WO2013170658A1 - 反激式电路及减小反激式电路变压器漏感损耗的方法 - Google Patents

反激式电路及减小反激式电路变压器漏感损耗的方法 Download PDF

Info

Publication number
WO2013170658A1
WO2013170658A1 PCT/CN2013/072937 CN2013072937W WO2013170658A1 WO 2013170658 A1 WO2013170658 A1 WO 2013170658A1 CN 2013072937 W CN2013072937 W CN 2013072937W WO 2013170658 A1 WO2013170658 A1 WO 2013170658A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
energy recovery
capacitor
diode
transformer
Prior art date
Application number
PCT/CN2013/072937
Other languages
English (en)
French (fr)
Inventor
林栋�
熊鹰
Original Assignee
迈象电子科技(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 迈象电子科技(上海)有限公司 filed Critical 迈象电子科技(上海)有限公司
Publication of WO2013170658A1 publication Critical patent/WO2013170658A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • H02M1/346Passive non-dissipative snubbers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present application relates to the field of flyback circuit technology, and more particularly to a flyback circuit and a method of reducing leakage inductance loss of a flyback circuit transformer.
  • the flyback circuit is widely used in small power switching power supplies because of its simple structure and ability to adapt to large input voltage fluctuations.
  • FIG. 1 a circuit schematic diagram of a typical flyback circuit including a switching transistor Q1, a transformer 12, a rectifier diode D, a voltage clamping circuit 11, and a filtering and loading circuit 13 is shown.
  • the voltage clamping circuit 11 includes a clamping diode Dc, a clamping capacitor Cc, and an energy bleeder resistor Rc.
  • the transformer 12 includes an ideal transformer T1 and a parasitic leakage inductance L.
  • the filtering and loading circuit 13 includes filtering. Capacitor Co and load Ro.
  • the working principle of the flyback circuit is: When the switch tube Q1 is turned on, the input voltage Vin is magnetized to the primary winding of the transformer T1 through the switch tube Q1. At this time, the rectifier diode D1 is turned off, and the input voltage Vin is charged. The magnetic energy converted into the primary winding is stored; when the switching transistor Q1 is turned off, the polarity of the voltage in the winding of the transformer T is reversed, and the rectifier diode D1 is turned on. At this time, the magnetic energy stored in the primary winding passes through the rectifier diode. After D1 and filter capacitor Co, power is supplied to load Ro.
  • the magnetic energy stored in the parasitic leakage inductance L at the moment when the switching transistor Q1 is turned off and the rectifier diode D1 is turned on requires a translation path, otherwise a switch tube Q1 is generated at both ends. Very high voltage The spike is likely to damage the switch Q1.
  • a voltage clamp circuit 11 is added. When the switch Q1 is turned off, the magnetic energy stored in the parasitic leakage inductance L is transferred to the clamp capacitor Cc through the clamp diode Dc, and Eventually converted to thermal energy on the energy bleeder resistor Rc.
  • nx Vo is the equivalent voltage source of the primary winding in the ideal transformer T1
  • Vo is the auxiliary in the ideal transformer T1.
  • the equivalent voltage source of the side winding, as shown in Figure 2, the parasitic leakage inductance L not only brings the loss of energy stored by itself, but also loses the magnetic energy stored in the ideal transformer T1, so that more energy is transferred to the clamp.
  • the conversion efficiency of the flyback circuit is reduced; at the same time, the voltage on the clamp capacitor Cc is raised, so that the voltage that the switch tube Q1 is subjected to after being turned off is higher, thereby causing the switch Q1 to fail.
  • the embodiment of the present application provides a flyback circuit and a method for reducing leakage inductance loss of a flyback circuit transformer, so as to improve conversion efficiency of the flyback circuit, and at the same time, reduce switching tube turn-off.
  • the voltage stress avoids the failure of the switch tube.
  • the present application provides a flyback circuit including: a switching transistor, a transformer, a rectifier diode, a voltage clamping circuit, a filtering and load circuit, and an energy recovery circuit, wherein:
  • the transformer includes an ideal transformer and a parasitic leakage inductance, and the primary winding of the ideal transformer, the parasitic leakage inductance and the switching tube are connected in series, and are connected to both ends of the input power of the flyback circuit;
  • the secondary winding of the ideal transformer is connected to the filtering and load circuit through the rectifier diode;
  • the energy recovery circuit is connected to a loop in which the secondary winding is located for recovering part of the parasitic leakage inductance;
  • the voltage clamping circuit is connected in parallel between the primary winding and the series branch of the parasitic leakage inductance to provide a translation path for the magnetic energy stored in the parasitic leakage inductance;
  • the filter and load circuit includes a filter capacitor and a load resistor connected in parallel, and one end of the parallel branch formed by the filter capacitor and the load resistor is connected to one end of the secondary winding through the rectifier diode, and the parallel branch The other end of the road is connected to the other end of the secondary winding.
  • the energy recovery circuit comprises: an energy recovery capacitor, the energy recovery capacitor being connected in parallel at both ends of the rectifier diode.
  • the energy recovery circuit further includes: a first diode and a first resistor, wherein the first diode is connected in series with the energy recovery capacitor and is connected in parallel to both ends of the rectifier diode, the first The connecting direction of the diode is the same as the connecting direction of the rectifier diode, and the first resistor is connected in parallel to both ends of the first diode.
  • the energy recovery circuit comprises: an energy recovery capacitor, the energy recovery capacitor being connected in parallel at both ends of the secondary winding.
  • the method further includes: a first diode and a first resistor, the first diode is connected in series with the energy recovery capacitor, and is connected in parallel to both ends of the secondary winding, and the first diode
  • the connection direction can ensure that current flows from the non-identical end of the secondary winding to the same-name end of the secondary winding, and the first resistor is connected in parallel at both ends of the first diode.
  • the voltage clamping circuit comprises: a clamping diode, a clamping capacitor and an energy bleeder resistor, wherein the clamping diode and the clamping capacitor are connected in series and connected in parallel to the primary winding and the parasitic leakage inductance The two ends of the series branch, the energy bleeder resistor is connected in parallel at two ends of the clamp capacitor, the clamp two An anode of the pole tube is connected to one end of the parasitic leakage inductance, a cathode is connected to one end of the clamp capacitor, and the other end of the clamp capacitor is connected to a terminal of the same name of the primary winding.
  • the present application also provides a method of reducing leakage inductance loss of a flyback circuit transformer, the flyback circuit comprising: a switching transistor, a transformer, a rectifier diode, a voltage clamping circuit, a filtering and a load circuit, the method comprising:
  • An energy recovery branch is added to the flyback circuit to recover a portion of the parasitic leakage inductance of the transformer in the flyback circuit, the energy recovery branch including at least an energy recovery capacitor.
  • an energy recovery circuit is added to the secondary circuit of the flyback circuit, wherein the energy recovery circuit includes at least one energy recovery capacitor.
  • the switch tube When the switch tube is turned off, the basic principle that the voltage on the capacitor cannot be abrupt is utilized, so that the voltage polarity of the transformer winding maintains the original voltage polarity for a period of time, using the primary winding
  • the voltage causes the current of the parasitic leakage inductance of the transformer to accelerate, wherein a portion of the energy on the parasitic leakage inductance is transferred to the clamp capacitor in the voltage clamping circuit, and another portion is transferred to the filter through the transformer and the energy recovery circuit.
  • FIG. 1 is a schematic diagram of a circuit principle of a typical flyback circuit in the prior art
  • FIG. 2 is a schematic diagram of an equivalent circuit of the circuit shown in FIG. 1 when the switch is turned off;
  • 3a is a circuit schematic diagram of a flyback circuit according to an embodiment of the present application.
  • FIG. 3b is a schematic circuit diagram of another flyback circuit according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of an equivalent circuit of the circuit shown in FIG. 3a when the switch is turned off;
  • FIG. 5 is a schematic circuit diagram of another flyback circuit according to an embodiment of the present application.
  • FIG. 6 is a circuit schematic diagram of another flyback circuit according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of an equivalent circuit of the circuit shown in FIG. 6 when the switch is turned off;
  • FIG. 8 is a schematic diagram of another flyback circuit sub-circuit according to an embodiment of the present application.
  • the embodiment of the present application provides a flyback circuit including a switch tube, a transformer, a rectifier diode, a voltage clamping circuit, a filter and a load circuit, and an energy recovery circuit, wherein:
  • the transformer includes an ideal transformer and a parasitic leakage inductance, the primary winding of the ideal transformer, the parasitic leakage inductance, and the switching tube are sequentially connected in series, and the series branch is connected to both ends of the input power of the flyback circuit;
  • the secondary winding of the ideal transformer is connected to the filtering and load circuit through the rectifier diode;
  • the energy recovery circuit is coupled to the secondary winding circuit of the transformer for recovering a portion of the energy in the parasitic leakage inductance
  • the voltage clamping circuit is connected in parallel with the primary winding of the ideal transformer and the parasitic leakage inductance
  • the filter and load circuit includes a filter capacitor and a load resistor connected in parallel, and one end of the parallel branch formed by the filter capacitor and the load resistor is connected to one end of the secondary winding through the rectifier diode, and the parallel branch The other end of the road is connected to the other end of the secondary winding.
  • the energy recovery circuit can maintain the polarity of the voltage of the ideal transformer winding for a period of time, using the voltage on the primary winding to make the transformer
  • the parasitic leakage current is accelerated to decrease, wherein a portion of the energy on the parasitic leakage inductance is transferred to a clamp capacitor in the voltage clamping circuit, and another portion is transferred to the filter and load circuit through the transformer and energy recovery circuit It realizes the recycling of part of the parasitic leakage inductance and improves the conversion efficiency of the flyback circuit.
  • FIG. 3a a circuit schematic diagram of a flyback circuit of an embodiment of the present application is shown.
  • the flyback circuit includes: a switch tube Q1, a voltage clamp circuit 11, a transformer 12, a rectifier diode D1, a filter and load circuit 13, and an energy recovery capacitor Cl.
  • the transformer 12 includes an ideal transformer T1 and a parasitic leakage inductance L.
  • the primary winding of the ideal transformer T1, the parasitic leakage inductance L and the switching transistor Q 1 are connected in series and connected to both ends of the input power source;
  • the non-identical end of the secondary winding of the ideal transformer T1 is connected to the anode of the rectifier diode D1, and the cathode of the rectifier diode D1 is connected to the filter and load circuit 13.
  • the energy recovery capacitor C1 is connected in parallel across the rectifier diode D1.
  • the rectifier diode D1 can also be connected to the same name end of the secondary winding, that is, the anode of the rectifier diode D1 is connected to the filter and load circuit 13, and the cathode is connected to the same name end of the secondary winding. Not limited.
  • the voltage clamping circuit 11 includes: a clamp capacitor Cc, a clamp diode Dc, and an energy bleed resistor Rc;
  • the clamp capacitor Cc and the clamp diode Dc are connected in series and then connected in parallel to both ends of the primary winding of the ideal transformer T 1 and the parasitic leakage inductance L series branch, and the anode connection of the clamp diode Dc
  • the parasitic leakage inductance L is connected to one end of the clamp capacitor Cc, the other end of the clamp capacitor Cc is connected to the same end of the ideal transformer T1, and the energy bleeder resistor Rc is connected in parallel to the clamp Both ends of the capacitor Cc;
  • the series connection relationship between the clamping diode Dc and the clamping capacitor Cc may be that the cathode of the clamping diode Dc is connected to the input power source, the anode is connected to one end of the clamping capacitor Cc, and the other end of the clamping capacitor Cc is connected.
  • the parasitic leakage inductance L is connected, which is not limited in this application.
  • the filter and load circuit 13 includes a filter capacitor Co and a load resistor Ro connected in parallel, one end of the parallel branch is connected to the cathode of the rectifier diode D1, and the other end is connected to the same end of the secondary winding.
  • the voltage clamping circuit 11 can also be in the form shown in FIG. 3b, and specifically includes: a transient voltage suppressor TVS connected in parallel, a bleeder resistor Rc, a clamp capacitor Cc, and a clamp diode Dc connected to the parallel branch,
  • the anode of the transient voltage suppressor TVS is connected to the positive terminal of the input power source, the cathode is connected to the cathode of the clamp diode Dc, and the anode of the clamp diode Dc is connected to the switch tube Q1.
  • the form of the voltage clamping circuit in the flyback circuit provided by the present application is not limited to the above two circuit forms, and any circuit capable of providing a bleeder circuit for the parasitic leakage inductance L is disclosed in the present application. And the scope of protection.
  • FIG. 4 an equivalent circuit diagram of the circuit diagram shown in Fig. 3a at the moment when the switching transistor Q1 is turned off is shown.
  • the current direction of the primary winding circuit in the circuit is the direction of the arrow in the figure.
  • the current flow direction is: nx Vs— L— Dc— Cc— n Vs
  • the current direction of the secondary winding circuit is as indicated by the direction of the arrow in FIG. 4 .
  • the current flow direction is: Vs—C1 Ro, Co Vs.
  • the voltage polarity of the energy recovery capacitor C1 maintains the original polarity, that is, the left negative right positive, so that the secondary winding of the ideal voltage device T1
  • the polarity of the voltage maintains the original polarity for a short period of time, that is, the upper and lower positive, as shown in the voltage polarity of the voltage source Vs, the polarity of the primary winding is positive and negative, as shown in the figure.
  • the voltage polarity of the voltage source nx Vs shown in .
  • the voltage on the primary winding and the voltage on the clamp capacitor Cc are superimposed in the same direction, and added to the parasitic leakage inductance L, which accelerates the falling speed of the current on the parasitic leakage inductance L. .
  • the parasitic leakage inductance is partially transferred to the clamp capacitor Cc, and the other portion of the energy is supplied to the filter and load circuit 13 through the ideal transformer T1 and the energy recovery capacitor C1, thereby improving the conversion efficiency of the flyback circuit.
  • the equivalent circuit shown in FIG. 4 is an equivalent circuit at the moment when the switching transistor Q1 is turned off, and the equivalent circuit can only be maintained for a relatively short time.
  • the duration of the operating state shown in FIG. 4 is related to the capacitance of the energy recovery capacitor C1, the energy recovery capacitor C1 The larger the capacitance, the longer the working state shown in FIG. 4 lasts, and the more energy is recovered in the parasitic leakage inductance L.
  • the energy of the parasitic leakage inductance L is recovered, it is necessary to enter the state shown in FIG. 2 as soon as possible.
  • FIG. 5 a circuit schematic diagram of another flyback circuit is shown. A first diode D2 and a first resistor R1 are added to the base of the circuit shown in FIG.
  • the first diode D2 is connected in series with the energy recovery capacitor C 1 and then connected in parallel to both ends of the rectifier diode D 1 , and the connection direction of the first diode D2 and the connection direction of the rectifier diode D 1 Similarly, the first resistor R1 is connected in parallel at both ends of the first diode D2. Specifically, as shown in FIG. 5, one end of the energy recovery capacitor C1 is connected to the common side of the secondary winding and the rectifier diode D1, and the other end of the energy recovery capacitor C1 is connected to the first diode. An anode of D2, a cathode of the first diode D2 is connected to a cathode of the rectifier diode D1;
  • connection position of the first diode D2 may specifically be: the anode of the first diode D2 is connected to the common side of the secondary winding and the rectifier diode D1, and the cathode of the first diode D2 One end of the energy recovery capacitor C 1 is connected, and the other end of the energy recovery capacitor C 1 is connected to the cathode of the rectifier diode D 1 .
  • the function of the energy recovery capacitor C1 in the circuit shown in Fig. 5 is the same as that of the energy recovery capacitor C1 in Fig. 3, and will not be described again here.
  • the addition of the first diode D2 and the first resistor R1 serves to reduce the voltage stress when the rectifier diode D1 is turned off.
  • the first diode D2 is connected in series with the energy recovery capacitor C1 to provide a low-impedance energy recovery loop, and the first diode D2 is turned off when the rectifier diode D1 is turned off. Breaking, the first resistor R1 and the energy recovery capacitor CI are connected in series, increasing the impedance of the energy recovery loop, suppressing the oscillation of the energy absorption capacitor C1 and the parasitic leakage inductance of the secondary winding of the ideal transformer T1, reducing the The turn-off voltage stress of the rectifier diode D1.
  • FIG. 6 is a schematic diagram showing the circuit principle of another flyback circuit
  • FIG. 7 is an equivalent circuit diagram of the circuit shown in FIG. 6 at the moment when the switch Q1 is turned off.
  • the flyback circuit shown in Fig. 6 differs from the flyback circuit shown in Fig. 3 in that the position of the energy recovery capacitor C1 is different.
  • the current direction in the primary winding circuit in the equivalent circuit shown in Figure 7 is: n x Vs - L - Dc - Cc - n Vs;
  • the current direction in the secondary winding circuit is: Vs - C1 - Vs.
  • the energy recovery capacitor C 1 in this embodiment is connected in parallel to both ends of the secondary winding of the ideal transformer T 1 .
  • the voltage polarity of the energy recovery capacitor C1 is upper and lower, so that the voltage polarities of the primary winding and the secondary winding remain original for a short period of time.
  • Voltage polarity the voltage polarity of the primary winding is as shown by the voltage source nx Vs, and the voltage polarity of the secondary winding is the voltage polarity indicated by the voltage source Vs.
  • the equivalent circuit shown in Figure 7 is only the equivalent state of the switching transistor Q1 at the moment of turn-off. This state is only a relatively short process, when the voltage on the energy recovery capacitor C1 rises to When the output voltage is the output voltage of the flyback circuit, the rectifier diode D1 is turned on, and the flyback circuit shown in FIG. 6 enters the working state shown in FIG. 2, as shown in FIG.
  • the time that the operating state is maintained is related to the capacitance of the energy recovery capacitor C1.
  • FIG. 8 a circuit schematic diagram of another flyback circuit is shown.
  • a first diode D2 and a first resistor R1 are added to the circuit shown in FIG.
  • the first diode D2 and the energy recovery capacitor C 1 are connected in series and connected in parallel at both ends of the secondary winding, and the anode of the first diode D2 is connected to one end of the energy recovery capacitor C1, and the cathode Connecting the same end of the secondary winding, the other end of the energy recovery capacitor C 1 is connected to the non-identical end of the secondary winding; the first resistor R1 is connected in parallel to the two ends of the first diode D2 .
  • the present application does not limit the specific connection position of the first diode D2, and the connection direction of the first diode D2 can ensure that current flows from the non-identical end of the secondary winding to the same end. . Therefore, the first diode D2 and the energy recovery capacitor C1 may be connected in series.
  • the anode of the first diode D2 is connected to the non-identical end of the secondary winding, and the cathode is connected to the energy recovery capacitor C1.
  • One end of the energy recovery capacitor C 1 is connected to the same end of the secondary winding;
  • the first diode D2 and the first resistor R1 function to reduce the voltage stress when the rectifier diode D1 is turned off.
  • the first diode D2 is connected in series with the energy recovery capacitor CI to provide a low-impedance energy recovery loop, and the first diode D2 is also turned off when the rectifier diode D1 is turned off.
  • the first resistor R1 is connected in series with the energy recovery capacitor C1, which increases the impedance of the energy recovery loop, and suppresses the oscillation of the energy absorption capacitor C1 and the parasitic leakage inductance of the secondary winding of the ideal transformer T1, thereby reducing the The turn-off voltage stress of the rectifier diode D 1 is described.
  • the present application further provides a method for reducing the leakage inductance loss of a flyback circuit transformer, the method comprising:
  • a portion of the energy in the leakage inductance of the transformer in the flyback circuit is recovered by an additional energy branch in the flyback circuit.
  • the energy branch recovery branch is disposed in a secondary winding circuit of the flyback circuit.
  • the energy recovery branch may be implemented by an energy recovery capacitor, and the energy recovery capacitor may be connected in parallel
  • the two ends of the rectifier diode in the flyback circuit may also be connected in parallel across the secondary winding of the transformer in the flyback circuit, because the voltage across the energy recovery capacitor cannot be abrupt, when the switching transistor in the flyback circuit
  • the polarity of the voltage on the capacitor maintains the original voltage polarity, so that the voltage polarity of the transformer winding maintains the original polarity for a period of time, and the voltage on the transformer winding makes the parasitic of the transformer
  • the current of the leakage inductance is accelerated to decrease, wherein a part of the energy on the parasitic leakage inductance is transferred to the clamp capacitance in the voltage clamping circuit, and another part is transferred to the filter and load circuit through the transformer and the energy recovery capacitor, The partial energy recovery of the parasitic leakage inductance is realized, and

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Rectifiers (AREA)

Abstract

一种反激式电路及减小反激式电路变压器漏感损耗的方法。反激式电路的副边回路中设有能量回收电路,用于回收寄生漏感(L)中的部分能量。能量回收电路至少包括一能量回收电容(C1)。当开关管(Q1)关断的瞬间,利用电容电压不能突变的原理,变压器(12)绕组的电压极性在一段时间内保持原有的电压极性,利用该电压使得变压器寄生漏感的电流加速下降。寄生漏感上的能量一部分转移至箝位电容(Cc)中,另一部分通过变压器和能量回收电路转移到滤波和负载电路(13)中,从而实现了对寄生漏感中部分能量的回收,提高了反激式电路的转换效率。同时,由于转移到箝位电容中的能量相应减小,箝位电容上的电压也相应降低,开关管关断后承受的电压减小。

Description

反激式电路及减小反激式电路变压器漏感损耗的方法 本申请要求于 2012年 5月 15日提交中国专利局、 申请号 201210151451.6, 发明名称为 "反激式电路及减小反激式电路变压器漏感损耗的方法"的中国专 利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本申请涉及反激式电路技术领域,特别是涉及反激式电路及减小反激式电 路变压器漏感损耗的方法。
背景技术
反激式电路以其结构简单, 能够适应较大的输入电压波动的优点, 广泛应 用于小功率开关电源中。
请参见图 1 , 示出了一种典型的反激式电路的电路原理图, 所述反激式电 路包括开关管 Ql、 变压器 12、 整流二极管 D、 电压箝位电路 11和滤波及负载电 路 13 , 其中, 所述电压箝位电路 11包括箝位二极管 Dc、 箝位电容 Cc和能量泄 放电阻 Rc; 所述变压器 12包括理想变压器 T1和寄生漏感 L; 所述滤波及负载电 路 13包括滤波电容 Co和负载 Ro。
所述反激式电路的工作原理是: 当开关管 Q1导通时, 输入电压 Vin通过开 关管 Q1对变压器 T1的原边绕组充磁, 此时, 整流二极管 D1关断, 输入电压 Vin 的电能转化为原边绕组中的磁能存储起来; 当开关管 Q1关断时, 变压器 T的绕 组中的电压极性反转, 整流二极管 D1导通, 此时, 存储在原边绕组中的磁能 通过整流二极管 D1和滤波电容 Co后, 为负载 Ro供电。 但是, 由于变压器中存 在寄生漏感 L, 在开关管 Q1关断、 整流二极管 D1导通的瞬间存储在寄生漏感 L 中的磁能需要一个译放路径, 否则将导致开关管 Q1两端产生一个很高的电压 尖峰, 很可能损坏开关管 Ql , 为此增设了电压箝位电路 11 , 当开关管 Q1关断 时, 存储在寄生漏感 L中的磁能通过箝位二极管 Dc转移到箝位电容 Cc中, 并最 终转换为能量泄放电阻 Rc上的热能。 由于寄生漏感 L中的电流不能突变, 在寄 生漏感 L中的磁能向箝位电容 Cc的过程中,存储在理想变压器 T1中的一部分磁 能也被带到箝位电容 Cc中, 请参见图 2, 示出了开关管 Q1关断瞬间电路中的能 量传输的等效示意图, 图 2中, n x Vo为理想变压器 T1中的原边绕组的等效电 压源, Vo为理想变压器 T1中的副边绕组的等效电压源, 如图 2所示, 寄生漏感 L不仅带来自身存储的能量的损耗, 同时会损耗掉理想变压器 T1中存储的磁 能,从而使得更多的能量转移至箝位电容 Cc中,降低了反激式电路的转换效率; 同时, 导致箝位电容 Cc上的电压升高, 从而使得开关管 Q1关断后承受的电压 更高, 进而导致开关管 Q1失效。
发明内容
为解决上述技术问题,本申请实施例提供一种反激式电路及减小反激式电 路变压器漏感损耗的方法, 以实现提高反激式电路的转换效率, 同时, 减小开 关管关断的电压应力, 避免开关管失效, 技术方案如下:
本申请提供一种反激式电路, 包括: 开关管、 变压器、 整流二极管、 电压 箝位电路、 滤波和负载电路, 以及能量回收电路, 其中:
所述变压器包括理想变压器和寄生漏感, 所述理想变压器的原边绕组、 所 述寄生漏感及所述开关管依次串联后, 连接所述反激式电路的输入电源的两 端;
所述理想变压器的副边绕组通过所述整流二极管连接所述滤波和负载电 路; 所述能量回收电路, 连接在所述副边绕组所在的回路中, 用于回收所述寄 生漏感中的部分能量;
所述电压箝位电路并联在所述原边绕组和所述寄生漏感的串联支路两端, 用于为所述寄生漏感中储存的磁能提供译放路径;
所述滤波和负载电路包括并联连接的滤波电容和负载电阻,所述滤波电容 和所述负载电阻构成的并联支路的一端通过所述整流二极管连接所述副边绕 组的一端, 所述并联支路的另一端连接所述副边绕组的另一端。
优选的, 所述能量回收电路包括: 能量回收电容, 所述能量回收电容并联 在所述整流二极管的两端。
优选的, 所述能量回收电路还包括: 第一二极管和第一电阻, 所述第一二 极管与所述能量回收电容串联后并联于所述整流二极管的两端,所述第一二极 管的连接方向与所述整流二极管的连接方向相同,所述第一电阻并联于所述第 一二极管的两端。
优选的, 所述能量回收电路包括: 能量回收电容, 所述能量回收电容并联 在所述副边绕组的两端。
优选的, 还包括: 第一二极管和第一电阻, 所述第一二极管与所述能量回 收电容串联后并联于所述副边绕组的两端,且所述第一二极管的连接方向能够 保证电流从所述副边绕组的非同名端流向所述副边绕组的同名端,所述第一电 阻并联在所述第一二极管的两端。
优选的,所述电压箝位电路包括:箝位二极管、箝位电容和能量泄放电阻, 所述箝位二极管和所述箝位电容串联后并联在所述原边绕组和所述寄生漏感 的串联支路两端, 所述能量泄放电阻并联在所述箝位电容的两端, 所述箝位二 极管的阳极连接所述寄生漏感的一端, 阴极连接所述箝位电容的一端, 所述箝 位电容的另一端连接所述原边绕组的同名端。
本申请还提供一种减小反激式电路变压器漏感损耗的方法,所述反激式电 路包括: 开关管、 变压器、 整流二极管、 电压箝位电路、 滤波和负载电路, 该 方法包括:
在所述反激式电路中增设能量回收支路,以回收所述反激式电路中的变压 器的寄生漏感中的部分能量, 所述能量回收支路至少包括能量回收电容。
由以上本申请实施例提供的技术方案可见,所述反激式电路的副边回路中 增设有能量回收电路, 其中该能量回收电路至少包括一个能量回收电容。 当所 述开关管关断的瞬间, 利用电容上的电压不能突变的基本原理,从而使变压器 绕组的电压极性在一段时间内保持原有的电压极性,利用所述原边绕组上的这 个电压使得变压器的寄生漏感的电流加速下降,其中所述寄生漏感上的能量一 部分转移至电压箝位电路中的箝位电容中,另一部分通过所述变压器和能量回 收电路转移到所述滤波和负载电路中,实现了将寄生漏感中的部分能量回收利 用,提高了反激式电路的转换效率。同时,由于寄生漏感中的能量被回收利用, 因此, 转移到箝位电容 Cc中的能量相应减小, 箝位电容 Cc上的电压也相应降 低, 进而使得开关管 Q1关断后承受的电压减小。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地, 下面描述 中的附图仅仅是本申请中记载的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。 图 1为现有技术中一种典型的反激式电路的电路原理示意图;
图 2为图 1所示的电路在开关管关断时的等效电路示意图;
图 3a为本申请实施例一种反激式电路的电路原理图;
图 3b为本申请实施例另一种反激式电路的电路原理图;
图 4为图 3a所示电路在开关管关断时的等效电路示意图;
图 5为本申请实施例另一种反激式电路的电路原理图;
图 6为本申请实施例另一种反激式电路的电路原理图;
图 7为图 6所示电路在开关管关断时的等效电路示意图;
图 8为本申请实施例另一种反激式电路分电路原理图。
具体实施方式
本申请实施例提供一种反激式电路, 包括开关管、 变压器、 整流二极管、 电压箝位电路、 滤波和负载电路, 以及能量回收电路, 其中:
所述变压器包括理想变压器和寄生漏感, 所述理想变压器的原边绕组、 所 述寄生漏感以及所述开关管依次串联,串联支路连接所述反激式电路的输入电 源两端;所述理想变压器的副边绕组通过所述整流二极管连接所述滤波和负载 电路;
所述能量回收电路连接在所述变压器的副边绕组回路中,用于回收所述寄 生漏感中的部分能量;
所述电压箝位电路并联在所述理想变压器的原边绕组和所述寄生漏感两 所述滤波和负载电路包括并联连接的滤波电容和负载电阻,所述滤波电容 和所述负载电阻构成的并联支路的一端通过所述整流二极管连接所述副边绕 组的一端, 所述并联支路的另一端连接所述副边绕组的另一端。
当所述开关管关断时,所述能量回收电路能够使所述理想变压器绕组的电 压极性在一段时间内保持原有的电压极性,利用所述原边绕组上的这个电压使 得变压器的寄生漏感的电流加速下降,其中所述寄生漏感上的能量一部分转移 至电压箝位电路中的箝位电容中,另一部分通过所述变压器和能量回收电路转 移到所述滤波和负载电路中, 实现了将寄生漏感中的部分能量回收利用,提高 了反激式电路的转换效率。
为了使本技术领域的人员更好地理解本申请中的技术方案,下面将结合本 申请实施例中的附图, 对本申请实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本申请一部分实施例, 而不是全部的实施例。 基 于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获 得的所有其他实施例, 都应当属于本申请保护的范围。
请参见图 3a, 示出了本申请实施例一种反激式电路的电路原理图。
所述反激式电路包括: 开关管 Ql、 电压箝位电路 11、 变压器 12、 整流二 极管 Dl、 滤波和负载电路 13、 能量回收电容 Cl。
所述变压器 12包括理想变压器 T1和寄生漏感 L, 所述理想变压器 T1的原边 绕组、 寄生漏感 L及开关管 Q 1串联后连接在输入电源的两端;
所述理想变压器 T1的副边绕组的非同名端连接所述整流二极管 D1的阳 极, 所述整流二极管 D1的阴极连接所述滤波和负载电路 13。 所述能量回收电 容 C1并联在所述整流二极管 D1的两端。 当然, 所述整流二极管 Dl还可以连接在所述副边绕组的同名端, 即整流 二极管 D1的阳极连接所述滤波和负载电路 13 , 阴极连接所述副边绕组的同名 端, 本申请对此并不限制。
所述电压箝位电路 11包括: 箝位电容 Cc、 箝位二极管 Dc、 能量泄放电阻 Rc;
所述箝位电容 Cc和箝位二极管 Dc串联后并联于所述理想变压器 T 1的原边 绕组与所述寄生漏感 L串联支路的两端, 而且, 所述箝位二极管 Dc的阳极连接 所述寄生漏感 L, 阴极连接所述箝位电容 Cc的一端, 所述箝位电容 Cc的另一端 连接所述理想变压器 T1的同名端, 所述能量泄放电阻 Rc并联在所述箝位电容 Cc的两端;
当然, 所述箝位二极管 Dc和所述箝位电容 Cc的串联关系还可以是, 箝位 二极管 Dc的阴极连接输入电源, 阳极连接所述箝位电容 Cc的一端, 箝位电容 Cc的另一端连接所述寄生漏感 L, 本申请对此并不限制。
所述滤波和负载电路 13包括并联连接的滤波电容 Co和负载电阻 Ro , 所述 并联支路的一端连接所述整流二极管 D1的阴极, 另一端连接所述副边绕组的 同名端。
所述电压箝位电路 11还可以是图 3b所示的形式, 具体包括: 并联连接的瞬 间电压抑制器 TVS、 泄放电阻 Rc、箝位电容 Cc, 与并联支路连接的箝位二极管 Dc, 其中, 所述瞬间电压抑制器 TVS的阳极连接所述输入电源的正极性端, 阴 极连接所述箝位二极管 Dc的阴极, 所述箝位二极管 Dc的阳极连接所述开关管 Ql。 需要说明的是,本申请提供的反激式电路中的电压箝位电路的形式并不局 限于上述的两种电路形式, 凡是能够为寄生漏感 L提供泄放回路的电路均是本 申请公开和保护的范围。
请参见图 4, 示出了图 3a所示的电路图在开关管 Q1关断瞬间的等效电路 图。 电路中的原边绕组回路的电流方向即图中的箭头方向, 电流流向为: n x Vs— L— Dc— Cc— n Vs , 副边绕组回路的电流方向如图 4中的箭头方向所示, 电流流向为: Vs— C1 Ro、 Co Vs。
开关管 Q1关断的瞬间, 由于所述能量回收电容 C1上的电压不能突变, 能 量回收电容 C1的电压极性保持原有极性, 即左负右正, 使得理想电压器 T1的 副边绕组的电压极性在一小段时间内保持原有极性, 即上负下正,如图中所示 的电压源 Vs的电压极性,原边绕组的电压极性为上正下负,如图中所示的电压 源 n x Vs的电压极性。 在理想变压器 T1的原边绕组回路中, 所述原边绕组上的 电压和箝位电容 Cc上的电压同向叠加, 加在寄生漏感 L上, 加快了寄生漏感 L 上电流的下降速度。 寄生漏感 L中的能量一部分转移至箝位电容 Cc中, 另一部 分能量经过所述理想变压器 T1和能量回收电容 C1提供给滤波和负载电路 13 , 因此提高了反激式电路的转换效率。 同时, 由于寄生漏感 L中的一部分能量被 滤波和负载电路回收利用, 因此, 转移到箝位电容 Cc中的能量相应减小, 箝位 电容 Cc上的电压也相应降低, 进而使得开关管 Q1关断后承受的电压减小。
需要说明的是, 图 4所示的等效电路是开关管 Q1关断的瞬间的等效电路, 该等效电路只能维持比较短的时间, 当能量回收电容 C1的电压降到零后, 整 流二极管 D1开通, 反激式电路就进入如图 2所示的工作状态。 图 4所示的工作 状态的持续时间与所述能量回收电容 C 1的容值相关, 所述能量回收电容 C 1的 容值越大, 图 4所示的工作状态持续的时间越长,对所述寄生漏感 L中能量的回 收也就越多。但是, 当寄生漏感 L的能量都被回收完后, 需要尽快进入图 2所示 的状态, 因此, 能量回收电容 C1的容值也不能太大。 请参见图 5, 示出了另一种反激式电路的电路原理图,在图 3所示的电路的 基石出上增设了第一二极管 D2和第一电阻 R1。
所述第一二极管 D2与所述能量回收电容 C 1串联后并联于所述整流二极管 D 1的两端, 且第一二极管 D2的连接方向与所述整流二极管 D 1的连接方向相 同, 所述第一电阻 R1并联在所述第一二极管 D2的两端。 具体的, 如图 5所示, 所述能量回收电容 C 1的一端连接所述副边绕组与所述整流二极管 D 1的公共 端, 能量回收电容 C1的另一端连接所述第一二极管 D2的阳极, 第一二极管 D2 的阴极连接所述整流二极管 D1的阴极;
当然, 所述第一二极管 D2的连接位置具体还可以为: 第一二极管 D2的阳 极连接所述副边绕组和所述整流二极管 D1的公共端, 第一二极管 D2的阴极连 接能量回收电容 C 1的一端, 能量回收电容 C 1的另一端连接所述整流二极管 D 1 的阴极。
图 5所示的电路中的能量回收电容 C1的作用与图 3中的能量回收电容 C1的 作用相同, 此处不再贅述。
增设所述第一二极管 D2和第一电阻 R1的作用在于 , 降低所述整流二极管 D1关断时的电压应力。
具体的, 所述第一二极管 D2与所述能量回收电容 C1串联, 提供一个低阻 抗的能量回收回路, 而在所述整流二极管 D1关断瞬间, 所述第一二极管 D2关 断, 所述第一电阻 Rl和所述能量回收电容 CI串联, 增加了能量回收回路的阻 抗, 抑制能量吸收电容 C1和所述理想变压器 T1副边绕组的寄生漏感的振荡, 减小所述整流二极管 D1的关断电压应力。
请参见图 6和图 7, 图 6示出了另一种反激式电路的电路原理示意图, 图 7, 示出了图 6所示的电路在开关管 Q1关断瞬间的等效电路图。 图 6所示的反激式 电路与图 3所示的反激式电路所不同的是, 能量回收电容 C1的位置不同。 图 7 所示的等效电路中的原边绕组回路中的电流方向为: n x Vs—L—Dc—Cc—n Vs; 副边绕组回路中的电流方向为: Vs— C1一 Vs。
本实施例中的能量回收电容 C 1并联于所述理想变压器 T 1的副边绕组的两 端。
具体的, 当开关管 Q1关断瞬间, 所述能量回收电容 C1的电压极性为上负 下正,使得所述原边绕组和副边绕组的电压极性在一小段时间内保持原有的电 压极性, 所述原边绕组的电压极性如图中电压源 n x Vs所示的电压极性, 所述 副边绕组的电压极性如图中电压源 Vs所示的电压极性。
所述开关管 Q1关断瞬间, 理想变压器 T1的原边绕组回路中, 所述原边绕 组上的电压和箝位电容 Cc上的电压同向叠加,加在寄生漏感 L上,加快了寄生漏 感 L上的电流的下降速度。 寄生漏感 L中的能量一部分转移至箝位电容 Cc中, 另一部分能量经过所述理想变压器 T1和能量回收电容 C1提供给滤波和负载电 路 13 , 因而提高了反激式电路的转换效率。 同时, 由于寄生漏感中的一部分能 量被滤波和负载电路回收利用, 因此, 转移到箝位电容 Cc中的能量相应减小, 箝位电容 Cc上的电压也相应降低,进而使得开关管 Q1关断后承受的电压减小。 如同图 4所示的等效电路, 图 7所示的等效电路仅仅是开关管 Q1关断瞬间 的等效状态, 该状态只是一个比较短暂的过程, 当能量回收电容 C1上的电压 上升到输出电压, 所述输出电压即反激式电路的输出电压时, 所述整流二极管 D1导通, 图 6所示的反激式电路就会进入图 2所示的工作状态, 图 7所示的工作 状态所维持的时间与所述能量回收电容 C 1的容值相关, 所述能量回收电容 C 1 的容值越大,上图 4所示的工作状态维持的时间越长,对所述寄生漏感 L中能量 的回收也就越多, 但是, 当寄生漏感 L的能量都被回收完后, 需要尽快进入图 2 所示的状态, 因此, 能量回收电容 C1的容值也不能太大。
请参见图 8, 示出了另一种反激式电路的电路原理图,在图 6所示电路的基 础上增设了第一二极管 D2和第一电阻 R1 , 其中,
所述第一二极管 D2和所述能量回收电容 C 1串联后并联在所述副边绕组的 两端, 所述第一二极管 D2的阳极连接所述能量回收电容 C1的一端, 阴极连接 所述副边绕组的同名端, 所述能量回收电容 C 1的另一端连接所述副边绕组的 非同名端; 所述第一电阻 R1 并联于所述第一二极管 D2的两端。
需要说明的是, 本申请并不限定第一二极管 D2的具体连接位置, 所述第 一二极管 D2的连接方向能够保证电流从所述副边绕组的非同名端流向同名端 即可。 因此, 所述第一二极管 D2与能量回收电容 C1串联关系具体还可以为: 第一二极管 D2的阳极连接所述副边绕组的非同名端, 阴极连接所述能量回收 电容 C 1的一端, 能量回收电容 C 1的另一端连接所述副边绕组的同名端;
所述第一二极管 D2和第一电阻 R1的作用在于降低所述整流二极管 D1关断 时的电压应力。 具体的, 所述第一二极管 D2与所述能量回收电容 CI串联, 提供一个低阻 抗的能量回收回路, 而在所述整流二极管 D1关断瞬间, 所述第一二极管 D2也 关断, 所述第一电阻 R1与所述能量回收电容 C1串联, 增加了能量回收回路的 阻抗, 抑制能量吸收电容 C1和所述理想变压器 T1副边绕组的寄生漏感的振荡, 从而减小所述整流二极管 D 1的关断电压应力。
相应于上述的反激式电路的实施例,本申请还提供一种减小反激式电路变 压器漏感损耗的方法, 该方法包括:
利用所述反激式电路中增设的能量支路回收反激式电路中的变压器漏感 中的部分能量。
所述能量支路回收支路设置在所述反激式电路的副边绕组回路中, 具体 的, 所述能量回收支路可以通过能量回收电容实现, 所述能量回收电容可以并 联在所述反激式电路中的整流二极管两端,也可以并联在所述反激式电路中的 变压器副边绕组两端, 由于能量回收电容两端的电压不能突变, 当反激式电路 中的开关管关断瞬间, 所述电容上的电压极性保持原有的电压极性,从而使得 变压器绕组的电压极性在一段时间内保持原有极性,利用变压绕组上的这个电 压使得变压器的寄生漏感的电流加速下降,其中所述寄生漏感上的能量一部分 转移至电压箝位电路中的箝位电容中,另一部分通过所述变压器和能量回收电 容转移到所述滤波和负载电路中, 实现了将寄生漏感中的部分能量回收利用, 提高了反激式电路的转换效率。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将 一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些 实体或操作之间存在任何这种实际的关系或者顺序。 以上所述仅是本申请的具体实施方式,应当指出,对于本技术领域的普通 技术人员来说, 在不脱离本申请原理的前提下, 还可以做出若干改进和润饰, 这些改进和润饰也应视为本申请的保护范围。
+

Claims

权 利 要 求
1、 一种反激式电路, 其特征在于, 包括: 开关管、 变压器、 整流二极管、 电压箝位电路、 滤波和负载电路, 以及能量回收电路, 其中:
所述变压器包括理想变压器和寄生漏感, 所述理想变压器的原边绕组、 所 述寄生漏感及所述开关管依次串联后, 连接所述反激式电路的输入电源的两 端;
所述理想变压器的副边绕组通过所述整流二极管连接所述滤波和负载电 路;
所述能量回收电路, 连接在所述副边绕组所在的回路中, 用于回收所述寄 生漏感中的部分能量;
所述电压箝位电路并联在所述原边绕组和所述寄生漏感的串联支路两端, 用于为所述寄生漏感中储存的磁能提供译放路径;
所述滤波和负载电路包括并联连接的滤波电容和负载电阻,所述滤波电容 和所述负载电阻构成的并联支路的一端通过所述整流二极管连接所述副边绕 组的一端, 所述并联支路的另一端连接所述副边绕组的另一端。
2、 根据权利要求 1所述的反激式电路, 其特征在于, 所述能量回收电路 包括: 能量回收电容, 所述能量回收电容并联在所述整流二极管的两端。
3、 根据权利要求 2所述的反激式电路, 其特征在于, 所述能量回收电路 还包括: 第一二极管和第一电阻, 所述第一二极管与所述能量回收电容串联后 并联于所述整流二极管的两端,所述第一二极管的连接方向与所述整流二极管 的连接方向相同, 所述第一电阻并联于所述第一二极管的两端。
4、 根据权利要求 1所述的反激式电路, 其特征在于, 所述能量回收电路 包括: 能量回收电容, 所述能量回收电容并联在所述副边绕组的两端。
5、 根据权利要求 4所述的反激式电路, 其特征在于, 还包括: 第一二极 管和第一电阻,所述第一二极管与所述能量回收电容串联后并联于所述副边绕 组的两端,且所述第一二极管的连接方向能够保证电流从所述副边绕组的非同 名端流向所述副边绕组的同名端所述第一电阻并联在所述第一二极管的两端。
6、 根据权利要求 1-5任一项所述的反激式电路, 其特征在于, 所述电压 箝位电路包括: 箝位二极管、 箝位电容和能量泄放电阻, 所述箝位二极管和所 述箝位电容串联后并联在所述原边绕组和所述寄生漏感的串联支路两端,所述 能量泄放电阻并联在所述箝位电容的两端,所述箝位二极管的阳极连接所述寄 生漏感的一端, 阴极连接所述箝位电容的一端, 所述箝位电容的另一端连接所 述原边绕组的同名端。
7、 一种减小反激式电路变压器漏感损耗的方法, 所述反激式电路包括: 开关管、 变压器、整流二极管、 电压箝位电路、 滤波和负载电路, 其特征在于, 该方法包括:
在所述反激式电路中增设能量回收支路,以回收所述反激式电路中的变压 器的寄生漏感中的部分能量, 所述能量回收支路至少包括能量回收电容。
PCT/CN2013/072937 2012-05-15 2013-03-20 反激式电路及减小反激式电路变压器漏感损耗的方法 WO2013170658A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210151451.6A CN102664526B (zh) 2012-05-15 2012-05-15 反激式电路及减小反激式电路变压器漏感损耗的方法
CN201210151451.6 2012-05-15

Publications (1)

Publication Number Publication Date
WO2013170658A1 true WO2013170658A1 (zh) 2013-11-21

Family

ID=46773964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/072937 WO2013170658A1 (zh) 2012-05-15 2013-03-20 反激式电路及减小反激式电路变压器漏感损耗的方法

Country Status (2)

Country Link
CN (1) CN102664526B (zh)
WO (1) WO2013170658A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114189156A (zh) * 2021-02-08 2022-03-15 杰华特微电子股份有限公司 反激开关电路及其控制方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102664526B (zh) * 2012-05-15 2015-12-16 迈象电子科技(上海)有限公司 反激式电路及减小反激式电路变压器漏感损耗的方法
CN103812379A (zh) * 2012-11-13 2014-05-21 徐夫子 一种提升用电效率的转换装置
CN104300795B (zh) * 2014-10-11 2017-08-11 广州金升阳科技有限公司 一种反激变换器及其控制方法
CN108988647A (zh) * 2018-07-04 2018-12-11 广州金升阳科技有限公司 一种开关变换器
CN112468011B (zh) * 2020-10-28 2022-10-14 南京工业大学 一种应用于高压微秒脉冲电源的限压整形电路

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001008447A (ja) * 1999-06-16 2001-01-12 Matsushita Electric Ind Co Ltd スナバ回路並びにそれを用いたスイッチング電源装置
CN1418398A (zh) * 2000-11-20 2003-05-14 皇家菲利浦电子有限公司 回扫变换器漏泄能量的回收方法和系统
CN101022245A (zh) * 2006-02-13 2007-08-22 捷联电子股份有限公司 改良型返驰式电源供应装置
CN102664526A (zh) * 2012-05-15 2012-09-12 迈象电子科技(上海)有限公司 反激式电路及减小反激式电路变压器漏感损耗的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2817492B2 (ja) * 1992-01-28 1998-10-30 日本電気株式会社 フォワードコンバータのスナバ回路
EP0757428B1 (en) * 1995-07-31 1998-11-18 Hewlett-Packard Company Flyback converter
CN102280995A (zh) * 2011-08-29 2011-12-14 上海新进半导体制造有限公司 开关电源集成电路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001008447A (ja) * 1999-06-16 2001-01-12 Matsushita Electric Ind Co Ltd スナバ回路並びにそれを用いたスイッチング電源装置
CN1418398A (zh) * 2000-11-20 2003-05-14 皇家菲利浦电子有限公司 回扫变换器漏泄能量的回收方法和系统
CN101022245A (zh) * 2006-02-13 2007-08-22 捷联电子股份有限公司 改良型返驰式电源供应装置
CN102664526A (zh) * 2012-05-15 2012-09-12 迈象电子科技(上海)有限公司 反激式电路及减小反激式电路变压器漏感损耗的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114189156A (zh) * 2021-02-08 2022-03-15 杰华特微电子股份有限公司 反激开关电路及其控制方法
CN114189156B (zh) * 2021-02-08 2024-05-24 杰华特微电子股份有限公司 反激开关电路及其控制方法

Also Published As

Publication number Publication date
CN102664526B (zh) 2015-12-16
CN102664526A (zh) 2012-09-12

Similar Documents

Publication Publication Date Title
WO2013170658A1 (zh) 反激式电路及减小反激式电路变压器漏感损耗的方法
US11152866B2 (en) Active clamping flyback circuit and control method thereof
US6947297B2 (en) Active resonant snubber for DC-DC converter
US20150085534A1 (en) Regenerative and ramping acceleration (rara) snubbers for isolated and tapped-inductor converters
US9413227B2 (en) Converter circuit with power factor correction for converting AC input voltage into DC output voltage
WO2018054044A1 (zh) 一种电路以及开关电源和液晶显示驱动电路
CN101771353B (zh) 一种适用于开关电源的辅助源电路
WO2017101647A1 (zh) 上下电驱动电路及其控制方法
KR100531923B1 (ko) 액티브 스너버 회로를 구비하는 파워 컨버터 모듈
WO2022110813A1 (zh) 掉电延时保护电路及控制方法
TWI511433B (zh) 電源轉換裝置與其控制晶片
US10097088B2 (en) Soft-switching auxiliary circuit
CN201656780U (zh) 一种适用于开关电源的辅助源电路
CN202135057U (zh) 一种半桥三电平直流变换器
US11088624B2 (en) Voltage conversion apparatus for implementing zero-voltage switching based on recovering leakage inductance energy
CN103956904A (zh) 一种反激式电力变换器的拓扑结构及其控制方法
KR101589608B1 (ko) 변압기 결합 재사용 스너버 회로
CN104201874B (zh) 一种开关电源输出整流管的无损吸收电路及开关电源
CN1225832C (zh) 一种开关电源
CN103178702A (zh) 电源的软关断无损吸收装置
CN108964473A (zh) 一种高效率高压电源变换电路
CN101447163A (zh) 用于等离子显示器的电源变换电路
CN109936888B (zh) 高频驱动电路及使用该高频驱动电路的照明装置
CN101854115B (zh) 防止电流反抽的保持时间电路和功率变换器
CN101572491A (zh) 开关电源电路及其运作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13790412

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13790412

Country of ref document: EP

Kind code of ref document: A1