WO2013170651A1 - Friction generator and friction generator unit - Google Patents

Friction generator and friction generator unit Download PDF

Info

Publication number
WO2013170651A1
WO2013170651A1 PCT/CN2013/072493 CN2013072493W WO2013170651A1 WO 2013170651 A1 WO2013170651 A1 WO 2013170651A1 CN 2013072493 W CN2013072493 W CN 2013072493W WO 2013170651 A1 WO2013170651 A1 WO 2013170651A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
insulating layer
polymer insulating
electrode
polymer
Prior art date
Application number
PCT/CN2013/072493
Other languages
French (fr)
Chinese (zh)
Other versions
WO2013170651A8 (en
Inventor
范凤茹
王中林
Original Assignee
纳米新能源(唐山)有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 纳米新能源(唐山)有限责任公司 filed Critical 纳米新能源(唐山)有限责任公司
Publication of WO2013170651A1 publication Critical patent/WO2013170651A1/en
Publication of WO2013170651A8 publication Critical patent/WO2013170651A8/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/04Friction generators

Definitions

  • the invention relates to a power generation device, in particular to a friction generator and a friction generator set. Background technique
  • a generator is a power generation method capable of generating electric charges, separating positive and negative charges, generating a potential difference, and driving free electrons to be moved by a potential difference. It is based on electromagnetic, piezoelectric, thermoelectric, and even electrostatic effects. Nanogenerators rely on the piezoelectric potential generated by the oxidation of nanowires to achieve power generation. On the other hand, triboelectricity and static phenomena are a very common phenomenon that exists in all aspects of our normal life, from walking to driving. Because it is difficult to collect and use, it is often a form of energy that people have neglected.
  • micro-electrostatic generators have been successfully developed and are widely used in the field of micro-electromechanical (MEMS).
  • MEMS micro-electromechanical
  • the design of micro-electrostatic generators is mainly based on inorganic silicon materials, and the fabrication of devices requires complicated processes and precise operations. The preparation of the entire device requires large equipment and special production conditions, and the cost is too high, which is not conducive to the commercialization and daily application of the generator.
  • 200910080638.X discloses a rotary friction generator which generates electricity by using a frictional electricity generation phenomenon, and the stator friction material of the inner wall of the outer casing is in close contact with the rotor friction material of the outer wall of the rotor shaft cylinder, and the rotor is rotated.
  • a shaft cylinder that causes rotational friction between the stator friction material and the rotor friction material to generate Current is drawn from the rotor output.
  • the rotary friction generator requires specific mechanical energy to be used, and cannot be used to collect and convert irregular kinetic energy, such as the movement of muscle parts of the human body and disordered wind energy, and the power generation efficiency of the device is not high.
  • the present invention provides a friction generator and a friction generator set with a wider application environment and higher power generation efficiency in order to solve the problems in the prior art.
  • the present invention provides a friction generator including a first electrode and a second electrode, the first electrode includes a first polymer insulating layer, and one side surface of the first polymer insulating layer is disposed a micro-nano-convex structure, a surface of the first polymer polymer insulating layer is provided with a metal thin film; the second electrode includes a second polymer insulating layer, and the second polymer insulating layer One side surface is provided with a micro-nano concave-convex structure, and the other side surface of the second high-molecular polymer insulating layer is provided with a metal thin film; a surface of the first electrode micro-nano concave-convex structure and the second electrode micro-nano The surface of the concave-convex structure is directly attached to the fixed connection; the metal film on the first polymer insulating layer and the metal film on the second polymer insulating layer are voltages of the friction generator Current output electrode.
  • the present invention also provides a friction generator
  • the surface of the first electrode micro/nano-convex structure is directly opposite to the surface of the second electrode micro-nano-concave structure and is fixedly connected through the outer edge.
  • the polymer polymer insulating layer is selected from the group consisting of polyimide film, aniline furfural resin film, polyacetal film, ethyl cellulose film, polyamide film, melamine furfural film, polyethylene glycol butyl a diester film, a cellulose film, a cellulose acetate film, a polyethylene adipate film, a poly(phenylene terephthalate film), a fiber (recycled) sponge film, a polyurethane elastomer film, Styrene propylene copolymer film, styrene butadiene copolymer film, rayon film, polyfluorene film, methacrylate film, polyvinyl alcohol film, polyvinyl alcohol film, polyester film, polyisobutylene film, polyurethane Flexible sponge film, polyethylene terephthalate film, polyvinyl butyral film, furfural phenol film, neoprene film, butadiene propylene
  • the first electrode and the second electrode are laminated to constitute a flexible flat plate structure capable of generating triboelectricity by any bending or deformation thereof.
  • the flexible flat structure expands the application environment of the friction generator and collects and converts irregular kinetic energy, such as the movement of muscle parts of the human body and disordered wind energy.
  • the micro-nano-convex structure on the surface of the first polymer-polymer insulating layer and the second polymer-polymer insulating layer is a micro-concave structure.
  • the micro/nano-convex structure is a nano-scale to micro-scale uneven structure; the nano-scale uneven structure may have a size of 50 nm to 300 nm, and the nano-concave structure has a large friction contact area, which can improve the frictional electrification efficiency.
  • the outer edges of the first electrode and the second electrode can be connected by tape or the like.
  • the metal film on the first polymer insulating layer and the second polymer insulating layer are plated on the surface of the insulating layer by vacuum sputtering or evaporation.
  • the metal film can be any conductive material, such as a transparent conductive film, a conductive polymer, stainless steel, etc.; preferably one of gold, silver, platinum, aluminum, nickel, copper, titanium, iron, tantalum and alloys thereof.
  • the thickness is preferably from 50 nm to 200 nm.
  • the friction generator provided by the present invention relies on the charging pump effect of the triboelectric potential, which is a single, low cost and mass production method. Based on a two-layer structure, the output voltage can reach 3.3V, the current can reach 0.6 ⁇ , and the peak power density can reach 10.4mW/cm 3 .
  • the friction generator of the present invention has several unique advantages over other micro energy harvesting methods that are available. First of all, this is a new type of generator based on novel principles and methods, which is likely to open up new research fields for the research and application of organic electronic devices and flexible electronics. Secondly, the entire device manufacturing process does not need Expensive raw materials and advanced manufacturing equipment will benefit large-scale industrial production and practical applications.
  • Friction generators show good application prospects, and can obtain energy from many irregular activities such as human activities, tire rotation, wave fluctuations, mechanical vibrations, etc., and can provide self-powered and self-powered products for personal electronic products, environmental monitoring, medical science, etc. Drive equipment has great commercial and practical potential.
  • BRIEF abstract 1 is a schematic structural view of a friction generator of the present invention.
  • FIG. 2 is a schematic view showing the micro-nano-convex structure of the surface of the insulating layer of the friction generator of the present invention
  • FIG. 3 is a schematic diagram showing the charge change of the friction generator of the present invention during power generation.
  • Figure 1 shows a typical structure of a high frequency polymer based friction generator.
  • the friction generator is like a sandwich structure consisting of two different polymer sheets, two polymer sheets stacked on each other without any bond between the layers.
  • a rectangular (4.5cm x 1.2cm) polyimide film (thickness 125 ⁇ , DuPont 500 ⁇ , Kapton in Figure 3) is used as the first electrode of the polymer insulating layer 2, placed in the first Two high molecular polymer insulating layer 3 flexible polyester film substrate (thickness 220 ⁇ , PET in Fig. 3).
  • the two short edges of the device are sealed with a common tape to ensure proper contact between the two polymer insulation layers.
  • the two surfaces of the top and bottom of the structure were plated with an alloy metal film 1 (thickness 100 nm, Au in Fig. 3) as an electrode by a sputtering coating method.
  • the metal film plays two important roles here: (1) It is possible to induce a change in the potential of the interface region where the two polymer polymer insulating layers are in contact with each other due to friction, and generate an equal amount of electrically opposite mobile charges; (2) The positive and negative electrodes of the generator are directly connected to the external circuit and are the output electrodes of the voltage and current of the friction generator. The entire manufacturing process of the device can be mass-produced. Therefore, the present invention can be realized under conditions of lower cost, less raw materials, and processing steps.
  • the flexible polyimide film and the polyester film have micro-nano concave and convex structures 4 on the opposite surfaces thereof, and the micro-nano-convex structure 4 can increase frictional resistance and improve power generation efficiency.
  • the micro/nano uneven structure 4 can be formed directly at the time of film preparation, and the surface of the film can be formed into an irregular micro-nano-convex structure by sanding.
  • Figure 3 is an illustration of the principle of friction generator power generation.
  • the mechanical external force causes the two polymer polymer insulation layers to slide relative to each other. a knot caused by low levels of friction
  • equal and opposite electrostatic charges are generated at the interface and distributed on the surface of two different polymer layers, and the surface of the polyester film is mainly positive.
  • the charge while the surface of the polyimide film is mainly negatively charged, thus forming a dipole layer called the triboelectric potential at the interface.
  • the dipole layer forms an internal potential between the two planar metal plates.
  • the induced charge is not quickly conducted or neutralized.
  • the metal plates will respectively induce the opposite electric free charges, and the induced free charges will be neutralized when the external circuit is turned on, and an external current is formed by the load. .
  • the two polymer insulation layers return to the flat state from the bent state, and the relative sliding and friction occur again in this process.
  • the dipole layer changes due to the neutralization of the charge at the interface, and the internal potential changes at the same time.
  • a change in the internal potential will again cause the two metal plates to be induced, producing a free charge that is completely opposite to the bent state.
  • an external current opposite to that in the case of bending is formed again.
  • periodic alternating current signals can be formed in the external circuit.
  • the first step is the friction process, which generates a local charge in the interface region to form an internal potential.
  • the second step is the induction process.
  • the distance between the two metal plates changes, causing a change in the internal capacitance and an internal potential, which in turn causes a redistribution of the free charge of the two metal plates.
  • An external current is formed when the charge flows through the external circuit load. Only when there is a potential difference between the two electrodes will the free charge move to generate current, and the potential difference is due to the triboelectric effect.
  • the third step is the neutralization process. When the external force disappears, the two polymer insulation layers return to their original state.
  • the distance between the two metal plates is restored to the original state, the internal capacitance is changed again, and the internal potential is weakened or disappeared due to the mutual neutralization of the charges.
  • the two metal plates that have previously reached the potential balance again generate a potential difference.
  • the fourth step is the recovery process.
  • the free charge flows through the external circuit driven by the potential difference to form a current until the potentials of the two metal plates are equal.
  • An external current that is electrically opposite to the deformation of the device is formed in this process.
  • the whole process is the process of friction generator outputting AC signal. Eventually, when the friction is removed, the two polymer insulation layers return to their original shape and the charge distribution is restored to its original state. See Figure 3 for the entire power generation process.
  • the electrical properties of the device were characterized. Due to the presence of a polymer insulation layer between the two metal electrodes, the device is in IV Typical open circuit characteristics are shown in the measurement of (current-voltage).
  • the stepping motor with periodic oscillation (0.33 Hz and 0.13% tension) causes the friction generator to periodically bend and release.
  • the maximum output voltage and current signal of the friction generator reach 3.3V and 0.6 ⁇ , respectively, and the maximum output power density. It reached 10.4 mW/cm 3 .
  • the friction generator of the present invention satisfies the principle of linear superposition of basic circuit connections, that is, whether the forward or reverse connection is connected to the measuring device, the total output current can be enhanced (in the same direction) or reduced (opposite direction) in the manner of parallel devices. . Therefore, it is possible to increase the output current by parallelly connecting a plurality of friction generators in parallel and by arranging a multi-layer generator at the same time due to the thin panel structure of the friction generator. Of course, it is also possible to form a friction generator set by connecting a plurality of friction generators in series to increase the output voltage.
  • Friction generators rely on internal friction to produce electrical potential due to changes in electrical potential and induced effects on the metal plates on both sides. It is a single, efficient and low cost method.
  • the friction generator provided by the present invention generates electric energy by means of internal friction to change electric potential and induced effects of metal plates on both sides, and can be realized at a lower cost, less raw materials, and processing steps.

Abstract

A friction generator and friction generator unit. The friction generator comprises two electrodes, the electrode includes high molecular polymer insulating layer (2, 3), a micro-nano concave-convex structure is disposed on one surface of the high molecular polymer insulating layer, a metal film (1) is disposed on another surface of the high molecular polymer insulating layer. The surface with the micro-nano concave-convex structure (4) of the high molecular polymer insulation layer is fit fixedly against the surface with the micro-nano concave-convex structure of another insulation layer. The metal film is the electrode of the output voltage and current of the friction generator. The friction generator unit is consists of friction generators connected in parallel or in series. The friction generator and friction generator unit produce electricity depending on the change of the internal friction on the electric potential and the induced effect on both sides of the metal plates.

Description

一种摩擦发电机 ^擦发电机组  Friction generator
技术领域 Technical field
本发明涉及一种发电装置, 尤其涉及一种摩擦发电机及摩擦发电机组。 背景技术  The invention relates to a power generation device, in particular to a friction generator and a friction generator set. Background technique
采用纳米技术的能量收集和转换装置由于其独特的自发电和自驱动性 质, 很可能在制造和驱动自供电纳米器件和纳米系统装置中起到关键性的作 用, 最近受到了各国研究人员越来越多的关注。 2006年, 美国佐治亚理工学 院王中林教授研究组首次成功实现了利用氧化辞纳米线将机械能转化成电 能的压电式纳米发电机。 随后, 以压电效应为基础, 基于不同材料和结构的 各种纳米发电机被相继研制出来。 目前, 纳米发电机的输出功率足以驱动商 用发光二极管 (LED ) 、 小型液晶显示器、 甚至自供电无线数据传送设备。 功率密度也已经达到了 l-10 mW/cm3Energy harvesting and conversion devices using nanotechnology are likely to play a key role in the manufacture and driving of self-powered nanodevices and nanosystem devices due to their unique self-generating and self-driven properties, which have recently attracted researchers from various countries. The more attention you have. In 2006, Professor Wang Zhonglin of the Georgia Institute of Technology in the United States successfully realized the first piezoelectric nanogenerator that converts mechanical energy into electrical energy using oxidized nanowires. Subsequently, based on the piezoelectric effect, various nano-generators based on different materials and structures were successively developed. At present, the output power of nano-generators is sufficient to drive commercial light-emitting diodes (LEDs), small liquid crystal displays, and even self-powered wireless data transmission equipment. The power density has also reached l-10 mW/cm 3 .
通常来讲, 发电机是一种能够生成电荷, 将正负电荷分开, 产生电势差 并由电势差驱动自由电子移动的发电方法。 它以电磁、 压电、 热电、 甚至静 电效应为基础。 纳米发电机依靠氧化辞纳米线所生成的压电电势实现了发 电。 另一方面, 摩擦电和静电现象是一种非常普遍的现象, 存在于我们曰常 生活中的各个层面, 从走路到开车等等。 由于它很难被收集和利用, 往往是 被人们所忽略的一种能源形式。 如果我们能够通过一种新的方法收集摩擦产 生的电能或者利用该方法将日常生活中不规则的动能转化成能够利用的电 能, 将对我们的日常生活产生重要影响。 截止到目前为止, 微型静电发电机 已被研制成功, 并且在微机电 (MEMS )领域得到广泛应用。 但是微型静电 发电机的设计主要以无机硅材料为基础, 并且器件的制造需要复杂的工艺和 精密的操作。 整个装置的制备需要大型的仪器设备和特殊的生产条件, 造价 成本过高, 不利于发电机的商业化和日常应用。 中国专利申请号为 200910080638.X, 公开了一种旋转摩擦发电机, 该发电机利用摩擦生电现象 来发电, 外壳内壁的定子摩擦材料与转子轴筒外壁的转子摩擦材料紧密接 触, 通过旋转转子轴筒, 使定子摩擦材料和转子摩擦材料间旋转摩擦, 产生 电流,并由转子输出端引出。但是该旋转摩擦发电机需要特定的机械能带动, 不能用于收集和转换不规则的动能, 如人体肌肉部分的运动及无序的风能 等, 并且该装置发电效率不高。 Generally speaking, a generator is a power generation method capable of generating electric charges, separating positive and negative charges, generating a potential difference, and driving free electrons to be moved by a potential difference. It is based on electromagnetic, piezoelectric, thermoelectric, and even electrostatic effects. Nanogenerators rely on the piezoelectric potential generated by the oxidation of nanowires to achieve power generation. On the other hand, triboelectricity and static phenomena are a very common phenomenon that exists in all aspects of our normal life, from walking to driving. Because it is difficult to collect and use, it is often a form of energy that people have neglected. If we can collect the electrical energy generated by friction through a new method or use this method to convert the irregular kinetic energy in daily life into usable electrical energy, it will have an important impact on our daily life. So far, micro-electrostatic generators have been successfully developed and are widely used in the field of micro-electromechanical (MEMS). However, the design of micro-electrostatic generators is mainly based on inorganic silicon materials, and the fabrication of devices requires complicated processes and precise operations. The preparation of the entire device requires large equipment and special production conditions, and the cost is too high, which is not conducive to the commercialization and daily application of the generator. Chinese Patent Application No. 200910080638.X discloses a rotary friction generator which generates electricity by using a frictional electricity generation phenomenon, and the stator friction material of the inner wall of the outer casing is in close contact with the rotor friction material of the outer wall of the rotor shaft cylinder, and the rotor is rotated. a shaft cylinder that causes rotational friction between the stator friction material and the rotor friction material to generate Current is drawn from the rotor output. However, the rotary friction generator requires specific mechanical energy to be used, and cannot be used to collect and convert irregular kinetic energy, such as the movement of muscle parts of the human body and disordered wind energy, and the power generation efficiency of the device is not high.
发明内容 Summary of the invention
本发明为解决现有技术中的问题而提供了一种应用环境更广、 发电效率 更高的摩擦发电机及摩擦发电机组。  The present invention provides a friction generator and a friction generator set with a wider application environment and higher power generation efficiency in order to solve the problems in the prior art.
本发明提供了一种摩擦发电机, 包括第一电极和第二电极, 所述第一电 极包括第一高分子聚合物绝缘层, 所述第一高分子聚合物绝缘层的一侧表面 设置有微纳凹凸结构, 所述第一高分子聚合物绝缘层的另一侧表面设置有金 属薄膜; 所述第二电极包括第二高分子聚合物绝缘层, 所述第二高分子聚合 物绝缘层的一侧表面设置有微纳凹凸结构, 所述第二高分子聚合物绝缘层的 另一侧表面设置有金属薄膜; 所述第一电极微纳凹凸结构的表面与所述第二 电极微纳凹凸结构的表面正对贴合并固定连接; 所述第一高分子聚合物绝缘 层上的金属薄膜与所述第二高分子聚合物绝缘层上的金属薄膜均为所述摩 擦发电机的电压和电流输出电极。 本发明还提供一种摩擦发电机组, 由本发 明的摩擦发电机进行串联或者并联组成, 以提高单位面积的输出功率。  The present invention provides a friction generator including a first electrode and a second electrode, the first electrode includes a first polymer insulating layer, and one side surface of the first polymer insulating layer is disposed a micro-nano-convex structure, a surface of the first polymer polymer insulating layer is provided with a metal thin film; the second electrode includes a second polymer insulating layer, and the second polymer insulating layer One side surface is provided with a micro-nano concave-convex structure, and the other side surface of the second high-molecular polymer insulating layer is provided with a metal thin film; a surface of the first electrode micro-nano concave-convex structure and the second electrode micro-nano The surface of the concave-convex structure is directly attached to the fixed connection; the metal film on the first polymer insulating layer and the metal film on the second polymer insulating layer are voltages of the friction generator Current output electrode. The present invention also provides a friction generator set which is constructed in series or in parallel by the friction generator of the present invention to increase the output power per unit area.
优选地, 所述第一电极微纳凹凸结构的表面与所述第二电极微纳凹凸结 构的表面正对贴合并通过外侧边缘固定连接。  Preferably, the surface of the first electrode micro/nano-convex structure is directly opposite to the surface of the second electrode micro-nano-concave structure and is fixedly connected through the outer edge.
优选地, 所述高分子聚合物绝缘层选自聚酰亚胺薄膜、 苯胺曱醛树脂薄 膜、 聚曱醛薄膜、 乙基纤维素薄膜、 聚酰胺薄膜、 三聚氰胺曱醛薄膜、 聚乙 二醇丁二酸酯薄膜、 纤维素薄膜、 纤维素乙酸酯薄膜、 聚己二酸乙二醇酯薄 膜、 聚邻苯二曱酸二烯丙酯薄膜、 纤维(再生)海绵薄膜、 聚氨酯弹性体薄 膜、 苯乙烯丙烯共聚物薄膜、 苯乙烯丁二烯共聚物薄膜、 人造纤维薄膜、 聚 曱基薄膜, 曱基丙烯酸酯薄膜、 聚乙烯醇薄膜、 聚乙烯醇薄膜、 聚酯薄膜、 聚异丁烯薄膜、 聚氨酯柔性海绵薄膜、 聚对苯二曱酸乙二醇酯薄膜、 聚乙烯 醇缩丁醛薄膜、 曱醛苯酚薄膜、 氯丁橡胶薄膜、 丁二烯丙烯共聚物薄膜、 天 然橡胶薄膜、 聚丙烯腈薄膜、 丙烯腈氯乙烯薄膜以及聚乙烯丙二酚碳酸盐薄 膜中的一种, 优选的, 所述第一高分子聚合物绝缘层与所述第二高分子聚合 物绝缘层材质不同。 如果第一电极的第一高分子聚合物绝缘层与第二电极的 第二高分子聚合物绝缘层材质相同, 会导致摩擦起电的电荷量很小。 Preferably, the polymer polymer insulating layer is selected from the group consisting of polyimide film, aniline furfural resin film, polyacetal film, ethyl cellulose film, polyamide film, melamine furfural film, polyethylene glycol butyl a diester film, a cellulose film, a cellulose acetate film, a polyethylene adipate film, a poly(phenylene terephthalate film), a fiber (recycled) sponge film, a polyurethane elastomer film, Styrene propylene copolymer film, styrene butadiene copolymer film, rayon film, polyfluorene film, methacrylate film, polyvinyl alcohol film, polyvinyl alcohol film, polyester film, polyisobutylene film, polyurethane Flexible sponge film, polyethylene terephthalate film, polyvinyl butyral film, furfural phenol film, neoprene film, butadiene propylene copolymer film, natural rubber film, polyacrylonitrile film And one of an acrylonitrile vinyl chloride film and a polyethylene propylene glycol carbonate film, preferably, the first polymer insulating layer and the first High polymer The material of the insulation layer is different. If the first polymer insulating layer of the first electrode is made of the same material as the second polymer insulating layer of the second electrode, the amount of charge that causes triboelectric charging is small.
优选地, 所述第一电极和所述第二电极层叠构成能够通过其任意弯曲或 变形产生摩擦电的柔性平板结构。 柔性平板结构能够扩大摩擦发电机的应用 环境, 收集和转换不规则的动能, 如人体肌肉部分的运动及无序的风能等。  Preferably, the first electrode and the second electrode are laminated to constitute a flexible flat plate structure capable of generating triboelectricity by any bending or deformation thereof. The flexible flat structure expands the application environment of the friction generator and collects and converts irregular kinetic energy, such as the movement of muscle parts of the human body and disordered wind energy.
优选地, 所述第一高分子聚合物绝缘层和第二高分子聚合物绝缘层表面 的微纳凹凸结构为微小凹凸结构。 更优选地, 微纳凹凸结构为纳米级至微米 级的凹凸结构; 所述纳米级凹凸结构大小可以为 50nm-300nm, 纳米凹凸结 构摩擦接触面积大, 能够提高摩擦起电效率。  Preferably, the micro-nano-convex structure on the surface of the first polymer-polymer insulating layer and the second polymer-polymer insulating layer is a micro-concave structure. More preferably, the micro/nano-convex structure is a nano-scale to micro-scale uneven structure; the nano-scale uneven structure may have a size of 50 nm to 300 nm, and the nano-concave structure has a large friction contact area, which can improve the frictional electrification efficiency.
可选地, 所述第一电极与第二电极的外侧边缘能够通过胶带等方式连 接。  Optionally, the outer edges of the first electrode and the second electrode can be connected by tape or the like.
优选地, 所述第一高分子聚合物绝缘层和第二高分子聚合物绝缘层上的 金属薄膜均通过真空溅射法或蒸镀法镀于绝缘层表面。 所述金属薄膜能够是 任何一种导电的材料, 如透明导电薄膜、 导电高分子、 不锈钢等; 优选为金、 银、铂、铝、镍、铜、钛、烙、踊及其合金中的一种,厚度优选为 50nm-200nm。  Preferably, the metal film on the first polymer insulating layer and the second polymer insulating layer are plated on the surface of the insulating layer by vacuum sputtering or evaporation. The metal film can be any conductive material, such as a transparent conductive film, a conductive polymer, stainless steel, etc.; preferably one of gold, silver, platinum, aluminum, nickel, copper, titanium, iron, tantalum and alloys thereof. The thickness is preferably from 50 nm to 200 nm.
本发明提供的摩擦发电机依靠摩擦电电势的充电泵效应, 这是一种筒 单、 低成本和可大规模生产的方法。 以双层结构为基础, 输出电压可达到 3.3V, 电流可达到 0.6μΑ, 峰值功率密度可达到 10.4mW/cm3。 与已有的其它 微型能量收集方法相比,本发明的摩擦发电机有以下几个独特的优势。首先, 这是一种以新颖的原理和方法为基础的新型发电机, 它很可能会为有机电子 器件和柔性电子学的研究和应用开辟新的研究领域; 其次, 整个器件的制造 工艺不需要昂贵的原材料和先进的制造设备, 这将有利于大规模工业生产和 实际应用。 最后, 该装置以柔性聚合物片为基础, 易加工, 器件的使用寿命 长, 并且容易和其它加工工艺集成。 摩擦发电机展示出良好的应用前景, 能 够从人类活动、 轮胎转动、 海浪波动、 机械振动等众多不规则的活动中获得 能量, 可为个人电子产品、环境监控、 医学科学等提供自供电和自驱动设备, 有着巨大的商用和实用潜力。 附图概述 图 1为本发明摩擦发电机的结构示意图; The friction generator provided by the present invention relies on the charging pump effect of the triboelectric potential, which is a single, low cost and mass production method. Based on a two-layer structure, the output voltage can reach 3.3V, the current can reach 0.6μΑ, and the peak power density can reach 10.4mW/cm 3 . The friction generator of the present invention has several unique advantages over other micro energy harvesting methods that are available. First of all, this is a new type of generator based on novel principles and methods, which is likely to open up new research fields for the research and application of organic electronic devices and flexible electronics. Secondly, the entire device manufacturing process does not need Expensive raw materials and advanced manufacturing equipment will benefit large-scale industrial production and practical applications. Finally, the device is based on a flexible polymer sheet that is easy to process, has a long service life, and is easily integrated with other processing techniques. Friction generators show good application prospects, and can obtain energy from many irregular activities such as human activities, tire rotation, wave fluctuations, mechanical vibrations, etc., and can provide self-powered and self-powered products for personal electronic products, environmental monitoring, medical science, etc. Drive equipment has great commercial and practical potential. BRIEF abstract 1 is a schematic structural view of a friction generator of the present invention;
图 2为本发明摩擦发电机的绝缘层表面的微纳凹凸结构示意图; 图 3为本发明摩擦发电机的发电过程电荷变化示意图。  2 is a schematic view showing the micro-nano-convex structure of the surface of the insulating layer of the friction generator of the present invention; FIG. 3 is a schematic diagram showing the charge change of the friction generator of the present invention during power generation.
图中: 1-金属薄膜, 2-第一高分子聚合物绝缘层, 3-第二高分子聚合物 绝缘层, 4-绝缘层表面的微纳凹凸结构。  In the figure: 1-metal film, 2-first polymer insulation layer, 3-second polymer insulation layer, micro-nano-convex structure on the surface of 4-insulation layer.
本发明的较佳实施方式 Preferred embodiment of the invention
下面, 结合附图对本发明的具体实施方式做进一步说明。  Hereinafter, specific embodiments of the present invention will be further described with reference to the accompanying drawings.
附图 1表示一个以高分子聚合物为基础的摩擦发电机的典型结构。 摩擦 发电机就像一个由两种不同聚合物片组成的三明治结构, 两个聚合物片相互 堆叠在一起,层间没有任何粘合物。如图 1所示,一个矩形的(4.5cmx 1.2cm ) 聚酰亚胺薄膜(厚度 125μηι, 杜邦 500ΗΝ, 附图 3中的 Kapton )作为第一电 极的高分子聚合物绝缘层 2 , 放置在第二高分子聚合物绝缘层 3柔性聚酯薄 膜基底(厚度 220μηι, 附图 3中 PET )上。 该器件的两个短的边缘用普通胶 布密封, 来保证两个聚合物绝缘层的适度接触。 该结构顶部和底部的两个表 面通过溅射涂膜的方法镀有合金金属薄膜 1 (厚度 lOOnm, 附图 3中 Au )作 电极。 金属薄膜在这里起两个重要作用: (1 ) 能够感应出两高分子聚合物 绝缘层相互接触的界面区由于摩擦产生的电势变化, 生成等量但电性相反的 移动电荷; (2 )作为发电机的正负电极直接与外电路连接, 是摩擦发电机 的电压和电流的输出电极。 该器件的整个制备工艺筒单, 能够大规模生产。 因此, 本发明能够在较低成本、 较少原材料和加工工序的条件下实现。  Figure 1 shows a typical structure of a high frequency polymer based friction generator. The friction generator is like a sandwich structure consisting of two different polymer sheets, two polymer sheets stacked on each other without any bond between the layers. As shown in Fig. 1, a rectangular (4.5cm x 1.2cm) polyimide film (thickness 125μηι, DuPont 500ΗΝ, Kapton in Figure 3) is used as the first electrode of the polymer insulating layer 2, placed in the first Two high molecular polymer insulating layer 3 flexible polyester film substrate (thickness 220 μηι, PET in Fig. 3). The two short edges of the device are sealed with a common tape to ensure proper contact between the two polymer insulation layers. The two surfaces of the top and bottom of the structure were plated with an alloy metal film 1 (thickness 100 nm, Au in Fig. 3) as an electrode by a sputtering coating method. The metal film plays two important roles here: (1) It is possible to induce a change in the potential of the interface region where the two polymer polymer insulating layers are in contact with each other due to friction, and generate an equal amount of electrically opposite mobile charges; (2) The positive and negative electrodes of the generator are directly connected to the external circuit and are the output electrodes of the voltage and current of the friction generator. The entire manufacturing process of the device can be mass-produced. Therefore, the present invention can be realized under conditions of lower cost, less raw materials, and processing steps.
如图 2所示, 柔性的聚酰亚胺薄膜和聚酯薄膜相对的表面上具有微纳凹 凸结构 4, 该微纳凹凸结构 4能够增加摩擦阻力, 提高发电效率。 所述微纳 凹凸结构 4能够在薄膜制备时直接形成, 也能够用打磨的方法使薄膜的表面 形成不规则的微纳 凸结构。  As shown in Fig. 2, the flexible polyimide film and the polyester film have micro-nano concave and convex structures 4 on the opposite surfaces thereof, and the micro-nano-convex structure 4 can increase frictional resistance and improve power generation efficiency. The micro/nano uneven structure 4 can be formed directly at the time of film preparation, and the surface of the film can be formed into an irregular micro-nano-convex structure by sanding.
图 3是摩擦发电机发电原理的图解。 当外力作用于器件上时, 两个高分 子聚合物绝缘层产生形变, 并且在界面的区域发生互相接触和摩擦。 机械外 力作用使得两个高分子聚合物绝缘层发生相对滑动。 低程度摩擦所造成的结 果是, 由于两个高分子聚合物绝缘层表面粗糙度的存在, 等量但电性相反的 静电荷在界面处生成并分布在两个不同聚合物层表面上, 聚酯薄膜表面主要 带正电荷, 而聚酰亚胺薄膜表面主要带负电荷, 这样就在界面处形成了一个 称之为摩擦电势的偶极层。 而该偶极层在两个平面金属极板间就形成一个内 电势。 由于聚合物层本身是绝缘的, 所以感应电荷不会被迅速导走或中和。 为了 4氏消内电势对整个系统的影响, 金属极板将分别感应出电性相反的自由 电荷, 而感应到的自由电荷在外电路导通的情况下将发生中和, 通过负载进 而形成外电流。 当外力作用消失时, 两个高分子聚合物绝缘层由弯曲状态恢 复到平整状态, 这个过程中再次发生相对滑动和摩擦, 偶极层由于界面处电 荷的中和而改变, 内电势同时改变。 内电势的改变将再次导致两个金属极板 发生感应, 产生与弯曲状态完全相反的自由电荷。 自由电荷流经外电路负载 时, 再次形成与弯曲情况下相反的外电流。 通过反复摩擦和恢复, 就能够在 外电路中形成周期性的交流电信号。 Figure 3 is an illustration of the principle of friction generator power generation. When an external force acts on the device, the two polymer insulating layers are deformed and contact and friction occur in the region of the interface. The mechanical external force causes the two polymer polymer insulation layers to slide relative to each other. a knot caused by low levels of friction As a result, due to the existence of the surface roughness of the two polymer insulating layers, equal and opposite electrostatic charges are generated at the interface and distributed on the surface of two different polymer layers, and the surface of the polyester film is mainly positive. The charge, while the surface of the polyimide film is mainly negatively charged, thus forming a dipole layer called the triboelectric potential at the interface. The dipole layer forms an internal potential between the two planar metal plates. Since the polymer layer itself is insulating, the induced charge is not quickly conducted or neutralized. In order to influence the internal potential of the four-phase internal potential, the metal plates will respectively induce the opposite electric free charges, and the induced free charges will be neutralized when the external circuit is turned on, and an external current is formed by the load. . When the external force disappears, the two polymer insulation layers return to the flat state from the bent state, and the relative sliding and friction occur again in this process. The dipole layer changes due to the neutralization of the charge at the interface, and the internal potential changes at the same time. A change in the internal potential will again cause the two metal plates to be induced, producing a free charge that is completely opposite to the bent state. When the free charge flows through the external circuit load, an external current opposite to that in the case of bending is formed again. By repeated friction and recovery, periodic alternating current signals can be formed in the external circuit.
对图 3中的发电过程进一步详细描述, 第一步是摩擦过程, 在界面区域 产生局域电荷, 形成内电势。 第二步是感应过程, 当器件产生机械形变时, 两金属极板间的距离发生改变, 造成内电容的改变以及内电势的产生, 进而 会导致两金属极板发生自由电荷的重新分布, 自由电荷流经外电路负载时形 成外电流。 只有当两个电极间有电势差时才会形成自由电荷的移动而产生电 流, 而电势差正是由于摩擦起电效应引起的。 第三步是中和过程, 到外部作 用力消失时, 两个高分子聚合物绝缘层恢复到原来状态。 两金属极板的间距 恢复到原来状态, 内电容再次发生改变, 内电势由于电荷的相互中和而减弱 或消失。 之前已经达到电势平衡的两个金属极板再次产生电势差。 第四步是 恢复过程, 自由电荷在电势差的驱动下流经外电路, 形成电流, 直到两个金 属极板的电势相等。 在这个过程中形成与器件形变时电性相反的外部电流。 整个过程就是摩擦发电机输出交流电信号的过程。 最终, 发电机在摩擦力被 移除时, 两个高分子聚合物绝缘层就会恢复它们的初始形状, 电荷分布也恢 复到原始状态。 整个发电过程参见附图 3。  A further detailed description of the power generation process in Figure 3, the first step is the friction process, which generates a local charge in the interface region to form an internal potential. The second step is the induction process. When the device is mechanically deformed, the distance between the two metal plates changes, causing a change in the internal capacitance and an internal potential, which in turn causes a redistribution of the free charge of the two metal plates. An external current is formed when the charge flows through the external circuit load. Only when there is a potential difference between the two electrodes will the free charge move to generate current, and the potential difference is due to the triboelectric effect. The third step is the neutralization process. When the external force disappears, the two polymer insulation layers return to their original state. The distance between the two metal plates is restored to the original state, the internal capacitance is changed again, and the internal potential is weakened or disappeared due to the mutual neutralization of the charges. The two metal plates that have previously reached the potential balance again generate a potential difference. The fourth step is the recovery process. The free charge flows through the external circuit driven by the potential difference to form a current until the potentials of the two metal plates are equal. An external current that is electrically opposite to the deformation of the device is formed in this process. The whole process is the process of friction generator outputting AC signal. Eventually, when the friction is removed, the two polymer insulation layers return to their original shape and the charge distribution is restored to its original state. See Figure 3 for the entire power generation process.
在本实施例中, 为表征聚合物摩擦发电机的性能, 对该器件的电学性能 进行了表征。由于两个金属电极间高分子聚合物绝缘层的存在,该器件在 I-V (电流-电压) 的测量中表现出典型的开路特征。 使用周期振荡 (0.33Hz和 0.13%的张力) 的步进电机使摩擦发电机发生周期的弯曲和释放, 摩擦发电 机的最大输出电压和电流信号分别达到了 3.3V和 0.6μΑ,最大输出功率密度 达到 10.4 mW/cm3In this example, to characterize the performance of a polymer friction generator, the electrical properties of the device were characterized. Due to the presence of a polymer insulation layer between the two metal electrodes, the device is in IV Typical open circuit characteristics are shown in the measurement of (current-voltage). The stepping motor with periodic oscillation (0.33 Hz and 0.13% tension) causes the friction generator to periodically bend and release. The maximum output voltage and current signal of the friction generator reach 3.3V and 0.6μΑ, respectively, and the maximum output power density. It reached 10.4 mW/cm 3 .
本发明摩擦发电机满足基本电路连接的线性叠加原理, 即无论正向或反 向连接到测量装置时, 总的输出电流能够以并联器件的方式被增强 (相同方 向)或者减少 (相反的方向) 。 因而能够通过平行并联多个摩擦发电机的方 式, 以及由于摩擦发电机薄的面板结构能够同时装配多层发电机, 以此来增 大输出电流。 当然, 也能够通过串联多个摩擦发电机组成摩擦发电机组, 以 提高输出电压。  The friction generator of the present invention satisfies the principle of linear superposition of basic circuit connections, that is, whether the forward or reverse connection is connected to the measuring device, the total output current can be enhanced (in the same direction) or reduced (opposite direction) in the manner of parallel devices. . Therefore, it is possible to increase the output current by parallelly connecting a plurality of friction generators in parallel and by arranging a multi-layer generator at the same time due to the thin panel structure of the friction generator. Of course, it is also possible to form a friction generator set by connecting a plurality of friction generators in series to increase the output voltage.
以上, 本发明展示了一种利用摩擦作用获得能量的革新而有效的方法。 摩擦发电机依靠内部摩擦起电电势的变化以及两侧金属极板的诱导效应产 生电能, 它是一种筒单、 高效和低成本的方法。  Above, the present invention demonstrates an innovative and effective method of obtaining energy using friction. Friction generators rely on internal friction to produce electrical potential due to changes in electrical potential and induced effects on the metal plates on both sides. It is a single, efficient and low cost method.
本发明并不限于上述实施方式, 在不背离本发明的实质内容的情况下, 本领域技术人员能够想到的任何变形、 改进、 替换均落入本发明的范围。  The present invention is not limited to the above-described embodiments, and any variations, modifications, and alterations that can be made by those skilled in the art without departing from the scope of the present invention fall within the scope of the present invention.
工业实用性 本发明提供的摩擦发电机依靠内部摩擦起电电势的变化以及两侧金属 极板的诱导效应产生电能, 且能够在较低成本、 较少原材料和加工工序的条 件下实现。 Industrial Applicability The friction generator provided by the present invention generates electric energy by means of internal friction to change electric potential and induced effects of metal plates on both sides, and can be realized at a lower cost, less raw materials, and processing steps.

Claims

权 利 要 求 书 claims
1、 一种摩擦发电机, 包括第一电极和第二电极, 1. A triboelectric generator, including a first electrode and a second electrode,
所述第一电极包括第一高分子聚合物绝缘层, 所述第一高分子聚合物绝 缘层的一侧表面设置有微纳凹凸结构, 所述第一高分子聚合物绝缘层的另一 侧表面设置有金属薄膜; The first electrode includes a first polymer insulating layer, one side surface of the first polymer insulating layer is provided with a micro-nano concave and convex structure, and the other side of the first polymer insulating layer A metal film is provided on the surface;
所述第二电极包括第二高分子聚合物绝缘层, 所述第二高分子聚合物绝 缘层的一侧表面设置有微纳凹凸结构, 所述第二高分子聚合物绝缘层的另一 侧表面设置有金属薄膜; The second electrode includes a second polymer insulating layer, one side surface of the second polymer insulating layer is provided with a micro-nano concave and convex structure, and the other side of the second polymer insulating layer A metal film is provided on the surface;
所述第一电极微纳凹凸结构的表面与所述第二电极微纳凹凸结构的表 面正对贴合并固定连接; The surface of the first electrode micro-nano concave and convex structure and the surface of the second electrode micro-nano concave and convex structure are facing each other and fixedly connected;
所述第一高分子聚合物绝缘层上的金属薄膜与所述第二高分子聚合物 绝缘层上的金属薄膜均为所述摩擦发电机的电压和电流输出电极。 The metal film on the first polymer insulating layer and the metal film on the second polymer insulating layer are both voltage and current output electrodes of the triboelectric generator.
2、 根据权利要求 1 所述的摩擦发电机, 其中, 所述第一高分子聚合物 绝缘层和所述第二高分子聚合物绝缘层分别选自聚酰亚胺薄膜、 苯胺曱醛树 脂薄膜、 聚曱醛薄膜、 乙基纤维素薄膜、 聚酰胺薄膜、 三聚氰胺曱醛薄膜、 聚乙二醇丁二酸酯薄膜、 纤维素薄膜、 纤维素乙酸酯薄膜、 聚己二酸乙二醇 酯薄膜、 聚邻苯二曱酸二烯丙酯薄膜、 纤维(再生)海绵薄膜、 聚氨酯弹性 体薄膜、苯乙烯丙烯共聚物薄膜、苯乙烯丁二烯共聚物薄膜、人造纤维薄膜、 聚曱基薄膜, 曱基丙烯酸酯薄膜、 聚乙烯醇薄膜、 聚乙烯醇薄膜、 聚酯薄膜、 聚异丁烯薄膜、 聚氨酯柔性海绵薄膜、 聚对苯二曱酸乙二醇酯薄膜、 聚乙烯 醇缩丁醛薄膜、 曱醛苯酚薄膜、 氯丁橡胶薄膜、 丁二烯丙烯共聚物薄膜、 天 然橡胶薄膜、 聚丙烯腈薄膜、 丙烯腈氯乙烯薄膜以及聚乙烯丙二酚碳酸盐薄 膜中的一种, 但所述第一高分子聚合物绝缘层材质与所述第二高分子聚合物 绝缘层材质不同。 2. The triboelectric generator according to claim 1, wherein the first high molecular polymer insulation layer and the second high molecular polymer insulation layer are respectively selected from the group consisting of polyimide film and aniline formaldehyde resin film. , polyformaldehyde film, ethylcellulose film, polyamide film, melamine formaldehyde film, polyethylene glycol succinate film, cellulose film, cellulose acetate film, polyethylene adipate Film, poly(diallyl phthalate) film, fiber (recycled) sponge film, polyurethane elastomer film, styrene propylene copolymer film, styrene butadiene copolymer film, rayon film, polymethyl film , Methacrylate film, polyvinyl alcohol film, polyvinyl alcohol film, polyester film, polyisobutylene film, polyurethane flexible sponge film, polyethylene terephthalate film, polyvinyl butyral film, One of formaldehyde phenol film, chloroprene rubber film, butadiene propylene copolymer film, natural rubber film, polyacrylonitrile film, acrylonitrile vinyl chloride film and polyethylene propylene glycol carbonate film, but the above The material of the first polymer insulation layer is different from the material of the second polymer insulation layer.
3、 根据权利要求 1 所述的摩擦发电机, 其中, 所述第一电极和所述第 二电极层叠构成能够通过其任意弯曲或变形, 产生摩擦电的柔性平板结构。 3. The triboelectric generator according to claim 1, wherein the first electrode and the second electrode are stacked to form a flexible flat plate structure capable of generating triboelectricity through arbitrary bending or deformation.
4、 根据权利要求 1 所述的摩擦发电机, 其中, 所述第一高分子聚合物 绝缘层与所述第二高分子聚合物绝缘层表面的微纳凹凸结构为纳米级至微 米级的凹凸结构。 4. The triboelectric generator according to claim 1, wherein the micro-nano concave and convex structures on the surfaces of the first polymer insulating layer and the second polymer insulating layer are nanoscale to microscopic. Meter-scale concave and convex structure.
5、 根据权利要求 1 所述的摩擦发电机, 其中, 所述第一电极与所述第 二电极的外侧边缘通过胶带连接。 5. The triboelectric generator according to claim 1, wherein the outer edges of the first electrode and the second electrode are connected through tape.
6、 根据权利要求 1 所述的摩擦发电机, 其中, 所述第一高分子聚合物 绝缘层上的金属薄膜和所述第二高分子聚合物绝缘层上的金属薄膜分别通 过真空溅射法或蒸镀法镀于所述绝缘层表面上。 6. The triboelectric generator according to claim 1, wherein the metal film on the first polymer insulating layer and the metal film on the second polymer insulating layer are formed by vacuum sputtering. Or be plated on the surface of the insulating layer by evaporation method.
7、 根据权利要求 1所述的摩擦发电机, 其中, 所述金属薄膜材质为金、 银、 铂、 铝、 镍、 铜、 钛、 烙、 硒及其合金中的一种。 7. The triboelectric generator according to claim 1, wherein the metal film material is one of gold, silver, platinum, aluminum, nickel, copper, titanium, iron, selenium and their alloys.
8、一种摩擦发电机组, 由权利要求 1-7任一权利要求所述的摩擦发电机 并联或串联组成。 8. A friction generator set, consisting of the friction generators according to any one of claims 1 to 7 connected in parallel or in series.
PCT/CN2013/072493 2012-05-15 2013-03-12 Friction generator and friction generator unit WO2013170651A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210149940.8A CN102684546B (en) 2012-05-15 2012-05-15 Friction generator
CN201210149940.8 2012-05-15

Publications (2)

Publication Number Publication Date
WO2013170651A1 true WO2013170651A1 (en) 2013-11-21
WO2013170651A8 WO2013170651A8 (en) 2014-03-06

Family

ID=46816031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/072493 WO2013170651A1 (en) 2012-05-15 2013-03-12 Friction generator and friction generator unit

Country Status (2)

Country Link
CN (1) CN102684546B (en)
WO (1) WO2013170651A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105336868A (en) * 2014-07-17 2016-02-17 北京纳米能源与系统研究所 Organic light emitting diode directly driven by friction power generation and driving method
US20160087552A1 (en) * 2014-09-23 2016-03-24 Research & Business Foundation Sungkyunkwan University Self-repairing energy generating element using shape memory polymer
US20160344307A1 (en) * 2015-05-19 2016-11-24 Boe Technology Group Co., Ltd. Frictional electricity-generating device and a method for manufacturing the same, electronic apparatus and wearable apparatus
CN106901715A (en) * 2016-07-05 2017-06-30 纳智源科技(唐山)有限责任公司 Physiological signal collection sensing zone and its application
CN108322083A (en) * 2018-03-30 2018-07-24 大连海事大学 Wave energy efficient generating apparatus based on friction nanometer power generator
CN111403445A (en) * 2020-03-23 2020-07-10 京东方科技集团股份有限公司 Display panel and manufacturing method thereof
CN111711380A (en) * 2020-06-17 2020-09-25 重庆邮电大学 Electromagnetic-friction composite nano generator based on rolling friction
CN113162477A (en) * 2021-02-05 2021-07-23 西安交通大学 Liquid drop energy collecting device and method based on thin film interdigital electrode
CN113489122A (en) * 2021-07-02 2021-10-08 西南大学 Direct-current liquid drop generator and preparation method thereof
CN114608698A (en) * 2022-03-15 2022-06-10 广东海洋大学 Self-driven vibration sensor based on friction nano generator

Families Citing this family (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102684546B (en) * 2012-05-15 2015-03-18 纳米新能源(唐山)有限责任公司 Friction generator
CN103778865B (en) * 2012-10-26 2016-09-07 纳米新能源(唐山)有限责任公司 False proof device and comprise the equipment of this false proof device
CN103684035B (en) * 2012-09-20 2015-09-30 纳米新能源(唐山)有限责任公司 Multilayer high power nano friction generator
CN102916611B (en) * 2012-09-26 2014-10-29 华中科技大学 Flexible power generation device and manufacturing method thereof
CN103776567B (en) * 2012-10-19 2016-08-03 纳米新能源(唐山)有限责任公司 Pressure sensitive cable based on franklinic electricity
CN103780120B (en) * 2012-10-25 2016-08-10 纳米新能源(唐山)有限责任公司 The preparation method of flexible nano friction generator and this friction generator
CN103353583A (en) * 2012-11-02 2013-10-16 国家纳米科学中心 Magnetic field sensor
CN103840700B (en) * 2012-11-22 2016-08-10 纳米新能源(唐山)有限责任公司 A kind of subsphaeroidal nano friction generator of multilayer high power and application thereof
CN103368458B (en) * 2012-11-30 2016-01-20 北京纳米能源与系统研究所 Impulse generator and generating set
CN103855421B (en) * 2012-11-30 2016-07-13 纳米新能源(唐山)有限责任公司 Self-charging film lithium ion battery
CN103856096B (en) * 2012-12-07 2015-12-16 纳米新能源(唐山)有限责任公司 High power nano friction generator and preparation method thereof
CN103859678B (en) * 2012-12-14 2016-03-02 纳米新能源(唐山)有限责任公司 Luminous shoe
CN103859688B (en) * 2012-12-14 2016-03-02 纳米新能源(唐山)有限责任公司 Power-generating shoe
CN103868001B (en) * 2012-12-14 2017-01-25 纳米新能源(唐山)有限责任公司 Street lamp device
CN103051244B (en) * 2012-12-15 2016-01-13 华中科技大学 A kind of paper substrate flexible power generation device and manufacture method thereof
CN103885255B (en) * 2012-12-21 2017-04-12 纳米新能源(唐山)有限责任公司 self-powered liquid crystal display
CN203043555U (en) * 2012-12-27 2013-07-10 纳米新能源(唐山)有限责任公司 Toy for children
CN105103430B (en) * 2012-12-28 2017-08-29 兰州金福乐生物工程有限公司 A kind of natural heat energy conversion storage apparatus
CN103944442B (en) * 2013-01-21 2016-07-06 北京大学科技开发部 A kind of foldable minitype shaking generator and manufacture method thereof
CN103944443B (en) * 2013-01-21 2016-09-07 北京大学科技开发部 A kind of cascade structure electromotor
CN103368451B (en) * 2013-01-28 2016-02-03 北京纳米能源与系统研究所 A kind of sliding friction nano generator
CN103368450B (en) * 2013-01-28 2016-02-03 北京纳米能源与系统研究所 Utilize the shoe-pad of the electric nano generator of friction
CN103368449B (en) * 2013-01-28 2015-07-15 北京纳米能源与系统研究所 Nanometer electric generator utilizing sliding friction
CN103780123B (en) * 2013-02-01 2016-08-03 北京纳米能源与系统研究所 A kind of sliding friction nanometer generating unit and TRT
CN103973155A (en) * 2013-02-05 2014-08-06 纳米新能源(唐山)有限责任公司 Magnetic induction cable
CN103368452B (en) * 2013-03-08 2016-03-30 北京纳米能源与系统研究所 Electrostatic pulse generator and DC pulse generator
CN103780124B (en) * 2013-03-12 2015-12-09 北京纳米能源与系统研究所 A kind of slidingtype friction nanometer power generator group
CN103354429B (en) * 2013-03-12 2015-09-16 北京纳米能源与系统研究所 A kind of sliding friction nano generator and electricity-generating method
CN103368453B (en) * 2013-03-12 2016-04-13 北京纳米能源与系统研究所 A kind of sliding friction nano generator and electricity-generating method
CN103780125B (en) * 2013-03-13 2016-03-30 北京纳米能源与系统研究所 A kind of jacket layer slidingtype friction nanometer power generator
CN104076378B (en) * 2013-03-27 2017-02-08 纳米新能源(唐山)有限责任公司 Self-power positioning shoe
CN103780126B (en) * 2013-03-29 2017-02-08 北京纳米能源与系统研究所 Friction nanometer generator and gyroscope
CN104104122B (en) * 2013-04-12 2016-10-19 纳米新能源(唐山)有限责任公司 Electricity generation system
WO2014166293A1 (en) * 2013-04-12 2014-10-16 纳米新能源(唐山)有限责任公司 Power generation system using nanometer friction generator
CN104104261B (en) * 2013-04-12 2016-08-10 纳米新能源(唐山)有限责任公司 Electricity generation system
CN103780127B (en) * 2013-04-15 2015-11-25 北京纳米能源与系统研究所 A kind of friction nanometer power generator
CN103780128B (en) * 2013-04-16 2016-04-06 北京纳米能源与系统研究所 A kind of wind-force friction nanometer power generator
CN103368454A (en) * 2013-04-26 2013-10-23 国家纳米科学中心 Frictional electricity nano-generator, generating clothes and method for manufacturing generating clothes
CN104124888B (en) * 2013-04-28 2017-02-08 纳米新能源(唐山)有限责任公司 Power generation system
CN103780129B (en) * 2013-05-27 2016-05-04 北京纳米能源与系统研究所 Rotary static generator
CN104253561B (en) * 2013-06-25 2018-06-08 北京纳米能源与系统研究所 Sliding friction generator, electricity-generating method and vector shift sensor
CN104253562B (en) * 2013-06-28 2016-12-28 北京纳米能源与系统研究所 Enclosed single electrode friction nanometer power generator, electricity-generating method and follow-up mechanism
CN104283453B (en) * 2013-07-11 2017-02-15 北京纳米能源与系统研究所 Sliding friction generator, generating method and vector displacement sensor
CN103780131B (en) * 2013-07-12 2015-11-25 北京纳米能源与系统研究所 A kind of friction generator
CN104280162B (en) * 2013-07-12 2016-12-28 纳米新能源(唐山)有限责任公司 Pressure transducer based on triboelectricity
CN103391020B (en) * 2013-07-16 2016-02-03 北京纳米能源与系统研究所 A kind of multi-freedom-degreeenergy energy acquisition device based on friction nanometer power generator
CN104426414B (en) * 2013-08-23 2016-08-10 纳米新能源(唐山)有限责任公司 Generate electricity effect improved friction generator and preparation method thereof
CN104426415B (en) * 2013-08-27 2017-05-03 北京纳米能源与系统研究所 Pulse generator, generating set, and energy harvesting device
CN104426418B (en) * 2013-08-30 2017-05-10 纳米新能源(唐山)有限责任公司 Generating air bag device and air bag generating shoes applying same
CN104426417B (en) * 2013-08-30 2018-06-08 北京纳米能源与系统研究所 A kind of friction generator and generating set for generating exchange output
CN104426419B (en) * 2013-09-05 2016-08-10 纳米新能源(唐山)有限责任公司 Triboelectricity and the hybrid power system of Electromagnetic generation
CN104578892B (en) * 2013-10-12 2016-10-26 纳米新能源(唐山)有限责任公司 Integral type friction generator and vibrating sensor
CN104578893B (en) * 2013-10-18 2017-02-08 纳米新能源(唐山)有限责任公司 Frictional power generator employing dual-polymer composite film, preparation method thereof and vibration sensor
CN104571551B (en) * 2013-10-18 2017-12-26 纳米新能源(唐山)有限责任公司 Fexible film keyboard and electronic product based on friction generator
CN104578669B (en) * 2013-10-21 2019-11-01 北京纳米能源与系统研究所 Output device of the electrical signal, positioning device and localization method based on elastomeric element
CN104626433B (en) * 2013-11-08 2017-04-19 纳米新能源(唐山)有限责任公司 Polydimethylsiloxane membrane, preparation method thereof, and friction electric generator using same
CN103791927B (en) * 2013-11-12 2017-02-08 北京纳米能源与系统研究所 Self-drive displacement and velocity sensing method, sensor and manufacture method of sensor
CN104753387B (en) * 2013-12-26 2016-11-09 纳米新能源(唐山)有限责任公司 Hybrid wind power generation machine
CN103778867B (en) * 2014-01-14 2016-06-15 北京大学 A kind of self-driven visualization electronic skin
CN104931533B (en) * 2014-03-20 2018-03-23 纳米新能源(唐山)有限责任公司 A kind of ethanol sensor based on friction electricity
CN103970352B (en) * 2014-04-24 2016-08-31 华中科技大学 A kind of paper substrate flexibility touch sensing and manufacture method thereof
CN104065297A (en) * 2014-05-06 2014-09-24 北京大学 Friction generator based on existing floors
CN105203790B (en) * 2014-06-27 2018-06-26 北京纳米能源与系统研究所 Electrostatic velocity sensor
CN105289439B (en) * 2014-07-28 2018-06-22 北京纳米能源与系统研究所 Confess the photocatalytic device and photocatalysis method of electric-field enhancing catalytic efficiency
CN104808138B (en) * 2014-11-20 2017-12-26 纳米新能源(唐山)有限责任公司 A kind of triboelectricity apparatus test device
CN104485835B (en) * 2014-12-05 2016-11-16 天津理工大学 A kind of biocompatibility miniature friction electromotor
CN105958859B (en) * 2016-03-04 2021-09-17 上海天轩科技发展有限公司 Fluid dynamic nano generator
CN105982361B (en) * 2016-03-16 2019-01-22 纳智源科技(唐山)有限责任公司 Pneumatic transmitter, airflow treatment device and electronic cigarette based on triboelectricity
CN107961420B (en) * 2016-12-02 2022-04-29 北京纳米能源与系统研究所 Self-driven medicine injection device and injection method
CN106739197B (en) * 2016-12-23 2019-05-10 北京纳米能源与系统研究所 Waveform laminated film and its molding equipment, forming method and friction generator
CN109077730B (en) * 2017-06-13 2022-03-04 北京纳米能源与系统研究所 Muscle micro-motion control element, switch device, man-machine interaction system and front-end device
DE102018221053A1 (en) * 2018-04-05 2019-10-10 Continental Reifen Deutschland Gmbh Apparatus for measuring a mechanical force comprising first, second, third, fourth and fifth layers and the uses of the apparatus and tires or engineering rubber articles comprising the apparatus
CN110733299A (en) * 2018-07-18 2020-01-31 住友橡胶工业株式会社 Tire assembly, monitoring system and method of tire
CN109039142A (en) * 2018-08-01 2018-12-18 汕头大学 A kind of frictional electrostatic generating device based on marine riser vibration
CN109194184A (en) * 2018-09-27 2019-01-11 北京科技大学 A kind of preparation method of high-energy utilization rate friction nanometer power generator
CN109606127A (en) * 2018-12-20 2019-04-12 刘山平 A kind of new-energy automobile
CN109682873A (en) * 2019-01-25 2019-04-26 京东方科技集团股份有限公司 A kind of saliva detection device and system
CN110053483B (en) * 2019-03-28 2020-11-20 王长华 New energy automobile power supply unit
CN110927837A (en) * 2019-12-24 2020-03-27 华中科技大学 Variable-focal-length liquid lens system based on electric leakage medium model and friction power generation
CN111554793B (en) * 2020-03-23 2021-10-15 中国农业大学 Combined type full-flexible power generation unit body and human body wearable electronic equipment
CN112012881B (en) * 2020-09-14 2021-11-23 安徽方永新能源科技有限公司 Nano friction wind driven generator
CN112982240B (en) * 2021-02-10 2022-04-01 山东冠县北方管业有限公司 Highway strengthens rail guard

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007157646A (en) * 2005-12-08 2007-06-21 Canon Inc Catalyst electrode and polymer electrolyte fuel cell
CN101604930A (en) * 2008-06-13 2009-12-16 鸿富锦精密工业(深圳)有限公司 Generator
CN102684546A (en) * 2012-05-15 2012-09-19 纳米新能源(唐山)有限责任公司 Friction generator
CN102683573A (en) * 2012-05-09 2012-09-19 纳米新能源(唐山)有限责任公司 Nano generator, nano generator set and self-powered system comprising nano generator or nano generator set

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101954775B (en) * 2009-07-13 2012-08-08 中国科学院化学研究所 Method for preparing metal plate base for ink-jet printing computer to plate
CN202856656U (en) * 2012-05-15 2013-04-03 纳米新能源(唐山)有限责任公司 Friction generator and friction generator unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007157646A (en) * 2005-12-08 2007-06-21 Canon Inc Catalyst electrode and polymer electrolyte fuel cell
CN101604930A (en) * 2008-06-13 2009-12-16 鸿富锦精密工业(深圳)有限公司 Generator
CN102683573A (en) * 2012-05-09 2012-09-19 纳米新能源(唐山)有限责任公司 Nano generator, nano generator set and self-powered system comprising nano generator or nano generator set
CN102684546A (en) * 2012-05-15 2012-09-19 纳米新能源(唐山)有限责任公司 Friction generator

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105336868A (en) * 2014-07-17 2016-02-17 北京纳米能源与系统研究所 Organic light emitting diode directly driven by friction power generation and driving method
US20160087552A1 (en) * 2014-09-23 2016-03-24 Research & Business Foundation Sungkyunkwan University Self-repairing energy generating element using shape memory polymer
US10432111B2 (en) * 2014-09-23 2019-10-01 Research & Business Foundation Sungkyunkwan University Self-repairing energy generating element using shape memory polymer
US20160344307A1 (en) * 2015-05-19 2016-11-24 Boe Technology Group Co., Ltd. Frictional electricity-generating device and a method for manufacturing the same, electronic apparatus and wearable apparatus
US10312829B2 (en) * 2015-05-19 2019-06-04 Boe Technology Group Co., Ltd. Frictional electricity-generating device and a method for manufacturing the same, electronic apparatus and wearable apparatus
CN106901715A (en) * 2016-07-05 2017-06-30 纳智源科技(唐山)有限责任公司 Physiological signal collection sensing zone and its application
CN106901715B (en) * 2016-07-05 2023-10-27 纳智源科技(唐山)有限责任公司 Physiological signal acquisition sensing belt and application thereof
CN108322083A (en) * 2018-03-30 2018-07-24 大连海事大学 Wave energy efficient generating apparatus based on friction nanometer power generator
CN108322083B (en) * 2018-03-30 2023-10-24 大连海事大学 Wave energy efficient power generation device based on friction nano-generator
CN111403445B (en) * 2020-03-23 2023-04-18 京东方科技集团股份有限公司 Display panel and manufacturing method thereof
CN111403445A (en) * 2020-03-23 2020-07-10 京东方科技集团股份有限公司 Display panel and manufacturing method thereof
CN111711380B (en) * 2020-06-17 2023-05-23 重庆邮电大学 Electromagnetic-friction composite nano generator based on rolling friction
CN111711380A (en) * 2020-06-17 2020-09-25 重庆邮电大学 Electromagnetic-friction composite nano generator based on rolling friction
CN113162477A (en) * 2021-02-05 2021-07-23 西安交通大学 Liquid drop energy collecting device and method based on thin film interdigital electrode
CN113162477B (en) * 2021-02-05 2023-07-18 西安交通大学 Liquid drop energy collecting device and method based on thin film interdigital electrode
CN113489122A (en) * 2021-07-02 2021-10-08 西南大学 Direct-current liquid drop generator and preparation method thereof
CN114608698A (en) * 2022-03-15 2022-06-10 广东海洋大学 Self-driven vibration sensor based on friction nano generator

Also Published As

Publication number Publication date
CN102684546B (en) 2015-03-18
WO2013170651A8 (en) 2014-03-06
CN102684546A (en) 2012-09-19

Similar Documents

Publication Publication Date Title
WO2013170651A1 (en) Friction generator and friction generator unit
CN202856656U (en) Friction generator and friction generator unit
Lin et al. Recent progress in triboelectric nanogenerators as a renewable and sustainable power source
US9178446B2 (en) Triboelectric generator
Xiao et al. Silicone-based triboelectric nanogenerator for water wave energy harvesting
CN102710166B (en) Friction generator
Chandrasekhar et al. Human interactive triboelectric nanogenerator as a self-powered smart seat
Tao et al. Miura-origami-inspired electret/triboelectric power generator for wearable energy harvesting with water-proof capability
US10425018B2 (en) Triboelectric nanogenerator for harvesting broadband kinetic impact energy
Lin et al. Robust triboelectric nanogenerator based on rolling electrification and electrostatic induction at an instantaneous energy conversion efficiency of∼ 55%
Zhang et al. Self-powered, wireless, remote meteorologic monitoring based on triboelectric nanogenerator operated by scavenging wind energy
Yang et al. Harvesting energy from the natural vibration of human walking
US9790928B2 (en) Triboelectric generators and sensors
KR101982691B1 (en) Sliding frictional nano generator and power generation method
WO2014198155A1 (en) Single-electrode friction nano generator, power generation method and self-driven tracker
CN103532430B (en) Based on the preparation method of piezoelectricity with the flexible miniature energy collecting device of friction electric coupling
WO2014044077A1 (en) Multi-layer high-power nano friction-based generator
WO2014169724A1 (en) Wind friction nanogenerator
WO2014169673A1 (en) Rotary electrostatic power generation apparatus
CN104124887B (en) Wind-driven generator
KR20150134362A (en) Sliding frictional nano generator and power generation method
US20150048715A1 (en) Paper-base flexible power-generation apparatus, and manufacturing method thereof
CN110572073A (en) Mixed type friction nano generator
WO2014005434A1 (en) Magnetic-field-driven nanometer friction generator
WO2014206098A1 (en) Surrounding-type unipolar friction nanometer power generator, power generation method, and tracking device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13790578

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13790578

Country of ref document: EP

Kind code of ref document: A1