材料等の任意の公知の材料を適用可能である。
 青色発光を与える蛍光材料としては、例えば、ナフタレン、ペリレン、ピレンなどが挙げられる。緑色発光を与える蛍光材料としては、例えば、キナクリドン誘導体、クマリン誘導体、Alq3(tris (8-hydroxy-quinoline) aluminum) などのアルミニウム錯体などが挙げられる。黄色発光を与える蛍光材料としては、例えば、ルブレン、ペリミドン誘導体などが挙げられる。赤色発光を与える蛍光材料としては、例えば、DCM(4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran)系化合物、ベンゾピラン誘導体、ローダミン誘導体などが挙げられる。燐光材料としては、例えば、ルテニウム、ロジウム、パラジウムなどが挙げられる。燐光材料として、具体的には、トリス(2-フェニルピリジン)イリジウム(所謂、Ir(ppy)3)、トリス(2-フェニルピリジン)ルテニウム、などが挙げられる。
1 有機EL発光装置
2、2-1~2-n 発光部
3、3-1、3-2 劣化検知部
4 駆動部
5、5-1、5-2 駆動電圧生成部
6、6-1、6-2 制御部
7 スイッチング部

Claims (4)

  1.  駆動電圧に応じて発光する少なくとも1つの有機EL発光部と、
     前記駆動電圧を生成して前記有機EL発光部に印加する駆動部と、
     前記有機EL発光部の劣化を判定基準によって検知し、劣化検知をしたときに劣化検知信号を前記駆動部に出力する劣化検知部と、を含み、
     前記駆動部は、前記劣化検知信号を受信した時、前記駆動電圧の最低電位が負である交流電圧を出力することを特徴とする有機EL発光装置。
  2.  前記判定基準は、前記駆動電圧の閾値電圧を上回ったとき、あるいは、前記有機EL発光部の発光輝度が閾値輝度を下回ったとき、あるいは、前記有機EL発光部の累積駆動時間が閾値を上回ったとき、の少なくともいずれか一つであることを特徴とする請求項1に記載の有機EL発光装置。
  3.  前記有機EL発光部が複数であり、
     前記駆動部は、前記有機EL発光部の各々に対して異なるタイミングで前記交流電圧を供給することを特徴とする請求項2に記載の有機EL発光装置。
  4.  前記劣化検知部は、2以上の前記判定基準により劣化検知をし、
     前記駆動部は、前記判定基準の各々に応じた互いに異なるパターンの前記交流電圧を出力することを特徴とする請求項2に記載の有機EL発光装置。
PCT/JP2012/062466 2012-05-16 2012-05-16 有機el発光装置 WO2013171853A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/062466 WO2013171853A1 (ja) 2012-05-16 2012-05-16 有機el発光装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/062466 WO2013171853A1 (ja) 2012-05-16 2012-05-16 有機el発光装置

Publications (1)

Publication Number Publication Date
WO2013171853A1 true WO2013171853A1 (ja) 2013-11-21

Family

ID=49583298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062466 WO2013171853A1 (ja) 2012-05-16 2012-05-16 有機el発光装置

Country Status (1)

Country Link
WO (1) WO2013171853A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105305780A (zh) * 2014-07-14 2016-02-03 丰田自动车株式会社 半导体装置以及电力变换装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08180972A (ja) * 1994-09-23 1996-07-12 Eastman Kodak Co 有機led用のac駆動デバイス
JP2001056670A (ja) * 1999-08-17 2001-02-27 Seiko Instruments Inc 自発光表示素子駆動装置
JP2006236636A (ja) * 2005-02-23 2006-09-07 Matsushita Electric Works Ltd 点灯装置、及び点灯装置を用いた照明器具
JP2006236673A (ja) * 2005-02-23 2006-09-07 Matsushita Electric Works Ltd 照明器具
JP2007149464A (ja) * 2005-11-25 2007-06-14 Matsushita Electric Works Ltd 点灯装置及び照明装置
JP2007227151A (ja) * 2006-02-23 2007-09-06 Matsushita Electric Works Ltd 照明器具異常検知システム
JP2011249120A (ja) * 2010-05-26 2011-12-08 Rohm Co Ltd 照明装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08180972A (ja) * 1994-09-23 1996-07-12 Eastman Kodak Co 有機led用のac駆動デバイス
JP2001056670A (ja) * 1999-08-17 2001-02-27 Seiko Instruments Inc 自発光表示素子駆動装置
JP2006236636A (ja) * 2005-02-23 2006-09-07 Matsushita Electric Works Ltd 点灯装置、及び点灯装置を用いた照明器具
JP2006236673A (ja) * 2005-02-23 2006-09-07 Matsushita Electric Works Ltd 照明器具
JP2007149464A (ja) * 2005-11-25 2007-06-14 Matsushita Electric Works Ltd 点灯装置及び照明装置
JP2007227151A (ja) * 2006-02-23 2007-09-06 Matsushita Electric Works Ltd 照明器具異常検知システム
JP2011249120A (ja) * 2010-05-26 2011-12-08 Rohm Co Ltd 照明装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105305780A (zh) * 2014-07-14 2016-02-03 丰田自动车株式会社 半导体装置以及电力变换装置
CN105305780B (zh) * 2014-07-14 2018-01-12 丰田自动车株式会社 半导体装置以及电力变换装置

Similar Documents

Publication Publication Date Title
JP5725736B2 (ja) Led電源装置及びled照明器具
JP5665382B2 (ja) Led電源装置及びled照明器具
KR101435853B1 (ko) 발광 다이오드 구동 장치
JP6153024B2 (ja) 発光素子点灯装置、発光モジュール、照明装置及び発光素子の点灯方法
KR101725193B1 (ko) 디스플레이 구동 방법
WO2012086792A1 (ja) Led発光デバイス、端子数変換器、及び照明装置
WO2013171853A1 (ja) 有機el発光装置
WO2012086790A1 (ja) 2端子led発光デバイス及びそれを備えたled照明装置
JP2009519574A (ja) Led照明装置
JP2006195030A (ja) 自発光装置のエージング方法、製造方法及びエージング装置
JP2011253783A (ja) 発光ダイオードの駆動回路、それを用いた発光装置、電子機器および照明機器
KR20140133262A (ko) 발광 다이오드 구동 장치
JP2022515947A (ja) 電界発光デバイスのための方法及び装置
JP5746898B2 (ja) 照明装置
JP5403770B2 (ja) 照明装置及びその発光制御方法
JP6314743B2 (ja) 発光装置
JP5182205B2 (ja) 有機el素子駆動装置
JP5858494B2 (ja) 発光装置
JP4654891B2 (ja) 点灯装置及び照明装置
KR102003365B1 (ko) Led 구동 장치
KR20080020230A (ko) 수동형 유기이엘 디스플레이의 장수명 구동방법
JP5533737B2 (ja) 有機el駆動装置
KR20140093456A (ko) 발광 다이오드 조명 장치
JP4997346B1 (ja) 照明装置及びその発光制御方法
JP2007266088A (ja) 有機el用点灯装置および照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12877013

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12877013

Country of ref document: EP

Kind code of ref document: A1