WO2018054044A1 - 一种电路以及开关电源和液晶显示驱动电路 - Google Patents

一种电路以及开关电源和液晶显示驱动电路 Download PDF

Info

Publication number
WO2018054044A1
WO2018054044A1 PCT/CN2017/080581 CN2017080581W WO2018054044A1 WO 2018054044 A1 WO2018054044 A1 WO 2018054044A1 CN 2017080581 W CN2017080581 W CN 2017080581W WO 2018054044 A1 WO2018054044 A1 WO 2018054044A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
power supply
switching power
voltage
diode
Prior art date
Application number
PCT/CN2017/080581
Other languages
English (en)
French (fr)
Inventor
彭晓飞
黄家成
马胜飞
Original Assignee
京东方科技集团股份有限公司
合肥京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/569,064 priority Critical patent/US10630166B2/en
Publication of WO2018054044A1 publication Critical patent/WO2018054044A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/025Reduction of instantaneous peaks of current
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/06Handling electromagnetic interferences [EMI], covering emitted as well as received electromagnetic radiation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0038Circuits or arrangements for suppressing, e.g. by masking incorrect turn-on or turn-off signals, e.g. due to current spikes in current mode control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • H02M1/342Active non-dissipative snubbers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • H02M1/346Passive non-dissipative snubbers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present disclosure relates to the field of circuits, and more particularly to an absorbing circuit that non-destructively absorbs a switching power supply spike voltage and a corresponding switching power supply and liquid crystal display driving circuit.
  • a power device refers to an electronic component having a relatively large output power
  • DC/DC direct current to direct current
  • the solution for the snubber circuit is to connect the RC (resistor and capacitor) circuit at both ends of the electronic switch (see Figure 1) or to connect the RCD (resistance, capacitor and diode). ) circuit (see Figure 2).
  • the basic working principle of these absorbing circuits is to bypass the electronic switching tube when the electronic switching tube is disconnected, so as to absorb the energy accumulated in the parasitic inductance and clamp the switching voltage, thereby suppressing electricity. Pressure spikes.
  • these schemes have certain effects, the amplitude of the switching power supply spike voltage can be reduced, but the energy of the reduced spike voltage is converted into a large amount of heat by the resistance heat in the circuit, which reduces the conversion efficiency of the switching power supply.
  • the embodiment of the present disclosure provides a spike voltage processing circuit applied to a switching power supply, which realizes a spike voltage processing circuit for reducing the peak voltage in the switching power supply, reducing the energy loss of the switching power supply, and improving the overall conversion efficiency of the switching power supply.
  • Embodiments of the present disclosure provide an absorption circuit for non-destructively absorbing a switching power supply spike voltage, which is coupled to a switching power supply, wherein the absorption circuit includes: a switching power supply voltage spike suppression circuit for switching a switching power supply voltage spike Changing to a desired voltage spike; a tank circuit coupled to the switching supply voltage spike suppression circuit for storing the suppressed spike voltage; and a release circuit coupled to the tank circuit for use in When the stored voltage of the storage circuit is higher than the output voltage of the switching power supply, the energy stored in the storage circuit higher than the output voltage is released to the output end of the switching power supply.
  • the switching power supply voltage spike suppression circuit includes a first diode
  • the tank circuit includes a capacitor
  • the release circuit includes a second diode
  • the switching power supply voltage spike breaks down the first diode, Absorbed by the capacitor, when the voltage of the capacitor is higher than the output voltage, the second diode is turned on, thereby releasing energy higher than the output voltage to the output end of the switching power supply.
  • the first diode breakdown voltage is configured to subtract the desired value of the output voltage from the desired voltage spike.
  • the cathode of the first diode is connected to the drain of the electronic switch of the switching power supply, and the anode of the first diode, the side of the capacitor and the anode of the second diode are connected.
  • the other side is grounded, and the cathode of the second diode is connected to the output of the switching power supply.
  • the first diode is a transient suppression diode.
  • the second diode is a fast diode.
  • Embodiments of the present disclosure also provide a switching power supply circuit including a power supply and an electronic switching transistor, and an absorbing circuit provided in the above embodiments.
  • the embodiment of the present disclosure further provides a liquid crystal display driving circuit, including the switching power supply circuit provided in the above embodiment.
  • the beneficial effects of the embodiments of the present disclosure are as follows: by suppressing the peak voltage of the switching power supply, it is possible to prevent device damage, prevent voltage breakdown, and keep the power device away from the dangerous working area, thereby improving reliability and reducing dv/dt and di/dt.
  • the ringing is reduced, thereby improving the EMI quality, and the output voltage is reduced by the output voltage, thereby reducing the loss of the switching device and improving the efficiency.
  • FIG. 1 is a schematic diagram of a prior art switching circuit of a parallel RC circuit
  • FIG. 2 is a schematic diagram of a prior art switching circuit of a parallel RCD circuit
  • FIG. 3 is a schematic diagram of a modularization of an absorption circuit for non-destructively absorbing a peak voltage of a switching power supply according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a switching power supply including an absorption circuit that non-destructively absorbs a switching power supply spike voltage according to an embodiment of the present disclosure
  • FIG. 5 illustrates a current direction of a first stage of an absorbing circuit provided by an embodiment of the present disclosure
  • FIG. 6 illustrates a current direction of a second stage of an absorbing circuit provided by an embodiment of the present disclosure
  • FIG. 7 is a diagram showing a switching voltage during a switching cycle of a switching power supply according to an embodiment of the present disclosure
  • FIG. 8 illustrates a liquid crystal display driving circuit provided by an embodiment of the present disclosure.
  • the switching power supply utilizes electronic switching devices (such as transistors, FETs, thyristors, etc.), through the control circuit, so that the electronic switching device is constantly “on” and “off".
  • the electronic switching device is pulse modulated on the input voltage to achieve DC/AC, DC/DC voltage conversion, and adjustable output voltage and automatic regulation.
  • Switching power supply products are widely used in industrial automation control, military equipment, scientific research equipment, LED lighting, industrial control equipment, communication equipment, power equipment, instrumentation, medical equipment, semiconductor refrigeration and heating, air purifiers, electronic refrigerators, liquid crystal displays, LED Lighting, communication equipment, audio-visual products, security monitoring, LED light bags, computer chassis, digital products and instruments.
  • the DC switching power supply As an example, its function is to convert the original ecological power supply (coarse electricity) with poor power quality, such as the mains power supply or the battery power supply, into a high-quality DC voltage (precision power) that meets the requirements of the equipment.
  • the core of the DC switching power supply is the DC/DC converter.
  • the absorbing circuit according to an embodiment of the present disclosure is not only applicable to a DC switching power supply, but also can be used for an AC switching power supply.
  • the DC/DC converter can be divided into two types: hard switch and soft switch.
  • the switching device of the hard-switching DC/DC converter turns on or off the circuit under the condition of withstanding voltage or flowing current, so it will generate large overlap loss during the turn-on or turn-off process, so-called Switching loss.
  • the switching loss is also certain, and the higher the switching frequency is, the larger the switching loss is.
  • the oscillation of the distributed inductance and the parasitic capacitance of the circuit is excited during the switching process, resulting in additional loss.
  • the switching frequency of hard-switching DC/DC converters cannot be too high.
  • the switching tube of the soft-switching DC/DC converter, during the turn-on or turn-off process, or the voltage applied thereto is zero, that is, the zero voltage switch, or the current through the switch tube is zero, that is, the zero current switch.
  • This soft switching method can significantly reduce the switching loss and the oscillations generated during the switching process, which can greatly increase the switching frequency, which creates conditions for the miniaturization and modularization of the converter.
  • the hard switch and the soft switch operate differently, and the embodiments of the present disclosure relate to a hard switch.
  • FIG. 1 shows a schematic diagram of a switching circuit in parallel with an RC snubber circuit in accordance with the prior art.
  • the dotted line frame is an RC absorbing circuit, which is a circuit in which the absorbing resistor Rs is connected in series with the absorbing capacitor Cs, and is connected in parallel with the electronic switch tube Q1. If the electronic switch tube Q1 is turned off, the energy accumulated in the parasitic inductance (not shown) charges the parasitic capacitance (not shown) of the switch, and the absorption capacitor Cs is also charged by the absorption resistor Rs.
  • the absorption capacitance Cs equivalently increases the capacity of the parallel capacitance of the electronic switch tube Q1, thereby suppressing the electronic switch tube.
  • the voltage spike that Q1 is disconnected.
  • the absorption capacitor is discharged through the electronic switch Q1. At this time, the discharge current is limited by the absorption resistor Rs.
  • FIG. 2 is a schematic diagram of a prior art switching circuit connected to an RCD snubber circuit.
  • the dotted line frame is an RCD absorbing circuit, which is a circuit in which the absorbing resistor Rs and the absorbing diode Ds are connected in parallel and then connected in series with the absorbing capacitor Cs, and is connected in parallel with the electronic switch tube Q1. If the electronic switch tube Q1 is turned off, the energy accumulated in the parasitic inductance (not shown) will be charged by the parasitic capacitance (not shown) of the electronic switch tube Q1, and the voltage of the electronic switch tube rises.
  • the absorption diode Ds When the voltage rises to the voltage of the absorption capacitor Cs, the absorption diode Ds is turned on, so that the switching voltage is clamped by the absorption diode Ds, and the energy accumulated in the parasitic inductance (not shown) also charges the absorption capacitor Cs.
  • the absorption capacitor Cs is discharged through the absorption resistor Rs. Since the RCD snubber circuit clamps the switching voltage through the diode, the effect is better than the RC snubber circuit. At the same time, it can also use a larger resistor, but the energy loss is also smaller than the RC, but the clamping voltage of the RCD circuit will follow the load. The change is changed. If the parameter design is unreasonable, the absorbing circuit may reduce the efficiency of the system, or may fail to meet the clamp requirement and damage the electronic switch tube.
  • the RC and RCD snubber circuits can also be used to demagnetize the transformer of the switching power supply without the need for a demagnetization circuit consisting of a transformer winding and a diode.
  • the excitation energy of the transformer is consumed in the absorption resistor.
  • the RC and RCD absorbing circuits can not only consume the energy accumulated in the leakage inductance of the transformer, but also consume the excitation energy of the transformer. Therefore, this method also reduces the conversion efficiency of the converter. New absorption circuits are needed to improve this situation.
  • An snubber circuit in accordance with an embodiment of the present disclosure is coupled to a switching power supply and includes three components - a switching power supply voltage spike suppression circuit 302, a tank circuit 304, and a release circuit 306.
  • the switching power supply voltage spike suppression circuit 302 is configured to change the switching power supply voltage spike to a desired voltage spike, and the storage circuit 304 is connected to the switching power supply voltage spike suppression circuit for storing the suppressed spike voltage and releasing
  • the circuit 306 is connected to the energy storage circuit 304 for releasing the energy stored by the energy storage circuit 304 above the output voltage of the switching power supply to the output of the switching power supply when the voltage stored by the energy storage circuit 304 is higher than the output voltage of the switching power supply. end.
  • the design of such an absorbing circuit is to suppress voltage spikes, store the suppressed energy, and release it to the output of the switching power supply.
  • the absorbing circuit periodically and continuously turns off and turns on the electronic switching tube of the switching power supply to perform voltage spike suppression and suppression of energy storage and release. put.
  • the snubber circuit reduces the spike voltage in the switching power supply connected thereto, reduces the energy loss of the switching power supply, and improves the overall conversion efficiency of the switching power supply.
  • FIG. 4 is a schematic diagram of a switching power supply including an absorption circuit that non-destructively absorbs a switching power supply spike voltage according to an embodiment of the present disclosure.
  • an snubber circuit provided in accordance with an embodiment of the present disclosure is applied to a DC switching power supply.
  • the DC switching power supply includes an original DC power supply Vin, a filter inductor Lf and a filter capacitor Cf, an electronic switch tube Q1 and a freewheeling diode D1, RL is a load resistor, Vout is an output voltage, and GND is ground.
  • the original ecological DC power supply Vin is connected in series with the filter inductor Lf and the electronic switch tube Q1, wherein the negative pole of the DC power source Vin and the source of the electronic switch tube Q1 are grounded, and the freewheeling tube D1 is connected in series with the filter capacitor Cf and then connected to the electronic switch tube.
  • Q1 is connected in parallel and is connected in parallel with the resistor RL and the filter capacitor.
  • the switching power supply or the direct current switching power supply according to an embodiment of the present disclosure is not limited to the switching power supply shown in the drawing, but may be any switching power supply that may generate a voltage spike.
  • the absorption circuit includes a first diode TVS1, a second diode Ds, and an absorption capacitor Cs.
  • the first diode TVS1 constitutes the switching power supply voltage spike suppression circuit 302 according to the embodiment of FIG. 3
  • at least the absorption capacitor Cs constitutes the energy storage circuit 304 according to the embodiment of FIG. 3
  • at least The release circuit 306 in the embodiment according to Fig. 3 is formed by a second diode.
  • the cathode of the first diode TVS1 is connected to the drain of the electronic switch transistor Q1, and the anode of the first diode TVS1 is simultaneously connected to the anode of the second diode Ds and the absorption capacitor Cs. One side is connected.
  • one or a group of other components capable of suppressing the switching power supply voltage spike may constitute the switching power supply voltage spike suppression circuit 302 according to the embodiment of FIG. 3, or may be one or a group capable of storing the suppressed spike voltage.
  • the other components constitute the energy storage circuit 304 according to the embodiment of FIG. 3, and may also be one or a group of other components capable of releasing the stored voltage spike energy to the output of the switching power supply according to the embodiment of FIG.
  • the circuit 306 is released.
  • the electronic switch tube Q1 in the switching power supply is periodically turned on and off.
  • the electronic switch tube Q1 is turned off, for example, due to an inductance that may exist in the switching power supply (such as transformer leakage inductance, line distribution inductance, inductive component in the equivalent model of the device, etc.)
  • the inductor continues to flow, thereby generating a voltage spike.
  • the electronic switch Q1 is implemented by a field effect transistor,
  • the voltage spike may also be generated by the parasitic capacitance of the electronic switch Q1.
  • Embodiments of the present disclosure do not limit the source of voltage spikes.
  • the absorption capacitor Cs, the first diode TVS1, and the electronic switch Q1 form a discharge loop, and the voltage remaining on the absorption capacitor Cs (whose value is, for example, V out ) is discharged.
  • the breakdown voltage, the first diode TVS1 is configured to a desired output value minus the voltage spike voltage V out.
  • the adjustment of the desired voltage spike can be achieved by using the first diode TVS1 of different breakdown voltages.
  • the first diode is a transient suppression diode.
  • the transient suppression diode is a high efficiency protection device in the form of a diode.
  • the two poles of the transient suppression diode When the two poles of the transient suppression diode are subjected to a reverse transient high-energy shock, it can change the high impedance between the two poles to a low impedance at a speed of the order of 10 minus 12 powers, absorbing transients of up to several kilowatts. Overvoltage power causes the voltage between the two poles to clamp to a predetermined value.
  • the choice of the second diode is such that its recovery time matches the switching frequency of the switching power supply. In this way, the voltage on the Cs can be released to the output of the switching power supply as soon as possible in one switching cycle of the switching power supply, and the efficiency of diode rectification is improved, thereby reducing the energy loss of the switching power supply as much as possible, and improving the overall conversion efficiency of the switching power supply. .
  • the reverse recovery time of a fast diode is very short, below 5 us. It can be further divided into two levels of fast recovery and ultra fast recovery. Typically, the former has a reverse recovery time of hundreds of nanoseconds or more, while the latter is less than 100 nanoseconds. The reverse recovery time of Schottky diodes can even reach a few nanoseconds.
  • the switching power supply has a switching frequency of 500 kHz above and below, that is, the period is above 2 us, so preferably, the second diode Ds is a fast diode.
  • the second diode Ds can also be configured as a Schottky diode or the like.
  • FIGS. 5 and 6 illustrate the change in current during the absorption and release of the absorption circuit according to an embodiment of the present disclosure.
  • Figure 5 illustrates the current direction of the first stage of the sink circuit provided by an embodiment of the present disclosure
  • Figure 6 illustrates the current direction of the second stage of the sink circuit provided by an embodiment of the present disclosure.
  • the circuit diagram on which FIGS. 5 and 6 are based is the same as that of FIG.
  • the voltage of the cathode of the first diode TVS1 rises, when the output voltage V out of the switching power supply rises to the first diode TVS1
  • the breakdown voltage is summed, TVS1 is broken down and excess voltage is stored on the absorption capacitor Cs.
  • the voltage of the TVS1 cathode is no longer raised, that is, the voltage spike is suppressed, and the suppressed voltage energy is transferred.
  • the absorption capacitance Cs of the absorption circuit The voltage across the absorption capacitor Cs is constantly rising.
  • the first diode TVS1 is reversely turned on, and current flows from the cathode of the first diode TVS1 to the absorption capacitor Cs.
  • the second phase when the voltage on the snubber capacitor Cs rises to greater than the ON voltage of the switching power supply output voltage V out of the second diode Ds and a second diode Ds is turned on, a current from the snubber capacitor Cs flows to the output of the switching power supply via the second diode Ds until the voltage of the snubber capacitor Cs coincides with the output voltage of the switching power supply.
  • the output voltage of the switching power supply is relatively low, it is usually a few volts, and the peak voltage can reach several tens of volts, so most of the stored voltage spike energy is output to the output of the switching power supply, thus reducing the switch.
  • the energy loss of the power supply improves the overall conversion efficiency of the switching power supply.
  • the switching power supply circuit is in a good condition, in which case the peak voltage is lower than the sum of the output voltage Vout of the switching power supply and the breakdown voltage of the first diode TVS1, so that the TVS1 is not broken down, according to an embodiment of the present disclosure.
  • the absorption circuit does not need to function.
  • the snubber circuit according to an embodiment of the present disclosure can be well adapted to the operating conditions of the switching power supply.
  • FIG. 7 is a diagram showing a switching voltage during a switching cycle of a switching power supply according to an embodiment of the present disclosure. It corresponds to the circuit of any of Figures 4-6.
  • the abscissa represents time and the ordinate represents the voltage of the electronic switch Q1.
  • the electronic switch tube Q1 changes from on to off, and the voltage V Q1 of the drain of the electronic switch tube rises continuously. If there is no absorption circuit, V Q1 will exhibit a peak P1, which is enlarged in FIG. So that you can see it clearly.
  • V Q1 exhibits a suppressed peak P2 in place of the peak P1.
  • the peak voltage V p2 of the peak P2 is lower than the peak voltage of the peak P1.
  • the peak voltage V p2 of the peak P2 can be adjusted by configuring the first diode TVS1 with different breakdown voltages, so that the components of the circuit can be well protected and operated normally. Within the operating voltage range. Due to the existence of parasitic inductance and capacitance, V Q1 inevitably has ringing until it reaches a stable state. At this moment, the stable voltage of V Q1 is the output voltage Vout of the switching power supply, the conduction voltage of the second diode Ds, and the first The sum of the reverse conducting voltages of the diode TVS1.
  • a liquid crystal display driving circuit is also provided in accordance with an embodiment of the present disclosure.
  • the liquid crystal display driving circuit 800 includes a switching power supply circuit 802 in accordance with one or more embodiments of the present disclosure.
  • the beneficial effects of the embodiments of the present disclosure are as follows: by suppressing the peak voltage of the switching power supply, it is possible to prevent device damage, prevent voltage breakdown, and keep the power device away from the dangerous working area, thereby improving reliability and reducing dv/dt and di/dt.
  • the ringing is reduced, thereby improving the EMI quality, and the output voltage is reduced by the output voltage, thereby reducing the loss of the switching device and improving the efficiency.
  • modules in the apparatus in the embodiments may be distributed in the apparatus of the embodiment according to the description of the embodiments, or the corresponding changes may be located in one or more apparatuses different from the embodiment.
  • the modules of the above embodiments may be combined into one module, and may be further split into multiple sub-modules if possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种吸收电路,包括:开关电源电压尖峰抑制电路(302),用于将开关电源电压尖峰改变为期望的电压尖峰;储能电路(304),其与开关电源电压尖峰抑制电路相连,用于将被抑制的尖峰电压储存起来;以及释放电路(306),其与储能电路相连,用于当储能电路储存的电压高于开关电源的输出电压(V out)时,将储能电路储存的高于该输出电压的能量释放到开关电源的输出端。一种开关电源电路(802)包括该吸收电路。一种液晶显示驱动电路(800)包括该开关电源电路。

Description

一种电路以及开关电源和液晶显示驱动电路
相关申请
本申请要求2016年9月22日提交、申请号为201610840370.5的中国专利申请的优先权,该申请的全部内容通过引用并入本文。
技术领域
本公开涉及电路领域,尤其涉及一种无损地吸收开关电源尖峰电压的吸收电路以及相应的开关电源和液晶显示驱动电路。
背景技术
随着电力电子技术的发展,开关电源正趋向于小型化和轻量化。为了减小电源的体积和重量,提高开关频率是最可行的方法。由于工作在高频状态下,开关变压器漏感、分布电容等寄生参数的影响不能忽略。例如在液晶显示驱动电路中,基于非隔离直流到直流(DC/DC)变换器拓扑应用中,由于功率器件(指输出功率比较大的电子元器件)都工作在开关状态,所以存在着很大的电流变化率,实际的开关电源电路中不可避免地存在杂散电感和寄生电容,所以在满负载工作时,开关电源的电压尖峰就会很高,而且呈振铃形态,不但会严重影响电路中器件的寿命和可靠性,而且也会造成一定的效率损耗,同时高频率、高di/dt和高dv/dt可能带来较大电磁干扰(Electromagnetic Interference简称EMI)。在液晶显示驱动电路集成度越来越高的情况下,以及对高清和高频的应用要求下,这一问题尤为突出,亟待解决。
目前,有很多种方法可以实现吸收的目的,总体上主要通过两种方法:一是减小漏电感,二是耗散过电压的能量。减小漏电感主要靠工艺;耗散过电压的能量是通过与变压器或者电子开关管并联的吸收电路。
在传统应用中,基于成本和空间的条件,使用的吸收电路的方案是在电子开关管的两端并接RC(电阻和电容)电路(参见图1)或者并接RCD(电阻、电容和二极管)电路(参见图2)。这些吸收电路的基本工作原理就是在电子开关管断开时为该电子开关管提供旁路,以吸收蓄积在寄生电感中的能量,并使开关电压被钳位,从而抑制电 压尖峰。这些方案虽然有一定的效果,可以降低开关电源尖峰电压的幅值,但是降低的尖峰电压的能量被电路中的电阻发热转换成大量的热量,降低了开关电源的转换效率。
发明内容
提供该发明内容而以简化形式对在下文的具体实施方式中进一步进行描述的概念选择进行介绍。该发明内容并非意在标识出所请求保护主题的关键特征或必要特征,其也并非意在被用来对所请求保护主题的范围进行限制。此外,所请求保护的主题并不局限于解决了本公开的任意部分中所提到的任意或全部缺陷的实施方式。
本公开实施例提供了一种应用于开关电源中的尖峰电压处理电路,实现了一种降低开关电源中尖峰电压、减小开关电源的能量损耗、提高开关电源整体转换效率的尖峰电压处理电路。
本公开的目的是通过以下技术方案实现的:
本公开实施例提供一种用于无损地吸收开关电源尖峰电压的吸收电路,其与开关电源相连接,其特征在于该吸收电路包括:开关电源电压尖峰抑制电路,其用于将开关电源电压尖峰改变为期望的电压尖峰;储能电路,其与该开关电源电压尖峰抑制电路相连,用于将被抑制掉的尖峰电压储存起来;以及释放电路,其与该储能电路相连,用于当该储能电路储存的电压高于开关电源的输出电压时,将该储能电路储存的高于该输出电压的能量释放到该开关电源的输出端。
优选地,该开关电源电压尖峰抑制电路包括第一二极管,该储能电路包括电容,该释放电路包括第二二极管,并且该开关电源电压尖峰将该第一二极管击穿,经该电容吸收,当该电容的电压高于该输出电压时,开通该第二二极管,从而将该高于该输出电压的能量释放到该开关电源的输出端。
优选地,该第一二极管击穿电压被配置为该期望的电压尖峰减去该输出电压的结果值。
优选地,该第一二极管的阴极与该开关电源的电子开关管的漏极相连,该第一二极管的阳极、该电容一侧以及该第二二极管的阳极相连,该电容另一侧接地,以及该第二二极管的阴极与该开关电源的输出端相连。
优选地,该第一二极管是瞬态抑制二极管。
优选地,该第二二极管是快速二极管。
本公开实施例还提供一种开关电源电路,包括电源和电子开关管,以及如上实施例提供的吸收电路。
本公开实施例还提供一种液晶显示驱动电路,包括如上实施例提供的开关电源电路。
本公开实施例有益效果如下:通过抑制开关电源的尖峰电压,使得能够防止器件损坏,防止电压击穿,使功率器件远离危险工作区,从而提高可靠性,同时降低了dv/dt和di/dt,降低了振铃,从而改善EMI品质,此外通过输出抑制的电压能量而降低开关器件的损耗,提高效率。
附图说明
图1为现有技术的并接RC电路的开关电路的示意图;
图2为现有技术的并接RCD电路的开关电路的示意图;
图3为本公开实施例提供的无损地吸收开关电源尖峰电压的吸收电路模块化示意图;
图4为本公开实施例提供的包括无损地吸收开关电源尖峰电压的吸收电路的开关电源的示意图;
图5示出了本公开实施例提供的吸收电路的第一阶段的电流方向;
图6示出了本公开实施例提供的吸收电路的第二阶段的电流方向;
图7示出了本公开实施例提供的开关电源一个开关周期内的开关电压图;
图8示出了本公开实施例提供的液晶显示驱动电路。
具体实施方式
下面结合说明书附图对本公开实施例的实现过程进行详细说明。需要注意的是,自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
开关电源是利用电子开关器件(如晶体管、场效应管、可控硅闸流管等),通过控制电路,使电子开关器件不停地“接通”和“关断”, 让电子开关器件对输入电压进行脉冲调制,从而实现DC/AC、DC/DC电压变换,以及输出电压可调和自动稳压。开关电源产品广泛应用于工业自动化控制、军工设备、科研设备、LED照明、工控设备、通讯设备、电力设备、仪器仪表、医疗设备、半导体制冷制热、空气净化器,电子冰箱,液晶显示器,LED灯具,通讯设备,视听产品,安防监控,LED灯袋,电脑机箱,数码产品和仪器类等领域。现代开关电源有两种:一种是直流开关电源;另一种是交流开关电源。以直流开关电源为例,其功能是将电能质量较差的原生态电源(粗电),如市电电源或蓄电池电源,转换成满足设备要求的质量较高的直流电压(精电)。直流开关电源的核心是DC/DC转换器。
尽管以下实施例大多结合直流开关电源(例如DC/DC)进行描述,然而需要注意的是,根据本公开实施例的吸收电路不仅仅适用于直流开关电源,同时也可以用于交流开关电源。
按照电子开关管的开关条件,DC/DC转换器又可以分为硬开关和软开关两种。硬开关DC/DC转换器的开关器件是在承受电压或流过电流的情况下,开通或关断电路的,因此在开通或关断过程中将会产生较大的交叠损耗,即所谓的开关损耗。当转换器的工作状态一定时开关损耗也是一定的,而且开关频率越高,开关损耗越大,同时在开关过程中还会激起电路分布电感和寄生电容的振荡,带来附加损耗,因此,硬开关DC/DC转换器的开关频率不能太高。软开关DC/DC转换器的开关管,在开通或关断过程中,或是加于其上的电压为零,即零电压开关,或是通过开关管的电流为零,即零电流开关。这种软开关方式可以显着地减小开关损耗,以及开关过程中激起的振荡,使开关频率可以大幅度提高,为转换器的小型化和模块化创造了条件。硬开关和软开关的工作方式不同,本公开实施例涉及的是硬开关。
图1示出了根据现有技术的并接RC吸收电路的开关电路的示意图。其中虚线框中是RC吸收电路,它是吸收电阻Rs与吸收电容Cs串联的一种电路,同时与电子开关管Q1并联连接。若电子开关管Q1断开,蓄积在寄生电感(未示出)中的能量对开关的寄生电容(未示出)充电的同时,也会通过吸收电阻Rs对吸收电容Cs充电。这样,由于吸收电阻Rs的作用,其阻抗将变大,那么,吸收电容Cs也就等效地增加了电子开关管Q1的并联电容的容量,从而抑制电子开关管 Q1断开的电压尖峰。而在电子开关管Q1接通时,吸收电容又通过电子开关管Q1放电,此时,其放电电流将被吸收电阻Rs所限制。
图2为现有技术的并接RCD吸收电路的开关电路的示意图。其中虚线框中是RCD吸收电路,它是吸收电阻Rs和吸收二极管Ds并联后再与吸收电容Cs串联的一种电路,同时与电子开关管Q1并联连接。若电子开关管Q1断开,蓄积在寄生电感(未示出)中的能量将通过电子开关管Q1的寄生电容(未示出)充电,电子开关管电压上升。其电压上升到吸收电容Cs的电压时,吸收二极管Ds导通,从而使开关电压被吸收二极管Ds所钳位,同时寄生电感(未示出)中蓄积的能量也对吸收电容Cs充电。电子开关管Q1接通期间,吸收电容Cs则通过吸收电阻Rs放电。由于RCD吸收电路是通过二极管对开关电压钳位,效果要比RC吸收电路好,同时,它也可以采用较大电阻,但能量损耗也比RC小,但是RCD电路的钳位电压会随着负载的变化而变化,如果参数设计不合理,该吸收电路会降低系统的效率,或者达不到钳位的要求而使电子开关管损坏。
采用RC和RCD吸收电路也可以对开关电源的变压器消磁,而不必另设变压器绕组与二极管组成的去磁电路。变压器的励磁能量都会在吸收电阻中消耗掉。RC与RCD吸收电路不仅可以消耗变压器漏感中蓄积的能量,而且也能消耗变压器励磁能量,因此,这种方式同时降低了变换器的变换效率。需要新的吸收电路改进这一状况。
参见图3,示出了本公开实施例提供的一种无损地吸收开关电源尖峰电压的吸收电路模块化示意图。根据本公开实施例的吸收电路与开关电源相连并且包括三部分——开关电源电压尖峰抑制电路302、储能电路304以及释放电路306。其中开关电源电压尖峰抑制电路302用于将开关电源电压尖峰改变为期望的电压尖峰,储能电路304与所述开关电源电压尖峰抑制电路相连,用于将被抑制掉的尖峰电压储存起来,释放电路306与储能电路304相连,用于当储能电路304储存的电压高于开关电源的输出电压时,将储能电路304储存的高于开关电源输出电压的能量释放到该开关电源的输出端。总体来说,这样一个吸收电路的设计思想就是抑制电压尖峰、储存抑制的能量、释放到开关电源输出端。优选地,该吸收电路随着开关电源的电子开关管周期性地断开与导通而逐周期地进行电压尖峰的抑制、抑制的能量的储存和释 放。以这种方式,该吸收电路降低了与之相连的开关电源中的尖峰电压,减小了该开关电源的能量损耗,以及提高了该开关电源的整体转换效率。
图4为本公开实施例提供的包括无损地吸收开关电源尖峰电压的吸收电路的开关电源的示意图。在一个示例中,根据本公开实施例提供的吸收电路被应用于直流开关电源。该直流开关电源包括原生态直流电源Vin、滤波电感Lf和滤波电容Cf,电子开关管Q1和续流二极管D1,RL是负载电阻,Vout是输出电压,GND是地。原生态直流电源Vin依次与滤波电感Lf和电子开关管Q1串联,其中直流电源Vin的负极以及电子开关管Q1的源极接地,此外,续流管D1与滤波电容Cf串联后再与电子开关管Q1并联,附在电阻RL与滤波电容并联。当然,根据本公开实施例的开关电源或直流开关电源均不限于图中所示的开关电源,而可以是任何可能产生电压尖峰的开关电源。
优选地,吸收电路包括第一二极管TVS1、第二二极管Ds和吸收电容Cs。其中,至少由第一二极管TVS1构成了根据图3的实施例中的开关电源电压尖峰抑制电路302,至少由吸收电容Cs构成了根据图3的实施例中的储能电路304,以及至少由第二二极管构成了根据图3的实施例中的释放电路306。如图所示,所述第一二极管TVS1的阴极与电子开关管Q1的漏极相连,而第一二极管TVS1的阳极同时与所述第二二极管Ds的阳极以及吸收电容Cs的一侧相连。该吸收电容Cs的另一侧接地,而该第二二极管的阴极与开关电源的输出端相连。当然,也可以是能够抑制开关电源电压尖峰的一个或一组其它元器件构成根据图3的实施例中的开关电源电压尖峰抑制电路302,也可以是能够储存抑制的尖峰电压的一个或一组其它元器件构成根据图3的实施例中的储能电路304,也可以是能够将储存的电压尖峰的能量释放到开关电源输出端的一个或一组其它元器件构成根据图3的实施例中的释放电路306。
其中,开关电源中的电子开关管Q1周期性地导通与断开。当电子开关管Q1断开时,例如由于开关电源中可能存在的电感(例如变压器漏感、线路分布电感、器件等效模型中的感性成分等)引起电感续流,进而产生电压尖峰。当然,当电子开关管Q1采用场效应晶体管实现时, 电压尖峰也可能由电子开关管Q1的寄生电容产生。本公开的实施例对电压尖峰的产生来源不做限定。
产生的开关电源的电压尖峰将所述第一二极管TVS1击穿,经所述吸收电容Cs吸收(即电压储存),当所述吸收电容Cs的电压高于所述输出电压Vout时,所述第二二极管Ds打通,从而将所述高于所述输出电压(VCs-Vout)的能量释放到开关电源的输出端。一般来说,相对于VCs而言Vout非常低,因此吸收的大部分尖峰电压能量被输出到开关电源的输出端,可以被视为“无损”地吸收尖峰电压。当电子开关管Q1导通时,吸收电容Cs、第一二极管TVS1和电子开关管Q1形成放电回路,将吸收电容Cs上剩余的电压(其值例如为Vout)放掉。
优选地,第一二极管TVS1的击穿电压被配置为期望的电压尖峰减去输出电压Vout的结果值。从而可以通过采用不同击穿电压的第一二极管TVS1而实现对期望的电压尖峰的调整。
优选地,第一二极管是瞬态抑制二极管。瞬态抑制二极管是一种二极管形式的高效能保护器件。当瞬态抑制二极管的两极受到反向瞬态高能量冲击时,它能以10的负12次方秒量级的速度,将其两极间的高阻抗变为低阻抗,吸收高达数千瓦的瞬时过电压功率,使两极间的电压箝位于一个预定值。
理想地,第二二极管的选择要考虑其恢复时间与开关电源的开关频率相匹配。这样可以在开关电源的一个开关周期内尽快地将Cs上的电压释放到开关电源输出端,并且提高二极管整流的效率,从而尽可能地减小开关电源的能量损耗,提高开关电源的整体转换效率。
一般地,快速二极管的反向恢复时间很短的,5us以下。其从性能上还可进一步分为快恢复和超快恢复两个等级。一般地,前者反向恢复时间为数百纳秒或更长,后者则在100纳秒以下。而肖特基二极管的反向恢复时间甚至可以达到几个纳秒。一般而言,开关电源的开关频率在500khz上下,也即周期在2us上下,因此优选地,第二二极管Ds是快速二极管。当然,取决于开关电源的实际开关频率,以及权衡制造成本,第二二极管Ds也可以配置为肖特基二极管等。
下面参照图5和图6描述根据本公开实施例的吸收电路的进行吸收和释放的过程中的电流变化。图5示出了本公开实施例提供的吸收电路的第一阶段的电流方向;图6示出了本公开实施例提供的吸收电 路的第二阶段的电流方向。图5和图6所基于的电路图与图4相同。当电子开关管Q1从导通转为断开时,在第一阶段,第一二极管TVS1阴极的电压升高,当升高到开关电源的输出电压Vout与第一二极管TVS1的击穿电压之和的时候,TVS1被击穿,并在吸收电容Cs上储存多余的电压,此时TVS1阴极的电压不再升高,也即电压尖峰被抑制了,而抑制的电压能量转移到了吸收电路的吸收电容Cs上。吸收电容Cs上的电压不断升高。在这个阶段,第一二极管TVS1反向导通,电流从第一二极管TVS1的阴极流向吸收电容Cs。第二阶段,当吸收电容Cs上的电压升高到大于开关电源的输出电压Vout与第二二极管Ds的导通电压之和时,第二二极管Ds导通,电流从吸收电容Cs经第二二极管Ds流向开关电源的输出端,直到吸收电容Cs的电压与开关电源的输出端电压一致。由于开关电源的输出电压是相对比较低的,一般也就几伏,而尖峰电压可达几十伏,因此大部分储存的电压尖峰能量被输出到开关电源的输出端,如此就减小了开关电源的能量损耗,提高了开关电源的整体转换效率。
也可能存在开关电源电路状况良好的时候,此时尖峰电压低于开关电源的输出电压Vout与第一二极管TVS1的击穿电压之和,从而TVS1不会被击穿,根据本公开实施例的吸收电路无需起作用。从而根据本公开实施例的吸收电路可以很好地适配于开关电源的工作状况。
图7示出了本公开实施例提供的开关电源一个开关周期内的开关电压图。其对应于图4-6中任一个图的电路。其中横坐标表示时间,纵坐标表示电子开关管Q1的电压。在t1时刻,电子开关管Q1从导通变为断开,电子开关管漏极的电压VQ1不断升高,如果没有吸收电路的存在,VQ1将呈现尖峰P1,其在图7中被放大以便于看清。而应用了根据本公开实施例的吸收电路后,VQ1呈现抑制后的尖峰P2以取代了尖峰P1。显然,尖峰P2的峰值电压Vp2低于尖峰P1的峰值电压。由前面结合图4所描述的,尖峰P2的峰值电压Vp2可以通过配置不同击穿电压的第一二极管TVS1来调整,从而可以很好地保护电路的元器件,使之工作在正常的工作电压范围内。由于寄生电感和电容等的存在,VQ1不可避免地存在振铃直到达到稳定的状态,此刻VQ1的稳定电压是开关电源的输出电压Vout、第二二极管Ds的导通电压以及第一二极管TVS1的反向导通电压之和。之后在t2时刻,当电子开关管Q1 导通时,电子开关管的漏极相当于接地,其电压迅速下降为零,图示的下降曲线接近为直线,实际展开了看也是二次函数形状,这是由于电容Cs的特性所致。
根据本公开的实施例还提供一种液晶显示驱动电路,参见图8,液晶显示驱动电路800包括根据本公开一个或多个实施例的开关电源电路802。
本公开实施例有益效果如下:通过抑制开关电源的尖峰电压,使得能够防止器件损坏,防止电压击穿,使功率器件远离危险工作区,从而提高可靠性,同时降低了dv/dt和di/dt,降低了振铃,从而改善EMI品质,此外通过输出抑制的电压能量而降低开关器件的损耗,提高效率。
本领域技术人员可以理解附图只是一个优选实施例的示意图,附图中的模块并不一定是实施本发明所必须的或唯一的。
本领域技术人员可以理解实施例中的装置中的模块可以按照实施例描述进行分布于实施例的装置中,也可以进行相应变化位于不同于本实施例的一个或多个装置中。上述实施例的模块可以合并为一个模块,可能的情况下也可以进一步拆分成多个子模块。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (8)

  1. 一种吸收电路,其与开关电源相连接,其特征在于所述吸收电路包括:
    开关电源电压尖峰抑制电路,用于将开关电源电压尖峰改变为期望的电压尖峰;
    储能电路,其与所述开关电源电压尖峰抑制电路相连,用于将被抑制掉的尖峰电压储存起来;以及
    释放电路,其与所述储能电路相连,用于当所述储能电路储存的电压高于开关电源的输出电压时,将所述储能电路储存的高于所述输出电压的能量释放到所述开关电源的输出端。
  2. 如权利要求1所述的吸收电路,其特征在于:
    所述开关电源电压尖峰抑制电路包括第一二极管,所述储能电路包括电容,所述释放电路包括第二二极管,并且所述开关电源电压尖峰将所述第一二极管击穿,经所述电容吸收,当所述电容的电压高于所述输出电压时,开通所述第二二极管,从而将所述高于所述输出电压的能量释放到所述开关电源的输出端。
  3. 如权利要求2所述的吸收电路,其特征在于:
    所述第一二极管击穿电压被配置为所述期望的电压尖峰减去所述输出电压的结果值。
  4. 如权利要求2所述的吸收电路,其特征在于:
    所述第一二极管的阴极与所述开关电源的电子开关管的漏极相连,所述第一二极管的阳极、所述电容一侧以及所述第二二极管的阳极相连,所述电容另一侧接地,以及所述第二二极管的阴极与所述开关电源的输出端相连。
  5. 如权利要求2所述的吸收电路,其特征在于:
    所述第一二极管是瞬态抑制二极管。
  6. 如权利要求2所述的吸收电路,其特征在于:
    所述第二二极管是快速二极管。
  7. 一种开关电源电路,包括电源和电子开关管,其特征在于,包括如权利要求1-6中任一个所述的吸收电路。
  8. 一种液晶显示驱动电路,其特征在于,包括如权利要求7所述的开关电源电路。
PCT/CN2017/080581 2016-09-22 2017-04-14 一种电路以及开关电源和液晶显示驱动电路 WO2018054044A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/569,064 US10630166B2 (en) 2016-09-22 2017-04-14 Circuit and switching power supply and liquid crystal display driving circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610840370.5 2016-09-22
CN201610840370.5A CN106230246A (zh) 2016-09-22 2016-09-22 一种电路以及开关电源和液晶显示驱动电路

Publications (1)

Publication Number Publication Date
WO2018054044A1 true WO2018054044A1 (zh) 2018-03-29

Family

ID=58075967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/080581 WO2018054044A1 (zh) 2016-09-22 2017-04-14 一种电路以及开关电源和液晶显示驱动电路

Country Status (3)

Country Link
US (1) US10630166B2 (zh)
CN (1) CN106230246A (zh)
WO (1) WO2018054044A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109245509A (zh) * 2018-11-05 2019-01-18 宁波市北仑临宇电子科技有限公司 尖峰电压无损异步吸收电路和npc三电平电路

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106230246A (zh) * 2016-09-22 2016-12-14 京东方科技集团股份有限公司 一种电路以及开关电源和液晶显示驱动电路
CN108347160A (zh) * 2017-01-24 2018-07-31 中兴通讯股份有限公司 一种dc-dc变换器的滤波方法、装置和终端
CN106602537B (zh) * 2017-02-28 2019-12-03 深圳市华星光电技术有限公司 一种电压吸收电路
CN106941314B (zh) * 2017-03-27 2023-08-25 广东美芝精密制造有限公司 压缩机控制系统及开关电源的过压保护电路
CN107919824B (zh) * 2017-12-24 2021-02-09 威海永升自动控制有限公司 一种具有限时自吸收抛负载过压保护电路的发电机电压调节器
CN108229023B (zh) * 2018-01-03 2021-07-27 河北申科智能制造有限公司 一种高频GaN开关器件缓冲电路设计方法
CN109120158A (zh) * 2018-10-17 2019-01-01 广东电网有限责任公司 一种储能型大电流快速灭磁装置
CN109509450B (zh) * 2018-12-19 2021-05-14 惠科股份有限公司 参考电压调节电路、显示面板的驱动电路及显示装置
CN112311215B (zh) * 2019-08-02 2021-10-15 台达电子企业管理(上海)有限公司 钳位电路和功率模块
US11165352B2 (en) * 2020-01-16 2021-11-02 L3 Cincinnati Electronics Corporation Capacitively isolated feedback circuits and regulated power supplies incorporating the same
KR20230019352A (ko) * 2021-07-30 2023-02-08 삼성디스플레이 주식회사 표시 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060262577A1 (en) * 2005-05-18 2006-11-23 Kurt Schenk Non dissipative snubber circuit with saturable reactor
CN103378739A (zh) * 2012-04-12 2013-10-30 株式会社村田制作所 开关电源装置
CN203562942U (zh) * 2013-09-30 2014-04-23 洛阳隆盛科技有限责任公司 一种电压尖峰无损吸收电路
CN106230246A (zh) * 2016-09-22 2016-12-14 京东方科技集团股份有限公司 一种电路以及开关电源和液晶显示驱动电路

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5414613A (en) * 1993-08-20 1995-05-09 Rem Technologies, Incorporated Soft switching active snubber for semiconductor circuit operated in discontinuous conduction mode
WO1998057417A1 (en) * 1997-06-13 1998-12-17 Koninklijke Philips Electronics N.V. A switched-mode power supply
US5847548A (en) * 1997-09-26 1998-12-08 Lucent Technologies Inc. Current-sharing passive snubber for parallel-connected switches and high power boost converter employing the same
JP3369535B2 (ja) * 1999-11-09 2003-01-20 松下電器産業株式会社 プラズマディスプレイ装置
JP2001286133A (ja) * 2000-03-30 2001-10-12 Toshiba Fa Syst Eng Corp チョッパ回路およびチョッパ装置
US6903642B2 (en) * 2001-12-03 2005-06-07 Radian Research, Inc. Transformers
AU2002359832A1 (en) * 2001-12-31 2003-07-24 Bae Systems Information And Electronic Systems Integration, Inc. Logic controlled high voltage resonant switching power supply
US7506180B2 (en) * 2005-03-10 2009-03-17 Hewlett-Packard Development Company, L.P. System and method for determining the power drawn from a switching power supply by counting the number of times a switching power supply switch is enabled
CN102122891A (zh) 2010-09-30 2011-07-13 浙江昱能光伏科技集成有限公司 变压器漏感能量的吸收回馈电路
CN102403712A (zh) 2011-11-22 2012-04-04 奇瑞汽车股份有限公司 一种车载充电机中移相全桥二极管尖峰的处理电路
KR20150026470A (ko) * 2013-09-03 2015-03-11 삼성전자주식회사 광원 구동장치, 디스플레이장치 및 그 구동방법
CN104201874B (zh) 2014-09-05 2017-06-13 武汉永力睿源科技有限公司 一种开关电源输出整流管的无损吸收电路及开关电源
CN204271904U (zh) * 2014-12-04 2015-04-15 深圳市英威腾电源有限公司 一种电压尖峰无损吸收电路与开关电源

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060262577A1 (en) * 2005-05-18 2006-11-23 Kurt Schenk Non dissipative snubber circuit with saturable reactor
CN103378739A (zh) * 2012-04-12 2013-10-30 株式会社村田制作所 开关电源装置
CN203562942U (zh) * 2013-09-30 2014-04-23 洛阳隆盛科技有限责任公司 一种电压尖峰无损吸收电路
CN106230246A (zh) * 2016-09-22 2016-12-14 京东方科技集团股份有限公司 一种电路以及开关电源和液晶显示驱动电路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109245509A (zh) * 2018-11-05 2019-01-18 宁波市北仑临宇电子科技有限公司 尖峰电压无损异步吸收电路和npc三电平电路

Also Published As

Publication number Publication date
CN106230246A (zh) 2016-12-14
US20180287486A1 (en) 2018-10-04
US10630166B2 (en) 2020-04-21

Similar Documents

Publication Publication Date Title
WO2018054044A1 (zh) 一种电路以及开关电源和液晶显示驱动电路
US7233507B2 (en) Non dissipative snubber circuit with saturable reactor
US9484821B2 (en) Adjustable resonant apparatus for power converters
CN203691238U (zh) 电子变换器以及相关照明系统
CN103812317A (zh) 箝位吸收电路及其阻抗调节方法
US20150085534A1 (en) Regenerative and ramping acceleration (rara) snubbers for isolated and tapped-inductor converters
JP2016174471A (ja) スナバ回路
TWI732581B (zh) 具減震控制之轉換裝置及其減震控制的操作方法
CN110518806B (zh) 一种用于高压输入反激开关电源的mosfet串联电路
García-Caraveo et al. Brief review on snubber circuits
KR102081411B1 (ko) Dc-dc 변환 장치
CN108347174B (zh) 一种Boost全桥隔离型变换器及其复合有源箝位电路
CN104201874B (zh) 一种开关电源输出整流管的无损吸收电路及开关电源
EP2870687B1 (en) Converter having auxiliary resonant circuit with current discriminating inductor
Liu et al. Design of auxiliary power supply for high voltage power electronics devices
Sayed et al. New DC rail side soft-switching PWM DC-DC converter with voltage doubler rectifier for PV generation interface
JP2002119055A (ja) Dc−dcコンバータ
WO2018021003A1 (ja) アクティブスナバ回路
CN110855140A (zh) 一种反激式开关电源系统
CN219372287U (zh) 反激变换电路与电子设备
WO2018157458A1 (zh) 一种电压吸收电路
Halder An improved and simple hybrid energy recovery snubber circuit for generic power converters and protection scheme
CN106452034A (zh) 一种有源缓冲网络
CN210629349U (zh) 一种死区振荡主动阻尼电路
CN112072922B (zh) 一种具减震控制之转换装置及其减震控制的操作方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15569064

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852120

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/07/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17852120

Country of ref document: EP

Kind code of ref document: A1